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Abstract— Accurate and timely regional weather prediction
is vital for sectors dependent on weather-related decisions.
Traditional prediction methods, based on atmospheric equations,
often struggle with coarse temporal resolutions and inaccuracies.
This article presents a novel machine learning (ML) model, called
Micro–Macro (MiMa), that integrates both near-surface obser-
vational data from Kentucky Mesonet stations (collected every
5 min, known as Micro data) and hourly atmospheric numerical
outputs (termed as Macro data) for fine-resolution weather
forecasting. The MiMa model employs an encoder–decoder trans-
former structure, with two encoders for processing multivariate
data from both datasets and a decoder for forecasting weather
variables over short time horizons. Each instance of the MiMa
model, called a modelet, predicts the values of a specific weather
parameter at an individual mesonet station. The approach is
extended with Regional MiMa (Re-MiMa) modelets, which are
designed to predict weather variables at ungauged locations by
training on multivariate data from a few representative stations
in a region, tagged with their elevations. Re-MiMa can provide
highly accurate predictions across an entire region, even in areas
without observational stations. Experimental results show that
MiMa significantly outperforms current models, with Re-MiMa
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offering precise short-term forecasts for ungauged locations,
marking a significant advancement in weather forecasting accu-
racy and applicability.

Index Terms— Atmospheric numerical values, encoder-decoder
transformer, machine learning (ML), observational data, transfer
learning, weather prediction.

I. INTRODUCTION

A
CCURATE short-term weather predictions with fine tem-

poral resolutions are crucial for sectors that depend on

real-time weather-related decision-making, such as transporta-

tion, emergency response, and solar farm operations. However,

current forecasting models, such as the Weather Research

and Forecasting (WRF) model with High-Resolution Rapid

Refresh (HRRR) [2], fall short of meeting these demands due

to their coarse hourly outputs and high computational com-

plexity. These models generate around 148 weather parameter

values (i.e., variables) per hour over large geogrids (e.g., 3 ×

3 km), with coarse temporal granularity (hourly forecasts)

often deemed insufficient for applications requiring predictions

in the interval of 5 or 15 min [3]. Additionally, a lack of

near-surface observational data at tactical locations limits their

accuracy.

On the other hand, regional mesonet networks, such as

the Kentucky Mesonet [4], provide real-time, location-specific

weather data with fine temporal granularity (e.g., every 5 min).

These networks operate under the U.S. National Mesonet

Program [5] and consist of strategically located observational

stations. The Kentucky Mesonet, for example, comprises

over 70 stations for collecting values of some 22 weather

parameters, including temperature, humidity, wind speed, pres-

sure, and precipitation. This high-resolution dataset provides

valuable microlevel data that can be leveraged to improve

prediction accuracy (see Fig. 1 for station distribution).

Recent advances in machine learning (ML) technology

have propelled weather forecasting into a new era. Numerous

studies have explored ML-centric techniques for weather fore-

casting, yielding promising results. These techniques include

the deep neural networks (DNNs), convolutional neural net-

works (CNNs), long short-term memory (LSTM) networks

[6], and generative adversarial networks (GAN) [7], for

predicting values of such parameters as wind speed and
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Fig. 1. Kentucky Mesonet weather observational stations denoted by yellow
circles, with those stations chosen for MiMa model evaluation and pointed
by red line segments tagged with their latitudes, longitudes, and elevations.

direction [8], [9], [10], [11], solar radiation [12], [13], pre-

cipitation [14], [15], [16], [17], [18], air quality [19], and

weather changes [20], [21], [22], [23]. However, existing ML

forecasting models have not yet achieved accurate predictions

of weather variables at fine temporal resolutions (as seen

with recent transformer-variant forecasters like [24], [25],

[26], and [27]). This shortcoming is largely due to the lack

of geolocation-aligned ground observational data, which is

essential for enhancing model training and prediction accuracy.

Many models rely solely on satellite or radar images [28], lim-

iting their precision. Additionally, most neural network-based

models are designed to predict values of specific parameters,

lacking a generalizable framework that can be readily adapted

to forecast all parameters of interest.

To address these shortcomings, this article introduces the

Micro–Macro (MiMa) model, a novel ML-based approach

that integrates fine-grained observational data (Micro data)

from regional mesonet stations with larger scale numerical

outputs (Macro data) from the WRF-HRRR model [3]. This

integration enables accurate weather predictions over short

time horizons (in minutes) for a region of interest. The MiMa

model employs an encoder–decoder transformer architecture,

where two encoders process multivariate sequences from the

Micro and the Macro datasets, and a decoder forecasts the

values of multiple weather parameters across a sequence of

time points from t + 1 to t + L (see Fig. 2).

Each instance of the MiMa model is referred to as a

modelet, dedicated to predicting a specific weather variable

for an individual mesonet station. To further enhance its

utility, the MiMa model is extended to become Regional

MiMa (Re-MiMa) modelets, which can predict weather vari-

ables at ungauged locations (where no observational stations

exist). By using data from several representative stations in a

region of interest, typically 3 or 4, tagged with their eleva-

tions, Re-MiMa modelets can generalize predictions across an

entire region, providing accurate forecasts at both gauged and

ungauged locations. This extension addresses a long-standing

challenge in meteorological forecasting: accurate predictions

at locations without direct observational data.

We conducted experiments on weather forecasting at various

Kentucky Mesonet stations, focusing on four key weather

parameters: air temperature, relative humidity, wind speed, and

atmospheric pressure, across eleven stations (see Fig. 1). The

MiMa modelets consistently outperform all comparative tech-

niques, achieving the lowest root mean squared error (RMSE)

values in 39 of 44 forecasting instances (see Table VI).

Additionally, Re-MiMa modelets, trained using data from

three representative stations in eastern Kentucky (BMTN,

FARM, and DANV), were tested at eight ungauged stations.

The results show that Re-MiMa modelets predicted weather

variables with accuracy comparable to, or better than, location-

specific MiMa modelets, with 22 of 32 parameters at those

ungauged locations predicted more accurately (see Table X).

This demonstrates the effectiveness of Re-MiMa in avoiding

the need for multiple modelets for predicting a given variable

while maintaining high accuracy across the entire region.

In summary, the MiMa model integrates Micro and Macro

data to deliver precise weather predictions at fine tempo-

ral resolutions. The Re-MiMa extension further enhances its

regional forecasting capability, making it a versatile tool for

applications that require high-accuracy predictions in real time.

The MiMa model code, documentation, and datasets are made

publicly available at [29] for further research and applications

to other regions.

This article makes several key contributions.

1) Novel Weather Prediction Model (MiMa): We intro-

duce the MiMa model, an ML framework designed to

predict weather parameters at fine temporal resolutions

accurately. The model integrates high-frequency obser-

vational data (Micro data) with geo-aligned atmospheric

numerical outputs (Macro data) to provide accurate

short-term weather forecasts.

2) Adaptable Prediction for Arbitrary Lead Times: The

MiMa model employs an encoder–decoder architec-

ture with LSTM units, allowing it to handle arbitrary

lead times and forecast weather variables with fine

temporal granularity, such as 5- or 15-min intervals,

meeting real-world demands for high-resolution weather

forecasts.

3) Regional MiMa (Re-MiMa): We extend the MiMa model

by introducing Re-MiMa modelets, which enable accu-

rate weather forecasting at ungauged locations (where

no observational stations exist). Re-MiMa uses obser-

vational data from a small number of representative

stations, avoiding the need for location-specific models

while maintaining high prediction accuracy across a

region.

