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ABSTRACT Smart agriculture or precision farming is a rapidly evolving multidisciplinary field
encompassing knowledge from agriculture, technology, data science, and environmental science to name
a few. Amidst the large number of recent research publications related to smart agriculture and intelligent
farming practices, a need arises to summarize their findings in a single consolidated review article. This
work endeavors to summarize recent key technologies and applications of smart agriculture, delineate
the prevalent challenges it faces, highlight its publicly available datasets for adoption, and offer some
policy guidelines for stakeholders, assisting them in making informed decisions regarding technology
adoption and investment. We conclude that smart agriculture can potentially revolutionize the agricultural
sector, provided we overcome the challenges by ensuring effective collaboration among stakeholders,
a strong infrastructure, digital literacy, adoption incentives, data privacy, interoperability, favorable policy
frameworks, and continuous research and development.

INDEX TERMS Smart agriculture, precision agriculture, agricultural technology, agricultural datasets, IoT
in agriculture, smart sensors, applications of smart agriculture, success stories in agriculture.

I. INTRODUCTION

Smart agriculture (SA) proves to be a transformative
paradigm in modern farming practices, using cutting-edge
technologies to increase efficiency, productivity, and sus-
tainability [1]. At its core, SA integrates a diverse array of
technological components, starting with the deployment of
sensors and Internet of Things (IoT) devices. SA operates on
key principles such as optimization of resources, precision
and accuracy in farming practices, data-driven decision-
making, sustainability, and integration with market access
platforms [2]. The key application areas of SA include crop
growth, crop monitoring, livestock management, irrigation
management, pest and disease control, supply chain opti-
mization, and farm management systems etc.

In the 1980s, the use of GPS technology laid the foundation
for precision farming, enabling farmers to map and manage
their fields with unprecedented accuracy. The rise of the
IoT and sensor technologies ushered in an era of real-time
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data collection from fields, enabling farmers to observe
soil conditions, crop health, and weather patterns more
comprehensively [3], [4]. The widespread application of
artificial intelligence (AI) andmachine learning in agriculture
during the 2010s was a major advancement, where advanced
analytics empowered farmers to make decisions based on
data, optimizing resources and increasing productiveness.
Drones and robotics gained prominence, automating various
farming tasks and further enhancing precision [5], [6]. Thus
the evolution of traditional farming into a technology-driven
approach represents a profound shift in agricultural practices,
enhancing efficiency, sustainability, and productivity. SA is
continually evolving, integrating advanced technologies to
optimize farming processes [7]. The emerging trends col-
lectively aim to revolutionize farming methods to make
them more effective, sustainable, and capable of meeting
the increasing global food demand while minimizing the
environmental impact [8]. Figure 1 shows an overview of SA.

In [9], the three main development modes of SA i.e.
facility agriculture, precision agriculture, and order agri-
culture are discussed, along with the key technologies,
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FIGURE 1. Smart agriculture at a glance.

applications, and security measures for each mode. From
the perspectives of information technology and agricultural
productivity, the security issues associated with SA are
examined. Reference [10] explores the challenges and
opportunities of SA related to environmental sustainability,
economic viability, and social acceptability, as well as recent
advancements in technologies like AI, cloud computing, big
data analytics, blockchain, and IoT. Reference [11] focuses
on the role of the IoT in SA, providing an overview of
surveys and emerging agricultural IoT technologies including
unmanned aerial vehicles, cloud/fog computing, software-
defined networking, open-source IoT platforms, wireless
technologies, and middleware platforms. Research gaps and
future directions for agricultural IoT are also identified.
Despite being available in abundance, the existing liter-

ature on SA lacks comprehensive coverage of all related
aspects, presenting a gap that this research aims to address.
Table 1 summarizes focus of the existing survey articles

in comparison to this work, and demonstrates the vast
coverage of topics this manuscript promises. Our motivation
behind this attempt is KNePSTreC-driven, which stands
for advancing Knowledge on smart agricultural practices
through effective Networking with our peers, influence
Policy decisions, promote Sustainability, identify emerging
Trends, and address critical Challenges in SA. Figure 2
reflects our KNePSTreC framework. This study endeavors
to provide a summary of recent advancements, benefits,
challenges, datasets, emerging trends, and technologies in
smart agriculture, all consolidated within a single review
article − making it an encyclopedia on SA.
For this survey, we have employed the Preferred Reporting

Items for Systematic Reviews andMeta-Analyses (PRISMA)
methodology. A literature search was done in the Science
Direct Freedom Collection, Elsevier database, Web of
Science - Core Collection,MDPI –Open access, and Springer
Link Journals using the flowchart and the list of items of
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TABLE 1. Comparison with the existing survey articles.

FIGURE 2. KNePSTreC framework summarizing motivation.

this method. Keywords such as smart agriculture, precision
agriculture, IoT in smart agriculture, IoT in agriculture, smart
sensors, agricultural datasets, success stories in agriculture,
and applications of smart agriculture were used to retrieve
relevant studies. The searches were limited to the English
language only. The research procedure was validated using
the PRISMA checklist [29]. The authors identified records
based on their titles and abstracts in the first step. Then the
exclusion/inclusion criteria were applied to identify eligible
records. Each author individually reviewed and resolved any
differences in the titles and abstracts of the search results.
Articles that discussed SA, PA, IoT in SA, IoT in agriculture,
smart sensors, agricultural databases, success stories in agri-
culture, and applications of smart agriculture were eligible
for full-text screening. Disagreements were settled through
conversation after full texts were reviewed by all authors
for inclusion. Articles that discussed smart agriculture in

relation to technological advancement were incorporated into
this systematic review. Studies that used administrative or
previously gathered data were also permitted as long as
they met additional requirements. Studies released prior to
2010 were not included in the analysis.

The survey is organized as follows: Section II offers a
concise overview of key technologies and innovations, while
Section III delves into application areas. Section IV explores
the benefits and challenges associated with smart agriculture,
and Section V highlights relevant datasets. In Section VI,
the initiatives and success stories in SA are summarized,
followed by a discussion on future prospects in Section VII.
Finally, Section VIII concludes the survey, encapsulating
the key findings and insights gleaned. By presenting this
detailed review, our aim is to contribute to the advancement
of knowledge and development in SA practices.

II. KEY TECHNOLOGIES AND INNOVATIONS

PA involves utilizing technology to enhance crop yields,
decrease resource wastage, and boost overall efficiency
by strategically utilizing data, advanced technologies, and
real-time information in agricultural management. Key
elements include GPS technology, satellite imagery, and
sensors for detailed data collection on conditions of soil,
weather patterns, and crop health, which is then analyzed
through machine learning and data analytics algorithms to
produce practical insights. The main aim is to tailor inputs
like water, fertilizers, and pesticides precisely to meet the
unique needs of each field section, minimizing waste and
optimizing resource utilization, while automated machinery
and robotic systems are used for accurate tasks like planting,
harvesting, monitoring, and maintenance.
PA promotes sustainability in addition to increasing

productivity by promoting responsible resourcemanagement.
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FIGURE 3. IoT applications in smart agriculture.

By embracing the PA techniques, farmers can navigate chal-
lenges such as climate change, variability in soil conditions,
and the need for increased food production more efficiently
and sustainably.

A. INTERNET OF THINGS (IoT) DEVICES

An Internet of Things (IoT) device is a physical device that is
networked and has sensors, actuators, and software installed
in it so that it can gather, exchange, and use data [30].
These devices, ranging from everyday objects to specialized
machinery, are designed to enhance connectivity, automation,
and making decisions based on data in various domains.

IoT devices are essential in advancing smart farming
by gathering data in real time on various factors like soil
moisture and animal behavior. This information is transmitted
online, enabling remote monitoring and control for farm-
ers [12]. In industries, IoT aids in predictive maintenance,
inventory tracking, and energy optimization [31]. These
devices also find use in smart homes, healthcare, and
transportation, among others, showcasing their transforma-
tive impact on different sectors through valuable insights,
efficiency enhancement, and convenience [13], [14].

Reference [32] delves into the most recent developments
in IoT and sensor technologies for agriculture in addition to
discussing their numerous applications. The major applica-
tions include crop disease detection, irrigation monitoring,
fertilizer administration, processing, logistics, forecasting,
harvesting, monitoring climate conditions, and fire safety.
Additionally, it presents a variety of sensors that can identify
various plant diseases, livestock, moisture, nitrate, pH,
electrical conductivity, CO2, temperature, humidity, light,
weather station, water level, and flexible wearables. Figure 3
shows some IoT applications in SA.
Debnath and Saha [33] introduces a novel approach to SA

by integrating IoT network withMachine Learning. Themain
innovation lies in its capability to identify brown-spot disease
in rice paddies at an early stage, utilizing Convolutional
Neural Networks (CNN) for the first time. Instead of the
conventional methods, this project employs Deep Learning.
It utilizes real-time data for image recognition and pre-
processing. The pre-processing of data and feature extraction
stages are facilitated by a custom image-processing tool.

