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Abstract— Accurate and timely regional weather prediction
is vital for sectors dependent on weather-related decisions.
Traditional prediction methods, based on atmospheric equations,
often struggle with coarse temporal resolutions and inaccuracies.
This article presents a novel machine learning (ML) model, called
Micro-Macro (MiMa), that integrates both near-surface obser-
vational data from Kentucky Mesonet stations (collected every
5 min, known as Micro data) and hourly atmospheric numerical
outputs (termed as Macro data) for fine-resolution weather
forecasting. The MiMa model employs an encoder—decoder trans-
former structure, with two encoders for processing multivariate
data from both datasets and a decoder for forecasting weather
variables over short time horizons. Each instance of the MiMa
model, called a modelet, predicts the values of a specific weather
parameter at an individual mesonet station. The approach is
extended with Regional MiMa (Re-MiMa) modelets, which are
designed to predict weather variables at ungauged locations by
training on multivariate data from a few representative stations
in a region, tagged with their elevations. Re-MiMa can provide
highly accurate predictions across an entire region, even in areas
without observational stations. Experimental results show that
MiMa significantly outperforms current models, with Re-MiMa
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offering precise short-term forecasts for ungauged locations,
marking a significant advancement in weather forecasting accu-
racy and applicability.

Index Terms— Atmospheric numerical values, encoder-decoder
transformer, machine learning (ML), observational data, transfer
learning, weather prediction.

I. INTRODUCTION

CCURATE short-term weather predictions with fine tem-

poral resolutions are crucial for sectors that depend on
real-time weather-related decision-making, such as transporta-
tion, emergency response, and solar farm operations. However,
current forecasting models, such as the Weather Research
and Forecasting (WRF) model with High-Resolution Rapid
Refresh (HRRR) [2], fall short of meeting these demands due
to their coarse hourly outputs and high computational com-
plexity. These models generate around 148 weather parameter
values (i.e., variables) per hour over large geogrids (e.g., 3 x
3 km), with coarse temporal granularity (hourly forecasts)
often deemed insufficient for applications requiring predictions
in the interval of 5 or 15 min [3]. Additionally, a lack of
near-surface observational data at tactical locations limits their
accuracy.

On the other hand, regional mesonet networks, such as
the Kentucky Mesonet [4], provide real-time, location-specific
weather data with fine temporal granularity (e.g., every 5 min).
These networks operate under the U.S. National Mesonet
Program [5] and consist of strategically located observational
stations. The Kentucky Mesonet, for example, comprises
over 70 stations for collecting values of some 22 weather
parameters, including temperature, humidity, wind speed, pres-
sure, and precipitation. This high-resolution dataset provides
valuable microlevel data that can be leveraged to improve
prediction accuracy (see Fig. 1 for station distribution).

Recent advances in machine learning (ML) technology
have propelled weather forecasting into a new era. Numerous
studies have explored ML-centric techniques for weather fore-
casting, yielding promising results. These techniques include
the deep neural networks (DNNs), convolutional neural net-
works (CNNs), long short-term memory (LSTM) networks
[6], and generative adversarial networks (GAN) [7], for
predicting values of such parameters as wind speed and
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DANV (37.624,-84.822,990)  BMTN (36.92, -82.906, 4031)

Fig. 1. Kentucky Mesonet weather observational stations denoted by yellow
circles, with those stations chosen for MiMa model evaluation and pointed
by red line segments tagged with their latitudes, longitudes, and elevations.

direction [8], [9], [10], [11], solar radiation [12], [13], pre-
cipitation [14], [15], [16], [17], [18], air quality [19], and
weather changes [20], [21], [22], [23]. However, existing ML
forecasting models have not yet achieved accurate predictions
of weather variables at fine temporal resolutions (as seen
with recent transformer-variant forecasters like [24], [25],
[26], and [27]). This shortcoming is largely due to the lack
of geolocation-aligned ground observational data, which is
essential for enhancing model training and prediction accuracy.
Many models rely solely on satellite or radar images [28], lim-
iting their precision. Additionally, most neural network-based
models are designed to predict values of specific parameters,
lacking a generalizable framework that can be readily adapted
to forecast all parameters of interest.

To address these shortcomings, this article introduces the
Micro-Macro (MiMa) model, a novel ML-based approach
that integrates fine-grained observational data (Micro data)
from regional mesonet stations with larger scale numerical
outputs (Macro data) from the WRF-HRRR model [3]. This
integration enables accurate weather predictions over short
time horizons (in minutes) for a region of interest. The MiMa
model employs an encoder—decoder transformer architecture,
where two encoders process multivariate sequences from the
Micro and the Macro datasets, and a decoder forecasts the
values of multiple weather parameters across a sequence of
time points from ¢ + 1 to # + L (see Fig. 2).

Each instance of the MiMa model is referred to as a
modelet, dedicated to predicting a specific weather variable
for an individual mesonet station. To further enhance its
utility, the MiMa model is extended to become Regional
MiMa (Re-MiMa) modelets, which can predict weather vari-
ables at ungauged locations (where no observational stations
exist). By using data from several representative stations in a
region of interest, typically 3 or 4, tagged with their eleva-
tions, Re-MiMa modelets can generalize predictions across an
entire region, providing accurate forecasts at both gauged and
ungauged locations. This extension addresses a long-standing
challenge in meteorological forecasting: accurate predictions
at locations without direct observational data.

We conducted experiments on weather forecasting at various
Kentucky Mesonet stations, focusing on four key weather
parameters: air temperature, relative humidity, wind speed, and
atmospheric pressure, across eleven stations (see Fig. 1). The
MiMa modelets consistently outperform all comparative tech-
niques, achieving the lowest root mean squared error (RMSE)
values in 39 of 44 forecasting instances (see Table VI).
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Additionally, Re-MiMa modelets, trained using data from
three representative stations in eastern Kentucky (BMTN,
FARM, and DANYV), were tested at eight ungauged stations.
The results show that Re-MiMa modelets predicted weather
variables with accuracy comparable to, or better than, location-
specific MiMa modelets, with 22 of 32 parameters at those
ungauged locations predicted more accurately (see Table X).
This demonstrates the effectiveness of Re-MiMa in avoiding
the need for multiple modelets for predicting a given variable
while maintaining high accuracy across the entire region.

In summary, the MiMa model integrates Micro and Macro
data to deliver precise weather predictions at fine tempo-
ral resolutions. The Re-MiMa extension further enhances its
regional forecasting capability, making it a versatile tool for
applications that require high-accuracy predictions in real time.
The MiMa model code, documentation, and datasets are made
publicly available at [29] for further research and applications
to other regions.

This article makes several key contributions.

1) Novel Weather Prediction Model (MiMa): We intro-
duce the MiMa model, an ML framework designed to
predict weather parameters at fine temporal resolutions
accurately. The model integrates high-frequency obser-
vational data (Micro data) with geo-aligned atmospheric
numerical outputs (Macro data) to provide accurate
short-term weather forecasts.

2) Adaptable Prediction for Arbitrary Lead Times: The
MiMa model employs an encoder—decoder architec-
ture with LSTM units, allowing it to handle arbitrary
lead times and forecast weather variables with fine
temporal granularity, such as 5- or 15-min intervals,
meeting real-world demands for high-resolution weather
forecasts.

3) Regional MiMa (Re-MiMa): We extend the MiMa model
by introducing Re-MiMa modelets, which enable accu-
rate weather forecasting at ungauged locations (where
no observational stations exist). Re-MiMa uses obser-
vational data from a small number of representative
stations, avoiding the need for location-specific models
while maintaining high prediction accuracy across a
region.
Reduction in Modelet Count: By utilizing transfer learn-
ing and data from representative stations, Re-MiMa
reduces the number of required modelets, achieving
accurate regional forecasts using one single modelet
per weather variable, compared to traditional approaches
requiring individual modelets for each location.
Comprehensive Evaluation: Our experimental evaluation
across multiple Kentucky Mesonet stations demon-
strates that MiMa and Re-MiMa significantly outperform
their counterparts in forecasting accuracy for multiple
weather parameters, including temperature, humidity,
wind speed, and pressure. Re-MiMa models achieve
high accuracy at ungauged locations, further validating
their effectiveness and boosting their usability.

Data and Code Availability: To facilitate further research

and reproducibility, we have made the MiMa model

code, documentation, and datasets available at [29],

4)

5)

6)
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Fig. 2. Overview of the MiMa model inputted with data from both an individual station and WRF-HRRR modeling computation to yield the weather variable

predictions.

enabling other researchers to apply our approach to
different regions and weather forecasting tasks.

II. RELATED WORK
Abundant applications of ML techniques for weather fore-
casting exist. This section reviews the recent advances in such
applications, which mostly follow three lines of work.

A. Neural Networks for Simulating Atmospheric Systems

The first line aims to explore whether NNs can simulate
the physical principles of atmosphere systems. In particular,
a Global NN and a Local NN are employed in [30] to
simulate the dynamics of a simple global atmosphere model
at 500 hPa geopotential. The results conclude that prediction
outcomes by the NN models can be better than those of the
coarse-resolution atmosphere models over a short duration
with the 1-h time scale. Scher [31] applied the CNN structure
with an autoencoder to learn the simplified general circulation
models (GCMs), which can predict the weather variables for
up to 14 days. The CNN incorporating LSTM components was
leveraged in [32] to achieve 14-day lead time forecasting as
well. Vlachas et al. [33] employed the LSTM model to reduce
the order space of a chaotic system. However, known solutions
along this line of work all focused on developing prediction
models for simulated or simplified climate environments, with-
out taking into account real-world conditions like observed
weather parameters at a region of interest. Their applicability
and effectiveness in real environments are questionable, given
the complex real-world conditions in practice. For example,
the actual measurements from mesonet stations are highly
dependent on local conditions. In addition, their solutions
cannot make accurate fine-grained forecasts (e.g., in the 5- or
15-min resolution) over short horizons (for 1 or 2 h) flexibly.

B. Neural Networks for Real-World Weather Prediction

The second line of work pursues new NN models for the
real-world weather parameters prediction. For example, the
LSTM and fully connected NNs are leveraged in [11] to
predict the wind speed at an offshore site, by capturing its
rapidly changing features. Grover et al. [20] combined the

discriminatively trained predictive models with a DNN to
predict the atmospheric pressure, temperature, wind speed,
and dew point. A convolutional LSTM model was adopted
in [14] to predict precipitation, whereas the CNN with a
stack of delicately selected frames was employed in [16]
for precipitation forecasting. In addition, a model with the
autoencoder structure was proposed to predict rainfall [15].
Forecasting the hurricane trajectories via a recurrent NN
structure was considered in [10]. The LSTM structures were
employed in [12] and [13] to predict solar radiation and
photovoltaic energy, respectively. Yi et al. [19] proposed a
deep fusion network to predict air quality. Veillette et al. [34]
crafted a storm event imagery dataset while leveraging the
VGG16 model to analyze storm events. U-Net models [35]
were considered in [36] and [37] for fine-grained radar now-
casting. A deep CNN model was developed over a cubed
sphere [21] for predicting several basic atmospheric variables
on a global grid. In [38], the DeepMC model with attention
mechanisms was proposed to predict Micro climate. A near
real-time hurricane rainfall forecasting model was proposed
in [17], where a basic CNN model inputted with the integrated
IMERG dataset was leveraged. In [23], basic ML and data
mining algorithms were developed for forecasting the reservoir
release. Recently, a lightweight model inputted with satellite
and radar images for real-world storm prediction has been
treated [39]. Meanwhile, a nonlinear nowcasting model under
a neural network framework has been proposed for precip-
itation forecasting based on composite radar observations to
exhibit more accurate and instructive outcomes than other deep
learning methods [40].

C. Transformer-Based Models for Long-Term Weather
Forecasting

As the third line of work, various transformer-based
solutions have been developed for long time-series predic-
tions, including weather forecasting but in coarse resolutions.
Specifically, Autoformer [24] performs weather forecasting
in the daily resolution, whereas FEDformer [25] evaluates
the predictions of weather time-series data for the hourly
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resolution. Likewise, the Corrformer model [26] forecasts
weather conditions over a large number of stations in coarse
granularity temporally, FourCastNet [27] considers weather
predictions at the temporal resolution of 6 h, and the iTrans-
former model [41] makes long-term weather forecasting in the
range of 96 to 720 h at the hourly resolution. Lately, GCMs for
weather and climate by combining atmospheric physics with
ML have aimed at the daily (or longer) resolution coarsely over
medium-range (1-14 days) time horizons [42], which are also
the target of the recently published global weather forecasting
benchmark [43].

D. Station Forecasting

The fourth line of work includes weather forecasting via
the following: 1) data from a large number of weather sta-
tions [44]; 2) station downscaling [45]; 3) a physical-ML
hybrid model [46]; 4) data from dense and sparse sensors [47];
and 5) GNN-based method [48]. Specifically, multiple critical
weather variables are forecast using a comprehensive collec-
tion of over 5000 weather stations, called the Weather-5k
dataset [44]. Leveraging the dataset like Weather-5k, recent
pursuits improve weather predictions at specific station loca-
tions through advanced downscaling techniques. For instance,
station-scale downscaling [45] accurately derives meteoro-
logical conditions at station locations from coarse-resolution
meteorological fields. Meanwhile, the hybrid DeepPhysiNet
approach [46] integrates physical laws into deep learning
models to enhance prediction accuracy. Another study [47]
utilizes both dense and sparse sensor data to make pre-
dictions for lead times up to 24 h, with its focus on
extending the lead time from 12 to 24 h. However, the study
relies solely on ground-based sensor data without valuable
computational numerical data, such as WRF-HRRR, which
would enhance accuracy. A GNN-based method [48] has
also been proposed for downscaling global grids to off-grid
locations of interest. However, like the previous study, it does
not leverage computational numerical data, such as WRF-
HRRR, to improve predictions for these off-grid locations.
While all aforementioned solutions help to advance weather
prediction, they are not meant to predict weather param-
eters accurately in fine temporal granularity (in minutes)
over flexible time horizons and lead times, hence calling
for accurate weather forecasting with fine-grained temporal
resolutions.

E. MiMa and Re-MiMa: Fine-Grained Weather Prediction

With encoder—decoder transformer-variant structures, our
MiMa and Re-MiMa modelets, for the first time, achieve
accurate predictions with short time horizons in fine temporal
resolutions on all weather variables at locations in a target
region, realized by the following: 1) tailoring a modelet for one
variable prediction per location (or per region) under MiMa
(or Re-MiMa); 2) taking both near-surface observational and
atmospheric numerical multivariate data as their inputs; and
3) letting modelets’ encoders input suitable data (including
predicted outcomes) for encoding adaptively.
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III. PERTINENT BACKGROUND

This section first explains near-surface observations con-
ducted by mesonet stations [4], followed by describing
the Weather Research and Forecasting with High-Resolution
Rapid Refresh (WRF-HRRR) computational model [49]. The
limitations of applying such datasets for weather forecasting
are then stated.

A. Kentucky Mesonet

Under the U.S. National Mesonet Program, this mesonet
comprises a set of automated weather stations (towers) located
at specific locations in the State of Kentucky, as marked
by yellow circles in Fig. 1. Its towers aim to gather
real-time meteorological and soil measurements relevant to
local weather phenomena, involving tens of meteorological
measurements, such as air temperature, relative humidity,
wind speed, atmospheric pressure, and precipitation, period-
ically [4]. Meteorological measurements are gathered once in
5 min, whereas soil measurements are taken once in 15 or
30 min.