4) Reduction in Modelet Count: By utilizing transfer learn-

ing and data from representative stations, Re-MiMa

reduces the number of required modelets, achieving

accurate regional forecasts using one single modelet

per weather variable, compared to traditional approaches

requiring individual modelets for each location.

5) Comprehensive Evaluation: Our experimental evaluation

across multiple Kentucky Mesonet stations demon-

strates that MiMa and Re-MiMa significantly outperform

their counterparts in forecasting accuracy for multiple

weather parameters, including temperature, humidity,

wind speed, and pressure. Re-MiMa models achieve

high accuracy at ungauged locations, further validating

their effectiveness and boosting their usability.

6) Data and Code Availability: To facilitate further research

and reproducibility, we have made the MiMa model

code, documentation, and datasets available at [29],
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Fig. 2. Overview of the MiMa model inputted with data from both an individual station and WRF-HRRR modeling computation to yield the weather variable
predictions.

enabling other researchers to apply our approach to

different regions and weather forecasting tasks.

II. RELATED WORK

Abundant applications of ML techniques for weather fore-

casting exist. This section reviews the recent advances in such

applications, which mostly follow three lines of work.

A. Neural Networks for Simulating Atmospheric Systems

The first line aims to explore whether NNs can simulate

the physical principles of atmosphere systems. In particular,

a Global NN and a Local NN are employed in [30] to

simulate the dynamics of a simple global atmosphere model

at 500 hPa geopotential. The results conclude that prediction

outcomes by the NN models can be better than those of the

coarse-resolution atmosphere models over a short duration

with the 1-h time scale. Scher [31] applied the CNN structure

with an autoencoder to learn the simplified general circulation

models (GCMs), which can predict the weather variables for

up to 14 days. The CNN incorporating LSTM components was

leveraged in [32] to achieve 14-day lead time forecasting as

well. Vlachas et al. [33] employed the LSTM model to reduce

the order space of a chaotic system. However, known solutions

along this line of work all focused on developing prediction

models for simulated or simplified climate environments, with-

out taking into account real-world conditions like observed

weather parameters at a region of interest. Their applicability

and effectiveness in real environments are questionable, given

the complex real-world conditions in practice. For example,

the actual measurements from mesonet stations are highly

dependent on local conditions. In addition, their solutions

cannot make accurate fine-grained forecasts (e.g., in the 5- or

15-min resolution) over short horizons (for 1 or 2 h) flexibly.

B. Neural Networks for Real-World Weather Prediction

The second line of work pursues new NN models for the

real-world weather parameters prediction. For example, the

LSTM and fully connected NNs are leveraged in [11] to

predict the wind speed at an offshore site, by capturing its

rapidly changing features. Grover et al. [20] combined the

discriminatively trained predictive models with a DNN to

predict the atmospheric pressure, temperature, wind speed,

and dew point. A convolutional LSTM model was adopted

in [14] to predict precipitation, whereas the CNN with a

stack of delicately selected frames was employed in [16]

for precipitation forecasting. In addition, a model with the

autoencoder structure was proposed to predict rainfall [15].

Forecasting the hurricane trajectories via a recurrent NN

structure was considered in [10]. The LSTM structures were

employed in [12] and [13] to predict solar radiation and

photovoltaic energy, respectively. Yi et al. [19] proposed a

deep fusion network to predict air quality. Veillette et al. [34]

crafted a storm event imagery dataset while leveraging the

VGG16 model to analyze storm events. U-Net models [35]

were considered in [36] and [37] for fine-grained radar now-

casting. A deep CNN model was developed over a cubed

sphere [21] for predicting several basic atmospheric variables

on a global grid. In [38], the DeepMC model with attention

mechanisms was proposed to predict Micro climate. A near

real-time hurricane rainfall forecasting model was proposed

in [17], where a basic CNN model inputted with the integrated

IMERG dataset was leveraged. In [23], basic ML and data

mining algorithms were developed for forecasting the reservoir

release. Recently, a lightweight model inputted with satellite

and radar images for real-world storm prediction has been

treated [39]. Meanwhile, a nonlinear nowcasting model under

a neural network framework has been proposed for precip-

itation forecasting based on composite radar observations to

exhibit more accurate and instructive outcomes than other deep

learning methods [40].

C. Transformer-Based Models for Long-Term Weather

Forecasting

As the third line of work, various transformer-based

solutions have been developed for long time-series predic-

tions, including weather forecasting but in coarse resolutions.

Specifically, Autoformer [24] performs weather forecasting

in the daily resolution, whereas FEDformer [25] evaluates

the predictions of weather time-series data for the hourly
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resolution. Likewise, the Corrformer model [26] forecasts

weather conditions over a large number of stations in coarse

granularity temporally, FourCastNet [27] considers weather

predictions at the temporal resolution of 6 h, and the iTrans-

former model [41] makes long-term weather forecasting in the

range of 96 to 720 h at the hourly resolution. Lately, GCMs for

weather and climate by combining atmospheric physics with

ML have aimed at the daily (or longer) resolution coarsely over

medium-range (1–14 days) time horizons [42], which are also

the target of the recently published global weather forecasting

benchmark [43].

D. Station Forecasting

The fourth line of work includes weather forecasting via

the following: 1) data from a large number of weather sta-

tions [44]; 2) station downscaling [45]; 3) a physical-ML

hybrid model [46]; 4) data from dense and sparse sensors [47];

and 5) GNN-based method [48]. Specifically, multiple critical

weather variables are forecast using a comprehensive collec-

tion of over 5000 weather stations, called the Weather-5k

dataset [44]. Leveraging the dataset like Weather-5k, recent

pursuits improve weather predictions at specific station loca-

tions through advanced downscaling techniques. For instance,

station-scale downscaling [45] accurately derives meteoro-

logical conditions at station locations from coarse-resolution

meteorological fields. Meanwhile, the hybrid DeepPhysiNet

approach [46] integrates physical laws into deep learning

models to enhance prediction accuracy. Another study [47]

utilizes both dense and sparse sensor data to make pre-

dictions for lead times up to 24 h, with its focus on

extending the lead time from 12 to 24 h. However, the study

relies solely on ground-based sensor data without valuable

computational numerical data, such as WRF-HRRR, which

would enhance accuracy. A GNN-based method [48] has

also been proposed for downscaling global grids to off-grid

locations of interest. However, like the previous study, it does

not leverage computational numerical data, such as WRF-

HRRR, to improve predictions for these off-grid locations.

While all aforementioned solutions help to advance weather

prediction, they are not meant to predict weather param-

eters accurately in fine temporal granularity (in minutes)

over flexible time horizons and lead times, hence calling

for accurate weather forecasting with fine-grained temporal

resolutions.

E. MiMa and Re-MiMa: Fine-Grained Weather Prediction

With encoder–decoder transformer-variant structures, our

MiMa and Re-MiMa modelets, for the first time, achieve

accurate predictions with short time horizons in fine temporal

resolutions on all weather variables at locations in a target

region, realized by the following: 1) tailoring a modelet for one

variable prediction per location (or per region) under MiMa

(or Re-MiMa); 2) taking both near-surface observational and

atmospheric numerical multivariate data as their inputs; and

3) letting modelets’ encoders input suitable data (including

predicted outcomes) for encoding adaptively.

III. PERTINENT BACKGROUND

This section first explains near-surface observations con-

ducted by mesonet stations [4], followed by describing

the Weather Research and Forecasting with High-Resolution

Rapid Refresh (WRF-HRRR) computational model [49]. The

limitations of applying such datasets for weather forecasting

are then stated.