Additionally, an accompanying mobile application has been
developed to provide farmers with access to this technology.

Sarpal et Al. [35] address the challenges facing agri-
culture, particularly in terms of low-yield production, due
to limited infrastructure and resources. To overcome these
challenges, the paper proposes an IoT-driven innovative
approach. It introduces a sensor-based irrigation model
that collects and analyzes data in the cloud for real-time
monitoring. This data is then integrated into an Android
application, providing farmers with an easy-to-use interface.
The application allows farmers to manually control their
farms or set timers for automated irrigation. Additionally,
a Machine Learning model predicts suitable crops based on
varying weather conditions. The application also includes a
classified portal for direct buying and selling between farmers
and customers, eliminating the need for intermediaries.
A unique aspect of this research is the monitoring and
control of farm equipment and crop prediction through a
locally installed LCD display and keypad in farmers’ homes.
Overall, the proposed framework aims to enhance agricultural
productivity, improve farmers’ livelihoods, and contribute to
economic growth in the nation in an energy-efficient and user-
friendly manner.

Gia et al. [34] have incorporated Edge and Fog computing,
which involves processing data closer to the source, which
is crucial for expanding functionality. In order to improve
the capabilities of SA and farming applications, this study
presents a system architecture and implementation that
integrates AI at the local network level, or Edge AI. This is
achieved through the utilization of Edge and Fog computing
along with LPWAN technology for broad coverage. A sensor
node, an Edge gateway, cloud servers, LoRa repeaters, a Fog
gateway, and an end-user terminal application make up the
suggested system. In particular, the study recommends using
a CNN-based image compression technique at the Edge layer
to provide data in a single message from several sensor nodes
that are within the gateway’s range. Advanced compression
methods are employed to significantly reduce data size, up to
67%, while maintaining a low decompression error rate of
below 5%. This innovative approach offers a novel solution
for handling IoT data effectively. The system is depicted in
Figure 4.

Avcsar and Mowla [24] have thoroughly discussed five
wireless communication protocols used in six diverse SA
applications. They point out four challenges facing the SA
adoption, especially in the context of wireless communica-
tions. They believe that 1) cost, mainly driven by hardware
resources and maintenance, 2) system security, 3) quality
of communication, and 4) optimal system design are the
primary challenges that still demand addressing. The authors
further deliberate on the future trends in SA applications,
which according to them, will mainly be driven by the quality
and efficiency of communication. In another survey [27]
Mowla et al. have collected a large number of recent works
on the role of IoT and wireless sensor networks in the SA
applications.
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FIGURE 4. 5-layer Sensor-Edge-Fog-Cloud-Terminal SA [34].

B. ROBOTS AND DRONES

Robots and Drones are revolutionizing SA by providing
farmers and agronomists with advanced monitoring capa-
bilities through aerial cameras and sensors. Robotics plays
a vital role in the realm of SA, assisting in a new era of
precision, efficiency, and automation. Agricultural robots are
built to perform a multitude of functions, from planting
and harvesting to weeding and monitoring, contributing to
optimized farming practices [36]. In SA, robotic systems
offer several advantages. They enhance operational efficiency
by automating labor-intensive tasks, reducing dependence on
manual labor, and mitigating labor shortages. Precision is a
hallmark of agricultural robotics, with machines capable of
precisely planting seeds, applying fertilizers, and performing
other critical operations with minimal wastage [16].
Reference [15] provides an overview of apple harvesting

robots, including their development, structure, and operation
process. It explains the principles behind apple harvesting
robots and summarizes research on target fruit recognition,
all-weather operation, and intelligent computing theory. The
focus of research on apple harvesting robots is improving
efficiency.
These robots can navigate fields autonomously using GPS

technology and advanced sensors, ensuring accurate and
timely execution of tasks. By adopting robotic technolo-
gies, farmers can improve productivity, optimize resource
utilization, and respond effectively to the challenges posed by
climate change and evolving agricultural demands, thereby
contributing to a sustainable and technologically advanced
future for agriculture [17], [37].
Dharmasena et al. [38] introduce an automated system

designed to efficiently manage climate and irrigation within
a greenhouse. The system employs a cloud-connected mobile
robot capable of monitoring humidity, soil moisture, temper-
ature, and pH levels. Through image processing, the robot
can detect unhealthy plants. Based on sensor data, a fuzzy
controller controls the irrigation, humidifiers, and cooling
and heating systems of the greenhouse. While onboard

sensors record information about the surrounding climate,
the mobile robot explores a pre-drawn greenhouse layout
and gathers soil samples for analysis. Additionally, a robot-
mounted camera captures images of the plants, allowing
for detection of unhealthy crops utilizing leaf color and
texture. Sharma and Borse [39] extensively outline the design
and development of an autonomous mobile robot tailored
for agriculture or plant nursery applications, encompassing
plant disease detection, growth monitoring, and spraying
functions for pesticides, fertilizers, and water. The proposed
platform offers a compact, portable, and robust solution
capable of autonomously surveying farmland. It efficiently
identifies diseases, monitors plant growth, and administers
appropriate measures such as spraying pesticides, fertilizers,
and water as needed, enhancing overall crop management
processes.

Similarly, Drones offer a detailed perspective of agri-
cultural areas, allowing for precise data collection and
analysis [13], [40]. In SA, drones are utilized for various tasks
such as monitoring crop health, assessing irrigation systems,
and creating detailed field maps for PA practices [41].
Farmers may make better crop management and more
informed decisions thanks to the real-time data collected
by drone flights, and enhance productivity while promoting
sustainable farming practices [42]. Figure 5 shows drones in
SA.
In [43], authors gather corn field images weekly on a

multi-spectral band using UAV and CubeSat from Planet
Lab. They conduct various measurements with 28 nitrogen
management treatments and four duplicates for experimen-
tation. They specifically study 11 nitrogen management
treatments and report that UAVs as well as CubeSat sensors
can identify nitrogen stress before tasselling, and use the
green chlorophyll index (CIg) to monitor changes in stress
levels for various management strategies. The CIg of UAV
data provides more detailed spatial information than CubeSat
CIg due to its higher resolution when studying different
nitrogen management practices in trial plots.
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FIGURE 5. Drone applications in smart agriculture.

Shah et al. [44] suggest an automated method for plant
identification utilizing a synthetic neural network capable
of recognizing images of plant leaves using drones. The
EfficientNet-B3 model is trained, resulting in an impressive
success rate in identifying specific combinations of plants
and diseases. To enhance accessibility, both an Android
application and a website are developed, enabling farmers
and users to conveniently detect diseases from plant leaves.
Similarly, Kundu et al. [45] emphasize the advantages of
employing drones in the identification and visualization of
plant diseases. By employing an intelligent and automated
data collection and classification system, the process of dis-
ease detection becomes more streamlined and cost-efficient.
They report that this method holds promise for notably
enhancing the precision and effectiveness of plant disease
detection and surveillance. Chen et al. [46] have used drones
for irrigation systems management. They have achieved
uniformity of water distribution for peanuts and cotton
crops by using onboard cameras for irrigation uniformity
evaluation.

C. SENSORS

Sensors are integral components of SA, driving the collection
of real-time data essential for informed decision-making
in farming practices. Deployed across fields and livestock,
these sensors capture a spectrum of environmental parameters
crucial for crop management. Soil moisture sensors gauge
hydration levels, while temperature and humidity sensors
provide insights into climate conditions [12].
Crop health monitoring is achieved through a combination

of various measurements by different sensors, such as
moisture, nitrate, pH, electrical conductivity, CO2, temper-
ature, humidity, light, water level, etc. Crop health is also
monitored through sensors detecting chlorophyll levels and
nutrient concentrations. Weather sensors offer precise data
on atmospheric conditions. Livestock wearables incorporate
sensors to monitor animal health and behavior. These devices
collectively contribute to the optimization of resources and
sustainable farming practices [47].

A camera with a microcontroller, WiFi, smart remote
devices, internet access, multiple sensing nodes for inter-
facing, and sensor nodes in different places are all part of
the SA system with IoT [48]. Such sensors include those
that measure temperature, monitor soil moisture, use PIR
technology to detect objects, people, and animals in the field,
and GPS-based remote control robots that perform tasks like
weeding, spraying, and moisture sensing.

Electrical conductivity (EC) and pH sensors are crucial
to smart agriculture because they allow soil and water
conditions to be optimized to maximize crop output and
growth. Farmers may use the real-time data from these
sensors to make more informed decisions about fertilization
and irrigation. EC sensors track salt levels to prevent soil
degradation and manage nutrient levels. On the other hand,
pH sensors evaluate the acidity of soil and water to ensure
optimal nutrient availability. When combined with IoT tech-
nologies, these sensors allow for accurate management and
automated modifications, encouraging sustainable farming
methods and effective use of resources. Farmers may lessen
their influence on the environment and increase agricultural
output by utilizing this technology.

