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HDVQ-VAE: Binary Codebook for
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Abstract—Hyperdimensional computing (HDC) has emerged
as a promising paradigm offering lightweight yet powerful
computing capabilities with inherent learning characteristics. By
leveraging binary hyperdimensional vectors, HDC facilitates effi-
cient and robust data processing, surpassing traditional machine
learning (ML) approaches in terms of both speed and resilience.
This letter addresses key challenges in HDC systems, particularly
the conversion of data into the hyperdimensional domain and
the integration of HDC with conventional ML frameworks. We
propose a novel solution, the hyperdimensional vector quantized
variational auto encoder (HDVQ-VAE), which seamlessly merges
binary encodings with codebook representations in ML systems.
QOur approach significantly reduces memory overhead while
enhancing training by replacing traditional codebooks with
binary (—1, +1) counterparts. Leveraging this architecture, we
demonstrate improved encoding-decoding procedures, producing
high-quality images within acceptable peak signal-to-noise ratio
(PSNR) ranges. Our work advances HDC by considering efficient
ML system deployment to embedded systems.

Index Terms—Hyperdimensional computing (HDC), vector
quantized variational auto encoder (VQ-VAE).

I. INTRODUCTION

YPERDIMENSIONAL computing (HDC) has recently

received significant attention from researchers due to
its ability to provide lightweight yet efficient computing
coupled with certain learning characteristics [1]. HDC offers
both speed and robustness compared to conventional machine
learning (ML), owing to its unconventional data representation.
Utilizing high-dimensional symbolic binary vectors, known
as hypervectors, HDC performs various ML tasks [2]. These
hypervectors possess the inherent property of holographic
information storage [3]. By employing binary (—1, 41) hyper-
dimensional vectors, HDC achieves holographic information
storage [4], encompassing multiple incoming data within a
single binary vector, with lower-resource consumption than
conventional binary radix systems. The dimensionality (D) of
hypervectors typically ranges from 1K to 10K, with vectors
necessitating near orthogonality for unbiased symbol represen-
tation. This unique orthogonality property facilitates bundling,
binding, and permuting operations for encoding purposes,
enabling a single vector to represent multiple inputs [5].
Bundling hypervectors yields a hypervector most similar to all
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addends. The binding operation results in a hypervector most
dissimilar to the set of hypervectors bound, akin to coordinate-
wise multiplication. Permutation, a circular shift, generates
uncorrelated hypervectors, preserving orthogonality [6].

While HDC is a promising path toward lightweight ML
applications, much consideration must be given to how data is
converted to its symbolic representation. This letter focuses on
helping streamline the encoding process using unsupervised
learning. In contrast to conventional ML methods, which
often employ continuous, real-valued vectors, such as those in
Word2Vec [7], the HDC approach utilizes a discrete, symbolic
representation. This enables robust, memory-efficient holo-
graphic information storage using hyperdimensional binary
vectors, reducing the overhead associated with floating-point
representations. This letter uses conventional ML to help
select symbols for representing abstract data. To the best
of our knowledge, for the first time in the literature, vector
quantized variational auto encoder (VQ-VAE) architecture
is decorated with an HDC approach for an efficient latent
space representation without the loss of generality. The VQ-
VAE codebook’s discrete aspect aligns with standard encoding
techniques for HDC, where a discrete symbol list or codebook
is used. In addition, the encoder, decoder, and quantization
process of the VQ-VAE aligns with our goal of learning to map
abstract data to a set of symbols in an unsupervised manner.

Once the codebook is obtained, the classification task
becomes the second component of the overall learning
architecture. Traditional systems typically rely on conven-
tional floating-point memory representation involving complex
operations, such as multiply-accumulate-activate. However,
in HDC-based classifiers, a single-pass learning strategy is
employed, diverging from traditional ML systems. This study
integrates a binary codebook trained using HDVQ-VAE with
the learning strategy of the HDC paradigm. The latent space
elements undergo further processing through binding and
bundling to create a classifier system. Results indicate that this
proposed framework offers an easily deployable architecture
with reduced memory usage while maintaining accuracy levels
comparable to conventional approaches. This letter presents
the following contributions: 1) integration of HD mechan-
ics into VQ-VAE architecture via codebook replacement;
2) enable the use of downstream HDC applications that take
advantage of HD latent space; 3) reduction of latent space
by 32x from the transition of float32 codebook to the binary
codebook; and 4) reduction of overall model size due to
codebook replacement.