A. Kentucky Mesonet

Under the U.S. National Mesonet Program, this mesonet

comprises a set of automated weather stations (towers) located

at specific locations in the State of Kentucky, as marked

by yellow circles in Fig. 1. Its towers aim to gather

real-time meteorological and soil measurements relevant to

local weather phenomena, involving tens of meteorological

measurements, such as air temperature, relative humidity,

wind speed, atmospheric pressure, and precipitation, period-

ically [4]. Meteorological measurements are gathered once in

5 min, whereas soil measurements are taken once in 15 or

30 min.

B. WRF With HRRR Modeling

The WRF model takes actual atmospheric conditions

(mainly from satellite, ground radar imagery, METAR,

SYNOP, Sonde, etc.) as the input of atmosphere physical

equations to calculate numerical outputs that serve a wide

range of meteorological applications across the nation. The

WRF-HRRR model is the ARW core [50] simulation results

of the WRF model [51] initialized by the HRRR assimilating

system [49]. It takes multiple sources as inputs, including

radar reflectivity and observations [52] related to rawinsonde,

boundary layer, cloud, and precipitation processes. It computes

up to 148 weather parameters over the 18-h time horizon in

hourly increments with the spatial resolution of 3 km and

across 50 vertical levels. In this work, we take the HRRR

assimilated results archived in the University of Utah for

public use, and those results cover the whole United States

continent with a total of 1059 × 1799 geogrids sized 3 ×

3 km [2]. On July 12, 2018, the HRRR implementation

Version 2 was upgraded to Version 3, with some changes

to parameters; please refer to [53] for more details. Every

parameter selected for our evaluation exists in both versions.

To obtain the WRF-HRRR data that are geo-aligned with

ground observational stations (in a mesonet) for MiMa mod-

elet training, each involved hourly WRF-HRRR data file (sized

120 MB) has to be preprocessed, given that those hourly

parameter values of all geogrids over the U.S. continent are

compressed to one single file for efficient transfer and storage.

Preprocessing an hourly data file takes about 2 min by one

Dell server in our laboratory and modelet training needs

WRF-HRRR computed parameters held in thousands of such

files, deemed a rather time-consuming task, as detailed under

“WRF-HRRR Data Preprocessing” in Section V-A.

C. Limitations

Both mesonet and WRF-HRRR datasets have their respec-

tive limitations. Specifically, the mesonet dataset contains



ZHANG et al.: REGIONAL WEATHER VARIABLE PREDICTIONS BY MACHINE LEARNING 4701621

TABLE I

RMSE VALUES OF WRF-HRRR OUTPUTS VERSUS MESONET OBSERVATIONS OVER THREE MONTHS AT EACH OF THOSE 11 KENTUCKY MESONET

STATIONS MARKED IN FIG. 1, WITH TEMP, HUMI, WSPD, AND PRES DENOTING AIR TEMPERATURE, RELATIVE HUMIDITY, WIND SPEED,
AND ATMOSPHERIC PRESSURE, RESPECTIVELY

near-surface weather measurements gathered continuously by

stations with various sensors and devices in minutes. However,

it does not provide forecasting results and involves only tens

of observation parameters. It can serve as the ground truth

for ML model training but is unable to reveal future weather

parameter values by itself. The WRF-HRRR numerical outputs

cover the whole US at hourly granularity, but they usually

suffer from considerable inaccuracy at geogrids of interest. For

example, Table I presents the RMSE values of WRF-HRRR

outputs over mesonet observations in the three months of

2018 at 11 stations. Besides, its hourly prediction scale lim-

its its suitability for meteorological applications that require

high temporal resolutions (in minutes) in support of real-

time decision-making. With affluent weather parameters (i.e.,

148 or 192), the WRF-HRRR data can be inputted into our

prediction modelets for complementing mesonet observational

data.

Our developed prediction modelets take multivariate time

series systematically chosen from both datasets as their inputs

to complement each other for accurate prediction in fine

temporal resolutions. As such, WRF-HRRR can provide afflu-

ent weather condition information while mesonet stations

gather accurate ground observations. Utilizing both of them

(in our developed modelets) properly enables precise weather

forecasting in fine-grained temporal resolutions.

IV. ML-BASED MODELS FOR WEATHER FORECASTING

The MiMa meteorological model utilizes Meteo modelets

to accurately and concurrently predict weather variables with

fine temporal resolution. These modelets are fed with minute-

level near-surface observational data (the Micro dataset) and

hourly atmospheric numerical outputs from WRF-HRRR mod-

eling (the Macro dataset). Each Meteo modelet is specifically

designed to predict a single weather parameter at a location

where observational data is available. For each predicted

parameter, two subsets of input parameters are selected: one

from the Micro dataset and the other from the Macro dataset.

These subsets are chosen based on their relevance levels with

respect to the weather parameter being predicted, as detailed in

Section V-A. The primary objective of the modelet design is to

extract temporal variation features from relevant sequences of

previous measurements to accurately predict weather parame-

ter values at multiple consecutive future time points (say, in T

min, 2T min, 3T min, etc.). This is achieved by leveraging

advanced ML techniques to learn temporal sequence patterns

from both datasets, capturing weather-situational variations

Fig. 3. Structure of the Micro model, with the hidden state Ht obtained by
inputting Xmicro to an encoder and the output Ot+1 obtained by inputting Ht

plus Y0 to a decoder. Output Ot+1 is then passed to a fully connected layer
which generates the predicted parameter value Yt+1 via a fully connected
network.

essential for predicting specific parameters. The Meteo mod-

elets deliver precise weather forecasts for a target region at

desirable temporal resolutions. Before detailing the config-

uration of the MiMa modelets, we first describe an Micro

model that relies solely on the Micro dataset for its predictions,

as below.

A. Micro Model

Most atmospheric data exhibit noticeable temporal

sequences and periodic patterns, with weather conditions

continuously changing over time. To capture these patterns

for forecasting in consecutive future time points, an encoder–

decoder structure with the LSTM network [6] as its building

block captures the temporal and periodic patterns, as depicted

in Fig. 3. Although the encoder–decoder LSTM model has

been widely applied to sequence tasks such as language

translation and question answering, the physical meaning of

each element in the input vectors is not well-explored. Hence,

the encoder’s LSTM is detailed next, enabling it to keep rich

elementwise features when encoding all features into a dense

vector.

1) Micro Encoder: The Micro Encoder consists of an

LSTM unit designed to encode appropriate multivariate time

series of data over a specific period into a single dense vector,

representing their temporal feature variations. The input to this

encoder, Xmicro, is a matrix of the most relevant parameter
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values at each timestamp, defined as follows:

Xmicro =











P1
1 P1

2 P1
3 · · · P1

α

P2
1 P2

2 P2
3 · · · P2

α

...
...

...
. . .

...