B. WRF With HRRR Modeling

The WRF model takes actual atmospheric conditions
(mainly from satellite, ground radar imagery, METAR,
SYNOP, Sonde, etc.) as the input of atmosphere physical
equations to calculate numerical outputs that serve a wide
range of meteorological applications across the nation. The
WRF-HRRR model is the ARW core [50] simulation results
of the WRF model [51] initialized by the HRRR assimilating
system [49]. It takes multiple sources as inputs, including
radar reflectivity and observations [52] related to rawinsonde,
boundary layer, cloud, and precipitation processes. It computes
up to 148 weather parameters over the 18-h time horizon in
hourly increments with the spatial resolution of 3 km and
across 50 vertical levels. In this work, we take the HRRR
assimilated results archived in the University of Utah for
public use, and those results cover the whole United States
continent with a total of 1059 x 1799 geogrids sized 3 x
3 km [2]. On July 12, 2018, the HRRR implementation
Version 2 was upgraded to Version 3, with some changes
to parameters; please refer to [53] for more details. Every
parameter selected for our evaluation exists in both versions.
To obtain the WRF-HRRR data that are geo-aligned with
ground observational stations (in a mesonet) for MiMa mod-
elet training, each involved hourly WRF-HRRR data file (sized
120 MB) has to be preprocessed, given that those hourly
parameter values of all geogrids over the U.S. continent are
compressed to one single file for efficient transfer and storage.
Preprocessing an hourly data file takes about 2 min by one
Dell server in our laboratory and modelet training needs
WRF-HRRR computed parameters held in thousands of such
files, deemed a rather time-consuming task, as detailed under
“WRF-HRRR Data Preprocessing” in Section V-A.

C. Limitations

Both mesonet and WRF-HRRR datasets have their respec-
tive limitations. Specifically, the mesonet dataset contains
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TABLE I

RMSE VALUES OF WRF-HRRR OUTPUTS VERSUS MESONET OBSERVATIONS OVER THREE MONTHS AT EACH OF THOSE 11 KENTUCKY MESONET
STATIONS MARKED IN FIG. 1, WITH TEMP, HUMI, WSPD, AND PRES DENOTING AIR TEMPERATURE, RELATIVE HUMIDITY, WIND SPEED,
AND ATMOSPHERIC PRESSURE, RESPECTIVELY

BMTN CCLA CROP DANV ELST FARM FCHV HUEY LGRN LSML LXGN
TEMP |1.79 1.78 1.65 1.36 1.46 1.18 1.63 1.00 1.41 1.49 1.12
HUMI |13.95 12.80 10.49 9.07 10.91 6.45 10.88 7.54 9.41 9.71 5.16
WSPD | 4.05 2.97 2.77 2.79 2.69 2.82 2.78 3.45 2.44 2.90 3.83
PRES |24.12 0.30 1.45 0.38 0.51 0.78 0.32 0.50 6.81 2.52 1.09

near-surface weather measurements gathered continuously by
stations with various sensors and devices in minutes. However,
it does not provide forecasting results and involves only tens
of observation parameters. It can serve as the ground truth
for ML model training but is unable to reveal future weather
parameter values by itself. The WRF-HRRR numerical outputs
cover the whole US at hourly granularity, but they usually
suffer from considerable inaccuracy at geogrids of interest. For
example, Table I presents the RMSE values of WRF-HRRR
outputs over mesonet observations in the three months of
2018 at 11 stations. Besides, its hourly prediction scale lim-
its its suitability for meteorological applications that require
high temporal resolutions (in minutes) in support of real-
time decision-making. With affluent weather parameters (i.e.,
148 or 192), the WRF-HRRR data can be inputted into our
prediction modelets for complementing mesonet observational
data.

Our developed prediction modelets take multivariate time
series systematically chosen from both datasets as their inputs
to complement each other for accurate prediction in fine
temporal resolutions. As such, WRF-HRRR can provide afflu-
ent weather condition information while mesonet stations
gather accurate ground observations. Utilizing both of them
(in our developed modelets) properly enables precise weather
forecasting in fine-grained temporal resolutions.

IV. ML-BASED MODELS FOR WEATHER FORECASTING

The MiMa meteorological model utilizes Meteo modelets
to accurately and concurrently predict weather variables with
fine temporal resolution. These modelets are fed with minute-
level near-surface observational data (the Micro dataset) and
hourly atmospheric numerical outputs from WRF-HRRR mod-
eling (the Macro dataset). Each Meteo modelet is specifically
designed to predict a single weather parameter at a location
where observational data is available. For each predicted
parameter, two subsets of input parameters are selected: one
from the Micro dataset and the other from the Macro dataset.
These subsets are chosen based on their relevance levels with
respect to the weather parameter being predicted, as detailed in
Section V-A. The primary objective of the modelet design is to
extract temporal variation features from relevant sequences of
previous measurements to accurately predict weather parame-
ter values at multiple consecutive future time points (say, in T
min, 2T min, 3T min, etc.). This is achieved by leveraging
advanced ML techniques to learn temporal sequence patterns
from both datasets, capturing weather-situational variations
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Fig. 3. Structure of the Micro model, with the hidden state H; obtained by
inputting Xmicro to an encoder and the output Oy obtained by inputting H;
plus Y to a decoder. Output O, is then passed to a fully connected layer
which generates the predicted parameter value Y;4; via a fully connected
network.

essential for predicting specific parameters. The Meteo mod-
elets deliver precise weather forecasts for a target region at
desirable temporal resolutions. Before detailing the config-
uration of the MiMa modelets, we first describe an Micro
model that relies solely on the Micro dataset for its predictions,
as below.

A. Micro Model

Most atmospheric data exhibit noticeable temporal
sequences and periodic patterns, with weather conditions
continuously changing over time. To capture these patterns
for forecasting in consecutive future time points, an encoder—
decoder structure with the LSTM network [6] as its building
block captures the temporal and periodic patterns, as depicted
in Fig. 3. Although the encoder—decoder LSTM model has
been widely applied to sequence tasks such as language
translation and question answering, the physical meaning of
each element in the input vectors is not well-explored. Hence,
the encoder’s LSTM is detailed next, enabling it to keep rich
elementwise features when encoding all features into a dense
vector.

1) Micro Encoder: The Micro Encoder consists of an
LSTM unit designed to encode appropriate multivariate time
series of data over a specific period into a single dense vector,
representing their temporal feature variations. The input to this
encoder, Xmicro, 1S @ matrix of the most relevant parameter
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values at each timestamp, defined as follows:

Pé P% P% P%
Pl P} P; P
Xinicro = : : . .0‘
Pl PP Fa

where the ith row, for 1 < i < n, represents those o most
relevant parameters chosen from the Micro dataset at the ith
timestep of the multivariate time series data observed at a
station to train the model for the station’s location. These
n time steps constitute the lookback window for predicting
the results of future time points over a horizon, where the
time gap between the lookback window and the prediction
horizon is known as the lead time. The past T x n-min surface
observational data points from the « time series gathered by
the station are taken as a data frame (Xycro) representing an
observed weather snapshot as the model input. In the ablation
study (see Section V-D), results under different lookback
windows are provided and discussed. After inputting the data
of Xpicro to the Micro encoder, a hidden state vector of size
n x 128 is obtained. During the training, the exact hidden
state vector size is 128 x 128, under the mini-batch size of
64. Concatenation of the hidden and cell states leads to the
resulting hidden state vector size of 128 x 128. The LSTM
unit learns key features and updates its associated hidden state
vector. This vector, along with the next data frame, is input
to the same LSTM unit to update the hidden state vector Hy,
expressed by

H; = 0 (XmicroWxo + Hi—1Whno + bo) X tanh (Cy) (D

where Wy, are the output weights for the input Xpicro, Hi—1
is the hidden state vector from the previous timestamp, Wp,
are the output weights for the hidden state, b, is the bias
for the output, C; is the cell state of the LSTM unit, and
o denotes the sigmoid activation function and tanh is the
hyperbolic tangent [6]. Initially, the hidden state vector without
a prior state, is initialized randomly. The final dense vector H
aggregates temporal pattern variations from the inputs Xpicro’s
of n timestamps.

2) Decoder: The decoder predicts specific weather param-
eter values for consecutive time points over the given horizon
after a lead time, if any. Including an LSTM unit, the decoder,
initialized by the dense vector Hy, also takes the starting value
of the sequence, Yy, as its input to generate the output vector
O¢.1, denoted as follows:

O¢1 = 0 (YoWyo + HWpo + by) )

where the weight and bias variables are similar to those given
in (1). This output vector is passed to a fully connected
network to obtain the forecast value of Y¢ 1, expressed by

3)

where W, are the weights of the fully connected network,
and b, is the bias.

During training, multivariate data sequences from a station
are inputted in batches, with each training pass learned from
appropriate sequences of n values (e.g., 12 values for 1 h

Yt+1 = O—(OH—IWout + bout)
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Fig. 4. Structure of MiMa model, with its Micro encoder and its decoder
identical to those depicted in Fig. 3 and with the hidden states of the Micro
and the Macro encoders concatenated as the decoder’s input.

of data at 5-min intervals). For temperature prediction, as an
instance, the modelet is inputted with the last hour’s worth
of most relevant parameter data in batches to predict the
temperature 5 min immediately after, when the lead time is
nil. During inference, the model generates a sequence of n
values by the decoder, one at a time iteratively. For improved
accuracy, the encoder inputs suitable data (including predicted
values) for encoding before n iterations end.

B. MiMa Model

Given that the number of weather parameters observed by
mesonet stations is limited and primarily indicates current
near-surface readings without forward-looking information,
forecasting based solely on the Micro dataset is insuf-
ficient. The WRF-HRRR computed outputs (the Macro
dataset) include atmospheric indicators at higher altitudes (e.g.,
700/925 hPa geopotential height, low cloud cover, 3000 m
storm-relative helicity, etc.), as listed in Table V. They are
useful for inferring future weather conditions near the sur-
face. Thus, incorporating appropriately selected WRF-HRRR
outputs into the model training process significantly enhances
prediction accuracy, arriving at the MiMa model. Our proposed
MiMa model takes the Macro dataset as a complementary
input to improve forecasting.

The Macro dataset is generated on an hourly basis [49],
whereas surface observational data are collected every 5 min
by Kentucky Mesonet stations. The MiMa model is obtained
by adding an Macro encoder to the Micro model (depicted
in Fig. 3) to integrate these two data sources with different
temporal scales. Comprising a single LSTM unit, the Macro
encoder takes as its input, the geo-aligned WRF-HRRR data
which are most relevant to the weather parameter under
prediction (e.g., air temperature, relative humidity, etc.; see
Table II). The structure of our MiMa model is shown in Fig. 4.

The subset of WRF-HRRR data chosen for a predicted
weather parameter is based on parameter relevance degrees,
as detailed in Section V-A. Since the Macro dataset and the
Micro dataset are on different time scales, inputs to the Macro
encoder must be temporally downscaled from 1 h to 7 min
(being the mesonet station data sampling interval). Each hour
is divided into 60/ T time frames, using the hourly output from
the Macro dataset to represent the first time frame’s value.
Values for the remaining time frames are computed using a
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TABLE II
PREDICTED WEATHER PARAMETERS OF INTEREST
Predicted Parameter Height | Reading Range
TEMP (Air Temperature) 2.0 m -40 to 60°C
HUMI (Relative Humidity) 2.0m 0 to 100 %
WSPD (Wind Speed) 10.0 m 0 to 100 m/s
PRES (Atmospheric Pressure) 1.0 m | 600 to 1060 mb

polynomial function fitted to the last / output parameter data
points, with / = 3. The polynomial a % x> 4+ b * x + ¢ is used,
fitting the immediate last 3 h WRF-HRRR computed values to
find the best coefficients a, b, and ¢ for extrapolating the future
60/T — 1 values at T-min intervals. This process is applied
to every computed parameter listed in Table V, with their
respective time frame populated according to the polynomial
function.

The most relevant parameters from the Micro dataset (or
the Macro dataset) for each predicted parameter are listed in
Table III (or Table IV). In addition to the Micro encoder input
Xicro, the Macro encoder input Xjacro 1S given by

Pl PP . Py

p: P; P; - P}
Xmacro = : . . .

Pl P P} - P}

where the ith row, for 1 <i < n, denotes those § most relevant
parameters from the WRF-HRRR dataset, for the lookback
window of n steps and the prediction horizon of 7' x n minutes
when the time step equals 7 minutes. Comprising an LSTM
unit, the Macro encoder takes its input Xp,cro along with the
hidden state vector from the previous time frame, to update its
hidden state vector. It outputs a dense vector, H; macro, Which is
concatenated with the dense vector outputted from the Micro
encoder, H; micro (as shown in Fig. 4), to produce the vector
of Ht,merged

Ht,merged = Concat(Ht.micrO’ Ht,macro) . 4)

The decoder in the MiMa model functions similarly to that
in the Micro model, and its output is expressed by (2), with H;
replaced by H; mergeq- It is initialized by the concatenated dense
vector Hy mergeq to start forecasting for consecutive time points
sequentially. During both training and prediction phases, the
MiMa model utilizes the WRF-HRRR numerical data from
the geogrid where the observational station resides (known
as spatial alignment) over the same time duration (known as
temporal alignments). Note that while our MiMa model is
encoder—decoder structured, its encoders are made to consider
prediction outcomes adaptively, based on prediction errors
observed at model validation immediately after training. This
way allows the MiMa modelets to encode input data frames
over the lookback window more frequently to lower their
prediction error during inference, at the expense of longer
inference times (in a few seconds, rather than tens of us with
just the decoder involved in predictions).
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Note that our proposed MiMa model, built on the
LSTM-based encoder—decoder architecture, exhibits very high
accuracy in predicting weather variables over the short time
horizons of our interest (up to a few hours, as demonstrated
in the next section). Its high accuracy results mainly from
inputting geo-aligned Micro and Macro data at the same
time. When the prediction horizons are long (say, tens of
hours), different model structures, like transformers with atten-
tion [54], may be called for. A model built on the transformer
with attention, however, typically requires a large amount of
data for model training to have quality models with high
prediction accuracy. For our weather forecasting, we employ
small datasets (over two years), making it unsuitable to adopt
any transformer-based model with attention.

V. EXPERIMENTS AND RESULTS

This section provides evaluation specifics, performance
results and discussion, ensemble predictions, ablation stud-
ies, and extreme weather forecasting. Evaluation specifics
include dataset details, parameter-relevant degree calculation,
WREF-HRRR data preprocessing, and experiment setup details.
Performance results are shown for the following: 1) different
prediction methods under prediction horizons of 1 and 24 h
and 2) MiMa modelets with the prediction lead times of 1 and
4 h for the 3-h horizon.

A. Evaluation Specifics

1) Dataset Details: Two types of datasets are inputted to
the Meteo Modelets we developed for performance evalua-
tion, including the near-surface observational data gathered
by Kentucky Mesonet [4] and the WRF-HRRR [3] atmo-
spheric numerical values, respectively called Micro and Macro
datasets because the former (or latter) data are available in
5-min (hourly) temporal granularity. The Micro data comprise
a set of weather parameters gathered by mesonet stations for
monitoring real-time meteorological phenomena, as shown in
Fig. 1, where stations are signified by yellow circles. The
monitored weather parameters include the readings of air
temperature, relative humidity, wind speed, and atmospheric
pressure, at various heights (see Table II), recorded once every
5 min, as opposed to the WRF-HRRR computed atmospheric
values available hourly. Eleven Kentucky Mesonet stations are
selected for evaluating MiMa models, with their geographical
locations denoted in Fig. 1 by red line segments. For example,
BMTN (39.919, —82.906, 4031) is located at latitude 36.919°,
longitude —82.906°, and elevation 4031 feet, and it is in
the Black Mountain. Those mesonet stations are scattered in
the Eastern Kentucky area (with complex terrain), and their
elevations range from 559 to 4031 feet.