The advent of these smart sensors has enabled farmers
to embrace precision agriculture, tailoring irrigation, fertil-
ization, and pest control based on actual field conditions.
This real-time monitoring not only enhances productiv-
ity and yield but also optimizes resource application to
minimize environmental impact. Sensors in SA exemplify
the transformative power of technology, fostering a more
efficient, sustainable, and data-driven approach to modern
farming [49]. Garlando et al. [50] provide an overview of
sensors utilized in SA, categorizing them into two main
groups: sensors to measure the health of the plants and the
quality of the fruit, as well as sensors to keep an eye on
the environmental factors that support plant growth. It is
shown that leveraging advancements in electronics and sensor
technology is a straightforward approach to achieving various
objectives in agriculture.

D. ARTIFICIAL INTELLIGENCE (AI) AND MACHINE

LEARNING (ML)

AI and ML are at the forefront of revolutionizing SA, provid-
ing farmers with powerful tools to optimize decision-making
processes and enhance overall productivity. AI and ML
algorithms leverage the large amounts of data gathered by
drones, sensors, and other IoT devices in SA systems [51],
[52]. In precision farming, AI systems use both historical
and current data to forecast agricultural production, optimize
irrigation schedules, and identify potential pest or disease
outbreaks [53]. Machine learning algorithms can recognize
patterns in crop images [54], helping farmers assess plant
health and identify stress factors.
Moreover, AI-driven robotic systems perform tasks like

precision seeding, harvesting, and weeding, decreasing man-
ual labor and increasing the effectiveness of operations [16].
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FIGURE 6. AI applications in smart agriculture.

Predictive analytics based on machine learning can offer
insights into market trends and assist farmers to make
well-informed decisions regarding the selection of crop and
pricing tactics [55]. The ability of AI andML to adapt enables
them to consistently improve and offer farmers precise and
customized suggestions. In the ongoing development of
SA, AI and ML will be crucial in transforming farming,
ensuring it meets the growing worldwide need for food while
becoming more sustainable, efficient, and resilient. Figure 6
shows some of the AI applications in SA.
Amara et al. [56] present a method to identify and

categorize banana diseases using a CNN model. This
approach aids farmers in promptly, economically, and effi-
ciently detecting diseases affecting their crops. The system
successfully identifies two banana diseases, Sigatoka and
speckle, by analyzing images of affected leaves through
a deep neural network model. Albuquerque et al. [57]
introduce a deep learning method to identify water needs
from aerial images of irrigation systems. This automated
detection streamlines the irrigation system management,
thereby decreasing maintenance time and costs. Initial
findings, utilizing the Mask R-CNN neural network, indicate
the feasibility of identifying water in UAV-captured images.
The system identifies and prevents malfunctioning irrigation,
which could lead to under or over-watering, by effectively
implementing irrigation plans.
Deep Learning has been successfully applied for crop

classification and disease identification. Reenul et al. [58]
have demonstrated that utilizing the attention-based deep
network is a viable method for tackling such scenarios,
specifically in the realm of weed and crop identification
using a drone system. The main goal of this research is to
examine vision transformers (ViT) and utilize them for plant
categorization in the images captured by Unmanned Aerial
Vehicles (UAV). Figure 7 shows an overview of the model
utilized. Similarly, Qi et al. [59] have successfully applied a
visual attention-based YOLOv5 model to the recognition of
tomato disease identification.

Mohyuddin et al. [23] have presented a comprehensive
review of machine learning approaches for PA. The readers,
exclusively interested in exploring the role of ML and AI in
SA, are encouraged to go through the referenced article.

E. DATA ANALYTICS

Utilizing data analytics in SA is crucial for improving agricul-
tural efficiency, providing instant evaluations, and increasing
crop yields. The integration of modern technologies such
as IoT devices, sensors, UAVs, and blockchain are used to
generate vast quantities of data, which necessitate thorough
examination to offer a scientific understanding of various
factors affecting agriculture, including crop development,
soil health, and climate variations. This data allows farmers
to identify the optimal timing for planting, fertilizing, and
harvesting, as well as identifying specific land areas requiring
special attention. Furthermore, data analytics helps improve
how resources like water are allocated to reduce waste
and lessen environmental impacts. In the end, the use of
data analytics in SA offers the potential to transform food
production methods, making them more environmentally
friendly, efficient, and resistant to challenges such as
changing climates [60].

Data analytics assist in assessing the effectiveness and
impact of agricultural technologies and practices in SA
through essential evaluation metrics. Important metrics
encompass crop production, use of resources like water and
fertilizers, consumption of water and energy, pest and disease
control, soil health, economic feasibility, environmental
influence, acceptance of new technology, accuracy and
dependability of data, efficiency in operations, and quality
and safety of food. Via these measurements, data analytics
offer important information for improving agricultural activi-
ties, promoting sustainable methods, and informing decisions
made by farmers, researchers, and policymakers [61].

Machine learning algorithms process vast datasets, which
provide predictivemodels for disease outbreaks, crop produc-
tivity, and efficient use of resources. These insights empower
farmers to make strategic decisions, enhancing efficiency,
minimizing risks, and promoting sustainable agricultural
practices. Data analytics in smart agriculture not only
improves operational productivity but also fosters resilience
in the face of climate change, ensuring that modern farming
remains adaptive, efficient, and capable of meeting the
challenges of a rapidly evolving agricultural landscape [18].
The promise of computing technologies such as machine
learning, data analytics, wireless sensor networks, and the IoT
in agriculture is demonstrated by Akhter et al. [4]. Through
the use of data analytics and machine learning within an IoT
system, it presents a prediction model for Apple disease in
the apple orchards of the Kashmir valley.
Rabhi et al. [62] have shown that addressing irrigation

challenges in agriculture is paramount, with a shift from
manual to smart irrigation driven by analyzing big data.
This paper employs a method that integrates data mining
algorithms like support vector machines and neural networks
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FIGURE 7. ViT model applied in smart agriculture [58].

with remote sensing, and big data. The method entails
integrating machine learning with the Apache Spark tool,
Databricks, to forecast soil drought by measuring soil
temperature and moisture.

F. BLOCKCHAIN

Blockchain technology is increasingly utilized in SA to boost
transparency, traceability, and security in the agricultural
supply chain. Through blockchain use in SA systems,
a secure and unchangeable ledger is created to track all
transactions from planting to distribution. This technology
ensures data accuracy, minimizes the risk of fraud, and builds
trust among stakeholders. Farmers can securely document
crop production details, while consumers can follow the
journey of agricultural products, promoting accountability
and ethical standards. Smart contracts, also a part of
blockchain technology, enable automatic and transparent
agreement execution, simplifying tasks like payments and
quality assurance. By leveraging blockchain in SA, the
industry can address challenges related to food safety, fraud
prevention, and supply chain efficiency, ultimately assisting
in the development of a more sustainable, secure, and reliable
global food system [63], [64]. Figure 8 shows some of the
blockchain applications in SA.
Kassanuk and Phasinam [65] shows that the involvement

of middlemen, such as human-operated agencies, has led to
issues like accessibility, efficiency, security, and immutabil-
ity. This has resulted in financial losses, crop contamination,

FIGURE 8. Blockchain in smart agriculture.

and waste. Blockchain offers a decentralized ledger that
records data from various parties involved in currency trans-
actions. The central network depends on blockchain to record
transaction history and related information, including com-
pletion status, sender and recipient addresses, and transaction
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success details. Kassanuk and Phasinam [65] introduce a
smart contracts framework employing blockchain. In this
system, all participants in the blockchain-driven distribution
network manage transactions among each other. To maintain
openness and traceability across the whole supply chain
ecosystem, all transactions are logged. To detect misuse,
a group signature mechanism is employed. The system’s
overall performance is evaluated based on trust between
parties, system risk reduction, and transaction efficiency.

III. APPLICATIONS OF SMART AGRICULTURE

In what follows, we list a number of applications that have
been revolutionized by the advent of SA technologies and
practices.

A. EFFECTIVE RESOURCE UTILIZATION

SA transforms crop growth by leveraging advanced tech-
nologies like IoT, sensors, and data analytics. Sensors
monitor soil conditions, humidity, and nutrient levels in
real time, providing precise data for informed decision-
making [66]. Automated irrigation systems, guided by
this data, ensure optimal water usage. Drones and satel-
lites capture high-resolution images to assess crop health,
identifying potential issues early [67]. Machine learning
algorithms predict crop yields and recommend tailored
strategies for planting and harvesting. SA thus fosters more
efficient use of resources, reduces its negative effects on the
environment, and enhances crop production for sustainable
and technologically advanced farming practices [68].