Pn
1 Pn

2 Pn
3 · · · Pn

α











where the i th row, for 1 ≤ i ≤ n, represents those α most

relevant parameters chosen from the Micro dataset at the i th

timestep of the multivariate time series data observed at a

station to train the model for the station’s location. These

n time steps constitute the lookback window for predicting

the results of future time points over a horizon, where the

time gap between the lookback window and the prediction

horizon is known as the lead time. The past T ×n-min surface

observational data points from the α time series gathered by

the station are taken as a data frame (Xmicro) representing an

observed weather snapshot as the model input. In the ablation

study (see Section V-D), results under different lookback

windows are provided and discussed. After inputting the data

of Xmicro to the Micro encoder, a hidden state vector of size

n × 128 is obtained. During the training, the exact hidden

state vector size is 128 × 128, under the mini-batch size of

64. Concatenation of the hidden and cell states leads to the

resulting hidden state vector size of 128 × 128. The LSTM

unit learns key features and updates its associated hidden state

vector. This vector, along with the next data frame, is input

to the same LSTM unit to update the hidden state vector Ht,

expressed by

Ht = σ(XmicroWxo + Ht−1Who + bo) × tanh (Ct) (1)

where Wxo are the output weights for the input Xmicro, Ht−1

is the hidden state vector from the previous timestamp, Who

are the output weights for the hidden state, bo is the bias

for the output, Ct is the cell state of the LSTM unit, and

σ denotes the sigmoid activation function and tanh is the

hyperbolic tangent [6]. Initially, the hidden state vector without

a prior state, is initialized randomly. The final dense vector Ht

aggregates temporal pattern variations from the inputs Xmicro’s

of n timestamps.

2) Decoder: The decoder predicts specific weather param-

eter values for consecutive time points over the given horizon

after a lead time, if any. Including an LSTM unit, the decoder,

initialized by the dense vector Ht, also takes the starting value

of the sequence, Y0, as its input to generate the output vector

Ot+1, denoted as follows:

Ot+1 = σ(YoWxo + HtWho + bo) (2)

where the weight and bias variables are similar to those given

in (1). This output vector is passed to a fully connected

network to obtain the forecast value of Yt+1, expressed by

Yt+1 = σ(Ot+1Wout + bout) (3)

where Wout are the weights of the fully connected network,

and bout is the bias.

During training, multivariate data sequences from a station

are inputted in batches, with each training pass learned from

appropriate sequences of n values (e.g., 12 values for 1 h

Fig. 4. Structure of MiMa model, with its Micro encoder and its decoder
identical to those depicted in Fig. 3 and with the hidden states of the Micro
and the Macro encoders concatenated as the decoder’s input.

of data at 5-min intervals). For temperature prediction, as an

instance, the modelet is inputted with the last hour’s worth

of most relevant parameter data in batches to predict the

temperature 5 min immediately after, when the lead time is

nil. During inference, the model generates a sequence of n

values by the decoder, one at a time iteratively. For improved

accuracy, the encoder inputs suitable data (including predicted

values) for encoding before n iterations end.

B. MiMa Model

Given that the number of weather parameters observed by

mesonet stations is limited and primarily indicates current

near-surface readings without forward-looking information,

forecasting based solely on the Micro dataset is insuf-

ficient. The WRF-HRRR computed outputs (the Macro

dataset) include atmospheric indicators at higher altitudes (e.g.,

700/925 hPa geopotential height, low cloud cover, 3000 m

storm-relative helicity, etc.), as listed in Table V. They are

useful for inferring future weather conditions near the sur-

face. Thus, incorporating appropriately selected WRF-HRRR

outputs into the model training process significantly enhances

prediction accuracy, arriving at the MiMa model. Our proposed

MiMa model takes the Macro dataset as a complementary

input to improve forecasting.

The Macro dataset is generated on an hourly basis [49],

whereas surface observational data are collected every 5 min

by Kentucky Mesonet stations. The MiMa model is obtained

by adding an Macro encoder to the Micro model (depicted

in Fig. 3) to integrate these two data sources with different

temporal scales. Comprising a single LSTM unit, the Macro

encoder takes as its input, the geo-aligned WRF-HRRR data

which are most relevant to the weather parameter under

prediction (e.g., air temperature, relative humidity, etc.; see

Table II). The structure of our MiMa model is shown in Fig. 4.

The subset of WRF-HRRR data chosen for a predicted

weather parameter is based on parameter relevance degrees,

as detailed in Section V-A. Since the Macro dataset and the

Micro dataset are on different time scales, inputs to the Macro

encoder must be temporally downscaled from 1 h to T min

(being the mesonet station data sampling interval). Each hour

is divided into 60/T time frames, using the hourly output from

the Macro dataset to represent the first time frame’s value.

Values for the remaining time frames are computed using a
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TABLE II

PREDICTED WEATHER PARAMETERS OF INTEREST

polynomial function fitted to the last l output parameter data

points, with l = 3. The polynomial a ∗ x2 + b ∗ x + c is used,

fitting the immediate last 3 h WRF-HRRR computed values to

find the best coefficients a, b, and c for extrapolating the future

60/T − 1 values at T -min intervals. This process is applied

to every computed parameter listed in Table V, with their

respective time frame populated according to the polynomial

function.

The most relevant parameters from the Micro dataset (or

the Macro dataset) for each predicted parameter are listed in

Table III (or Table IV). In addition to the Micro encoder input

Xmicro, the Macro encoder input Xmacro is given by

Xmacro =











P1
1 P1

2 P1
3 · · · P1

β

P2
1 P2

2 P2
3 · · · P2

β

...
...

...
. . .

...

Pn
1 Pn

2 Pn
3 · · · Pn

β











where the i th row, for 1 ≤ i ≤ n, denotes those β most relevant

parameters from the WRF-HRRR dataset, for the lookback

window of n steps and the prediction horizon of T ×n minutes

when the time step equals T minutes. Comprising an LSTM

unit, the Macro encoder takes its input Xmacro along with the

hidden state vector from the previous time frame, to update its

hidden state vector. It outputs a dense vector, Ht,macro, which is

concatenated with the dense vector outputted from the Micro

encoder, Ht,micro (as shown in Fig. 4), to produce the vector

of Ht,merged

Ht,merged = concat
(

Ht,micro, Ht,macro

)

. (4)

The decoder in the MiMa model functions similarly to that

in the Micro model, and its output is expressed by (2), with Ht

replaced by Ht,merged. It is initialized by the concatenated dense

vector Ht,merged to start forecasting for consecutive time points

sequentially. During both training and prediction phases, the

MiMa model utilizes the WRF-HRRR numerical data from

the geogrid where the observational station resides (known

as spatial alignment) over the same time duration (known as

temporal alignments). Note that while our MiMa model is

encoder–decoder structured, its encoders are made to consider

prediction outcomes adaptively, based on prediction errors

observed at model validation immediately after training. This

way allows the MiMa modelets to encode input data frames

over the lookback window more frequently to lower their

prediction error during inference, at the expense of longer

inference times (in a few seconds, rather than tens of µs with

just the decoder involved in predictions).

Note that our proposed MiMa model, built on the

LSTM-based encoder–decoder architecture, exhibits very high

accuracy in predicting weather variables over the short time

horizons of our interest (up to a few hours, as demonstrated

in the next section). Its high accuracy results mainly from

inputting geo-aligned Micro and Macro data at the same

time. When the prediction horizons are long (say, tens of

hours), different model structures, like transformers with atten-

tion [54], may be called for. A model built on the transformer

with attention, however, typically requires a large amount of

data for model training to have quality models with high

prediction accuracy. For our weather forecasting, we employ

small datasets (over two years), making it unsuitable to adopt

any transformer-based model with attention.

V. EXPERIMENTS AND RESULTS

This section provides evaluation specifics, performance

results and discussion, ensemble predictions, ablation stud-

ies, and extreme weather forecasting. Evaluation specifics

include dataset details, parameter-relevant degree calculation,

WRF-HRRR data preprocessing, and experiment setup details.