Four meteorological parameters of interest considered at
each mesonet station for model performance evaluation are
listed in Table II, with their respective measuring heights
and reading ranges included. The parameters of WSPD and
PRES are measured respectively at 10 and 1.0 m, whereas
the remaining two are measured at 2.0 m. In the case of the
individually trained MiMa modelets, there are 44 (=4 x 11)
MiMa modelets involved. Each modelet is trained by inputting
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TABLE III
RELEVANT PARAMETERS UNDER THE MICRO DATASET
Predicted | Relevant parameters for prediction use®

TEMP, THMP, TDPT, ST02, SM02, SRAD, PRES, WDSD,
TEMP | gumr, wssD

HUMI, SRAD, WSSD, WDSD, WSMX, WSPD, WSMN,
HUML | THMP, PRES, TEMP

WSPD, WSMX, WSMN, WSSD, PRES, ST02, HUMI,
WSPD | gmo2
PRES PRES, TDPT, TEMP, THMP, ST02, WSMN, WSPD

§ Description of relevant parameters is as follows: THMP — 2-meter
moisture sensor temperature (C); TDPT — 2-meter dewpoint temperature
(C); STO2 — 2-cm soil temperature (C); SM02 — 2-cm soil moisture (%);
SRAD - 2-meter downwelling shortwave radiation (W/ m2); WSSD - 10-
meter wind speed standard deviation (within 5-minute window); WSMX
— 10-meter wind speed maximum (m/s) in the 5-minute interval; WSMN
— 10-meter wind speed minimum (m/s) in the 5-minute interval.

both the ground observational data gathered during, and
WRF-HRRR atmospheric data computed for, Years 2018 and
2019, while tested via the data of Year 2020. The WRF-HRRR
Macro data employed are those corresponding to the 3 x
3 km geogrids of the eleven Kentucky Mesonet stations. There
are 148 WRF-HRRR parameters computed for each geogrid
per hour, but only a few of them are relevant enough to a given
parameter under prediction (say, TEMP) for consideration in
its dedicated MiMa modelet. Similarly, each mesonet station
gathers some 22 weather parameters periodically (mostly once
per 5 min), with a few of them strongly relevant to the
predicted parameter. The following describes a systematic way
for identifying the relevant degrees of all parameters with
respect to a predicted parameter under one dataset so that
such identified relevant degrees permit each MiMa modelet
to include a suitable set of strongly relevant parameters for
superior prediction performance after training.

2) Parameter Relevance: Weather parameter prediction by
ML belongs to high-dimensional multivariate data analytics,
with its performance dictated by involved dimensional features
(i.e., parameters in the weather prediction context). Although
selecting a proper set of parameters is challenging, it is an
essential step in data preprocessing for removing irrelevant
and redundant data to reduce time complexity and improve
learning accuracy for the ML model at hand. In essence, this
step involves identifying relevant degrees of all parameters
with respect to a given parameter, so that the model takes
into account only those parameters with high enough relevant
degrees when predicting its target parameter. Typically, each
parameter under prediction involves a different subset of
parameters with high enough relevant degrees under a given
dataset (be the near-surface gathered data or the WRF-HRRR
computed one), as listed in Tables III and IV. The subset
of relevant parameters chosen for consideration in predicting
a given parameter, however, is found to be identical at all
geogrids across a regional area. Hence, only one subset of
relevant parameters is chosen systematically for each predicted
parameter under the given dataset, irrespective of geogrids
where mesonet stations reside. A description of relevant
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TABLE IV

RELEVANT PARAMETERS UNDER THE WRF-HRRR DATASET. THE
DESCRIPTION OF EACH PARAMETER ID IS SHOWN IN TABLE V

Predicted | Considered WRF-HRRR param. ID for prediction
TEMP 66, 67, 59, 111, 32, 94, 28, 69, 109, 68

HUMI 70, 4, 108, 110, 112, 91, 90, 61, 113, 111

WSPD 8,73, 89, 115, 98, 23, 18, 121, 125

PRES 57, 39, 40, 94, 28, 125, 128

TABLE V

DESCRIPTION OF RELEVANT WRF-HRRR PARAMETERS INCLUDED IN
THE MiMa MODELETS AT HAND

ID Parameter Description

4 Surface Visibility (m)

8 Surface Wind speed (gust) (m/s)

18 700hpa Geopotential Height (gpm)

28 925hpa Temperature (K)

39 MSLP (pa)

40 1000hpa Geopotential Height (gpm)

57 Surface Pressure (Pa)

59 Surface Temperature (K)

61 Ground Moisture (%)

66 2-meter Temperature (K)

67 2-meter Potential temperature (K)

68 2-metre specific humidity

69 2-metre dewpoint temperature (K)

70 2-metre relative humidity (%)

73 10-metre wind speed (m/s)

89 Surface Frictional velocity (m/s)

90 Surface Sensible heat net flux (w/m2)

91 Surface Latent heat net flux (w/m2)

94 Isobaric layer Surface lifted index (K)

98 Low cloud cover (%)

108 Surface Downward short-wave radiation flux (w/m2)
109 Surface Downward long-wave radiation flux (w/m2)
110 Surface Upward short-wave radiation flux (w/m?2)
111 Surface Upward long-wave radiation flux (w/m2)
112 surface Visible Beam Downward Solar Flux (w/m2)
113 Surface Visible Diffuse Downward Solar Flux (w/m2)
115 3000m Storm relative helicity (J/kg)

121 Vertical u-component shear (/s)

125 Isothermal Zero Pressure (Pa)

128 Highest Tropospheric Freezing Pressure (Pa)

WRF-HRRR parameters considered by prediction models is
given in Table V.

Generally, two systematic approaches for choosing appro-
priate subsets of relevant parameters are wrapper and filter
solutions. The former exhaustively searches all possible sub-
sets of the parameters (i.e., dimensional features) to optimize
the solution for a specific ML model. Such an exhaustive
search-based method is known to be NP-hard, involving
infeasibly high time complexity when the problem size is
large (like the WRF-HRRR dataset with 148 parameters).
In contrast, the latter usually applies a statistical method to
determine a suboptimal solution with a feasible time, avoiding
exhaustive search. An early filter solution based on the statis-
tical method is realized by computing correlation coefficients
among parameters [55]. A later statistical solution relied on
mutual information present among parameters for determining
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their relevant degrees [56], and it was shown to better capture
relevant degrees of parameters with nonlinear relationships
in general when compared to its correlation coefficient-based
counterpart [55]. Since finding an optimal subset of major rele-
vant parameters exhaustively by a wrapper solution is NP-hard,
we employed the filter-based approach [55], [56] to determine
a proper parameter subset for each predicted parameter under
a given dataset by calculating the relevant degrees (ranging
from 1.0 to 0.0) of all parameters with respect to the predicted
parameter. With similar time complexity, both filter-based
solutions (corresponding to [55] and [56]) were adopted to
compute the relevant degrees of parameters under the gathered
weather dataset and the WRF-HRRR dataset, and their results
were found to be identical possibly because parameters in our
both datasets may not have a strong nonlinear relationship
to make the mutual information-based solution [56] outshine
its correlation coefficient-based counterpart [55], as shown
previously.

A parameter with a higher degree of relevance tends to
improve the accuracy of the predicted parameter when taken
into account in the prediction model. Intuitively, a proper
subset of relevant parameters for inclusion in a prediction
model should contain those parameters with relevant degrees
exceeding a threshold ® (say, ® = 0.3), because including
those lightly relevant parameters indiscriminately not only
raises model time complexity but also may hurt accuracy.
To constrain model complexity without compromising its
accuracy, a proper relevant parameter subset is limited to y
(say, y = 10) so that only those y most relevant parameters
are included if there are more than y parameters with their
relevant degrees > ©. Note that high model accuracy results
provided that y is chosen reasonably and both dataset types
adopt the same ® and y values, as can be found in Tables III
and IV, where TEMP (or PRES) involves 10 (or 7) most
relevant parameters. A very small y value (say, 2) can yield
unsatisfactorily low accuracy, whereas an unnecessarily large
y value (say, >20) incurs excessive time complexity without
improving accuracy. The subsequent results presented are
under the choice of y = 10. Relevant WRF-HRRR parameters
considered by prediction models are listed and described in
Table V.

3) WRF-HRRR Data Preprocessing: The WRF-HRRR
dataset [2] was recorded each hour, in a compressed for-
mat to contain a computed weather situation snapshot with
148 parameters for each of 1905 141 (= 1059 x 1799) geogrids
that cover the whole United States. An hourly weather snap-
shot held in the grib2 format has the size of some 120 MB,
and it has to be decompressed (into some 2.4 GB) before
extracting the relevant parameters of interest at all geogrids
where mesonet stations reside for inclusion in weather pre-
diction models. In our implementation, we employ the pygrib
(a Python package) to extract the HRRR data. In particular,
values of a parameter for all grids constitute one layer so
there are 148 layers in total. Taking surface pressure as an
example, it will be at Layer 57 (of 148 layers). We read out
details in Layer 57 from HRRR data, which also include the
latitude and longitude of each grid. Among 1059 x 1799 grids,
we compute the distance between each grid and the mesonet
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station and identify the one having the nearest distance to
this station. The surface pressure at this grid is considered
to be associated with the respective mesonet station. Note that
the pressure value corresponding to a station can also be the
average of computed WRF-HRRR pressure results of four or
eight neighboring grids, but this averaged pressure value is
found to be usually close to that of the nearest grid because
weather parameter values are usually similar over a small
region.

Considered as WRF-HRRR data preprocessing, uncom-
pressing one weather snapshot followed by extracting relevant
parameters takes about 2 min on a Dell T7910 workstation
(with dual Xeon E5-2680v4 CPUs and 64 GB memory).
Hence, such data preprocessing on 24 snapshots (of one day)
takes more than 48 min. For our model evaluation, total
WRF-HRRR data preprocessing includes extracting 90 days
of data per year (over one season) for three years, with two of
them for model training and one for model testing, taking more
than 216 h (= 2 x 24 x 90 x 3 min), apparently an extremely
time-consuming task that calls for high parallelism to shorten
its execution. The data preprocessing time rises when data
from more years and/or from more days per year are employed
to train models (for accuracy improvement).

To spatially align WRF-HRRR data and observational data
for a station location, our data preprocessing searches each
decompressed grib2 file over its involved 1.9+ million grid
points for the one nearest to where the station lies. Time
and space complexities involved in the search for the nearest
grid point (according to the distance) are O(n) and O(1),
respectively, where n equals the number of grid points in a
file. After such a grid point is identified for every station of
interest in a region, all relevant parameters recorded under this
grid point are extracted. Since the data extraction process is
time-consuming and our workstation has 28 cores, 27 program
instances can be launched concurrently, each handling ten
days’ WRF-HRRR data files (one per hour) for high paral-
lelism. Overall data preprocessing conducted in this way takes
about 8 h (= 48 min x10) after the compressed WRF-HRRR
data files had been downloaded from [3] (for local access
during preprocessing).

4) Spatial Alignment of Micro and Macro Datasets: Before
training the MiMa modelets, we address the issue of spatial
alignment between the two datasets of differing resolutions:
the Micro dataset, consisting of individual station point data,
and the WRF-HRRR dataset, which provides gridded satellite
data covering a larger geographical area. Since the WRF
dataset represents broader spatial coverage while the Micro
dataset focuses on specific station locations, it is crucial to
ensure proper alignment between the two to facilitate accurate
comparisons and analyses. To achieve this, we identify the
latitude and longitude from the WRF dataset that is closest to
each station’s coordinates in the Micro dataset. This is done by
computing the distance between the station’s latitude and lon-
gitude and the corresponding grid points in the WRF dataset.
We then select the grid point with the minimum distance to
the station as the representative location for extracting the
WREF data. By doing so, we effectively convert the gridded
satellite data into point data, ensuring that both the Micro and
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Macro datasets are spatially aligned. This allows for consistent
comparison and integration of data from both sources, despite
their differences in spatial resolution.

5) Important Relationships: In our work, we explore
the important relationships among data assimilation, tem-
poral downscaling, and weather prediction since each of
these represents an important aspect of our work. Data
assimilation involves integrating near-surface observational
data (ground data) with atmospheric numerical data from
the Weather Research and Forecasting (WRF) model. This
fusion of data sources enhances the forecasting ability of our
model by providing a multidimensional input that captures
both ground-based and atmospheric information. Through
this assimilation process, we align observational data with
WRF’s outputs, resulting in a more comprehensive dataset
that supports location-specific predictions and enriches the
overall quality of the forecast input. Temporal downscaling
is applied to the WRF data to transform its hourly com-
putational modeling into finer-grained 5-min intervals. This
process is essential for accurately capturing short-term weather
fluctuations and aligning WRF’s coarser resolution with the
5-min sampling rate of mesonet station data. By refining
the temporal granularity of the WRF data, we prepare a
synchronized dataset that meets the temporal requirements of
our predictive model, ensuring consistency and precision in
subsequent forecasts.

The assimilated and downscaled data then feed into our
weather prediction model, where the combination of these
two processes—data assimilation and temporal downscaling—
enables the model to deliver high-precision weather predic-
tions at fine temporal intervals. This integration ensures that
real-time, location-specific weather conditions are accurately
captured and forecasted, addressing both the spatial and tem-
poral demands of our forecasting framework.

6) Experiment Setup Details: The proposed MiMa model
takes data from the third season in 2018 and 2019 for its
training to predict the weather conditions for 80% of the
2020 data in the same season. The other 20% of the 2020 data
is used for validation data during the training to enable early
stopping. Our early stopping setting has a patience of five
consecutive epochs with no decrease in the mean absolute error
(MAE). Four MiMa modelets are established to predict four
weather parameters of interest (i.e., air temperature, relative
humidity, wind speed, and atmospheric pressure) for each
mesonet station location. As depicted in Fig. 4, the Micro and
Macro encoders of a MiMa modelet utilize LSTM networks
with 256 hidden states, while the decoder leverages LSTM net-
works with 512 hidden states. The LSTM networks utilize the
hyperbolic tangent (tanh) function as the activation function
and the sigmoid function for the recurrent activation [6]. The
tanh activation function aids in maintaining the stability of the
cell state by forcing the outputs to a range between —1 and 1.
In contrast, the sigmoid function ensures that the recurrent
connections are regulated between O and 1, facilitating a
smooth gradient flow. Combined with the substantial hidden
state sizes, this regularization technique allows the MiMa
model to capture and learn complex temporal dependencies
present in the input sequences. During training, a dropout rate
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of 50% is applied to both encoders and the decoder of a MiMa
modelet to mitigate the risk of overfitting, thereby enhancing
the model’s generalization capabilities. The high dropout rate
ensures that approximately half of the neurons are randomly
deactivated during each training iteration, promoting robust-
ness and preventing reliance on specific neurons. In addition,
the hidden state sizes, dropout rate, and activation functions are
meticulously selected to balance the trade-off between model
complexity and generalization performance, ensuring high
weather forecasting accuracy. Each MiMa modelet is trained
using a mini-batch size of 64 across 60 epochs. An early
stopping mechanism halts training if no loss improvement is
observed for ten consecutive epochs. The LSTM block of each
encoder involves 256 units, leading to a total of 512 units in
the decoder LSTM block. The Adam optimizer is employed
with a learning rate of 0.001.

To compare the MiMa modelets, five other models are
included in our evaluation: 1) the Micro model; 2) SARIMA,
which is an autoregressive model supporting the direct model-
ing of the seasonal component of series [57]; 3) SNN, which
is a simple neural network [30] that takes the Micro data to
make predictions; 4) SVR, which is a regression model based
on support vector machines [58], with the Micro data as input
features; and 5) Deep uncertainty quantification (DUQ), which
integrates deep learning techniques with one GRU layer of
128 hidden nodes [43] to quantify uncertainties in weather
predictions, enhancing the reliability of weather forecasts. The
Micro model is structured as shown in Fig. 3, taking just the
Micro dataset (i.e., near-surface gathered data) for training
an LSTM with 256 hidden states. The computed atmospheric
results of the WRF-HRRR model serve as the coarser pre-
diction counterpart (in the hourly granularity). While these
comparative models are evaluated alongside MiMa modelets,
they consistently underperform as demonstrated in both our
preliminary study [1] and the results presented in Tables VI
and XI.

Model prediction accuracy is measured according to
two metrics that gauge the prediction error against those
observed by mesonet stations: RMSE and MAE [32]. Specif-
ically, RMSE (/) >0 (Y — ¥)?% and MAE =
(/) Y0, 1Y — )?i)l, where Y and Y denote the observed
and the predicted value vectors, respectively, and n is the
number of data values. These two metrics aim to depict the
error amounts. RMSE is sensitive to outliers (with extreme
errors emphasized as their amounts are squared), and MAE
simply averages all error amounts so that it better reflects
prediction accuracy in the absence of extreme errors (like
weather parameter forecasting).

B. Performance Results and Discussion

1) Under Different Prediction Methods: We have conducted
multiple experiments to forecast four weather parameters of
interest using the MiMa modelets at all time points over
16 days chosen arbitrarily in the third season of 2020. There
are 4608 (= 12 x 24 x 16) predicted time points for each
parameter per chosen Kentucky Mesonet station, given that
each hour incurs 12 prediction points with 5 min apart.
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Station

Model

TABLE VI
RMSE AND MAE VALUES FOR ALL 11 MESONET STATIONS ALONG WITH THEIR RESPECTIVE ERRORS ¥
TEMP HUMI WSPD PRES
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSML
@748 ft.