II. BACKGROUND
A. Hyperdimensional Computing

HDC is an emerging computing paradigm gaining attention,
particularly in developing ultralightweight learning systems.
In comparison to conventional ML approaches, HDC offers
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direct data processing without the need for additional fea-
ture engineering, supports single-pass learning, eliminates the
requirement for error optimizations and backpropagation, and
achieves a lightweight model thanks to unary processing
capabilities. Encoding data into hypervectors and applying
several logic operations results in the learned class of the
training sample, unlike the learning steps (forward pass -
backward pass) in traditional neural network systems, which
require several optimization steps.

HDC excels in representing symbols, such as letters, image
pixel positions, and 1-D signal timestamps, by leveraging
orthogonal binary vectors. Each vector comprises D dimen-
sions and consists of randomly occurring +1 and —1 values
(interpreted as logic-1 and logic-0 in a hardware environment).

For symbol representation, since it is not a numerical value,
a vector evaluation follows the unbiased probability point
between 0 and 1. Assuming the middle point of the overall
probability is 0.5 for each symbol vector representation, no
bias exists between generated vectors. The probability presents
having a logic value of 1 over the total vector size, thus having
equal probability for each symbol.

On the other hand, scalar values, including 1-D signal
amplitude and image pixel intensity, are also effectively
encoded within HDC systems. The minimum and maximum
scalar values within the space are mapped to —1—1—1—1---—
1 (minimum hypervector) and +1+1+141---+ 1 (maximum
hypervector), respectively. Any value within a range is rep-
resented by randomly flipping bits from —1 to +1 (or vice
versa) based on the magnitude of the value [8].

Once vector generation is complete, the data undergoes sub-
sequent encoding steps, such as binding, shifting, permutation,
and bundling, tailored to the specific application. Applications
primarily use two types of encoding: 1) n-gram-based and
2) record-based encoding. In symbol-based applications like
language processing, n-gram operation involves handling n
symbols (letters) alongside their corresponding hypervectors.
Any n group of symbols are combined using shifting and
permutation of their corresponding hypervectors [9]. For
instance, n = 3-gram operations on text processing take three
subsets of letter hypervectors in a sentence, shift and permute
each 3-group vector, and multiply them through the binding
operation. Multiplications of +1 and —1 binary values are
implemented using XOR operations in hardware, and the final
result is another hypervector. The resultant hypervectors (n-
gram vectors) from each n-gram subset are then cumulatively
aggregated (achieved through population count operations
in hardware) to produce a single vector from multiple n-
gram inputs. This accumulation is a bundling operation and
facilitates the holistic learning property of HDC. The final step
involves binarization of the accumulated values back to binary
form. This process, customized for each dataset class, gen-
erates a unified 1-D vector representing the respective class.
Each new sample contributes to this resultant class hypervector
by undergoing the same encoding steps [10]. Inference follows
the same encoding steps outlined above; classification entails
a similarity assessment between the test sample vector and
the class hypervectors. A higher-similarity score (measured
through metrics, such as cosine similarity, Hamming distance,
dot product, etc.) indicates a closer match between the class
and the test hypervector, yielding classification results.

B. Vector Quantized Variational Auto Encoder

Variational auto encoders (VAE) are used in many applica-
tions, such as generative image diffusion models, to produce
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a compressed latent space that is computationally less expen-
sive to perform operations. The VQ-VAE architecture differs
from conventional VAEs in learning discrete compressed
representations instead of continuous ones. It replaces the
reparametrization trick with a quantization process, mapping
features via distance measurements to the nearest symbol
from a finite symbol list or codebook [11]. This letter is
motivated by the shared goal of encoding for HDC and
the VQ-VAE encoding process, mapping data to a discrete
symbolic representation. Fig. 1(a) illustrates conventional VQ-
VAE architecture.