Performance results are shown for the following: 1) different

prediction methods under prediction horizons of 1 and 24 h

and 2) MiMa modelets with the prediction lead times of 1 and

4 h for the 3-h horizon.

A. Evaluation Specifics

1) Dataset Details: Two types of datasets are inputted to

the Meteo Modelets we developed for performance evalua-

tion, including the near-surface observational data gathered

by Kentucky Mesonet [4] and the WRF-HRRR [3] atmo-

spheric numerical values, respectively called Micro and Macro

datasets because the former (or latter) data are available in

5-min (hourly) temporal granularity. The Micro data comprise

a set of weather parameters gathered by mesonet stations for

monitoring real-time meteorological phenomena, as shown in

Fig. 1, where stations are signified by yellow circles. The

monitored weather parameters include the readings of air

temperature, relative humidity, wind speed, and atmospheric

pressure, at various heights (see Table II), recorded once every

5 min, as opposed to the WRF-HRRR computed atmospheric

values available hourly. Eleven Kentucky Mesonet stations are

selected for evaluating MiMa models, with their geographical

locations denoted in Fig. 1 by red line segments. For example,

BMTN (39.919, −82.906, 4031) is located at latitude 36.919◦,

longitude −82.906◦, and elevation 4031 feet, and it is in

the Black Mountain. Those mesonet stations are scattered in

the Eastern Kentucky area (with complex terrain), and their

elevations range from 559 to 4031 feet.

Four meteorological parameters of interest considered at

each mesonet station for model performance evaluation are

listed in Table II, with their respective measuring heights

and reading ranges included. The parameters of WSPD and

PRES are measured respectively at 10 and 1.0 m, whereas

the remaining two are measured at 2.0 m. In the case of the

individually trained MiMa modelets, there are 44 (= 4 × 11)

MiMa modelets involved. Each modelet is trained by inputting
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TABLE III

RELEVANT PARAMETERS UNDER THE MICRO DATASET

both the ground observational data gathered during, and

WRF-HRRR atmospheric data computed for, Years 2018 and

2019, while tested via the data of Year 2020. The WRF-HRRR

Macro data employed are those corresponding to the 3 ×

3 km geogrids of the eleven Kentucky Mesonet stations. There

are 148 WRF-HRRR parameters computed for each geogrid

per hour, but only a few of them are relevant enough to a given

parameter under prediction (say, TEMP) for consideration in

its dedicated MiMa modelet. Similarly, each mesonet station

gathers some 22 weather parameters periodically (mostly once

per 5 min), with a few of them strongly relevant to the

predicted parameter. The following describes a systematic way

for identifying the relevant degrees of all parameters with

respect to a predicted parameter under one dataset so that

such identified relevant degrees permit each MiMa modelet

to include a suitable set of strongly relevant parameters for

superior prediction performance after training.

2) Parameter Relevance: Weather parameter prediction by

ML belongs to high-dimensional multivariate data analytics,

with its performance dictated by involved dimensional features

(i.e., parameters in the weather prediction context). Although

selecting a proper set of parameters is challenging, it is an

essential step in data preprocessing for removing irrelevant

and redundant data to reduce time complexity and improve

learning accuracy for the ML model at hand. In essence, this

step involves identifying relevant degrees of all parameters

with respect to a given parameter, so that the model takes

into account only those parameters with high enough relevant

degrees when predicting its target parameter. Typically, each

parameter under prediction involves a different subset of

parameters with high enough relevant degrees under a given

dataset (be the near-surface gathered data or the WRF-HRRR

computed one), as listed in Tables III and IV. The subset

of relevant parameters chosen for consideration in predicting

a given parameter, however, is found to be identical at all

geogrids across a regional area. Hence, only one subset of

relevant parameters is chosen systematically for each predicted

parameter under the given dataset, irrespective of geogrids

where mesonet stations reside. A description of relevant

TABLE IV

RELEVANT PARAMETERS UNDER THE WRF-HRRR DATASET. THE

DESCRIPTION OF EACH PARAMETER ID IS SHOWN IN TABLE V

TABLE V

DESCRIPTION OF RELEVANT WRF-HRRR PARAMETERS INCLUDED IN

THE MiMa MODELETS AT HAND

WRF-HRRR parameters considered by prediction models is

given in Table V.

Generally, two systematic approaches for choosing appro-

priate subsets of relevant parameters are wrapper and filter

solutions. The former exhaustively searches all possible sub-

sets of the parameters (i.e., dimensional features) to optimize

the solution for a specific ML model. Such an exhaustive

search-based method is known to be NP-hard, involving

infeasibly high time complexity when the problem size is

large (like the WRF-HRRR dataset with 148 parameters).

In contrast, the latter usually applies a statistical method to

determine a suboptimal solution with a feasible time, avoiding

exhaustive search. An early filter solution based on the statis-

tical method is realized by computing correlation coefficients

among parameters [55]. A later statistical solution relied on

mutual information present among parameters for determining
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their relevant degrees [56], and it was shown to better capture

relevant degrees of parameters with nonlinear relationships

in general when compared to its correlation coefficient-based

counterpart [55]. Since finding an optimal subset of major rele-

vant parameters exhaustively by a wrapper solution is NP-hard,

we employed the filter-based approach [55], [56] to determine

a proper parameter subset for each predicted parameter under

a given dataset by calculating the relevant degrees (ranging

from 1.0 to 0.0) of all parameters with respect to the predicted

parameter. With similar time complexity, both filter-based

solutions (corresponding to [55] and [56]) were adopted to

compute the relevant degrees of parameters under the gathered

weather dataset and the WRF-HRRR dataset, and their results

were found to be identical possibly because parameters in our

both datasets may not have a strong nonlinear relationship

to make the mutual information-based solution [56] outshine

its correlation coefficient-based counterpart [55], as shown

previously.

A parameter with a higher degree of relevance tends to

improve the accuracy of the predicted parameter when taken

into account in the prediction model. Intuitively, a proper

subset of relevant parameters for inclusion in a prediction

model should contain those parameters with relevant degrees

exceeding a threshold 2 (say, 2 = 0.3), because including

those lightly relevant parameters indiscriminately not only

raises model time complexity but also may hurt accuracy.

To constrain model complexity without compromising its

accuracy, a proper relevant parameter subset is limited to γ

(say, γ = 10) so that only those γ most relevant parameters

are included if there are more than γ parameters with their

relevant degrees ≥ 2. Note that high model accuracy results

provided that γ is chosen reasonably and both dataset types

adopt the same 2 and γ values, as can be found in Tables III

and IV, where TEMP (or PRES) involves 10 (or 7) most

relevant parameters. A very small γ value (say, 2) can yield

unsatisfactorily low accuracy, whereas an unnecessarily large

γ value (say, ≥20) incurs excessive time complexity without

improving accuracy. The subsequent results presented are

under the choice of γ = 10. Relevant WRF-HRRR parameters

considered by prediction models are listed and described in

Table V.