MiMa
Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.14 (0.67%)
0.16 (0.77%)
0.28 (1.34%)
1.04 (4.99%)

5.19 (18.86%)

6.24 (22.68%)

250 (11.66%)

0.10 (0.12%)
0.13 (0.16%)
0.17 (0.21%)
0.82 (1.02%)

437 (15.89%)

543 (19.72%)
1.99 (9.27%)

0.78 (0.97%)

1.08 (1.35%)

2.18 (2.72%)

6.70 (8.36%)

19.52 (25.75%)
23.35 (30.81%)
12.52 (19.46%)

0.57 (0.71%)
0.85 (1.06%)
128 (1.60%)
5.46 (6.81%)

15.25 (20.11%)

19.94 (26.31%)

10.33 (16.06%)

0.36 (37.11%)
0.36 (37.11%)
0.51 (52.58%)
473 (487.63%)
3.81 (19.17%)
3.01 (15.14%)
0.88 (8.55%)

0.28 (28.87%)
0.27 (27.84%)
0.35 (36.08%)
4.18 (430.93%)
3.11 (15.65%)
256 (12.87%)
0.60 (5.89%)

0.40 (0.04%)
0.76 (0.08%)
0.11 (0.01%)

0.34 (0.03%)
0.63 (0.06%)
0.09 (0.01%)

3.86 (0.39%)
279.03 (50.14%)
239.63 (43.06%)

3.00 (28.49%)

3.85 (0.39%)

256.67 (46.12%)

213.46 (38.36%)
245 (23.52%)

CCLA
@764 ft.

MiMa
Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.28 (1.31%)
0.24 (1.12%)
031 (1.45%)
1.8 (8.79%)
234 (9.01%)
5.32 (20.49%)
274 (15.01%)

024 (1.12%)
0.22 (1.03%)
027 (1.26%)
1.61 (7.53%)
1.53 (5.88%)
4.30 (16.54%)
233 (12.79%)

149 (1.77%)
1.86 (2.21%)
1.57 (1.87%)

14.67 (17.46%)
8.78 (12.16%)
9.81 (13.58%)

11.32 (19.11%)

0.66 (0.79%)
1.43 (1.70%)
1.20 (1.43%)

13.45 (16.01%)
5.63 (7.80%)
6.64 (9.19%)
8.94 (15.10%)

0.38 (19.90%)
0.38 (19.90%)
0.43 (22.51%)
2.32 (121.47%)
0.73 (5.97%)
145 (11.82%)
1.09 (7.56%)

0.16 (8.38%)
0.24 (12.57%)
0.32 (16.75%)
178 (93.19%)
0.47 (3.86%)
1.21 (9.84%)
0.78 (5.40%)

0.06 (0.01%)
0.16 (0.02%)
0.07 (0.01%)
0.34 (0.03%)
1.05 (5.51%)

3.08 (16.23%)
1.24 (12.47%)

0.06 (0.01%)
0.04 (0.00%)
0.05 (0.01%)
0.28 (0.03%)
0.73 (3.85%)
2.34 (12.32%)
113 (11.41%)

LGRN
@766 ft.

MiMa
Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.16 (0.77%)
0.19 (0.91%)
029 (1.39%)
1.78 (8.52%)

2.65 (10.08%)

4.05 (15.44%)
1.59 (9.02%)

0.09 (0.43%)
0.15 (0.72%)
0.18 (0.86%)
1.49 (7.14%)
1.93 (7.34%)

325 (12.37%)
111 (6.32%)

0.86 (1.09%)
1.01 (1.28%)
202 (2.57%)
8.02 (10.19%)
8.83 (12.30%)
10.35 (14.41%)
6.63 (11.58%)

0.61 (0.77%)
0.74 (0.94%)
1.23 (1.56%)
6.36 (8.08%)
6.23 (8.68%)
7.41 (10.32%)
3.89 (6.80%)

0.30 (15.63%)
0.31 (16.15%)
0.58 (30.21%)
4.14 (215.63%)
0.69 (6.19%)
091 (8.21%)
1.27 (10.51%)

0.23 (11.98%)
0.22 (11.46%)
041 (21.35%)
3.84 (200.00%)
0.47 (4.27%)
0.71 (6.34%)
1.02 (8.49%)

0.09 (0.01%)
0.09 (0.01%)
0.10 (0.01%)
675 (0.68%)
1.19 (5.81%)

2.10 (10.30%)
0.69 (6.98%)

0.07 (0.01%)
0.08 (0.01%)
0.09 (0.01%)
6.75 (0.68%)
0.83 (4.07%)
157 (7.71%)
0.49 (4.98%)

FCHV
@770 ft.

MiMa
Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.15 (0.70%)
0.24 (1.12%)
0.24 (1.12%)
1.15 (5.36%)

3.40 (17.75%)

6.04 (23.70%)

274 (14.31%)

0.10 (0.47%)
021 (0.98%)
0.14 (0.65%)
091 (4.24%)
279 (14.58%)
5.05 (19.81%)
231 (12.05%)

0.84 (1.10%)

0.88 (1.16%)

1.85 (2.43%)

7.46 (9.80%)

12.99 (20.70%)
21.50 (29.33%)
9.92 (15.81%)

0.58 (0.76%)
0.59 (0.78%)
1.22 (1.60%)
6.13 (8.06%)
10.32 (16.46%)
18.07 (24.65%)
8.21 (13.09%)

0.32 (15.46%)
0.33 (15.94%)
0.49 (23.67%)
3.95 (190.82%)
1.07 (9.05%)
251 (18.71%)
0.85 (7.19%)

0.24 (11.59%)
0.25 (12.08%)
0.34 (16.43%)
3.65 (176.33%)
0.83 (6.96%)
228 (17.04%)
0.65 (5.49%)

0.25 (0.03%)
0.57 (0.06%)
0.09 (0.01%)

0.22 (0.02%)
0.46 (0.05%)
0.09 (0.01%)

0.93 (0.09%)
1.90 (18.76%)
241.51 (48.56%)
1.21 (11.99%)

0.67 (0.07%)
1.66 (16.36%)
219.69 (44.17%)
1.06 (10.51%)

CROP
@858 ft.

MiMa
Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.18 (0.87%)
021 (1.02%)
0.24 (1.17%)
0.87 (4.23%)
226 (8.14%)
3.99 (14.35%)
8.07 (38.02%)

0.12 (0.58%)
0.17 (0.83%)
0.16 (0.78%)
0.64 (3.11%)
1.55 (5.58%)

3.16 (11.35%)

6.85 (32.25%)

0.91 (1.16%)
0.91 (1.16%)
1.60 (2.04%)
5.12 (6.53%)
7.89 (10.73%)
11.50 (15.64%)
9.90 (14.50%)

0.64 (0.82%)
0.65 (0.83%)
1.02 (1.30%)
3.74 (4.77%)
5.01 (6.82%)

8.67 (11.79%)

8.19 (11.99%)

0.32 (15.17%)
0.33 (15.64%)
0.42 (19.91%)
4.82 (228.44%)
0.90 (7.55%)
1.29 (10.86%)
1.27 (11.82%)

0.25 (11.85%)
0.26 (12.32%)
0.34 (16.11%)
424 (200.95%)
0.61 (5.15%)
0.96 (8.07%)
0.89 (8.29%)

0.08 (0.01%)
0.08 (0.01%)
0.10 (0.01%)
0.35 (0.04%)
1.08 (5.25%)
2.43 (11.81%)
1.81 (17.92%)

0.07 (0.01%)
0.06 (0.01%)
0.08 (0.01%)
0.29 (0.03%)
0.74 (3.62%)
178 (8.66%)
1.61 (16.00%)

ELST
@860 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.22 (1.06%)
0.23 (1.10%)
023 (1.10%)
139 (6.67%)
2.86 (9.33%)
420 (13.69%)
1.87 (9.40%)

0.13 (0.62%)
0.15 (0.72%)
0.16 (0.77%)
0.86 (4.12%)
1.95 (6.37%)
3.30 (10.77%)
1.34 (6.72%)

0.93 (1.05%)
103 (1.16%)
1.55 (1.75%)

1041 (11.76%)

9.34 (11.79%)

12.10 (15.26%)

8.72 (14.87%)

0.64 (0.72%)
0.77 (0.87%)
0.96 (1.08%)
7.70 (8.70%)
5.80 (7.32%)
9.01 (11.36%)
5.75 (9.81%)

0.35 (27.78%)
0.36 (28.57%)
0.45 (35.71%)
4.76 (377.78%)
0.78 (7.28%)
112 (10.47%)
0.94 (8.76%)

0.26 (20.63%)
027 (21.43%)
0.32 (25.40%)
402 (319.05%)
0.53 (5.00%)
0.91 (8.49%)
0.69 (6.40%)

0.08 (0.01%)
033 (0.03%)
0.09 (0.01%)
053 (0.05%)
091 (5.69%)
175 (10.90%)
332 (29.43%)

0.07 (0.01%)
0.17 (0.02%)
0.08 (0.01%)
0.46 (0.05%)
0.67 (4.18%)
1.22 (7.60%)
278 (24.66%)

HUEY
@896 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

027 (1.28%)
030 (1.42%)
031 (1.47%)
1.19 (5.63%)

2.90 (10.72%)
5.85 (21.59%)

462 (23.52%)

0.21 (0.99%)
0.58 (2.74%)
027 (1.28%)
0.93 (4.40%)
223 (8.23%)

4.69 (17.32%)
3.98 (20.27%)

1.56 (2.20%)
1.63 (2.30%)
1.77 (2.50%)
8.17 (11.53%)
8.16 (11.34%)
9.98 (13.88%)

11.35 (17.26%)

075 (1.06%)
2.64 (3.73%)
1.54 (2.17%)
6.65 (9.38%)
5.53 (7.70%)
7.37 (10.25%)
9.44 (14.36%)

0.29 (107.41%)
0.31 (114.81%)
0.59 (218.52%)
2.16 (800.00%)
0.64 (6.34%)
1.49 (14.79%)
125 (13.51%)

0.22 (81.48%)
0.25 (92.59%)
0.46 (170.37%)
1.80 (666.67%)
0.46 (4.59%)
1.28 (12.68%)
108 (11.72%)

0.06 (0.01%)
0.08 (0.01%)
0.07 (0.01%)
0.54 (0.05%)
1.19 (5.38%)
3.56 (16.06%)
116 (9.75%)

0.04 (0.00%)
0.52 (0.05%)
0.06 (0.01%)
050 (0.05%)
0.89 (4.02%)
281 (12.70%)
1.00 (8.41%)

LXGN

@1044 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

0.16 (0.72%)
0.45 (2.04%)
0.18 (0.81%)
1.12 (5.07%)

4.94 (28.33%)

5.13 (20.33%)

3.55 (20.36%)

0.09 (0.41%)
0.10 (0.45%)
0.1 (0.50%)
0.93 (4.21%)
453 (25.95%)
417 (16.52%)
3.13 (17.94%)

1.03 (1.41%)
1.02 (1.40%)
0.79 (1.08%)
424 (5.80%)

20.94 (31.87%)

10.02 (12.50%)
8.98 (13.67%)

0.52 (0.71%)
1.28 (1.75%)
0.56 (0.77%)
3.46 (4.73%)
19.77 (30.09%)
7.13 (8.89%)
7.08 (10.78%)

0.40 (17.32%)
0.40 (17.32%)
0.47 (20.35%)
2.15 (93.07%)
0.87 (7.65%)
1.54 (13.67%)
0.98 (8.64%)

0.19 (8.23%)
0.24 (10.39%)
0.36 (15.58%)
173 (74.89%)
0.65 (5.60%)
1.30 (11.41%)
0.78 (6.85%)

0.06 (0.01%)
0.06 (0.01%)
0.06 (0.01%)
1.10 (0.11%)
0.81 (7.50%)
3.46 (17.23%)
117 (10.91%)

0.05 (0.01%)
021 (0.02%)
0.06 (0.01%)
1.07 (0.11%)
0.61 (5.64%)

2.69 (13.38%)
1.04 (9.67%)

FARM
@559 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

0.19 (0.86%)
025 (1.13%)
0.22 (1.00%)
1.00 (4.53%)

7.69 (42.85%)

5.08 (20.22%)

6.67 (37.19%)

0.10 (0.45%)
0.12 (0.54%)
0.19 (0.86%)
0.80 (3.63%)

7.13 (39.72%)

4.19 (16.69%)

5.45 (30.36%)

1.49 (1.78%)
1.65 (1.97%)
1.55 (1.85%)
5.47 (6.54%)

59.04 (88.49%)
9.41 (13.14%)

10.58 (15.85%)

0.61 (0.73%)
0.93 (1.11%)
0.86 (1.03%)
4.19 (5.01%)
58.34 (87.44%)
6.58 (9.19%)
8.71 (13.06%)

0.37 (19.47%)
0.38 (20.00%)
0.40 (21.05%)
147 (77.37%)
1.03 (8.98%)
1.80 (12.53%)
0.90 (7.89%)

0.16 (8.42%)
0.21 (11.05%)
0.31 (16.32%)
1.19 (62.63%)
0.81 (7.09%)
1.47 (10.26%)
0.68 (5.94%)

0.06 (0.01%)
0.08 (0.01%)
0.07 (0.01%)
0.77 (0.08%)
0.70 (6.79%)
257 (14.41%)
0.59 (5.78%)

0.06 (0.01%)
0.06 (0.01%)
0.06 (0.01%)
0.72 (0.07%)
0.47 (4.60%)
1.92 (10.77%)
0.42 (4.03%)

DANV
@981 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

0.16 (0.75%)
0.15 (0.70%)
0.24 (1.13%)
0.87 (4.08%)
245 (8.88%)
3.47 (12.59%)
676 (31.61%)

0.14 (0.66%)
0.12 (0.56%)
0.16 (0.75%)
0.64 (3.00%)
178 (6.45%)
2.64 (9.57%)
5.69 (26.59%)

0.89 (1.09%)
0.91 (1.11%)
1.60 (1.95%)
5.12 (6.26%)
9.10 (11.65%)

10.12 (12.95%)

17.76 (26.39%)

0.62 (0.76%)
0.68 (0.83%)
1.02 (1.25%)
3.74 (4.57%)
6.06 (7.77%)
7.04 (9.01%)
15.15 (22.50%)

0.34 (22.97%)
0.36 (24.32%)
0.42 (28.38%)
482 (325.68%)
0.87 (6.74%)
1.06 (8.17%)
091 (7.96%)

0.27 (18.24%)
0.28 (18.92%)
0.34 (22.97%)
424 (286.49%)
0.58 (4.49%)
0.78 (6.02%)
0.66 (5.78%)

0.08 (0.01%)
0.11 (0.01%)
0.10 (0.01%)
0.35 (0.04%)
0.98 (5.08%)
1.89 (9.75%)
145 (13.28%)

0.06 (0.01%)
0.09 (0.01%)
0.08 (0.01%)
0.29 (0.03%)
0.68 (3.50%)
1.33 (6.89%)
125 (11.51%)

BMTN

@4031 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

0.20 (1.18%)
0.22 (1.30%)
020 (1.18%)
1.70 (10.04%)
8.43 (61.29%)
4.62 (22.61%)
3.91 (28.44%)

0.11 (0.65%)
0.19 (1.12%)
0.15 (0.89%)
155 (9.15%)
8.22 (59.75%)
3.72 (18.23%)
3.30 (24.00%)

1.49 (1.59%)
1.52 (1.62%)
1.65 (1.76%)

14.14 (15.06%)

695 (13.33%)

10.87 (13.47%)

7.67 (14.72%)

0.75 (0.80%)
1.25 (1.33%)
0.87 (0.93%)

11.72 (12.48%)

5.56 (10.66%)
8.01 (9.92%)

6.32 (12.14%)

0.32 (18.39%)
0.32 (18.39%)
0.62 (35.63%)
1.77 (101.72%)
0.71 (8.73%)

1.18 (16.15%)
0.82 (10.04%)

0.15 (8.62%)
0.15 (8.62%)
0.47 (27.01%)
151 (86.78%)
0.57 (7.06%)
0.98 (13.37%)
0.67 (8.21%)

0.08 (0.01%)
0.08 (0.01%)
0.11 (0.01%)
24.04 (2.73%)
337 (30.41%)
3.78 (19.16%)
1.40 (12.58%)

0.10 (0.01%)
0.10 (0.01%)
0.22 (0.02%)
24.04 (2.73%)
3.28 (29.55%)
3.02 (15.27%)
1.20 (10.84%)

§ Those entries at which MiMa rows are not smallest are underlined
included in pairs of parentheses.
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. The prediction errors normalized with respect to the values themselves (in %) are
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Fig. 5. Prediction results for 24 h for those four prediction parameters with the Micro, MiMa, and WRF models compared to the observed data. (a) Temperature.