B. REMOTE CROP MONITORING

SA revolutionizes crop monitoring through technologies like
sensors, drones, and data analytics. Field-installed sensors
gather real-time data on soil conditions, moisture levels, and
nutrient content, ensuring precise resource management [69],
[70]. Drones equipped with cameras and sensors conduct
aerial surveillance, capturing detailed images for early
detection of crop health issues, pests, and diseases [71].
Data analytics processes this information, providing farmers
with actionable insights. This proactive approach enables
swift responses to potential challenges, optimizing crop
health, minimizing losses, and eventually assisting in the
development of more fruitful and sustainable cropmonitoring
methods in modern agriculture [72], [73].

C. LIVESTOCK MANAGEMENT

SA transforms livestock management by integrating IoT
devices, wearables, and data analytics. Livestock wearables,
equipped with sensors, monitor animal health, behavior, and
location in real-time. This data is transmitted to a centralized
system, allowing farmers to remotely track and assess the
well-being of each animal [74]. Automated feeding systems
and smart barns further streamline operations, ensuring opti-
mal conditions for livestock. Predictive analytics algorithms
help anticipate health issues, enabling early intervention.

SA in livestock management enhances efficiency, minimizes
resource wastage, and promotes animal welfare, fostering a
more sustainable and technologically advanced approach to
animal husbandry [75].

D. IRRIGATION MANAGEMENT

SA revolutionizes irrigation management through advanced
technologies like IoT and data analytics. Weather data
and soil moisture sensors guide automated irrigation sys-
tems, ensuring precise and timely water delivery to crops.
These systems are capable of being observed and man-
aged remotely, thus optimizing water usage and reduc-
ing wastage [76]. Drones equipped with sensors provide
real-time aerial views, aiding in the assessment of irriga-
tion effectiveness and identifying areas needing attention.
Data analytics algorithms process this information, offering
insights for improved irrigation scheduling [19]. SA in
irrigation management enhances water efficiency, conserves
resources, and promotes sustainable farming techniques in
the scenario of evolving climate challenges.

E. PEST AND DISEASE CONTROL

SA transforms pest and disease control with innovative
technologies. IoT devices and sensors continuously monitor
fields, detecting early signs of pest infestations and dis-
eases [77], [78]. Drones equipped with imaging technology
provide high-resolution views, enabling precise identification
of affected areas. This data is processed by ML and
data analytics algorithms, predicting potential outbreaks
and recommending targeted interventions [79]. Automated
systems can then administer precise amounts of pesticides or
deploy biological control methods. This data-driven approach
in pest and disease control minimizes the chemicals used,
lessens the environmental impact, and enhances overall crop
health, all of which help to promote effective and sustainable
farming practices in the SA era [26], [80].

F. SUPPLY CHAIN MANAGEMENT

SA optimizes supply chains by integrating IoT, blockchain,
and data analytics technologies. Sensors and GPS devices
monitor the movement of agricultural products at every stage,
providing real-time data on location and conditions [81].
Blockchain ensures transparent and secure record-keeping,
enhancing traceability and accountability. Data analytics
processes this information, offering insights for efficient
inventory management, transportation planning, and demand
forecasting. By minimizing delays, reducing waste, and
improving overall transparency, SA contributes to a more
streamlined, resilient, and sustainable agricultural supply
chain, meeting the demands of modern markets and ensuring
the delivery of quality products to consumers [82], [83].

G. FARM MANAGEMENT

SA introduces farm management systems, integrating tech-
nologies like IoT and data analytics to streamline and enhance
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agricultural operations. These systems provide farmers with
centralized platforms for monitoring and controlling various
aspects of their farms [84]. Real-time data from sensors and
devices offer awareness of soil conditions, crop health, and
equipment status. Automated processes, guided by predictive
analytics, optimize resource allocation, including water,
fertilizers, and pesticides [85]. These intelligent systems
also facilitate planning, scheduling, and decision-making,
empowering farmers to enhance efficiency, minimize costs,
and adopt sustainable practices for a more technologically
advanced and productive farming future [20].

IV. BENEFITS AND CHALLENGES

A. BENEFITS

The world is facing multiple challenges; climate change and
overpopulation are the two primary of these. Climate-smart
agriculture (CSA) is a beneficial approach to tackle these
issues by focusing on increasing agricultural productivity,
resilience, and reducing greenhouse gas emissions [86],
[87], [88]. In developing countries, small-level farms play a
very crucial role in the agriculture sector. So, making them
adaptive to tackle climate effects is very important. CSA
mainly focuses on the farmers’ benefit by helping them to
have stable and higher incomes in a sustainable manner.
The two most beneficial and commonly used CSA methods
are water management and crop rotation. These methods
can significantly reduce the adverse effects of unpredictable
weather conditions. Additionally, having access to climate
information services is becoming increasingly important as it
helps in the realization of even basic CSAmethods, like plan-
tation and harvesting at the right times, much easier [22]. The
adoption of CSA has highly benefited the farmers in Kenya
to increase potato production. Potato yield increased by 61%
with the use of seed management technology. This was
followed by further increases of 50%, 41%, 40%, and 39%
with soil nutrient management, crop improvement practices,
and seed management, respectively [89]. In 2010, The Food
and Agricultural Organization introduced CSA in Pakistan as
an innovative and more sustainable approach in agriculture,
aiming to the raise effective use of natural resources, boost
adaptability, and increase agriculture productivity while also
reducing greenhouse gas emissions. By implementing CSA
practices and technologies, the adverse effects of climate
change can be minimized on cotton products, both at the
individual level and broader level. The results of this approach
show several benefits, including harmonious germination,
an increase in crop yields, bettered fiscal returns, and
increased overall effectiveness in resource application [90].
Crop yield prediction is a very challenging task in

agriculture that has significant implications at various levels,
from global to local fields. In order to predict crop yield,
multiple factors need to be considered, like soil quality,
weather conditions, environmental factors, and specific
crop characteristics. Recently, Lin et al. [91] developed a
transformer-based DNN model to predict crop yields at the

county level across the United States while incorporating
climate factors. The implementation of PA offers many
benefits, including the capacity to increase crop yields,
enhance crop quality, and reduce environmental impact [92].
We may learn more about the interactions between variables
such as the availability of water and nutrients, pests, diseases,
and other field conditions during the growing season by
modeling agricultural yields [93]. PA also acknowledges
the fact that agricultural fields exhibit variations in both
time and space, and it deals with these variations by
gathering information, interpreting it, assessing it, and then
implementing control measures. Different researchers have
shown that PA is very beneficial when it comes to conserving
water, energy in irrigation, and enhances profitability by
ensuring the use of the right applications in different parts
of farming [94].

B. CHALLENGES

Smart farming, a relatively recent concept, involves the use of
information and communication technology for efficient farm
management that prioritizes productivity, profitability, and
the conservation of natural resources. However, the adoption
of certain smart farming technologies in Brazil has faced
challenges. These challenges include limited internet access
in rural areas of Brazil, and the complexity of subjecting
extensive data into software, which hinders analysis and
interpretation. This highlights the issues with sourcing
reliable information and technology features that should
simplify data collection and analysis for better management.
Additionally, the insufficient qualifications of the rural labor
force present a significant socio-economic obstacle to the
widespread adoption of smart farming technologies [95].
Embracing CSA is seen as a viable approach to ensuring

food security and effectively addressing climate risks.
Various CSA technologies, such as agroforestry and soil and
water conservation methods like zai, half-moon, tie/contour
ridges, and conservation agriculture, along with climate
information services, are considered promising for adapting
to climate change in West Africa. Nevertheless, challenges
like a lack of clear understanding and inadequate policy and
financial support hinder CSA adoption. Addressing these
challenges promptly is crucial. The success of CSA in West
Africa hinges on farming households and national institutions
comprehending the environmental, economic, and social
challenges posed by climate change and taking proactive
steps to develop and implement appropriate policies.
SA is a field that leverages technology to efficiently over-

see farming operations bymonitoring and comprehending the
ever-changing aspects of soil quality, crop growth, produc-
tion, and management through creative methods. However,
adopting this approach encounters several obstacles. One of
the primary hurdles is the insufficient training in precision
agriculture. Additionally, challenges stem from concerns
related to the expenses involved, the returns on investment,
and the absence of comprehensive analytics for SA data [96].
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The rapid growth of IoT technology has a big impact on
various industries, including agriculture. This is changing
the way agriculture is done and creating new opportunities.
However, there are challenges to using IoT in agriculture,
such as issues with the equipment and devices, setting up
the necessary networks and infrastructure, dealing with signal
interference, ensuring data security, and facing organizational
hurdles. These challenges are connected to the deployment of
smart agricultural technology and applications [97].