3) WRF-HRRR Data Preprocessing: The WRF-HRRR

dataset [2] was recorded each hour, in a compressed for-

mat to contain a computed weather situation snapshot with

148 parameters for each of 1 905 141 (= 1059×1799) geogrids

that cover the whole United States. An hourly weather snap-

shot held in the grib2 format has the size of some 120 MB,

and it has to be decompressed (into some 2.4 GB) before

extracting the relevant parameters of interest at all geogrids

where mesonet stations reside for inclusion in weather pre-

diction models. In our implementation, we employ the pygrib

(a Python package) to extract the HRRR data. In particular,

values of a parameter for all grids constitute one layer so

there are 148 layers in total. Taking surface pressure as an

example, it will be at Layer 57 (of 148 layers). We read out

details in Layer 57 from HRRR data, which also include the

latitude and longitude of each grid. Among 1059 × 1799 grids,

we compute the distance between each grid and the mesonet

station and identify the one having the nearest distance to

this station. The surface pressure at this grid is considered

to be associated with the respective mesonet station. Note that

the pressure value corresponding to a station can also be the

average of computed WRF-HRRR pressure results of four or

eight neighboring grids, but this averaged pressure value is

found to be usually close to that of the nearest grid because

weather parameter values are usually similar over a small

region.

Considered as WRF-HRRR data preprocessing, uncom-

pressing one weather snapshot followed by extracting relevant

parameters takes about 2 min on a Dell T7910 workstation

(with dual Xeon E5-2680v4 CPUs and 64 GB memory).

Hence, such data preprocessing on 24 snapshots (of one day)

takes more than 48 min. For our model evaluation, total

WRF-HRRR data preprocessing includes extracting 90 days

of data per year (over one season) for three years, with two of

them for model training and one for model testing, taking more

than 216 h (= 2 × 24 × 90 × 3 min), apparently an extremely

time-consuming task that calls for high parallelism to shorten

its execution. The data preprocessing time rises when data

from more years and/or from more days per year are employed

to train models (for accuracy improvement).

To spatially align WRF-HRRR data and observational data

for a station location, our data preprocessing searches each

decompressed grib2 file over its involved 1.9+ million grid

points for the one nearest to where the station lies. Time

and space complexities involved in the search for the nearest

grid point (according to the distance) are O(n) and O(1),

respectively, where n equals the number of grid points in a

file. After such a grid point is identified for every station of

interest in a region, all relevant parameters recorded under this

grid point are extracted. Since the data extraction process is

time-consuming and our workstation has 28 cores, 27 program

instances can be launched concurrently, each handling ten

days’ WRF-HRRR data files (one per hour) for high paral-

lelism. Overall data preprocessing conducted in this way takes

about 8 h (= 48 min ×10) after the compressed WRF-HRRR

data files had been downloaded from [3] (for local access

during preprocessing).

4) Spatial Alignment of Micro and Macro Datasets: Before

training the MiMa modelets, we address the issue of spatial

alignment between the two datasets of differing resolutions:

the Micro dataset, consisting of individual station point data,

and the WRF-HRRR dataset, which provides gridded satellite

data covering a larger geographical area. Since the WRF

dataset represents broader spatial coverage while the Micro

dataset focuses on specific station locations, it is crucial to

ensure proper alignment between the two to facilitate accurate

comparisons and analyses. To achieve this, we identify the

latitude and longitude from the WRF dataset that is closest to

each station’s coordinates in the Micro dataset. This is done by

computing the distance between the station’s latitude and lon-

gitude and the corresponding grid points in the WRF dataset.

We then select the grid point with the minimum distance to

the station as the representative location for extracting the

WRF data. By doing so, we effectively convert the gridded

satellite data into point data, ensuring that both the Micro and
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Macro datasets are spatially aligned. This allows for consistent

comparison and integration of data from both sources, despite

their differences in spatial resolution.

5) Important Relationships: In our work, we explore

the important relationships among data assimilation, tem-

poral downscaling, and weather prediction since each of

these represents an important aspect of our work. Data

assimilation involves integrating near-surface observational

data (ground data) with atmospheric numerical data from

the Weather Research and Forecasting (WRF) model. This

fusion of data sources enhances the forecasting ability of our

model by providing a multidimensional input that captures

both ground-based and atmospheric information. Through

this assimilation process, we align observational data with

WRF’s outputs, resulting in a more comprehensive dataset

that supports location-specific predictions and enriches the

overall quality of the forecast input. Temporal downscaling

is applied to the WRF data to transform its hourly com-

putational modeling into finer-grained 5-min intervals. This

process is essential for accurately capturing short-term weather

fluctuations and aligning WRF’s coarser resolution with the

5-min sampling rate of mesonet station data. By refining

the temporal granularity of the WRF data, we prepare a

synchronized dataset that meets the temporal requirements of

our predictive model, ensuring consistency and precision in

subsequent forecasts.

The assimilated and downscaled data then feed into our

weather prediction model, where the combination of these

two processes—data assimilation and temporal downscaling—

enables the model to deliver high-precision weather predic-

tions at fine temporal intervals. This integration ensures that

real-time, location-specific weather conditions are accurately

captured and forecasted, addressing both the spatial and tem-

poral demands of our forecasting framework.

6) Experiment Setup Details: The proposed MiMa model

takes data from the third season in 2018 and 2019 for its

training to predict the weather conditions for 80% of the

2020 data in the same season. The other 20% of the 2020 data

is used for validation data during the training to enable early

stopping. Our early stopping setting has a patience of five

consecutive epochs with no decrease in the mean absolute error

(MAE). Four MiMa modelets are established to predict four

weather parameters of interest (i.e., air temperature, relative

humidity, wind speed, and atmospheric pressure) for each

mesonet station location. As depicted in Fig. 4, the Micro and

Macro encoders of a MiMa modelet utilize LSTM networks

with 256 hidden states, while the decoder leverages LSTM net-

works with 512 hidden states. The LSTM networks utilize the

hyperbolic tangent (tanh) function as the activation function

and the sigmoid function for the recurrent activation [6]. The

tanh activation function aids in maintaining the stability of the

cell state by forcing the outputs to a range between −1 and 1.

In contrast, the sigmoid function ensures that the recurrent

connections are regulated between 0 and 1, facilitating a

smooth gradient flow. Combined with the substantial hidden

state sizes, this regularization technique allows the MiMa

model to capture and learn complex temporal dependencies

present in the input sequences. During training, a dropout rate

of 50% is applied to both encoders and the decoder of a MiMa

modelet to mitigate the risk of overfitting, thereby enhancing

the model’s generalization capabilities. The high dropout rate

ensures that approximately half of the neurons are randomly

deactivated during each training iteration, promoting robust-

ness and preventing reliance on specific neurons. In addition,

the hidden state sizes, dropout rate, and activation functions are

meticulously selected to balance the trade-off between model

complexity and generalization performance, ensuring high

weather forecasting accuracy. Each MiMa modelet is trained

using a mini-batch size of 64 across 60 epochs. An early

stopping mechanism halts training if no loss improvement is

observed for ten consecutive epochs. The LSTM block of each

encoder involves 256 units, leading to a total of 512 units in

the decoder LSTM block. The Adam optimizer is employed

with a learning rate of 0.001.

To compare the MiMa modelets, five other models are

included in our evaluation: 1) the Micro model; 2) SARIMA,

which is an autoregressive model supporting the direct model-

ing of the seasonal component of series [57]; 3) SNN, which

is a simple neural network [30] that takes the Micro data to

make predictions; 4) SVR, which is a regression model based

on support vector machines [58], with the Micro data as input

features; and 5) Deep uncertainty quantification (DUQ), which

integrates deep learning techniques with one GRU layer of

128 hidden nodes [43] to quantify uncertainties in weather

predictions, enhancing the reliability of weather forecasts. The

Micro model is structured as shown in Fig. 3, taking just the

Micro dataset (i.e., near-surface gathered data) for training

an LSTM with 256 hidden states. The computed atmospheric

results of the WRF-HRRR model serve as the coarser pre-

diction counterpart (in the hourly granularity). While these

comparative models are evaluated alongside MiMa modelets,

they consistently underperform as demonstrated in both our

preliminary study [1] and the results presented in Tables VI

and XI.