Conventional VQ-VAE uses three main loss metrics to
guide its training: 1) mean square error (MSE); 2) Codebook
Loss; and 3) Commitment Loss. The MSE is calculated
between the reconstructed and original data. Codebook loss
and commitment loss are nearly identical. The only difference
between them is which set of vectors is detached to force
the other to be considered during backpropagation. In what
follows, the losses in the conventional VQ-VAE are given:

N
1
MSE Loss = N ;(xrecon,i - xi)z
=
Codebook Loss = MSE(quantized, Xdetach)
Commitment Loss = MSE(quantized ey, X)

III. HDVQ-VAE FRAMEWORK

The proposed architecture builds upon a well-known con-
ventional ML module: the VQ-VAE, with an update of binary
data representation to incorporate orthogonal vectors, resulting
in the HDVQ-VAE. This adaptation offers a lightweight, easily
deployable, and more efficient classifier utilizing the encoding
dynamics of the HDC paradigm. Our architecture comprises
down blocks, up blocks, and quantization modules. The down
blocks consist of dual sequential modules, each comprising
two convolution layers through which the input passes before
undergoing addition and being fed through the tanh acti-
vation function. The first of these dual sequential modules
features a preactivation tanh function situated between the
convolution layers. Fig. 1(a) illustrates the conventional and
Fig. 1(b) shows the proposed HDVQ-VAE architecture.

By replacing the convolution layers in the down block with
convolutional transpose layers, we created our up block. The
quantization module holds the codebook and is responsible
for mapping latent vectors to this codebook. In our proposal,
we replace the conventional codebook with a binary (—1, 41)
representation for our architecture. This allows us to utilize
hypervectors or sections of hypervectors as our codebook.
We initialize these codebook vectors using pseudo-random
sequences. In HDC, where orthogonality is essential for sym-
bol representation, random sources provide this orthogonality.

Once the codebook is initialized, it remains fixed through-
out the overall architecture without further updates, unlike
a conventional VQ-VAE. This enables us to eliminate the
codebook and commitment loss. We maintain the straight-
through estimator to propagate gradients from one side of
the quantization module to the other [11]. The codebook can
comprise either hypervectors or sections of hypervectors. If the
codebook consists of sections of hypervectors, then the latent
space must contain multiple vectors that, when flattened, form
a hypervector.

We have significantly streamlined the training process
by eliminating the codebook and commitment loss in our
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modified VQ-VAE model. The static codebook does not
require updates during training, making the codebook loss
unnecessary. Similarly, the binary nature of the codebook
diminished the benefits of a commitment loss. In addition to
the conventional loss function, we have opted to create loss
functions (z) from the well-known metrics to help guide the
network: peak signal-to-noise ratio (PSNR) [12], structural
similarity (SSIM), learned perceptual image patch similarity
(LPIPS) [12], and perplexity (PPLX) [13]:

_ PSNR(x;, Xrecon)

PSNR; = 1.0 13 [ISSIM;, = 1.0 — SSIM(x}, Xrecon)
1< 1
LPIPS;, = — LPIPS (x;, DIPPLX, = ——————
L N Z (x; xrecon,t)” L exp(_ ZP[ logpi)

i=1

In our experiment, the training procedure uses the loss
of the reconstructed images and their originals to guide the
model toward producing meaningful latent representations.
The training procedure is as in Algorithm 1.