The research [98] findings show that IoT components,
which include both hardware and software, have made
significant progress in the smart agriculture sector. Numerous
advancements have been made, and IoT solutions have
been deployed on extensive farms. Nonetheless, hurdles still
hinder widespread IoT usage in farming. Economic efficiency
and technical issues, along with policies promoting IoT
integration in agriculture, are key concerns. In terms of
economics, agriculture faces low profits due to inherent risks,
prompting the need for a thorough cost-benefit analysis for
IoT adoption in agriculture. Security and privacy are critical
challenges as IoT in smart agriculture raises concerns about
data and system protection from cyber threats. The limitations
of IoT devices make the implementation of robust encryption
algorithms challenging, leaving systems vulnerable to attacks
that can compromise functionality.
Mehedi at al. [99] have identified a number of challenges

of utmost importance in remote-sensing based SA. Among
several, they believe that irrigation decision support systems
and spectral data challenges, are the two aspects that
still demand attention by the scientific community. They
argue that despite the technological advancements, seamless
integration of various components, such as sensors on ground,
and the airborne UAV, is essential, which puts stringent
efficiency requirements on the decision support systems for
real-time operations.
One major challenge facing the adoption of SAworldwide,

especially in the developing nations, which often gets over-
looked, is the lack of regulations regarding farming practices.
This usually leaves gaps in legal protection of farmers’ data,
which in turn raises further challenges: 1) Unauthorized
access of data collected through various sensors and devices,
often leads to privacy breaches. 2) Unless the farmers’
themselves control and manage their data, there can be an
ambiguity over its ownership. This is a rising concern in the
developing countries where farmers are usually not techni-
cally trained, and therefore, data acquisition andmanagement
are often outsourced to third parties. 3) While data analytics
provides valuable insights, it also raises a concern about data
aggregation and usage. Refer to Amiri et al. [25], who have
thoroughly discussed privacy issues in the context of SA.

V. ONLINE DATASETS

It is widely accepted that datasets serve as benchmarks
for future research by allowing researchers to compare the
performance of various techniques and algorithms. At the
same time, the dissemination of valuable datasets allows

FIGURE 9. Sub-set of images from corn dataset.

researchers with different backgrounds and expertise to work
with the same data, potentially leading to interdisciplinary
insights and innovations. In what follows, we list and briefly
discuss the datasets available to the public. Our selection
is inspired by their number of citations, downloads, and
usability:

leftmargin=1em

1) Wheat leaf rust [100]: Wheat leaf rust, mostly found
in Hebei, Shanxi, Inner Mongolia, Henan, Shandong,
Guizhou, Yunnan, Heilongjiang, and Jilin, is some-
times referred to as wheat stalk rust and stripe rust.
It mostly affects wheat leaves, causing sores that
resemble herpes and infrequently developing in the
leaf sheath and stem. There are 531 images in this
dataset.

2) Wheat leaf [101]: This dataset is derived from thewheat
crop images in Ethiopia. The crop exhibited infections
caused by viruses, bacteria, and fungi. Within this
study, the primary focus was on two major diseases:
Stripe Rust and Septoria in wheat leaf images. The
dataset comprised 102 instances of healthy leaves,
208 instances of leaves affected by stripe rust, and
97 instances of septoria-detected wheat leaves.

3) Rice leaf disease dataset [102]: The compiled dataset
comprises 5932 images encompassing four disease
types: Tungro (1308 images), Blast (1440 images),
Brown spot (1600 images), and Bacterial Blight (1584
images). The dataset is accessible in the data archive of
Mendeley.

4) Corn leaf disease [103]: This is an extensive dataset
focused on classifying diseases affecting corn or
maize plant leaves. It was created, utilizing data from
the renowned PlantVillage and PlantDoc datasets.
Throughout the dataset creation process, specific
images deemed uninformative were eliminated to
ensure data quality. This dataset contains 1306 Com-
mon Rust images, 574 Gray Leaf Spot images, 1146
Blight images, and 1162 healthy leaves images.

5) Crop recommendation [104]: The dataset enables
users to develop a predictive model for suggesting
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the most appropriate crops to cultivate on a specific
farm, considering diverse parameters. It was created
by enhancing existing datasets related to rainfall,
climate, and fertilizer information, which were already
accessible to India.

6) Cauliflower [105]: The dataset comprises a total of
656 images containing farmland scenes. Three different
forms of diseases are found in each file: bacterial
spot rot, black rot, and downy mildew. Furthermore,
an image showcasing a disease-free cauliflower is
incorporated.

7) Cotton leaf [106]: This dataset contains images of
cotton leaf. Digital cameras were used to create the
dataset, and the pictures were acquired in various fields.
It contains 127 images of Cercospora, Alternaria, Grey
Mildew, Bacterial Blight, and healthy leaves.

8) Rice brown spot [107]: This dataset contains
3494 images of Rice flax spot. The latter is prevalent
in all rice-growing areas of China, posing a significant
threat to rice cultivation. The disease can manifest
from the early seedling phase to the later harvest stage,
causing harm to the above-ground sections of rice
plants, primarily focusing on the leaves. The initial
symptoms involve minor brown spots, which gradually
enlarge into oval-shaped lesions.

9) Diseases of maize in the field [108]: There are
2355 images of maize leaves with different diseases in
this dataset. The dataset includes cases of the following
diseases: Phaeosphaeria Leaf Spot, Southern Rust,
Common Rust, Northern Corn Leaf Blight, and Grey
Leaf Spot. The cases were taken at different times and
places in South Africa.

10) Maize production dynamics [109]: This dataset con-
tains information concerning maize cultivation within
Salima District in central Malawi. The study primarily
focused on the data from the 2004/05 season to the
2018/19 season. The dataset includes details about
the cultivated maize acreage, actual maize produc-
tion, and maize yield. Additionally, it encompasses
recorded rainfall and temperature data specific to the
study region. The dataset also highlights maize prices
prevailing within the research area.

11) Temporal progress of maize diseases [110]: The dataset
is intended to assess the temporal progress of four
different diseases in corn: southern rust, Cercospora
leaf spot, white spot, and spot blotch, as well as
their correlation with climate variables. The latter
includes daily temperature, humidity, rainfalls, and
daily precipitation.

12) Annotated apple leaf disease [111]: This dataset
consists of labeled pictures of apple leaves afflicted by
various diseases sourced from the PlantVillage dataset.
It is used for research involving image segmentation
methods. The annotations are structured following the
Mask RCNN annotation style. This dataset is valuable
in accurately locating the affected areas on the leaves,

FIGURE 10. Sub-set of images from Banana & Maize Datasets.

a crucial aspect for forecasting the extent of disease
severity.

13) Apple tree leaf disease segmentation [112]: This dataset
includes apple leaf disease images from four different
apple experimental demonstration stations at North-
west China’s University of Agriculture and Forestry
Science and Technology. The images were taken with
a Glory V10 mobile phone, showing different disease
levels. Around 51.9% were taken in a lab and 48.1%
in cultivation fields, under various weather conditions
and times of the day, featuring diseases like gray spot,
leaf spot, rust, and brown spot.

14) Banana leaf disease images [113]: This is a banana
plant leaf image dataset. It was collected from various
parts in the south of Ethiopia, where bananas are grown
extensively, and Xanthomonas wilt and Segatoka leaf
spot diseases are common. Using a smartphone, images
of the diseased and healthy banana tree leaves were
gathered.

15) Sugarcane leaf disease dataset [114]: This is a
Manually collected image dataset of sugarcane leaf
diseases. It comprises five primary categories: Healthy,
Mosaic, Redrot, Rust, and Yellow disease. These
images were captured using smartphones of diverse
configurations to ensure a wide range of variations.
It is a balanced dataset encompassing 2569 images.
The image sizes are not constant as they originate
form various capturing devices; all images are in RGB
format though.

16) Diseased leaf and fruit images [115]: The dataset
comprises images of diseased winter jujube fruits and
leaves gathered in their natural environment, showing
common symptoms from the greenhouse winter jujube
orchard in Dali County, Shaanxi province, China.
These images were captured using IoT sensors at
various growth phases, with an additional 100 healthy
leaves and fruits included as negative samples. Overall,
the dataset contains 700 images of diseased winter
jujube.

17) Mango leaf disease [116]: The dataset comprises
4000 mango leaf images, each with dimensions of
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FIGURE 11. Sub-set of images from Plant village dataset.

240 × 320 pixels, presented in JPG format. Among
these images, approximately 1800 showcase distinct
mango leaves, while the remaining images have been
generated through zooming and rotating techniques
to provide variations. The dataset is categorized into
eight classes, encompassing different health conditions
of the mango leaves. Each of the eight classes
contains 500 images, ensuring a balanced distribution
of instances across the entire database.