(b) Humidity. (c) Wind Speed. (d) Pressure.

Accuracy metrics under MiMa modeling, averaged over all
prediction time points, are listed at the first row of each
station in Table VI. As can be seen, temperature prediction at
BMTN (with the highest elevation among all eleven stations)
has an RMSE of 0.20 while the prediction at FARM (with
the lowest elevation among all stations) has an RMSE of
0.19. Those RMSE amounts translate respectively to 1.18%
and 0.86% (given in pairs of parentheses) when normalized
against their observed temperature readings, which are smaller
at altitude-highest BMTN. Overall, the MiMa modelets predict
temperature accurately for all stations, with their TEMP’s
RMSE values < 0.27 (or 1.28%), irrespective of their altitude.
Among the 44 forecasting instances (due to four parameters
at 11 locations), the MiMa modelets demonstrated superior
prediction accuracy, exhibiting the smallest RMSE values in
all but five cases among all forecasters included in Table VI.
Note that the normalized prediction errors of WSPD (shown
in pairs of parentheses) tend to be large, signifying that the
wind speeds are usually very low, making small error RMSE
values become large after normalization.

The RMSE values of two other models as well as
WRF-HRRR on forecasting the four weather parameters are
also included in Table VI for comparison. The MiMa models
exhibit the best accuracy (in terms of RMSE) consistently
for all four parameters at eleven stations, except for five
cases (i.e., TEMP at CCLA and DANYV, HUMI at LXGN,
PRES at LSML, and FCHV). Furthermore, the MiMa model
outperforms its closest counterpart, the Micro model, in all but
three cases (i.e., TEMP at CCLA and DANYV, and HUMI at
LXGN), signifying the advantage of employing both datasets
for the model input, as opposed to utilizing just gathered
observational data, like the Micro model.

When taking the RMSE values of all four predicted param-
eters at each station into aggregation consideration, the MiMa
model outperforms its Micro counterpart noticeably, able to
deliver significantly better prediction on aggregated weather
parameters at every station. From the individual parameter
prediction’s perspective, the MiMa model achieves better
pressure prediction over all six stations in terms of the RMSE
metric, when compared with the Micro model. For predict-
ing TEMP, HUMI, and WSPD, SARIMA underperforms the
Micro model except for TEMP at BMTN and LXGN, and
for HUMI at CCLA, FARM, and LXGN. When forecasting
PRES, SARIMA may perform better than the Micro model.
Additionally, the WRF-HRRR model is seen to perform the
worst among all models, implying that its widely available
computed results are far from satisfaction and that the superior
MiMa model is indispensable for precise forecasting region-
ally, with the aid of near-surface gathered data.

From the MAE metric standpoint, it is found in Table VI
that our MiMa model consistently outperforms its two better
counterparts (the Micro model and the SARIMA model) in all
but seven cases, with four of them for the PRES prediction.
With the MAE values of all four predicted parameters at each
station taken into aggregation consideration, the MiMa model
outperforms its Micro counterpart by larger margins than those
under the RMSE metric. This may be due to the fact that
MAE is less sensitive to the prediction error amount than
RMSE. Among four types of weather parameter predictions,
the MiMa model enjoys the largest gap against the Micro
model for PRES prediction under the MAE metric over all
stations aggregately, followed by HUMI prediction.

As the weather parameters have different units and reading
ranges (see Table II), the prediction errors normalized with
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TABLE VII

RMSE VALUES OF MiMa MODELETS AT EACH 15-MIN INTERVAL OVER A 3-H HORIZON
UNDER 1-H (4-H) LEAD TIME

Station | Param. | 15 min. 30 min 45 min. 60 min. 75 min. 90 min. 105 min. 120 min. 135 min. 150 min. 165 min. 180 min.
TEMP 0.23 (0.34) 0.23(0.34) 0.23(0.36) 0.24 (0.39) 0.24 (0.39) 0.24 (0.41)  0.24 (0.43) 0.25 (0.42) 0.26 (0.44) 0.27 (0.44) 0.29 (0.45)  0.32 (0.46)
LSML | HOMI 0.88 (0.92)  0.88 (0.93) 0.89 (0.96)  0.89 (0.97)  0.90 (1.00)  0.90 (1.00)  0.90 (1.00) 091 (1.03) ~ 0.91 (1.02) 091 (1.02) 091 (1.02)  0.92 (1.02)
WSPD 0.47 (0.58)  0.49 (0.61)  0.50 (0.61) 0.52 (0.61) 0.53 (0.61) 0.54 (0.61)  0.56 (0.61) 0.57 (0.63) 0.57 (0.65) 0.58 (0.66) 0.58 (0.69)  0.58 (0.70)
PRES 0.32(0.39)  0.32(039) 034 (0.39) 034 (041) 034 (0.41) 0.35(0.44) 035 (046) 0.35(049) 035049 035 (050) 036 (0.52) 037 (0.52)
TEMP 0.27 (0.29)  0.27 (0.31)  0.27 (0.33)  0.27 (0.35)  0.28 (0.37)  0.28 (0.38)  0.28 (0.39) 0.28 (0.39) 0.28 (0.39) 0.28 (0.40) 0.29 (0.40)  0.29 (0.40)
CCLA | HOMI 1.65 (1.83)  1.67 (1.84) 1.68 (1.87) 170 (1.88) 175 (1.90) 179 (1.90)  1.82(1.92)  1.82(1.92) 1.83(1.95) 1.83 (1.95) 1.84 (1.95)  1.84 (1.95)
WSPD 0.48 (0.55)  0.48 (0.55) 0.49 (0.55) 0.50 (0.55) 0.51 (0.56) 0.51 (0.58)  0.51 (0.60) 0.51 (0.61) 0.51 (0.60) 0.52 (0.61) 0.54 (0.61)  0.55 (0.61)
PRES 0.09 (0.17)  0.09 (0.18)  0.10 (0.19)  0.10 (0.22)  0.11 (024) 012 (0.24)  0.12 (026)  0.13 (0.28)  0.14 (0.28)  0.14 (029)  0.15 (0.30)  0.15 (0.32)
TEMP 0.36 (0.61)  0.37 (0.61) 0.40 (0.64) 0.42 (0.65) 0.42 (0.67) 0.43 (0.68)  0.44 (0.70) 0.44 (0.71) 0.46 (0.71) 0.53 (0.71) 0.59 (0.71)  0.59 (0.72)
LGRN | HOMI 0.77 (0.78)  0.77 (0.80)  0.77 (0.80)  0.77 (0.82)  0.77 (0.85)  0.77 (0.88)  0.77 (0.88) ~ 0.77 (0.90)  0.78 (0.90) ~ 0.78 (0.91)  0.78 (0.91)  0.78 (0.91)
WSPD 0.32 (0.37)  0.32(0.37) 0.32(0.37) 0.32(0.39) 033 (0.40) 0.34 (0.43)  0.34 (0.46) 0.34 (0.48) 0.34 (0.48) 0.35 (0.48) 0.35 (0.48)  0.35 (0.49)
PRES 0.11 (0.13)  0.11 (0.13)  0.11 (0.13)  0.11 (0.13)  0.11 (0.15)  0.12(0.16)  0.12 (0.16)  0.12(0.18)  0.12(0.19)  0.12 (0.19)  0.13 (0.20)  0.13 (0.23)
TEMP 023 (0.41) 023 (0.42) 0.25(0.43) 0.27 (043) 028 (0.44) 0.28 (0.44)  0.29 (0.44) 0.29 (0.43) 0.32 (0.44) 0.35 (0.44) 0.39 (0.45)  0.40 (0.47)
Fopy | HOMI 0.92 (1.02) 095 (1.02) 096 (1.04) 0.96 (1.06) 097 (1.08)  0.97 (1.12) 099 (1.16)  1.00 (1.16)  1.00 (1.17) ~ 1.01 (1.17)  1.01 (1.18)  1.01 (1.20)
WSPD 0.34 (0.44)  0.34 (0.45) 0.36 (0.46) 0.38 (0.46) 0.38 (0.46) 0.39 (0.46)  0.39 (0.46) 0.42 (0.46) 0.43 (0.46) 0.43 (0.47) 0.43 (0.47)  0.44 (0.47)
PRES 0.07 (0.12)  0.07 (0.13)  0.08 (0.16) ~ 0.09 (0.19)  0.09 (0.19)  0.09 (0.21)  0.09 (021)  0.10 (0.24)  0.10 (0.25)  0.10 (027)  0.10 (0.27)  0.10 (0.29)
TEMP 031 (0.34)  0.31(0.34) 0.32(0.34) 0.32(0.35) 0.32(0.35) 0.32(0.36) 0.33 (0.36) 0.33 (0.36) 0.33 (0.36) 0.33 (0.37) 0.33 (0.37)  0.33 (0.37)
CrOp | HUMI L12(126) 114 (128) 114 (129 114 (129 115(1.31) L18(1.31) 1L18(1.32)  1.20(1.35) 1.22(1.38)  1.22(1.38)  1.23(1.38)  1.24 (1.39)
WSPD 0.28 (0.34)  0.29 (0.34)  0.29 (0.34)  0.30 (0.34) 031 (0.35) 0.31 (0.36)  0.31 (0.36) 0.32 (0.37) 0.33 (0.40) 0.33 (0.40) 0.33 (0.40)  0.33 (0.40)
PRES 0.14 (0.19)  0.14 (022)  0.14 (0.24)  0.14 (0.24)  0.15 (024)  0.15(0.26)  0.15 (026)  0.17 (0.26)  0.17 (0.29)  0.17 (0.30)  0.17 (0.31)  0.18 (0.32)
TEMP 0.38 (0.65)  0.41 (0.66) 0.48 (0.66) 0.49 (0.67) 0.58 (0.67) 0.59 (0.68)  0.63 (0.68) 0.63 (0.68) 0.64 (0.68) 0.64 (0.69) 0.65 (0.70)  0.65 (0.70)
ELST HUMI 0.65 (0.76)  0.66 (0.76)  0.66 (0.76)  0.68 (0.77)  0.68 (0.78)  0.69 (0.78)  0.70 (0.80) 0.71 (0.80) 0.72 (0.80) 0.72 (0.80) 0.74 (0.81)  0.75 (0.81)
WSPD 0.55 (0.55)  0.55 (0.56)  0.55 (0.56)  0.55 (0.56)  0.55 (0.56)  0.55 (0.56)  0.55 (0.56) 0.55 (0.56) 0.55 (0.56) 0.55 (0.56) 0.55 (0.57)  0.55 (0.57)
PRES 0.10 (0.12)  0.11 (0.12)  0.11 (0.14)  0.11 (0.14)  0.11 (0.14)  0.11 (0.14)  0.11 (0.15)  0.12(0.15)  0.12(0.15)  0.12(0.16)  0.12(0.18)  0.12 (0.18)
TEMP 0.33(0.43) 033 (046) 033 (0.46) 033 (046) 033 (0.47) 034 (0.48) 035 (0.50) 036 (0.52) 038 (0.53) 039 (0.54) 041 (055  0.42 (0.55)
HUEY | FUMI 097 (1.16) 097 (1.18)  1.03 (1.23)  1.03 (1.24)  1.03 (1.26)  1.05 (1.29)  1.06 (1.31)  1.07 (1.33)  1.09 (1.33)  1.09 (1.36)  1.11 (1.39)  1.13 (1.43)
WSPD 0.34 (0.34)  0.34 (0.34) 0.34 (0.35) 0.34 (0.35) 034 (0.35) 0.34 (0.35)  0.34 (0.35) 0.34 (0.35) 0.34 (0.35) 0.34 (0.35) 0.34 (0.35)  0.34 (0.35)
PRES 0.18 (0.18)  0.18 (0.18)  0.18 (0.19)  0.18 (0.20)  0.18 (0.21)  0.18 (0.21)  0.18 (0.21)  0.18 (0.21)  0.18 (0.22)  0.18 (0.22)  0.18 (0.22)  0.18 (0.23)
TEMP 022 (024)  022(024) 022(024) 022(025 022(025 023(0.26) 023 (027) 023(030) 023(0.31) 023 (031) 023 (033) 023 (0.35)
LXGN | HuMI 100 (1.12)  1.01 (1.13)  1.05 (1.15)  1.05 (1.16)  1.06 (1.18)  1.07 (1.18) ~ 1.07 (1.20) ~ 1.08 (1.21)  1.08 (1.22)  1.09 (1.23)  1.09 (1.25)  1.10 (1.29)
WSPD 0.52 (0.60)  0.53 (0.62) 0.53 (0.63) 0.53 (0.64) 0.54 (0.64) 0.58 (0.66) 058 (0.67)  0.59 (0.67)  0.56 (0.67)  0.56 (0.67)  0.58 (0.68)  0.59 (0.68)
PRES 0.15 (0.19)  0.15(0.19)  0.15(0.19)  0.15(0.19)  0.16 (0.21)  0.16 (0.21)  0.16 (0.21) 0.16 (0.21) 0.16 (0.23) 0.16 (0.23) 0.16 (0.23)  0.16 (0.23)
TEMP 0.18 (0.29)  0.19 (029) 020 (0.32) 0.20 (0.33) 021 (0.34) 021 (0.34) 022 (034) 023 (0.34) 024 (0.34) 026 (034) 026 (0.34)  0.27 (0.34)
FARM HUMI 1.98 (2.31)  2.00 (2.34) 2.02 (2.34) 2.03 (2.37) 2.06 (237) 2.07 (2.37) 2.08 (2.37) 2.10 (2.38) 2.13 (2.38) 220 (2.39) 226 (2.41) 228 (2.41)
WSPD 0.36 (0.39) 036 (0.39)  0.36 (0.41) 037 (0.41) 037 (0.41) 037 (0.41) 037 (0.41) 037 (0.41) 037 (0.42) 037 (0.42) 037 (042)  0.38 (0.42)
PRES 0.08 (0.13)  0.08 (0.13)  0.08 (0.14)  0.08 (0.15) 0.08 (0.17)  0.08 (0.17)  0.09 (0.17) 0.10 (0.17) 0.10 (0.18) 0.10 (0.18) 0.11 (0.19)  0.13 (0.19)
TEMP 021(024) 022(024) 022(025) 022(025 022025 023025 023 (026) 023(026) 023(0.26) 023 (026) 024 (0.26)  0.24 (0.26)
DANV HUMI 0.90 (1.05)  0.92 (1.05) 0.94 (1.05) 0.95 (1.05) 0.96 (1.05) 0.99 (1.06)  0.99 (1.08) 1.01 (1.10) 1.03 (1.11) 1.03 (1.11) 1.04 (1.13) 1.04 (1.13)
WSPD 0.52(0.53)  0.52(0.53) 0.52(0.53) 0.52(0.53) 052 (0.53) 052(0.53) 052 (053) 0.52(0.53) 052(0.53) 052 (053) 0.52(053) 052 (0.54)
PRES 0.12 (0.30)  0.13(0.32) 0.14 (0.34) 0.15(0.36) 0.16 (0.36) 0.16 (0.38)  0.18 (0.39) 0.20 (0.40) 0.22 (0.41) 0.26 (0.42) 0.28 (0.42)  0.30 (0.44)
TEMP 0.25(029) 026 (029) 027 (0.32) 027(0.32) 028 (032) 028(0.32) 028 (032) 0.28(0.34) 028(0.33) 029 (034) 029 (035  0.29 (0.36)
BMTN HUMI 1.73 (1.85) 1.73 (1.85)  1.73 (1.90) 1.73 (1.92) 1.73(1.93) 1.73 (1.96) 1.73 (1.98) 1.74 (1.99) 1.74 (2.02) 1.76 (2.04) 1.82 (2.05) 1.83 (2.09)
WSPD 0.45 (0.47) 046 (0.47)  0.46 (0.48)  0.46 (0.48) 0.46 (0.48)  0.46 (0.49)  0.46 (0.49) 046 (0.50)  0.46 (0.50)  0.47 (0.50) 047 (0.50)  0.47 (0.51)
PRES 0.07 (0.42)  0.09 (0.46)  0.08 (0.53) 0.09 (0.56) 0.09 (0.59) 0.09 (0.60)  0.10 (0.62) 0.16 (0.67) 0.21 (0.71) 0.27 (0.72) 0.34 (0.78)  0.39 (0.84)
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respect to the values themselves (in %) are included in
pairs of parentheses in Table VI, providing scale-independent
measures for comparing prediction quality across parameter
types. Under the scale-independent normalized error amounts,
the WSPD column usually contains large % values, because
the WSPD prediction tends to be less accurate and the WSPD
itself is typically low, whereas the PRES column all has very
small % values due mainly to pressure readings in the large
range of 600-1060 MB (see Table II). From the RMSE metric
results listed in Table VI, our MiMa model consistently out-
performs its best counterpart (the Micro or SARIMA model)
in all 44 cases, except five (i.e., three for the Micro model
and two for the SARIMA model as underlined in Table VI).
When all four predicted parameters at each station are taken
into aggressive consideration, the MiMa model outperforms
its Micro counterpart markedly under RMSE, e.g., 40.5%
at LSML and 23.4% at ELST. Likewise, the MiMa model
enjoys 93.5% better PRES prediction over all eleven stations
aggregately against the Micro model in terms of the RMSE
metric, followed by 25.1% on TEMP prediction. Similarly,
large gaps exist between the MiMa model and its Micro coun-
terpart under MAE. Note that RMSE and MAE comparative
values for 17 additional Kentucky Mesonet stations, whose
observed parameter data are complete, are listed in Table XI
(see Appendix).