In addition to utilizing HDC for binary latent space represen-
tation, the classifier component is also retained within the HDC
domain to further leverage the latent space. Fig. 1(b) further
illustrates the HDC classifier specifically designed for the
codebook in the HDC domain. The process involves multiplying
(binding) and accumulating flattened vectors with positional
hypervectors for each corresponding class. The positional vectors
coincide with our latent block’s spatial dimensionality of
24 x 24. Initializing our positional vectors involves assigning
each spatial position a distinct binary. The distinctness of these
vectors is ensured by the random assignment of bits to 0 or 1
with a 0.5 probability of either. Similarly to the quantized latent
block, we flatten the positional vectors into a single hypervector
that is then bound with the flattened quantized latent block. When
evaluating (inference phase) incoming query samples, they are
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1: Initialize:
2 Model parameters use default Pytorch initialization
3 * codebook s initialized as a stack of nontrainable binary vectors
4: for each epoch do
5 for each batch in training data do
6 Encode:
7 Input data is B x 3 x 96 x 96
8: Result is latent block of size B x 128 x 24 x 24
9: Quantize:
10 Compute distances to * codebook vectors
11 Assign each latent vector to the nearest * codebook vector
12 Decode: Generate reconstruction from quantized latent block
13 Calculate Losses ¥ :
14 Compute Reconstruction, Perplexity, PSNR, SSIM, and LPIPS
losses, then add all losses to calculate the total loss for the batch

15: Backpropagate: Update model parameters based on total loss
16: end for
17: end for

* The codebook consists of binary vectors (size of 128), unlike
conventional VQ-VAE:s. # Codebook loss is not used in HDVQ-VAE.

similarly encoded in the hypervector domain and compared to
each previously generated class hypervector. The highest score
determines the classification result. Consequently, this letter
introduces two primary proposals to be tested in the subsequent
section: 1) binary latent spaces and 2) codebook classification
using HDC classifier.

IV. EXPERIMENTS AND RESULTS

In this section, we run two groups of experiments considering
our two main contributions: 1) the performance of HD latent
space for reconstruction and 2) latent space performance in the
classification problem. Using the architecture in Fig. 1(b), we
first consider the performance of the binary HD latent space.
The images are constructed based on the STL10 dataset [14],
and the construction performance of the HDC-based approach
is in the acceptable performance range.

Our experiments use the STL10 dataset [14]. We chose
the STL10 dataset for its larger 96 x 96 x 3 (W x H x C)
size compared to MNIST and CIFAR datasets. The larger
size allowed us to test the reconstruction of higher-quality
images where the codebook vectors may need to represent
more details with a challenging problem.
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The additional losses focused on detail help guide the
model in the selection of codebook vector to best pass detail
information from the encoder to the decoder. The HDVQ-VAE
can reconstruct images acceptably, as can be seen in Fig. 2.

Once trained, we can produce binary latent vectors using the
encoder and binary codebook in Fig. 1(b). We use the latent
vectors to test the classification abilities of the conventional
method with respect to the convolutional neural network
(CNN). The CNN classifier consists of three 2D convolutional
layers, a flattened layer, and two fully connected layers. The
convolutional layers have input-output channels of 128, 64,
32, and 8, each followed by a tanh activation. After flattening,
the output passes through two fully connected layers, reducing
from 72 to 32 features with ReLU activation, then to 10
features. We trained the model using a “reduce on plateau”
scheduler with an initial learning rate of 0.003, a 0.5 scale
factor, and a 0.01 threshold for cross-entropy loss. As seen
in Fig. 3(a) and (b), the CNN classifier nearly doubled
in evaluation accuracy while more than tripling in training
accuracy. Fig. 3(c) and (d) report the testing phase confusion
matrix for conventional and HD approaches, respectively.

For our HDC classification test, we reshape the binary
latent vectors from our HDVQ-VAE, flattening them into a
much higher-dimensional vector, which forms our hypervector.
The flatting operation brings our latent representation from
B x 128 x 24 x 24 to B x 73728 where B is our batch dimen-
sion, and 128 is the binary vector size. Our new hypervector
is bound with a static positional hypervector initialized at the
beginning of training. Once bound, we do a single pass to
accumulate vectors for their respective classes before signing.
As we begin training, we take similarity measurements between
the bound hypervector (latent x position) and our class vectors.
We adjust the class vectors based on incorrect predictions. At
the end of each epoch, we once again sign the class vectors.