Model prediction accuracy is measured according to

two metrics that gauge the prediction error against those

observed by mesonet stations: RMSE and MAE [32]. Specif-

ically, RMSE = ((1/n)
∑n

i=1(Yi − Ŷ i )
2)0.5 and MAE =

(1/n)
∑n

i=1 |(Yi − Ŷ i )|, where Y and Ŷ denote the observed

and the predicted value vectors, respectively, and n is the

number of data values. These two metrics aim to depict the

error amounts. RMSE is sensitive to outliers (with extreme

errors emphasized as their amounts are squared), and MAE

simply averages all error amounts so that it better reflects

prediction accuracy in the absence of extreme errors (like

weather parameter forecasting).

B. Performance Results and Discussion

1) Under Different Prediction Methods: We have conducted

multiple experiments to forecast four weather parameters of

interest using the MiMa modelets at all time points over

16 days chosen arbitrarily in the third season of 2020. There

are 4608 (= 12 × 24 × 16) predicted time points for each

parameter per chosen Kentucky Mesonet station, given that

each hour incurs 12 prediction points with 5 min apart.
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TABLE VI

RMSE AND MAE VALUES FOR ALL 11 MESONET STATIONS ALONG WITH THEIR RESPECTIVE ERRORS
§
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Fig. 5. Prediction results for 24 h for those four prediction parameters with the Micro, MiMa, and WRF models compared to the observed data. (a) Temperature.
(b) Humidity. (c) Wind Speed. (d) Pressure.

Accuracy metrics under MiMa modeling, averaged over all

prediction time points, are listed at the first row of each

station in Table VI. As can be seen, temperature prediction at

BMTN (with the highest elevation among all eleven stations)

has an RMSE of 0.20 while the prediction at FARM (with

the lowest elevation among all stations) has an RMSE of

0.19. Those RMSE amounts translate respectively to 1.18%

and 0.86% (given in pairs of parentheses) when normalized

against their observed temperature readings, which are smaller

at altitude-highest BMTN. Overall, the MiMa modelets predict

temperature accurately for all stations, with their TEMP’s

RMSE values ≤ 0.27 (or 1.28%), irrespective of their altitude.

Among the 44 forecasting instances (due to four parameters

at 11 locations), the MiMa modelets demonstrated superior

prediction accuracy, exhibiting the smallest RMSE values in

all but five cases among all forecasters included in Table VI.

Note that the normalized prediction errors of WSPD (shown

in pairs of parentheses) tend to be large, signifying that the

wind speeds are usually very low, making small error RMSE

values become large after normalization.

The RMSE values of two other models as well as

WRF-HRRR on forecasting the four weather parameters are

also included in Table VI for comparison. The MiMa models

exhibit the best accuracy (in terms of RMSE) consistently

for all four parameters at eleven stations, except for five

cases (i.e., TEMP at CCLA and DANV, HUMI at LXGN,

PRES at LSML, and FCHV). Furthermore, the MiMa model

outperforms its closest counterpart, the Micro model, in all but

three cases (i.e., TEMP at CCLA and DANV, and HUMI at

LXGN), signifying the advantage of employing both datasets

for the model input, as opposed to utilizing just gathered

observational data, like the Micro model.

When taking the RMSE values of all four predicted param-

eters at each station into aggregation consideration, the MiMa

model outperforms its Micro counterpart noticeably, able to

deliver significantly better prediction on aggregated weather

parameters at every station. From the individual parameter

prediction’s perspective, the MiMa model achieves better

pressure prediction over all six stations in terms of the RMSE

metric, when compared with the Micro model. For predict-

ing TEMP, HUMI, and WSPD, SARIMA underperforms the

Micro model except for TEMP at BMTN and LXGN, and

for HUMI at CCLA, FARM, and LXGN. When forecasting

PRES, SARIMA may perform better than the Micro model.

Additionally, the WRF-HRRR model is seen to perform the

worst among all models, implying that its widely available

computed results are far from satisfaction and that the superior

MiMa model is indispensable for precise forecasting region-

ally, with the aid of near-surface gathered data.

From the MAE metric standpoint, it is found in Table VI

that our MiMa model consistently outperforms its two better

counterparts (the Micro model and the SARIMA model) in all

but seven cases, with four of them for the PRES prediction.

With the MAE values of all four predicted parameters at each

station taken into aggregation consideration, the MiMa model

outperforms its Micro counterpart by larger margins than those

under the RMSE metric. This may be due to the fact that

MAE is less sensitive to the prediction error amount than

RMSE. Among four types of weather parameter predictions,

the MiMa model enjoys the largest gap against the Micro

model for PRES prediction under the MAE metric over all

stations aggregately, followed by HUMI prediction.

As the weather parameters have different units and reading

ranges (see Table II), the prediction errors normalized with
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TABLE VII

RMSE VALUES OF MiMa MODELETS AT EACH 15-MIN INTERVAL OVER A 3-H HORIZON

UNDER 1-H (4-H) LEAD TIME

respect to the values themselves (in %) are included in

pairs of parentheses in Table VI, providing scale-independent

measures for comparing prediction quality across parameter

types. Under the scale-independent normalized error amounts,

the WSPD column usually contains large % values, because

the WSPD prediction tends to be less accurate and the WSPD

itself is typically low, whereas the PRES column all has very

small % values due mainly to pressure readings in the large

range of 600–1060 MB (see Table II). From the RMSE metric

results listed in Table VI, our MiMa model consistently out-

performs its best counterpart (the Micro or SARIMA model)

in all 44 cases, except five (i.e., three for the Micro model

and two for the SARIMA model as underlined in Table VI).

When all four predicted parameters at each station are taken

into aggressive consideration, the MiMa model outperforms

its Micro counterpart markedly under RMSE, e.g., 40.5%

at LSML and 23.4% at ELST. Likewise, the MiMa model

enjoys 93.5% better PRES prediction over all eleven stations

aggregately against the Micro model in terms of the RMSE

metric, followed by 25.1% on TEMP prediction. Similarly,

large gaps exist between the MiMa model and its Micro coun-

terpart under MAE. Note that RMSE and MAE comparative

values for 17 additional Kentucky Mesonet stations, whose

observed parameter data are complete, are listed in Table XI

(see Appendix).

2) Comparative Prediction Outcomes for 24 h: To illustrate

the prediction details of the four meteorological parameters

continuously over time under different models, we ran-

domly select one day in the third season of 2020 to

forecast its weather parameter values at Station BMTN,

starting from 00:00 A.M. to 11:59 P.M. Comparative pre-

diction results obtained from the MiMa model, the Micro

model, and the WRF-HRRR numerical computation together

with near-ground observational readings, are depicted in

Fig. 5(a)–(d) respectively for temperature, humidity, wind

speed, and pressure. It is clear from the figures that the curves

of our MiMa model are always closest to those of observa-

tional readings for all four weather parameters examined. This

demonstrates that our model continuously provides the best

prediction results throughout the entire duration (of 24 h) for

all parameters, in comparison to its counterparts. Note that

the WRF-HRRR computed parameter values, despite readily

available for all geogrids of the whole US, are substantially

far away from the near-surface observations for most of the

examined duration, signifying their apparent inadequacies in

practical applications.