2) Comparative Prediction Outcomes for 24 h: To illustrate
the prediction details of the four meteorological parameters
continuously over time under different models, we ran-
domly select one day in the third season of 2020 to
forecast its weather parameter values at Station BMTN,
starting from 00:00 A.M. to 11:59 P.M. Comparative pre-
diction results obtained from the MiMa model, the Micro
model, and the WRF-HRRR numerical computation together
with near-ground observational readings, are depicted in
Fig. 5(a)—(d) respectively for temperature, humidity, wind
speed, and pressure. It is clear from the figures that the curves
of our MiMa model are always closest to those of observa-
tional readings for all four weather parameters examined. This
demonstrates that our model continuously provides the best
prediction results throughout the entire duration (of 24 h) for
all parameters, in comparison to its counterparts. Note that
the WRF-HRRR computed parameter values, despite readily
available for all geogrids of the whole US, are substantially
far away from the near-surface observations for most of the
examined duration, signifying their apparent inadequacies in
practical applications.

3) Performance of MiMa Modelets Under I-h and 4-h
Lead Times: The developed MiMa modelets can provide fine
predictions temporally for any horizon flexibly with solid
accuracy, provided that they are trained with data over an
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Ensemble temperature prediction plot of MiMa modelet for Station

adequate lookback time window (typically to equal the pre-
diction horizon). We have obtained the experimental outcomes
of MiMa modelets when forecasting four weather variables of
interest in the fine temporal granularity (of 15 min) over a
3-h horizon to involve 12 consecutive prediction points. Such
experimental results indicate short-term parameter forecasting
effectiveness, particularly relevant to nowcasting that supports
the real-world socioeconomic needs of many sectors that rely
on weather-oriented decision-making [14], [28], [59]. The
prediction errors in RMSE of MiMa modelets under 1- and
4-h lead times with a 15-min interval over the following 3 h
for all stations are listed in Table VII. They rise gradually at
fairly slow paces as prediction progresses from the first time
point (at 15 min) to the 12th time point (at 180 min) over
the prediction horizon for all four weather parameters. The
table also reveals that larger lead times yield higher prediction
errors, as expected. Overall, the proposed MiMa modelets
offer very precise short-term weather parameter forecasting for
small to medium lead times, with the prediction of humidity
being less accurate in general.

C. Ensemble Predictions

Weather parameter value predictions, like any data time
series forecasting, come with uncertainty for predicting val-
ues over a given time duration, say 1 h. Probabilistic
weather forecasts are often adopted to quantify uncertainty
by postprocessing results obtained under various predictors or
for different time sans, realizing ensemble predictions [42],
[60]. While the ensemble approach to general forecasting
is reviewed in [61], a data-driven method based on neural
networks is considered specifically for processing the out-
comes of the weather predictor to learn their distribution
that enables probabilistic forecasts, with low computational
complexity [42]. Meanwhile, transforming a deterministic
ML-based weather forecaster into an ensemble model by
extending the forecaster to incorporate probabilistic infor-
mation is studied [60]. Lately, ML algorithms have been
employed to learn the statistical properties of prediction out-
comes under a given deterministic forecast [62], like our
proposed MiMa modeling.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Our ensemble predictions are realized by postprocessing
the outcomes of MiMa modelets to get probabilistic weather
forecasts. Instead of what has been the case so far by pre-
senting forecasting results in averaged values, probabilistic
forecasting for a MiMa modelet over a duration can be
derived by analyzing the modelet’s prediction outcomes over
the duration. Take the MiMa modelet for predicting the air
temperature of Station FARM over the 1-h horizon at the
5-min interval (for 12 prediction values per hour) with nil
lead time as an example. Its ensemble prediction results for
1 h versus prediction errors are illustrated in Fig. 6, with
four probabilistic confidence levels (100%, 80%, 50%, and
20%) marked. They are obtained by examining the modeled
prediction values for a number of random days, each involving
24 sets of 12 predicted values, one for a prediction time point.
Those predicted values at each time point of an hour are
compared with their corresponding observational temperature
readings, to get their prediction errors. The modelets’ pre-
diction confidence level at a time point is obtained from the
distribution of all errors for the time point.

The pair of solid curves in Fig. 6 denote the ranges that
errors always (100%) fall for the 12 prediction time points
(of the 1-h horizon). They signify the largest errors above and
below the observational readings, whose errors are always zero
as marked by the bold red line on the x-axis. At the time point
of 5 min (or 60 min), the MiMa modelet is sure to have its
prediction errors of no more than +0.049 °C and —0.12 °C
(or +0.06 °C and —0.075 °C) at Station FARM. Likewise, the
two dotted curves indicate that the MiMa modelet is confident
with 50% to have its temperature prediction errors of no more
than +0.01 °C and —0.035 °C (or 40.045 °C and —0.0 °C)
at the time point of 5 min (or 60 min).

A similar plot can be generated for each MiMa modelet,
so can its Micro and SARIMA counterparts, enabling the
comparison of their prediction error ranges under varying
confidence levels at every time point. Since MiMa modelets
usually exhibit the most accurate predictions on an average
according to their comparative results shown in Table VI and
Fig. 5, they are to yield narrower prediction error ranges (i.e.,
smallest prediction value variations) for a given confidence
level at every time point.

D. Ablation Study

We have conducted the ablation study to demonstrate the
necessity and importance of both Micro and Macro datasets
in our MiMa model, by ablating the following: 1) the Macro
components to arrive at the Micro model, which is a counter-
part included in the earlier comparative evaluation and 2) the
Micro components to yield the Macro model. For this study,
the Macro model is trained and evaluated in the same process
as described previously for the MiMa model, but without
involving the Micro dataset. Table VIII lists the RMSE and the
MAE values of two MiMa variants for the hourly forecasting
horizon at five mesonet stations, averaged over prediction time
points in 16 days chosen arbitrarily in the third season of
2020. It unveils that MiMa outperforms its Micro variant
in predicting all four weather parameters at five different
mesonet locations under the RMSE accuracy metric, except
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TABLE VIII

MEAN RMSE AND MAE VALUES OF ABLATION STUDY VARIANTS FOR THE HOURLY FORECASTING HORIZON OVER PREDICTION
TIME POINTS IN 16 CHOSEN DAYS, WITH THE BEST ONES SHOWN IN BOLD

: TEMP HUMI WSPD PRES
Station Model RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
MiMa 028 024 | 149 066 | 038 016 | 006  0.03
CCLA Micro 024 022 | 186 143 | 038 024 | 016 004
Macro 083 054 | 48 370 | 052 041 | 024 018
MiMa 027 021 | 156 075 | 029 022 | 006  0.04
HUEY Micro 030 058 | 163 264 | 031 025 | 008 052
Macro 063 046 | 381 298 | 067 065 | 028 022
MiMa 0.16 009 | 103 052 | 040 019 | 006  0.05
LXGN Micro 045 010 | 1.02 128 | 040 024 | 006 021
Macro 047 038 | 302 236 | 055 044 | 024  0.19
MiMa 0.9 010 | 149 061 | 037 0.6 | 006 0.6
FARM Micro 025 012 | 165 093 | 038 021 | 008 006
Macro 100 081 | 367 28 | 058 044 | 025 019
MiMa 020 011 | 149 075 | 032 015 | 008 010
BMTN Micro 022 019 | 152 125 | 032 015 | 008 023
Macro 059 041 | 368 252 | 066 053 | 034 028
TABLE IX

MEAN RMSE AND MAE VALUES FOR PREDICTING EXTREME WEATHER
SITUATIONS OVER 12 CONSECUTIVE TIME POINTS WITH 5 MIN APART
AT STATION BMTN, WHERE SHRUNK DATA TIME SERIES ARE
DERIVED FROM THIRD SEASON OF 2018, 2019, AND 2020

MiMa Micro WRF-HRRR

RMSE MAE | RMSE MAE | RMSE MAE
Frigidity 0.63 0.50 0.71 0.53 1.97 1.76
Torridity 0.41 0.31 0.45 0.37 1.28 1.06
Storm 0.36 0.27 0.39 0.27 6.59 5.95
Aridity 8.38 5.49 9.44 6.01 8.41 6.35
Steaminess 0.00 0.00 0.00 0.00 12.26 8.73
EHP 0.17 0.14 0.25 0.19 24.81 2481

TEMP at CCLA and HUMI at LXGN (with small margins of
0.04 and 0.01). Moreover, MiMa surpasses its Macro variant
consistently by substantial gaps for all 20 cases in terms of
RMSE. Under the MAE metric, the MiMa model outperforms
its Micro variant in all cases except TEMP at CCLA (both by
the negligible margin of 0.02), and it always outperforms its
Macro variant by huge margins for all cases. Hence, this study
indicates the necessity for the MiMa model to incorporate both
ground observational data and atmospheric numerical outputs
for superior weather parameter forecasting.

E. Extreme Weather Forecasting

It is critical and interesting to evaluate the effectiveness
of MiMa modelets in handling extreme weather predictions,
which can be more challenging than typical weather fore-
casting. To this end, each time series of real-world weather
parameter readings is shrunk to retain only those extreme
readings, according to a chosen threshold. Here, the threshold
is set to be 5%, signifying that the top 5% or the bottom
5% of original data will remain in shrunk time series for
evaluation use. This article includes only the evaluation results
of Station BMTN for one season in 2018, 2019, and 2020, with
the 2018 and 2019 shrunk time series for model training. Six
extreme weather situations are considered, i.e., frigidity, tor-
ridity, storm, aridity, steaminess, and EHP, which are assumed
to be associated with the lowest temperature, highest temper-
ature, highest wind speed, lowest humidity, highest humidity,
and highest pressure, respectively. Specifically, the shrunk

time series composed of the lowest (or highest) 5% original
temperature-relevant data in the third season of 2018 and
2019 are employed to train modelets for predicting frigidity (or
torridity), with those of 2020 employed to compute prediction
accuracy metrics. The temperature-relevant parameter data can
be found in Tables III and IV. Likewise, the shrunk time series
with the lowest (or highest) 5% original humidity-relevant
data are obtained to train modelets for predicting aridity (or
steaminess). In addition, modelets for predicting storm and
EHP are trained respectively by the shrunk data time series of
the top 5% wind speed-relevant data and the top 5% pressure-
relevant data. For each extreme weather phenomena, we have
2592 (= 2 x 90 x 24 x 12 x 5%) training samples, and
1296 (=90 x 24 x 12 x 5%) testing samples.

MiMa modelets are trained in the same way by shrunk data
time series as by original data time series described earlier, for
predicting parameter values at 12 subsequent time points 5 min
apart. The forecasting accuracy results of MiMa modelet and
their counterparts, with respect to the shrunk data time series
derived from the third season of 2020, are given in Table IX,
where the best ones are bold. As can be observed from the
table results, MiMa modelets accurately predict all extreme
weather situations except one (aridity), with their MAE values
staying within 0.50.

Forecasting extreme low humidity suffers from relatively
large inaccuracy, yielding MAE (or RMSE) equal to 5.49 (or
8.38). When compared with their counterparts (i.e., Micro and
WRF-HRRR), MiMa modelets predict all extreme weather
situations more precisely, by solid margins. For example,
the MiMa modelet enjoys 8.5% (or 11.2%) better aridity
prediction under the MAE (or RMSE) metric, than its best
counterpart, the Micro model. It achieves 26.3% (or 32.0%)
better EHP prediction than the Micro model in terms of MAE
(or RMSE).

VI. REGIONAL MIMA MODELING

To enhance the utility of MiMa modelets, we leverage
the transfer learning capabilities of modelets by incorporating
elevation data into the training process to let MiMa mod-
elets be trained on data from multiple stations. Specifically,
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TABLE X
RMSE AND MAE VALUES FOR Re-MiMa AT EIGHT STATIONS NOT INVOLVED IN MODELET TRAINING ©
. TEMP HUMI WSPD PRES
Station
RMSE MAE RMSE MAE RMSE MAE RMSE MAE
LSML
0748 i 0.22 (1.05%) 0.16 (0.77%) | 0.85 (1.06%) 0.62 (0.77%) | 0.25 (25.77%)  0.20 (20.62%) | 0.06 (0.01%)  0.06 (0.01%)
CCLA
@764 § 0.13 (0.61%)  0.12 (0.56%) | 0.89 (1.06%) 0.65 (0.77%) | 0.22 (11.52%) 0.16 (8.38%) | 0.06 (0.01%)  0.05 (0.01%)
.
LGRN
@766 1t 0.19 (0.91%)  0.15 (0.72%) | 0.95 (1.20%)  0.71 (0.90%) | 0.23 (11.98%) 0.16 (8.33%) | 0.07 (0.01%)  0.06 (0.01%)
FCHV
@770 ¢ 0.10 (0.47%)  0.08 (0.37%) | 0.92 (1.21%) 0.63 (0.83%) | 0.20 (9.66%) 0.15 (7.25%) | 0.05 (0.01%)  0.04 (0.00%)
.
CROP
@858 ft 0.12 (0.58%) 0.09 (0.44%) | 0.82 (1.05%) 0.61 (0.78%) 0.21 (9.95%) 0.17 (8.06%) 0.07 (0.01%) 0.06 (0.01%)
ELST
@860 ft 0.07 (0.34%) 0.05 (0.24%) | 0.68 (0.77%) 0.43 (0.49%) 0.43 (34.13%) 0.40 (31.75%) 0.19 (0.02%) 0.14 (0.01%)
HUEY
@896 f 0.11 (0.52%) 0.10 (0.47%) | 0.97 (1.37%) 0.73 (1.03%) | 0.27 (103.85%) 0.26 (100.00%) | 0.17 (0.02%) 0.11 (0.01%)
.
LXGN
@104 f 0.11 (0.50%) 0.08 (0.36%) | 0.61 (0.83%) 0.45 (0.61%) 0.24 (10.53%) 0.18 (7.89%) 0.30 (0.03%) 0.25 (0.03%)
.