While training an HDC classifier does not use backpropa-
gation, it outperformed conventional classifier models on loss
and accuracy scores. VQ version of VAE is more compliant
with HDC than CNN due to the intricate learning of the
quantization process. Not only is HDC computationally less
expensive, but it is also lightweight, making it a suitable
candidate for embedded systems.

The binarization of the codebook for our HDVQ-VAE
brings memory savings and an overall reduction in the model
size. Going from float32 to a binary representation shrinks
the codebook size by 32x, and the information passed to the
decoder is 32x smaller than that of a conventional VQ-VAE.
Despite this 32x reduction in the information flow, comparing
downstream latent classification, both the conventional and
HDC classifiers perform better when using the latent of the
HDVQ-VAE over the conventional VQ-VAE.
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CNN-based conventional classifier performance over the scalar latent space and HD latent space classification using the CNN model.

V. CONCLUSION

This study introduces a novel approach to enhance vector
quantized variational autoencoders by incorporating hyperdi-
mensional vector representations, aiming for a more efficient
and lightweight solution in generative artificial intelligence
(AI) and latent space classifications. By leveraging a binary
hypervector space for latent representations, the codebook
within the vector space can be utilized for image recon-
structions or classifications. This research marks the inception
of hyperdimensional computing (HDC) in machine learning
(ML), suggesting its potential as a valuable addition to the
conventional ML framework in future endeavors.

ACKNOWLEDGMENT

The open-source code for this letter can be found at
https://github.com/tMLEClab/HDVQ-VAE.

REFERENCES
[1]

L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-
ing: A review,” IEEE Circuits Syst. Mag., vol. 20, no. 2, pp. 30-47, 2nd
Quart., 2020.

S. Aygun, M. S. Moghadam, M. H. Najafi, and M. Imani,
“Learning from hypervectors: A survey on hypervector encoding,” 2023,
arXiv:2308.00685.

C. Yeung, Z. Zou, and M. Imani, “Generalized holographic reduced
representations,” 2024, arXiv:2405.09689.

P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors,” Cogn. Comput., vol. 1, no. 2, pp. 139-159, Jun. 2009.

M. Stock et al., “Hyperdimensional computing: A fast, robust and
interpretable paradigm for biological data,” 2024, arXiv:2402.17572.
A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in Proc.
ISLPED, 2016, 64-69.

A. G. Ayar, S. Aygun, M. H. Najafi, and M. Margala, “Word2HyperVec:
From word embeddings to hypervectors for Hyperdimensional comput-
ing,” in Proc. Great Lakes Symp. VLSI, 2024, pp. 355-356.

T. Basaklar, Y. Tuncel, S. Y. Narayana, S. Gumussoy, and U. Y. Ogras,
“Hypervector design for efficient hyperdimensional computing on edge
devices,” 2021, arXiv:2103.06709.

A. Joshi, J. T. Halseth, and P. Kanerva, “Language geometry using
random indexing,” in Proc. 10th Int. Conf. Quantum Interact., 2017,
pp. 265-274.

A. Hernandez-Cano, N. Matsumoto, E. Ping, and M. Imani, “OnlineHD:
Robust, efficient, and single-pass online learning using hyperdimensional
system,” in Proc. DATE, 2021, pp. 56-61.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” 2018, arXiv:1711.00937.

0. Keles, M. A. Yilmaz, A. M. Tekalp, C. Korkmaz, and Z. Dogan,
“On the computation of PSNR for a set of images or video,” 2021,
arXiv:2104.14868.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unrea-
sonable effectiveness of deep features as a perceptual metric,” 2018,
arXiv:1801.03924.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl Blog,
vol. 1, no. 8, p. 9, 2019.

A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proc. 14th Int. Conf. Artif. Intell.
Stat., 2011, pp. 215-223.

[2]

[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on October 20,2025 at 21:53:31 UTC from IEEE Xplore. Restrictions apply.