18) Tomato leaf disease [117]: The dataset comprises
pictures of various diseases found on tomato leaves,
such as Early Blight, TomatoMosaic Virus, Leaf Mold,
Target Spot, Tomato Yellow Leaf Curl Virus, Bacterial
Spot, Spider Mites, Late Blight, Two Spotted Spider
Mites, Septoria Leaf Spot, and Tomato Healthy. There
are 1000 images for each disease, totaling 100,000
images.

19) Plant village [118]: This dataset contains images
of diseased plant leaves together with their labels.
It was developed for use in systems that identify plant
diseases. It encompasses 54,303 images of different
diseases in plant leaves.

20) Cotton plant disease [119]: This dataset encompasses
images of fivemajor cotton plant diseases. The diseases
are Army Worm, Aphids, Powdery Mildew, Bacterial
Blight, and Target Spot. Furthermore, the dataset
incorporates a collection of healthy leaf images, facil-
itating comparison with the images of diseased plants.
Its primary emphasis is on diseases that exclusively
affect leaves, with no inclusion of reference images of
diseases occurring on stems, buds, flowers, or bolls.

21) Corn leaf diseases (NLB) [120]: The reason for creating
this dataset was to use it with a drone to find and
map diseases in Corn/Maize fields. The dataset has two
main folders: one called Healthy for healthy plants,
and the other called Diseased (NLB) for plants with
diseases. Each folder has pictures that match its name.
There are 4000 images in these two folders.

22) Potato leaf disease detection [121]: This dataset
contains images of potato leaf. There are three files in

FIGURE 12. Sub-set of images from PlantifyDr Dataset.

the dataset having 2000 images. Two files have images
of potato leaves with diseases Early Blight and Night
Blight and another file contains healthy potato leaf
images.

23) Potato and tomato [122]: This dataset is a smaller
part of the well-known Plant Village dataset. It only
focuses on two types of plants: potatoes and tomatoes.
And each type has three categories: Early Blight, Late
Blight, and Healthy. That makes a total of six groups.
This dataset may be used to sort plants into different
groups or to find a sick leaf. Pictures in the training
set of this dataset were made smaller by cutting in the
middle, turning a bit, andmaking them a bit blurry. This
helped in making the dataset better for training.

24) PlantifyDr [123]: This is a Plant leaf disease detection
image dataset. It comprises 125,000 pictures in JPG
format. These pictures show 10 different kinds of
plants, including apples, bell peppers, cherries, citrus
fruits, corn, grapes, peaches, potatoes, strawberries,
and tomatoes. Altogether, 37 different diseases can
affect these plants. The pictures have been changed a
bit to make them better for learning, and are amenable
to further alteration if desired.

25) Grape disease [124]: Grape diseases result from
diverse fungal, bacterial, and viral pathogens that can
invade grapevines, causing decreased yield, inferior
fruit quality, and sometimes, the demise of the plant
itself. These diseases wield a substantial influence
on the grape industry, impacting the production and
quality of grapes utilized for wine, juice, and direct
consumption. This dataset consists of 9027 images of
grape leaves. It has four categories Black Rot, ESCA,
Leaf Blight, and Healthy. Each category contains
multiple images.

26) GroundNut leaves [125]: This dataset is used to
count leaves in a given image. It is part of a
complete machine learning mobile app, which finds
and measures how sick groundnut plants are. The
dataset contains 166 images and their corresponding
labeled XML files.
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27) Corn leaf infection [126]: This dataset comprises
images of corn leaves partially infected by pests like
Fall Army-worm. The dataset is divided into two
categories: the first comprises 2000 healthy plant
images, and the other comprises 2226 infected leaf
images. A supplementary CSV file is also included
that annotates the particular disease in the given image
using a tool called VoTT.

28) Crop statistics FAO - All countries [127]: Time-series
statistics are recorded for 173 crops from 474 countries
(including states, provinces and other affiliated regions
in case of larger countries). These are divided into
different groups like main crops, fruits, and vegetables.
The datasets report land-use and yield for each category
along with population of the region. The goal is to
gather all this data to allow for efficient forecasting of
essential crops worldwide.

29) Crop production & climate change [128]: This dataset
reports yield of wheat, maize, rice, and soybeans. They
measure the amount of crops in tons for each hectare
of land. This data is about crop production between
2010 and 2016 for 48 countries.

30) Mango leaf health detection [129]: This dataset
includes pictures taken from drones that flew over
mango farms and mango trees grown in backyards.
There are 732 images along with their XML files.

31) Leaf disease segmentation [130]: In this dataset, there
are 588 images of leaves with disease and 588 masks
of corresponding pictures. The latter show both the
background and the sick parts of the leaves. The
images, which were taken from PlantDoc images,
belong to leaves from Apple, Bell Pepper, Corn
and Potato. This dataset may be used for disease
segmentation.

32) Rice leaf diseases [131]: There are 120 JPG pictures of
diseased rice leaves in this dataset. Based on the type
of disease, the photos are categorized into three classes:
bacterial leaf blight, brown spot, and leaf smut. Every
class contains forty images.

33) Rice leaves [132]: This dataset has pictures of four
different diseases that affect rice plants. The pictures
are split into two groups: one for training and one for
validation. Each group has pictures sorted into four
types based on the category of disease: BrownSpot,
Healthy, Hispa, and LeafBlast. The pictures have
different sizes and shapes. This dataset has 3355 JPG
image files.

Table 2 summarizes the characteristics of these datasets.
Several other datasets that are not directly relevant to our
study, but may be used as a reference for understanding
the challenges associated with creating datasets and their
usage, are also available online. One such example is by
Mowla et al. [133], in which the authors have collected image
samples for forest fire detection using a UAV, and highlighted
several challenges in their usage. Any supervised machine

learning application, be it the case of SA or not, will pose
such challenges to researchers to overcome. Generally, there
are four challenges that one must consider overcoming while
adopting online datasets as follows:

1) Data quality and accuracy: Inconsistent, erroneous,
incomplete and outdated datasets are likely to yield
inaccurate predictions.

2) Standardization: Different datasets are likely to follow
different standards and formats. This makes it practi-
cally difficult − if not impossible − to integrate data
from multiple sources and modalities.

3) Initial cost: Being able to use online datasets often
imposes a requirement for training beforehand, which
is likely to incur a certain initial cost.

4) Privacy and security: Depending upon the application,
privacy and security of data may become crucial for
confidentiality. This is specifically true for applications
related to health, defence and agriculture.

VI. SMART AGRICULTURE: RECOMMENDATIONS,

INITIATIVES, AND SUCCESS STORIES

A. RECOMMENDATIONS

Agriculture plays a vital role in the economic growth.
Therefore, introducing SA to rural regions will greatly benefit
the farming sector. Approximately 85 percent of the global
population will reside in developing nations by the year
2030. This implies that these nations require data-driven
cutting-edge technology to enhance agricultural output and
boost their economies. This will not only boost their GDP
but will also guarantee food security for their citizens.
Emerging technologies such as AI, IoT, and smart farming
are seen as possible answers to narrow the gap between
food demand and production. When government initiatives
back them, these technologies can improve agricultural
sustainability and resource efficiency, resulting in higher
production yields [134]. Smart farming utilizes IoT and
cutting-edge technology to improve growing conditions by
integrating sensors, computers, and AI. In Thailand, it greatly
assisted farmers in enhancing crop yield and quality. Certain
conditions must be met for it to be effective like farmers
must be prepared to utilize this technology and be open to
experimentation. The research [135] discovered that farmers
are more inclined to embrace smart farming when they are
prepared for the technology, embrace its utilization, engage
in e-learning, and receive institutional support. Therefore
farmers can be prepared by utilizing online resources
and providing assistance from organizations before imple-
menting smart farming techniques involving sensors and
AI.
Climate change is increasingly posing a major issue

for agriculture globally. It presents a major obstacle for
worldwide farming, impacting both the growth and delivery
of crops. Therefore, numerous governments are investing
significant funds into research for advanced agricultural
practices. They are employing cutting-edge technologies
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TABLE 2. Datasets description.

such as AI and data analytics. In South Korea, there is
a migration of people from rural areas to urban centers,
resulting in a shortage of farm workers. As per [136],
utilizing innovative technologies can address these problems.
CSA provides another approach to improve food security
and reduce poverty. In areas such as Ghana, initiatives are
directed towards enhancing farmers’ abilities to implement
CSA techniques in various ecological regions. Factors like
economic, environmental, socio-cultural, and institutional

aspects contribute to shaping the adoption of CSA prac-
tices [137].