© Those stations are treated as ungauged stations for evaluation purposes. The prediction errors normalized with respect to the values themselves (in %)

are included in pairs of parentheses.

we inject elevation-specific knowledge to modelets by adding
the elevation as an input parameter to both the Micro and the
Macro encoders depicted in Fig. 4. This allows the elevation
data to be tagged with corresponding Micro and Macro data
during encoding, thus correlating Micro and Macro data with
the elevation data, giving rise to the development of Re-MiMa
(regional MiMa) modeling, whose structure is identical to
Fig. 4, except for replacing its Xicro (OF Xmacro) input to the
Micro (or Macro) Encoder with Xmicrog, (O Xmacrog, ), Which is
specified below with the size of (nx¢, a+1) (or (nx¢, B+1)).
In general, Re-MiMa modelets are trained using data from
a few (say, 3 or 4) representative stations in the region of
interest, along with their elevations. The representative stations
should cover the elevation range of the region, including those
with two extremes and one (or two) in-between elevations. The
input data frame of the Micro encoder comprises parameter
readings observed at those ¢ representative stations, together
with their corresponding elevations, as follows:

[SF(R'), SF(R?),...,SF(R'), ..., SE(R"]"

Xmicro Re

where SF(R') indicates the shuffling operation of R’, which
signifies those ¢ streams of « most relevant parameters
observed at those ¢ representative stations involved in training,
plus stations’ elevations, at the ith timestamp, for 1 <i <n,
under the lookback window time window of n. The group of
¢ streams of R is given by

i i i ;

P, P, P; Plz’a Ega_i

R Py Py Py Py,  Esu-
i i i ;

¢1 $.2 23 P{,a Ega ¢

where E, is the elevation of the station involved in modelet
training. Those ¢ streams of (« + 1) values in Group R' for

the ith timestamp are shuffled randomly, to yield different
orders from one group to the next, expressed by SF(R'). This
shuffling strategy aims to prevent model training from being
biased toward the data observed at any single station, ensuring
that data from those ¢ representative stations in a given region
are employed for training fairly without criticality. The Micro
encoder has its input size of (n x ¢) by (« + 1).

Similarly, the input data frame of the Macro encoder com-
prises the values of the 8 most relevant parameters obtained by
WRF-HRRR computation of the ¢ geogrids aligned with those
representative stations, plus their corresponding elevations,
as expressed by

[SF(R'), SF(R?),...,SE(R), ..., SE(R"]"

Xmacro Re

where R’ is the same as what is outlined above, except that
each row contains 8 most relevant WRF-HRRR parameters.
Its size equals (n x ¢) by (8 + 1).

Training Re-MiMa modelets to cover the whole elevation
range of a given region, we can perform inference on sta-
tions not included in the training set, making it possible to
expand the model’s applicability and usability. For perfor-
mance evaluation, those eight Kentucky Mesonet stations (out
of 11 stations marked in Fig. 1) not involved in modelet train-
ing serve to benchmark Re-MiMa modelets, with the results
listed in Table X. Our evaluation adopts a proximity-based
approach, where observational data borrowed from the training
station closest in elevation to the target station (which has no
observational data but has corresponding WRF-HRRR data
and its elevation information) are used for prediction. As an
example, for predicting the CCLA station, which is situated
at 764 feet, the observational data from the FARM station
(which is involved in modelet training and located at 559 feet),
plus its elevation data serve as input to the Micro encoders
of Re-MiMa modelets. Leveraging elevation similarity within
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RMSE AND MAE VALUES FOR 17 ADDITIONAL MESONET STATIONS IN THE KENTUCKY REGION ALONG WITH THEIR RESPECTIVE ERRORS %

Station

Model

TEMP

HUMI

WSPD

PRES

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

HCKM

@345 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

0.12 (0.65%)
0.15 (0.74%)
0.26 (1.30%)
1.00 (4.90%)
2.84 (11.28%)
3.53 (14.03%)
3.09 (20.58%)

0.09 (0.11%)
0.12 (0.15%)
0.16 (0.20%)
0.80 (1.00%)
2.11 (8.38%)
2,62 (10.44%)
2.69 (17.93%)

0.72 (0.91%)
1.05 (1.32%)
2.10 (2.65%)
6.50 (8.20%)
7.56 (11.26%)
8.91 (13.27%)
1159 (20.05%)

0.55 (0.68%)
0.82 (1.02%)
1.25 (1.55%)
5.30 (6.60%)
4.96 (7.39%)
6.66 (9.92%)
8.75 (15.14%)

0.34 (35.00%)
0.34 (35.00%)
0.50 (51.50%)
4.50 (460.00%)
0.84 (5.69%)
0.97 (6.62%)
0.90 (8.08%)

0.23 (24.20%)
0.26 (26.00%)
0.34 (34.00%)
4.00 (410.00%)
0.58 (3.96%)
0.73 (4.96%)
0.70 (6.24%)

0.10 (0.01%)
0.28 (0.04%)
0.74 (0.07%)
3.70 (0.38%)
1.00 (5.57%)
1.60 (8.90%)
0.64 (5.86%)

0.08 (0.01%)
0.32 (0.02%)
0.60 (0.05%)
3.75 (0.38%)
0.63 (3.53%)
1.09 (6.05%)
0.44 (4.08%)

PVRT

@404 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.13 (0.66%)
0.16 (0.75%)
0.27 (1.32%)
1.02 (4.95%)
224 (8.41%)
3.42 (12.88%)
1.90 (10.82%)

0.09 (0.11%)
0.12 (0.15%)
0.17 (0.20%)
0.81 (1.01%)
1.38 (5.20%)
2.55 (9.60%)
1.35 (7.68%)

0.75 (0.94%)
1.07 (1.33%)
2.15 (2.68%)
6.60 (8.25%)
7.87 (10.96%)
10.58 (14.74%)
8.99 (15.31%)

0.56 (0.69%)
0.83 (1.04%)
1.27 (1.58%)
5.40 (6.70%)
4.40 (6.13%)
7.79 (10.85%)
6.28 (10.70%)

0.35 (36.00%)
0.35 (36.00%)
0.50 (51.50%)
4.60 (475.00%)
0.82 (6.54%)
1.12 (8.94%)
1.03 (9.53%)

0.27 (27.50%)
0.27 (27.00%)
0.34 (34.50%)
4.05 (420.00%)
0.55 (4.36%)
0.89 (7.09%)
0.77 (7.18%)

0.08 (0.00%)
0.39 (0.03%)
0.75 (0.07%)
3.80 (0.38%)
0.93 (4.99%)
1.84 (9.85%)
2.84 (27.33%)

0.05 (0.00%)
0.33 (0.03%)
0.62 (0.06%)
3.78 (0.38%)
0.59 (3.17%)
1.27 (6.79%)
2.57 (24.68%)

WDBY

@421 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.11 (0.60%)
0.15 (0.72%)
0.26 (1.30%)
1.00 (4.90%)
2.61 (9.76%)
3.79 (14.16%)
2.54 (13.98%)

0.10 (0.14%)
0.08 (0.12%)
0.16 (0.19%)
0.79 (1.00%)
1.70 (6.35%)
2.88 (10.76%)
1.96 (10.80%)

0.70 (0.85%)
1.02 (1.30%)
2.05 (2.60%)
6.45 (8.15%)
8.05 (11.95%)

1030 (15.28%)

18.28 (30.99%)

0.53 (0.65%)
0.80 (1.00%)
1.22 (1.53%)
5.25 (6.60%)
4.56 (6.76%)
775 (11.50%)
15.29 (25.92%)

0.33 (34.50%)
0.34 (34.50%)
0.49 (50.80%)
4.50 (460.00%)
0.98 (8.50%)
1.22 (10.60%)
1.55 (20.66%)

0.25 (25.40%)
0.25 (25.30%)
0.33 (33.20%)
4.00 (410.00%)
0.67 (5.80%)
0.89 (7.76%)
1.07 (14.27%)

0.37 (0.03%)
0.73 (0.07%)
0.10 (0.01%)

0.31 (0.02%)
0.59 (0.05%)
0.09 (0.01%)

370 (0.37%)
1.03 (5.59%)
1.93 (10.46%)
1.55 (14.91%)

375 (0.37%)
0.67 (3.64%)
1.32 (7.14%)
141 (13.62%)

FRNY
@440 ft.

MiMa
Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.12 (0.62%)
0.15 (0.74%)
0.26 (1.31%)
1.01 (4.93%)
2.36 (3.29%)
3.76 (13.21%)
3.83 (24.13%)

0.09 (0.11%)
0.12 (0.15%)
0.16 (0.19%)
0.80 (1.00%)
1.38 (4.85%)
2.76 (9.68%)

3.32 (20.93%)

0.73 (0.88%)
1.04 (1.31%)
2.08 (2.63%)
6.55 (8.20%)

9.09 (12.12%)

12.13 (16.18%)

12.90 (27.91%)

0.54 (0.67%)
0.81 (1.02%)
1.23 (1.54%)
5.35 (6.65%)
5.28 (7.04%)
9.02 (12.03%)

11.67 (25.26%)

0.34 (35.00%)
0.43 (37.00%)
0.50 (50.50%)
4.55 (465.00%)
0.88 (7.60%)
1.09 (9.45%)
0.77 (8.67%)

0.22 (23.10%)
0.26 (26.00%)
0.33 (33.00%)
4.02 (415.00%)
0.61 (5.28%)
0.81 (7.06%)
0.59 (6.70%)

0.09 (0.01%)
0.13 (0.02%)
0.37 (0.03%)
3.75 (0.38%)
0.96 (5.08%)
1.81 (9.63%)
111 (10.57%)

0.08 (0.01%)
0.11 (0.02%)
0.32 (0.03%)
3.76 (0.38%)
0.57 (3.01%)
1.21 (6.40%)
1.01 (9.56%)

CRRL
@472 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.13 (0.64%)
0.16 (0.76%)
0.27 (1.33%)
1.03 (4.97%)
2.66 (9.96%)
3.82 (14.27%)
2.26 (11.29%)

0.10 (0.12%)
0.12 (0.15%)
0.17 (0.21%)
0.81 (1.01%)
1.89 (7.06%)
2.94 (11.01%)
1.66 (8.31%)

0.76 (0.92%)
1.06 (1.32%)
2.12 (2.65%)
6.60 (8.30%)
9.45 (12.74%)
12.35 (16.65%)
10.01 (16.04%)

0.56 (0.69%)
0.83 (1.04%)
125 (1.56%)
5.40 (6.70%)
6.41 (8.64%)
9.00 (12.14%)
8.21 (13.15%)

0.35 (36.50%)
0.40 (38.20%)
0.50 (51.00%)
4.60 (470.00%)
0.76 (7.51%)
0.92 (9.14%)
0.72 (8.98%)

0.25 (26.25%)
0.38 (32.33%)
0.34 (33.50%)
4.05 (420.00%)
0.52 (5.20%)
0.69 (6.78%)
0.57 (7.02%)

0.10 (0.01%)
0.39 (0.03%)
0.75 (0.07%)
3.80 (0.38%)
205.21 (38.02%)
55.33 (10.25%)
18.99 (179.13%)

0.09 (0.01%)
0.33 (0.02%)
0.62 (0.06%)
3.77 (0.38%)
180.30 (33.41%)
41.07 (7.61%)
10.18 (96.07%)

CADZ
@505 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.14 (0.66%)
0.17 (0.80%)
0.28 (1.35%)
1.05 (5.00%)
6.35 (24.30%)
747 (28.56%)
328 (20.11%)

0.11 (0.13%)
0.13 (0.16%)
0.18 (0.22%)
0.83 (1.03%)
5.60 (21.41%)
6.54 (25.00%)
279 (17.12%)

0.78 (0.95%)
1.10 (1.35%)
220 (2.75%)
6.72 (8.40%)
24.91 (34.09%)
21.72 (29.72%)
7.70 (12.55%)

0.58 (0.70%)
0.86 (1.05%)
1.30 (1.62%)
5.50 (6.85%)
22.86 (31.28%)
19.88 (27.21%)
5.16 (8.41%)

0.37 (37.10%)
0.39 (39.00%)
0.51 (51.00%)
475 (485.00%)
0.97 (8.89%)

225 (20.59%)
1.79 (15.38%)

0.26 (27.00%)
0.29 (28.00%)
0.35 (34.80%)
4.20 (430.00%)
0.78 (7.18%)
2.02 (18.49%)
1.29 (11.13%)

0.11 (0.01%)
0.41 (0.04%)
0.76 (0.08%)
3.87 (0.39%)
229.34 (45.37%)
181.72 (35.95%)
0.96 (8.37%)

0.10 (0.01%)
0.35 (0.03%)
0.64 (0.06%)
3.85 (0.39%)
214.14 (42.36%)
163.52 (32.35%)
0.77 (6.74%)

CRMT
@546 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.15 (0.68%)
0.18 (0.83%)
0.29 (1.38%)
1.07 (5.10%)
232 (8.76%)
3.94 (14.86%)
4.05 (19.89%)

0.12 (0.14%)
0.14 (0.17%)
0.19 (0.23%)
0.85 (1.05%)
1.44 (5.41%)

3.09 (11.66%)

3.44 (16.86%)

0.80 (0.98%)
1.12 (1.37%)
225 (2.78%)
6.80 (8.50%)
8.95 (12.34%)

11.08 (15.28%)

13.17 (19.47%)

0.60 (0.72%)
0.88 (1.07%)
1.32 (1.65%)
5.55 (6.90%)
5.92 (8.16%)

8.71 (12.01%)

10.98 (16.23%)

0.38 (38.00%)
0.36 (36.00%)
0.52 (52.00%)
4.80 (490.00%)
0.76 (7.37%)
1.17 (11.34%)
1.26 (13.55%)

0.27 (28.20%)
0.29 (29.00%)
0.36 (35.50%)
425 (435.00%)
0.48 (4.69%)
0.97 (9.44%)
0.86 (9.25%)

0.11 (0.01%)
0.42 (0.04%)
0.78 (0.08%)
3.89 (0.40%)
1.59 (5.72%)
3.42 (12.28%)
1.78 (17.08%)

0.10 (0.01%)
0.35 (0.03%)
0.65 (0.06%)
3.87 (0.40%)
1.13 (4.05%)
2.40 (8.63%)
1.64 (15.73%)

RPTN
@594 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.16 (0.70%)
0.19 (0.85%)
0.30 (1.40%)
1.10 (5.20%)
233 (8.62%)

329 (12.18%)
1.93 (11.21%)

0.13 (0.15%)
0.15 (0.18%)
0.20 (0.24%)
0.87 (1.07%)
1.37 (5.07%)
229 (3.48%)
1.47 (8.53%)

0.82 (1.00%)
1.15 (1.40%)
230 (2.85%)
6.90 (8.60%)
8.32 (12.30%)

9.68 (14.30%)

7.60 (14.63%)

0.62 (0.74%)
0.90 (1.10%)
1.35 (1.68%)
5.65 (7.00%)
5.34 (7.89%)
6.67 (9.85%)
5.92 (11.40%)

0.29 (29.00%)
0.38 (38.00%)
0.53 (53.00%)
4.85 (495.00%)
1.02 (7.07%)
1.09 (7.60%)
1.23 (10.97%)

0.22 (22.00%)
0.30 (30.00%)
0.37 (36.00%)
4.30 (440.00%)
0.70 (4.85%)
0.78 (5.39%)
0.86 (7.64%)

0.12 (0.01%)
0.80 (0.09%)
0.43 (0.04%)
3.91 (0.40%)

83.05 (16.47%)
41.84 (8.30%)

59.29 (430.33%)

0.10 (0.01%)
0.67 (0.07%)
0.36 (0.03%)
3.89 (0.40%)

70.87 (14.06%)
28.92 (5.74%)

53.34 (387.15%)

BRND
@603 ft.

MiMa

Micro
SARIMA
‘WRF-HRRR
SNN

SVR

DUQ

0.15 (0.72%)
0.16 (0.75%)
0.31 (1.45%)
111 (5.30%)
2.63 (9.61%)
341 (12.43%)
2.19 (12.18%)

0.12 (0.16%)
0.13 (0.17%)
0.21 (0.25%)
0.88 (1.10%)
1.72 (6.26%)
250 (9.12%)
1.65 (9.18%)

0.83 (1.05%)
1.00 (1.20%)
2.35 (2.90%)
6.95 (8.75%)
8.64 (11.83%)
9.99 (13.67%)
7.29 (12.85%)

0.61 (0.76%)
0.80 (1.00%)
1.36 (1.70%)
5.70 (7.10%)
5.03 (6.88%)
6.60 (9.04%)
4.27 (1.53%)

0.38 (38.50%)
0.37 (37.50%)
0.54 (54.20%)
4.90 (500.00%)
0.65 (6.86%)
0.80 (8.37%)
121 (12.48%)

0.29 (29.50%)
0.30 (30.50%)
0.37 (36.50%)
4.35 (445.00%)
0.42 (4.41%)
0.62 (6.55%)
0.86 (8.89%)

0.12 (0.01%)
0.44 (0.05%)
0.81 (0.09%)
3.93 (0.41%)

220.93 (39.45%)
48.88 (8.73%)
102.35 (1052.98%)

0.11 (0.01%)
0.36 (0.03%)
0.66 (0.07%)
3.90 (0.41%)

203.31 (36.31%)
33.05 (5.90%)
100.45 (1033.50%)

HARD

@643 ft.