There are potential advantages of precision farming
technologies, which have the ability to decrease costs and
environmental impact. Yet, adoption levels in Europe have
shown varying results. In Central Italy’s Plain of Tarquinia,
a study revealed that farmers were hesitant to embrace preci-
sion farming technologies [138]. In China, despite efforts to
enhance food security at a national level, the implementation
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of precision technologies is not keeping pace with other
advanced economies. In order to encourage more farmers
to use advanced farming technologies (PFTs), policymakers
and manufacturers need to ensure technology features meet
farmers’ needs, engage end-users in the innovation process,
and offer necessary support such as knowledge, training, and
consulting services [139]. Agricultural policies play a crucial
role in facilitating the exchange of information and initiatives
among small and large farms. The recently introduced
information-centric policies aim to provide farmers with
increased knowledge about agriculture, enhance their farming
abilities, and offer additional expert support. When farmers
possess more information, they will not perceive the adoption
of new technologies as challenging [140].

In summary, advanced technologies like AI, IoT, and
smart farming can help combat food shortages by boosting
production and promoting sustainability. Innovative solutions
such as CSA are required to address the challenges created by
climate change. The precision farming techniques can help
reduce environmental effects, but their adoption varies [141].
Thus cooperative efforts, a strong infrastructure, digital
literacy, adoption incentives, data security, standardization,
and favorable policy frameworks are all necessary for the
success of SA. Stakeholders may fully utilize SA to improve
resilience, sustainability, and production in the agriculture
industry by implementing these suggestions.

B. SUCCESS STORIES

Climate change is becoming a major threat to food security.
Farmers are unable to tackle this situation due to their
limited knowledge. A financed Bicol Agri-Water Project on
Climate-Smart Farmers’ Field School (CFS) was introduced
by USAID in Philippines with the aim of educating the
farmers. This project spanned about two years covering two
wet and two dry seasons in three different sites in Bicol,
Philippines. Numerous farmers graduated from 14 villages
− most of them were females. The CFS program conducted
weekly sessions, focusing on imparting knowledge and skills
related to climate change (CC) and CC adaptation (CCA)
tactics. The outcomes of this endeavor were truly promising.
The knowledge of the farmers on CC, CCA increased
significantly, crop yield increased and the participating
farmers experienced a welcome boost in their income levels.
A commendable return on investment of 49 percent during
the wet season and an even more impressive 55 percent
during the dry season was reported. An increase in the women
participation in decision-making was also observed [142].

The Precision Farming Project was started in two districts
of Tamil Nadu’s Dharmapuri and Krishnagiri in India in
2004-05 [143]. It commenced with a small area of 250 acres
and gradually increased to 500 acres in 2005-06 and 250 acres
in 2006-07. The initial budget of this project was INR 720,000
for a period of three years, and was carried out by the Tamil
Nadu Agricultural University. Farmers received financial
support of INR 75,000 for drip irrigation installation and
another INR 40,000 for the expenses of crop production.

The farmers were first hesitant to engage in this endeavor
due to years of drought, the project gained momentum after
the success of the first 100 farmers and the huge profits
in their produce. Subsequently, more farmers registered for
participation in the second and third years, mainly due to
attractive 90 percent and 80 percent subsidies respectively.

The Mau Escarpment generates a shadow of rain across
the Nyando basin and relies on agriculture, primarily maize,
beans, and sorghum, as well as mixed livestock farming. The
region experiences an annual rainfall of 1200 mm: 35 percent
in the minor rainy season, which runs from October to
December, and the remaining 65 percent during the main
growth season running from March to May. The onset of
rainfall varies, affecting the length of the growing season, and
hence the land degradation adversely affects farming.

Three sizable community-based organizations–the North-
East Community Development Programme (NECODEP),
Friends of Katuk Odeyo (FOKO), and Kapsokale–have
emerged from local communities in Nyando. These asso-
ciations consist of around 50 volunteer groups from more
than 100 villages, with 80 percent female members. Between
2011 and 2015, they combined their resources to create
the Nyando Innovation Fund, which increased from USD
14,000 to USD 95,000. Nearly 90 percent of the local
farmers sought loans from this fund, primarily for agricultural
use, school fees, food, and small-scale trade activities. The
community-based organizations have established smart farm
(SF) demonstrations, including greenhouse farming and drip
irrigation, as well as open field plots for seed multiplication.
For knowledge and skill enhancement Farmers receive
training through these organizations, often organized by
Kenya’s Agricultural Society. They have also set up input
supply shops, leading to a 50 percent decrease in the use
of low-quality local seeds. Additionally, climate information
services (CIS) access is also provided by these organizations,
which are utilized by farmers for 70 percent of on-farm
decision-making [28].

The semi-arid climate ofWote, in eastern Kenya, is charac-
terized by bimodal annual rainfall of 480-800 mm. The first
rainy season, which occurs in April and May, results in short
crop growth periods and significant water stress because of
the uneven distribution of rainfall. In the last twenty years,
around 25% of the land has been affected by erosion, mainly
because of higher temperatures, increased evaporation, and
occasional floods. This has negatively impacted agriculture,
causing problems like pest infestations and disease outbreaks,
such as Aflatoxin fungal disease, leading to significant
losses in grain yields for farmers. Grain harvest has suffered
particularly from aflatoxin fungal disease, leading to farmers
losing up to half of their yield. Two community organizations
(Kikumini-Muvau and Sinai-Kikeneani) were established in
2014 in Wote. They initially covered seven villages and grew
their membership in two years from 140 to 620 households,
with women comprising 70%. The CBOs created a joint
fund of 39,000 USD, allowing members to borrow for
agricultural investments to manage climate-related risks.
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They also promote climate-smart technologies and crop
diversification, with new crop varieties being cultivated by
92% of households by the end of 2015, up from 72% in
2014 [144].
Overall, the research demonstrates that CSA techniques

effectively increased levels of both macronutrients and
micronutrients in the soil. These techniques are advantageous
for adapting to climate change across various settings, with
the most significant results seen in the surface layer of soil.

VII. FUTURE TRENDS AND OUTLOOK

A. EMERGING TRENDS

In farming, new technologies are making a big difference.
CSA and PA are two important ways we’re improving how
we grow food. These methods help us deal with problems
like climate change and bad weather [145]. CSA uses modern
tools to make farms better, and helps the farmers produce
more food while taking care of the environment. PA, on the
other hand, helps them grow more crops without using too
much water or other resources [146].
Using fancy tools like sensors and drones helps farmers

know more about their land. They can figure out when to
water their crops and how to protect them from bugs. It’s
like having a better plan for planting and growing food. New
technology also means less work for farmers. Machines can
help with tasks like planting seeds and picking fruits. This
makes farming easier and helps us get more food from the
same land. It’s all about making farming better and more
sustainable for the future [146].
Implementing blockchain technology guarantees the food

supply chain’s traceability and transparency. It enables
farmers and consumers to track produce from farm to table,
ensuring authenticity, quality, and ethical practices. The
integration of XAI, blockchain, and smart agriculture holds
significant societal and economic consequences. Improved
efficiency, transparency, and sustainability in the food
industry could have positive impacts on farmers, consumers,
and the global community [147].

Urban agriculture and vertical farming are becoming
more popular as cutting-edge responses to the problems
caused by urbanization and land shortages. These methods
entail cultivating crops in controlled urban contexts or in
layers piled vertically. Technological advancements in LED
lighting, hydroponics, and aeroponics are increasing the
viability and efficiency of vertical farming. In comparison to
conventional farming techniques, these systems require less
water and land and can yield crops all year round, enhancing
food security in metropolitan settings.
The Internet of Things (IoT) is revolutionizing intelligent

agriculture by integrating various systems and devices. The
prevalence of smart sensors, automated irrigation systems,
and tools for animal monitoring is on the rise. These devices
provide continuous data streams that can be analyzed to
improve decision-making processes. The advancement of 5G
and low-power wide-area networks (LPWAN) is enabling
real-time monitoring and control of agricultural activities,

enhancing connectivity in remote areas. This interconnected-
ness enables farmers to easily acquire and respond to crucial
information, enhancing overall farm management.

Integrating IoT devices for real-time monitoring of
environmental conditions and crop health generates vast
amounts of data. Data analytics assists in making decisions
on this data, optimizing resources, and predicting trends.
However, a framework is required to improve security and
privacy in smart farms by utilizing blockchain technology’s
decentralized nature. The framework must securely store
and manage data from IoT devices in smart farms through
a distributed ledger system, ensuring data integrity and
validity [148].
Robotics and automation are developing quickly, decreas-

ing the need for physical labor and boosting operational effec-
tiveness. Drones, autonomous harvesters, and autonomous
tractors are being developed and used for planting, weeding,
and harvesting. These devices provide consistent, accurate
operation, which lowers labor costs and boosts production.
Robotics and AI are combining to create more versatile and
efficient robots that can learn and adapt to various farming
settings.

To collect and analyze data on temperature, humidity,
pH levels, and soil moisture, IoT gateways connect a variety
of sensors and equipment. By using edge computing to
process data locally, these gateways lower latency and use
less bandwidth. This enables real-time analysis for immediate
actions like adjusting irrigation or activating pest control.
They support multiple connectivity options, ensuring reliable
data transmission even from remote areas, and integrate
with cloud platforms for further analysis. Additionally,
IoT gateways facilitate remote monitoring and control of
agricultural operations. This allows farmers to adjust systems
and receive alerts remotely. They also enable automation, and
security through data encryption, and support applications
like precision farming, livestock monitoring, greenhouse
automation, and supply chain management, enhancing effi-
ciency, sustainability, and productivity in agriculture. IoT
gateways are rapidly advancing and revolutionizing the SA.

There’s a growing emphasis on sustainability and envi-
ronmental impact reduction. This includes the utilization
of renewable energy sources, organic farming techniques,
and minimizing chemical inputs. The implementation of 5G
technology facilitates more rapid and secure data transmis-
sion, crucial for real time monitoring, remote operation of
machinery, and seamless connectivity in rural areas [149].
Wearable devices for livestock and plants, such as smart
collars for cattle or tags for monitoring individual plant
health, provide continuous data on animal behavior and crop
conditions, aiding in the early detection of health issues or
stress factors [150].

Cloud platforms allow the storage, processing, and analysis
of large quantities of data gathered from IoT devices
and sensors. These platforms offer flexible options for
analyzing data in real-time and monitoring activities. This
enables farmers to make educated choices regarding crop
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management, irrigation, and pest control. Cloud platforms
improve operational efficiency and resource optimization by
providing remote access to data and automation features.
Additionally, they aid in incorporating advanced technologies
like AI and machine learning, which result in predictive
insights and enhanced farming techniques. In the end,
cloud platforms help boost productivity, sustainability, and
resilience in contemporary agriculture.
The progress in biotechnology and genetic engineering,

such as gene editing, is improving crop resilience, creating
drought or disease-resistant types, and enhancing nutritional
value [151]. These developments are aimed at transforming
agricultural methods to be more effective, eco-friendly, and
able to cope with growing worldwide food needs while
reducing environmental harm.
To ensure smooth data exchange between different devices

and systems, communication protocols are essential in smart
agriculture. These protocols like MQTT, Zigbee, LoRaWAN,
and NB-IoT help in ensuring the dependable and effective
transmission of data from sensors and IoT devices to
central servers or cloud platforms. These protocols enable
precision farming practices, enhance resource management,
and improve agricultural productivity through real-time
monitoring and control. The selection of protocol is based
on factors such as range, power usage, and data rate needs,
guaranteeing top-notch connectivity and efficiency in various
agricultural settings. These protocols are developing very fast
and are transforming the SA.

B. POTENTIAL IN DEVELOPING COUNTRIES

SA is really helpful in countries that are still growing. It helps
fix problems and makes farming better. This kind of farming
makes things work better by using resources well, so farmers
can grow more food. This is super important in places where
there isn’t a lot of stuff to use, and where the weather is
changing a lot. Smart farming also helps farmers get the info
they need. They can use apps on their phones or look things
up online to learn about farming [152]. This helps them make
smart choices about what to do on their farms. Plus, it’s easier
for them to sell their crops and get fair prices because they can
use websites and apps to connect with buyers. And they can
get money and insurance more easily too.
SA also helps farmers deal with changes in the weather.

There are cool tools that help them use less water and know
when bad weather might be coming. This way, they can be
ready and keep their crops safe. Plus, smart farming creates
more jobs in places where people live and work on farms.
These new ideas help farmers use their resources better, make
less waste, and grow more crops [153].

In underdeveloped countries, technology can help small
farmers improve their farms, leading to greater efficiency,
higher crop production, and increased sale prices. SA helps
improve crop yields and prevent pests and diseases to ensure
food security. Advances in biotechnology for crop production
can also improve food quality, especially in areas with limited
access to nutritious food [154].

Governments and support organizations are investing in
smart farming to help farmers adopt these new technologies,
offering discounted tools, training, and improved access to
assistance. Smart farming practices also promote environ-
mental sustainability by reducing chemical use, promoting
soil health, and efficient water usage [155]. By incorporating
these technologies, developing countries can enhance agri-
cultural productivity, bridging the gap with wealthier nations
and ensuring food security for everyone [156].

C. RESEARCH DIRECTIONS

Changes in SA research aims to improve farming by creating
more efficient sensors to collect diverse information about
soil, crops, insects, and weather. Scientists are enhanc-
ing sensors to be more affordable and versatile in data
collection, along with advancing computer capabilities for
better data analysis and predictions. Additionally, researchers
are utilizing big data tools to assist farmers in crop
management, disease detection, and yield forecasting, while
also focusing on ensuring seamless communication and
energy efficiency among various farm devices for integrated
functioning.
Developing robust networks and protocols suitable for

remote and rural areas is essential. Continued research is
required on adaptable and cost-effective robotic systems for
various farming tasks, like planting, harvesting, and precision
spraying. Advancements in AI will assist in autonomous
navigation and manipulation. Developing technologies in
agriculture, such as precision irrigation systems, drought-
tolerant crops, and weather prediction models, to aid with
climate change adaptation. Exploration of blockchain tech-
nology is essential in agriculture for transparent and secure
data sharing across the supply chain. Research in scalability,
interoperability, and real-time traceability of agricultural
products is also needed [157].
The research focus is on creating energy-efficient systems

and renewable energy sources for smart agriculture to reduce
dependence on fossil fuels and cut operational costs [158].
Progress in biosensors for early disease, pest, and nutrient
deficiency detection in crops, along with biotechnological
methods for genetically modified crops with improved
characteristics. Research works are in progress on developing
user-friendly farm management software. It integrates dif-
ferent data sources to offer farmers actionable insights for
better decision-making and resource management [159]. The
latest research investigates the social and economic effects
of smart agriculture on rural communities, including factors
like accessibility, affordability, and technology adoption by
small-scale farmers [160], [161]. Research and discussions
exploring creating appropriate regulatory frameworks and
policies are also required. This will encourage innovation,
protect data privacy, and promote widespread adoption
of smart agriculture while considering ethical concerns
[162], [163].
Working together is really important for making research

better and putting smart farming ideas into action. This means
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scientists, tech experts, farmers, people who make rules, and
others all need to work together.

VIII. KEY FINDINGS AND CONCLUSION

Smart farming has made significant advancements, revo-
lutionizing agricultural practices with the help of smart
devices, AI, robots, and data in the past decade. Leveraging
from these advancements, certain developing countries have
taken an initiative to adopt smart agricultural practices, and
have subsequently reported their findings, which deserve to
be recognized at an international level. In the following,
we summarize the key findings of our humble effort in
collecting several such works, which have individually
contributed towards the development and/or promotion of
smart agriculture framework and practices.
1) Several innovative technologies, such as sensors and

drones for real-time monitoring of soil, weather,
and crop conditions, AI and machine learning algo-
rithms for predictive analytics, crop disease detection,
and yield prediction, and blockchain for ensuring
transparency and traceability in the supply chain,
greatly improve the smart farming practices. This in
turn allows farmers to optimize resources and make
informed decisions.

2) Optimizing inputs like water, fertilizers, and pesticides
demonstrate enhanced productivity. At the same time,
use of robots for planting, harvesting, and weeding
ensure environmentally friendly farming practices,
such as reducing chemical usage to preserve nature
while ensuring ample food production. Efficient water
usage based on real-time data allows for water conser-
vation.

3) Availability of open access online datasets for soil
health, weather patterns, and crop yields encourage
domestics farmers contribute their own data to improve
models and predictions, and be an active part of the
ecosystem.

4) Rural economies witness jobs creation, improving
infrastructure, and increasing market and financial
access. Technology is developed to help farmers adapt
to climate change by offering resilient crops, water
management solutions, and predictive tools for extreme
weather. The data gathered drives innovation, from AI
predictive models to tailored farming solutions.

5) The inclusion of SA by small-scale farmers in devel-
oping regions is hindered by affordability, connectivity
issues, and lack of training. Concerns surrounding
privacy, security, and ownership arise during the
gathering and sharing of large amounts of agricultural
data, leading to the need for strong data protection
measures. Inadequate infrastructure and poor connec-
tivity in remote or underdeveloped areas impede the
effective use of smart agriculture technologies. The
technological gap between large commercial farms and
small-scale farmers widens, hindering the potential
benefits of smart agriculture.

6) Developing appropriate regulations and policies that
promote innovation and address ethical, legal, and
social implications is essential.

7) Overall, while SA can potentially revolutionize the
agricultural sector, overcoming challenges related to
accessibility, data security, and policy frameworks is
necessary for its full potential to be realized. Collab-
oration among stakeholders, continuous research and
development, and a focus on inclusion is vital to ensure
that smart agriculture benefits all farmers, enhances
global food security, and encourages sustainable agri-
cultural practices.
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