MiMa

Micro
SARIMA
WRF-HRRR
SNN

SVR

DUQ

0.16 (0.75%)
0.17 (0.80%)
0.32 (1.48%)
1.13 (5.40%)
4.07 (15.55%)
6.12 (23.30%)
1.74 (10.26%)

0.13 (0.17%)
0.14 (0.18%)
0.22 (0.26%)
0.89 (1.12%)
3.32 (12.62%)
5.34 (20.32%)
1.34 (7.93%)

0.85 (1.07%)
1.02 (1.30%)
238 (2.95%)
7.00 (8.85%)

1229 (17.73%)

20.81 (30.01%)
7.49 (13.29%)

0.63 (0.78%)
0.82 (1.05%)
1.38 (1.73%)
5.75 (7.15%)

8.86 (12.78%)

18.28 (26.36%)
4.70 (8.33%)

0.39 (39.20%)
0.38 (38.00%)
0.55 (55.00%)
4.95 (505.00%)
1.47 (10.33%)
2.64 (18.54%)
0.80 (8.11%)

0.30 (30.50%)
0.31 (31.00%)
0.38 (37.00%)
4.40 (450.00%)
1.16 (8.16%)
231 (16.21%)
0.61 (6.18%)

0.12 (0.01%)
045 (0.05%)
0.82 (0.09%)
3.95 (0.42%)

138.05 (47.08%)

137.54 (46.90%)
0.82 (8.22%)

0.11 (0.01%)
0.37 (0.04%)
0.68 (0.08%)
3.92 (0.42%)

125.92 (42.94%)

125.38 (42.76%)
0.63 (6.29%)
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TABLE XI
(Continued.) RMSE AND MAE VALUES FOR 17 ADDITIONAL MESONET STATIONS IN THE KENTUCKY REGION ALONG WITH THEIR RESPECTIVE
ERRORS %%
MiMa 020 (0.95%)  0.16 (021%) | 090 (1.12%) __ 0.68 (0.84%) | 0.42 (42.50%) 033 (32.50%) | 047 (0.06%) 0.39 (0.05%)
Micro 0.18 (0.82%)  0.14 (0.18%) | 120 (155%)  0.95 (120%) | 040 40.50%)  0.34 (33.00%) 0.85 (0.10%) 0.70 (0.09%)
MROK | SARIMA 034 (155%) 023 (028%) | 245 (3.05%) 142 (180%) | 0.58 (57.50%) 040 (39.00%) |  0.13 (0.02%) 0.12 (0.02%)
WRE-HRRR | 120 (5.80%) 095 (1.15%) | 720 9.00%) 585 (7.30%) | 5.10 (51500%) 455 460.00%) | 400 (0.43%) 3.98 (0.42%)
@696 ft. | gy 221 891%) 127 (5.10%) | 841 (1124%) 508 (6.80%) | 0.80 (6.65%)  0.54 447%) | 11837 2132%)  105.67 (19.03%)
SVR 309 (1285%) 233 9.37%) | 10.15 (13.57%)  6.66 (891%) | 0.88 (732%)  0.63 (5.22%) | 49.11 (8.85%) 35.15 (6.33%)
DUQ 168 (10.03%) 114 (682%) | 8.13 (1421%) 597 (1042%) | 076 (7.44%)  0.56 (5.44%) | 133.17 (1290.63%) 126,07 (1221.82%)
MiMa 0.19 (085%)  0.15 (020%) | 095 (120%) 070 (090%) | 0.44 43.00%) 033 (33.00%) |  0.14 (0.02%) 0.13 (0.02%)
Micro 021 (0.98%) 0.7 (022%) | 123 (1.60%) 098 (125%) | 042 (4200%) 034 (33.50%) 0.49 (0.06%) 0.40 (0.05%)
PGHL | SARIMA 035 (1.60%) 024 (029%) | 2.50 (3.10%) 145 (1.85%) | 060 (59.50%) 042 (40.50%) 0.87 (0.10%) 0.72 (0.09%)
WRE-HRRR | 125 (5.95%)  1.00 (120%) | 735 (9.10%) 600 (740%) | 525 (52500%) 470 (470.00%) |  4.10 (0.44%) 405 (0.43%)
@729 ft. | gnn 248 070%) 173 (6.78%) | 7.58 (10.98%)  4.56 (6.60%) | 1.04 (7.60%) 071 (5.14%) 0.84 (4.13%) 0.54 (2.65%)
SVR 353 (1381%) 261 (1023%) | 943 (13.66%)  7.04 (1020%) | 124 0.02%) 087 (631%) 1.70 (8.38%) 1,14 (5.59%)
DUQ 242 (1537%) 198 (12.58%) | 644 (1131%) 421 (7.38%) | 1.00 (1039%)  0.81 (8:46%) 0.80 (6.13%) 0.68 (5.21%)
MiMa 025 (120%) 022 (028%) | 145 (190%) 112 (140%) | 0.75 (76.50%)  0.64 (65.00%) |  0.20 (0.02%) 0.18 (0.02%)
Micro 030 (135%) 025 (0.32%) | 200 250%) 160 2.00%) | 078 (78.00%)  0.70 (70.00%) 0.90 (0.10%) 0.85 (0.09%)
BNGL | SARIMA 0.50 2.50%) 035 (040%) | 320 4.00%) 240 (3.00%) | 1.10 (11200%) 095 (90.00%) 1,10 (0.15%) 1.00 (0.12%)
WRE-HRRR | 180 8.00%)  1.50 (180%) | 9.50 (1L00%)  7.80 9.50%) | 7.25 (725.00%)  6.70 (670.00%) |  5.90 (0.60%) 5.85 (0.58%)
@785 ft. | gnn 241 952%) 158 (623%) | 867 (1254%) 530 (7.66%) | 081 (T.11%) 052 (4.58%) 0.93 (5.53%) 0.65 (3.84%)
SVR 341 (1351%) 248 9.80%) | 1008 (1458%)  7.15 (10.34%) | 097 8.52%) 072 (637%) 1.72 (10.16%) 114 (6.73%)
DUQ 733 (36.14%) 5.8 (28.99%) | 26.11 (39.69%) 1851 (28.14%) | 0.79 (7.61%) 055 (5.26%) | 4.70 (45.18%) 430 (41.34%)
MiMa 020 090%)  0.16 021%) | 100 (125%) 075 (095%) | 048 @8.50%) 039 (39.80%) | 0.15 (0.02%) 0.13 (0.02%)
Micro 022 (1.00%) 0.8 (023%) | 125 (1.60%) 100 (1.30%) | 050 (50.00%) 042 (42.50%) 0.50 (0.07%) 0.42 (0.05%)
GAMA | SARIMA 038 (170%) 026 (032%) | 260 (3.15%)  1.50 (190%) | 065 (6450%) 045 (44.00%) 0.90 (0.11%) 0.75 (0.09%)
WRE-HRRR | 130 (620%) 105 (125%) | 7.50 0.15%) 620 (7.50%) | 540 (540.00%) 4.85 (475.00%) |  4.20 (0.45%) 4,18 (0.44%)
@842 ft. | gnn 245 (088%) 156 (6.28%) | 824 (1120%) 490 (6.65%) | 113 (10.50%)  0.80 (7.46%) 0.92 (4.92%) 0.62 (3.30%)
SVR 371 (1493%) 274 (1105%) | 1256 17.07%) 971 (1320%) | 135 (1261%)  0.96 (8.92%) 221 (11.81%) 1.44 (7.70%)
DUQ 890 (47.03%)  7.56 (39.96%) | 18.69 (2649%) 17.13 (24.29%) | 1.01 (17.42%)  0.81 (13.93%) 0.51 4.81%) 0.33 (3.10%)
MiMa 022 (100%) 0.6 022%) | 100 (125%) 075 (0.95%) | 050 5L00%) 040 (40.50%) | 0.15 (0.02%) 0.13 (0.02%)
Micro 025 (L15%) 0.8 (024%) | 130 (1.65%)  1.00 (125%) | 052 (5200%) 045 (45.00%) 0.55 (0.06%) 0.50 (0.05%)
WNCH | SARIMA 040 (180%) 028 (0.34%) | 280 340%)  1.80 2.20%) | 070 (69.00%)  0.55 (54.00%) 0.90 (0.10%) 0.80 (0.08%)
WRE-HRRR | 130 (600%) 110 (1.30%) | 780 (9.50%) 630 (7.80%) | 5.0 (550.00%) 500 (500.00%) | 430 (0.44%) 425 (0.43%)
@973 ft. | gnn 240 0.11%) 172 (649%) | 678 (9.05%) 431 (575%) | 096 (7.87%)  0.70 (5.70%) 1.08 (5.34%) 0.76 (3.75%)
SVR 379 (1433%)  3.00 (1135%) | 1227 (1638%)  9.00 (1201%) | 132 (10.74%)  1.03 (8.38%) 2,02 (9.97%) 1.42 (7.04%)
DUQ 6.19 30.55%) 522 (2578%) | 1574 2133%)  13.10 (17.76%) | 1.08 932%)  0.78 (6.71%) 0.63 (5.88%) 0.46 (4.25%)
MiMa 025 (120%)  0.18 024%) | 110 (135%)  0.85 (105%) | 055 (55.00%) 045 45.50%) |  0.16 (0.02%) 0.14 (0.02%)
Micro 028 (130%) 022 (028%) | 1.50 (1.85%)  1.15(1.40%) | 060 (60.00%)  0.50 (50.50%) 0.60 (0.07%) 0.55 (0.06%)
RNDH | SARIMA 045 2.00%) 030 (038%) | 3.00 (3.60%) 200 (2.50%) | 075 (75.00%)  0.60 (59.00%) 0.95 (0.12%) 0.85 (0.10%)
WRE-HRRR | 135 (6.30%) 115 (1.40%) | 800 (9.70%) 650 (8.00%) | 560 (565.00%) 5.10 (510.00%) | 450 (0.45%) 440 (0.44%)
@1002 ft. | gnn 219 (955%) 137 (598%) | 766 (10.74%) 479 (671%) | 0.53 (6.16%)  0.38 (4.40%) 0.82 (4.46%) 0.50 (2.72%)
SVR 302 (13.16%) 219 (9.55%) | 8.62 (12.09%)  6.15 (8.63%) | 0.66(7.63%) 0.0 (5.79%) 1.48 (8.03%) 101 (5.45%)
DUQ 344 (231%) 271 (17.58%) | 6.15 (10.68%) 382 (6.64%) | 1.00 (1090%)  0.82 (8.99%) 0.64 (6.06%) 0.48 (4.54%)
MiMa 028 (125%) 022 028%) | 120 (155%) 090 (L10%) | 0.60 (62.00%)  0.50 (51.00%) |  0.25 (0.03%) 0.20 (0.02%)
Micro 030 (135%) 025 (0.30%) | 150 (185%) 120 (150%) | 0.62 (63.00%)  0.55 (55.00%) 0.70 (0.08%) 0.60 (0.06%)
DABN | SARIMA 0.55 (2.50%) 040 (045%) | 3.50 420%)  2.50 (3.10%) | 120 (125.00%) 1.05 (100.00%) |  1.00 (0.12%) 0.90 (0.10%)
WRF-HRRR | 200 8.50%) 170 (2.00%) | 10.50 (12.50%) 850 (10.50%) | 7.50 (750.00%) 7.00 (700.00%) |  6.50 (0.65%) 6.40 (0.64%)
@1085 ft. | gny 235 826%) 142 (498%) | 8.35(10.6%) 510 (6.53%) | 0.72(7.84%) 048 (5.17%) 0.76 (4.64%) 0.50 (3.07%)
SVR 353 (1240%) 258 (9.08%) | 1097 (1402%)  7.96 (10.17%) | 083 897%)  0.62 (6.76%) 1.84 (11.28%) 1.26 (7.70%)
DUQ 482 (23.18%) 422 (2031%) | 2791 (4036%) 2347 (33.93%) | 128 (1401%)  1.00 (10.94%) | 2.8 (26.60%) 235 (21.70%)

88 Those entries at which MiMa rows are not smallest are underlined. The prediction errors normalized with respect to the values themselves (in %) are

included in pairs of parentheses.

the region for high accuracy, this approach lets Re-MiMa
modeling generalize well to forecast new (ungauged) locations
by borrowing the elevation-closest observational data available
in the region, thereby enhancing the robustness and reliability
of predicting ungauged locations.

Table X lists the mean errors when predicting weather
parameters at all time points under the 5-min granularity
over 16 days chosen arbitrarily in the third season of 2020.
They demonstrate that Re-MiMa modeling achieves superior
prediction performance for stations that are not included in
model training. This ability of Re-MiMa modelets stems from
transfer learning, enabling accurate forecasts for any location
in a given region. For example, the RMSE values of TEMP (or
PRES) for all eight stations are limited to 1.05% (or 0.03%).
Note that the RMSE value of WSPD at ELST is the largest,
equal to 0.43, which translates to ~104%, implying that the

station experiences light to no wind most of the time. Interest-
ingly, the Re-MiMa modelets often outperform their original
MiMa counterparts. When comparing Table VI (for the results
of MiMa modelets) and Table X, it reveals that Re-MiMa
modelets provide better forecasts for 22 cases (out of 32),
in terms of the RMSE metric. This is likely due to two key
reasons: 1) data from ¢ representative stations are employed
for training, instead of data from one single station and
2) training data from those ¢ stations are shuffled randomly,
able to effectively mitigate the risk of the model overfitting
to the unique characteristics of one particular station. With
data from multiple stations shuffled randomly upon training,
it not only prevents the modelets from learning station-specific
patterns that might not generalize well but also encourages
them to recognize broader trends and relationships present
across different stations. Re-MiMa modelets are valuable in
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practice due to their high prediction accuracy at any location
(be ungauged or gauged) in a given region based on observa-
tional data from just a few representative stations therein.

VII. CONCLUSION

This article presents a novel ML model that integrates
ground measurements (the Micro dataset) and atmospheric
numerical outputs (the Macro dataset) for the first time.
This model, referred to as the MiMa model, aims to deliver
precise, location-specific weather parameter predictions over
short-term time horizons in fine resolutions (e.g., 5 or 15 min).
Utilizing the transformer structure with two encoders and one
decoder that all comprise LSTM units, our model effectively
captures temporal variations in weather conditions and incor-
porates two key data sources to forecast relevant weather
parameters for each mesonet station location via a single
model instance per parameter, termed a MiMa modelet. Fur-
thermore, transfer learning is leveraged to generalize MiMa
modelets for accurately predicting weather variables at any
location in a given region, utilizing the observational data of
just a few representative stations (often 3 or 4), plus stations’
elevations, to train modelets. It arrives at Re-MiMa modelets,
with one for each parameter type throughout the whole region.

Experimental results from various Kentucky Mesonet sta-
tion locations demonstrate that our modelets usually achieve
the best meteorological forecasting (for 39 cases out of 44,
under the RMSE metric) with fine temporal granularity among
all examined models. Furthermore, Re-MiMa modelets are
observed to perform as well as, or even better than (in 22 cases
out of 32), their location-specific MiMa counterparts, making
it possible to reduce the modelet count without compromising
forecasting accuracy. The developed Re-MiMa modelets effec-
tively meet the long-standing challenge of precise forecasts
at ungauged locations. Providing accurate regional forecasts
over short time horizons in the fine temporal resolution (e.g.,
at 5 or 15 min), MiMa and Re-MiMa modelets address
the real-world socioeconomic needs of various sectors that
rely on real-time, weather-oriented decision-making. They
are ready for widespread deployment in any region where
near-surface observational data is available for superior fore-
casting accuracy.

APPENDIX
See Table XI.
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