3) Performance of MiMa Modelets Under 1-h and 4-h

Lead Times: The developed MiMa modelets can provide fine

predictions temporally for any horizon flexibly with solid

accuracy, provided that they are trained with data over an
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Fig. 6. Ensemble temperature prediction plot of MiMa modelet for Station
FARM.

adequate lookback time window (typically to equal the pre-

diction horizon). We have obtained the experimental outcomes

of MiMa modelets when forecasting four weather variables of

interest in the fine temporal granularity (of 15 min) over a

3-h horizon to involve 12 consecutive prediction points. Such

experimental results indicate short-term parameter forecasting

effectiveness, particularly relevant to nowcasting that supports

the real-world socioeconomic needs of many sectors that rely

on weather-oriented decision-making [14], [28], [59]. The

prediction errors in RMSE of MiMa modelets under 1- and

4-h lead times with a 15-min interval over the following 3 h

for all stations are listed in Table VII. They rise gradually at

fairly slow paces as prediction progresses from the first time

point (at 15 min) to the 12th time point (at 180 min) over

the prediction horizon for all four weather parameters. The

table also reveals that larger lead times yield higher prediction

errors, as expected. Overall, the proposed MiMa modelets

offer very precise short-term weather parameter forecasting for

small to medium lead times, with the prediction of humidity

being less accurate in general.

C. Ensemble Predictions

Weather parameter value predictions, like any data time

series forecasting, come with uncertainty for predicting val-

ues over a given time duration, say 1 h. Probabilistic

weather forecasts are often adopted to quantify uncertainty

by postprocessing results obtained under various predictors or

for different time sans, realizing ensemble predictions [42],

[60]. While the ensemble approach to general forecasting

is reviewed in [61], a data-driven method based on neural

networks is considered specifically for processing the out-

comes of the weather predictor to learn their distribution

that enables probabilistic forecasts, with low computational

complexity [42]. Meanwhile, transforming a deterministic

ML-based weather forecaster into an ensemble model by

extending the forecaster to incorporate probabilistic infor-

mation is studied [60]. Lately, ML algorithms have been

employed to learn the statistical properties of prediction out-

comes under a given deterministic forecast [62], like our

proposed MiMa modeling.

Our ensemble predictions are realized by postprocessing

the outcomes of MiMa modelets to get probabilistic weather

forecasts. Instead of what has been the case so far by pre-

senting forecasting results in averaged values, probabilistic

forecasting for a MiMa modelet over a duration can be

derived by analyzing the modelet’s prediction outcomes over

the duration. Take the MiMa modelet for predicting the air

temperature of Station FARM over the 1-h horizon at the

5-min interval (for 12 prediction values per hour) with nil

lead time as an example. Its ensemble prediction results for

1 h versus prediction errors are illustrated in Fig. 6, with

four probabilistic confidence levels (100%, 80%, 50%, and

20%) marked. They are obtained by examining the modeled

prediction values for a number of random days, each involving

24 sets of 12 predicted values, one for a prediction time point.

Those predicted values at each time point of an hour are

compared with their corresponding observational temperature

readings, to get their prediction errors. The modelets’ pre-

diction confidence level at a time point is obtained from the

distribution of all errors for the time point.

The pair of solid curves in Fig. 6 denote the ranges that

errors always (100%) fall for the 12 prediction time points

(of the 1-h horizon). They signify the largest errors above and

below the observational readings, whose errors are always zero

as marked by the bold red line on the x-axis. At the time point

of 5 min (or 60 min), the MiMa modelet is sure to have its

prediction errors of no more than +0.049 ◦C and −0.12 ◦C

(or +0.06 ◦C and −0.075 ◦C) at Station FARM. Likewise, the

two dotted curves indicate that the MiMa modelet is confident

with 50% to have its temperature prediction errors of no more

than +0.01 ◦C and −0.035 ◦C (or +0.045 ◦C and −0.0 ◦C)

at the time point of 5 min (or 60 min).

A similar plot can be generated for each MiMa modelet,

so can its Micro and SARIMA counterparts, enabling the

comparison of their prediction error ranges under varying

confidence levels at every time point. Since MiMa modelets

usually exhibit the most accurate predictions on an average

according to their comparative results shown in Table VI and

Fig. 5, they are to yield narrower prediction error ranges (i.e.,

smallest prediction value variations) for a given confidence

level at every time point.

D. Ablation Study

We have conducted the ablation study to demonstrate the

necessity and importance of both Micro and Macro datasets

in our MiMa model, by ablating the following: 1) the Macro

components to arrive at the Micro model, which is a counter-

part included in the earlier comparative evaluation and 2) the

Micro components to yield the Macro model. For this study,

the Macro model is trained and evaluated in the same process

as described previously for the MiMa model, but without

involving the Micro dataset. Table VIII lists the RMSE and the

MAE values of two MiMa variants for the hourly forecasting

horizon at five mesonet stations, averaged over prediction time

points in 16 days chosen arbitrarily in the third season of

2020. It unveils that MiMa outperforms its Micro variant

in predicting all four weather parameters at five different

mesonet locations under the RMSE accuracy metric, except
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TABLE VIII

MEAN RMSE AND MAE VALUES OF ABLATION STUDY VARIANTS FOR THE HOURLY FORECASTING HORIZON OVER PREDICTION

TIME POINTS IN 16 CHOSEN DAYS, WITH THE BEST ONES SHOWN IN BOLD

TABLE IX

MEAN RMSE AND MAE VALUES FOR PREDICTING EXTREME WEATHER

SITUATIONS OVER 12 CONSECUTIVE TIME POINTS WITH 5 MIN APART

AT STATION BMTN, WHERE SHRUNK DATA TIME SERIES ARE

DERIVED FROM THIRD SEASON OF 2018, 2019, AND 2020

TEMP at CCLA and HUMI at LXGN (with small margins of

0.04 and 0.01). Moreover, MiMa surpasses its Macro variant

consistently by substantial gaps for all 20 cases in terms of

RMSE. Under the MAE metric, the MiMa model outperforms

its Micro variant in all cases except TEMP at CCLA (both by

the negligible margin of 0.02), and it always outperforms its

Macro variant by huge margins for all cases. Hence, this study

indicates the necessity for the MiMa model to incorporate both

ground observational data and atmospheric numerical outputs

for superior weather parameter forecasting.

E. Extreme Weather Forecasting

It is critical and interesting to evaluate the effectiveness

of MiMa modelets in handling extreme weather predictions,

which can be more challenging than typical weather fore-

casting. To this end, each time series of real-world weather

parameter readings is shrunk to retain only those extreme

readings, according to a chosen threshold. Here, the threshold

is set to be 5%, signifying that the top 5% or the bottom

5% of original data will remain in shrunk time series for

evaluation use. This article includes only the evaluation results

of Station BMTN for one season in 2018, 2019, and 2020, with

the 2018 and 2019 shrunk time series for model training. Six

extreme weather situations are considered, i.e., frigidity, tor-

ridity, storm, aridity, steaminess, and EHP, which are assumed

to be associated with the lowest temperature, highest temper-

ature, highest wind speed, lowest humidity, highest humidity,

and highest pressure, respectively. Specifically, the shrunk

time series composed of the lowest (or highest) 5% original

temperature-relevant data in the third season of 2018 and

2019 are employed to train modelets for predicting frigidity (or

torridity), with those of 2020 employed to compute prediction

accuracy metrics. The temperature-relevant parameter data can

be found in Tables III and IV. Likewise, the shrunk time series

with the lowest (or highest) 5% original humidity-relevant

data are obtained to train modelets for predicting aridity (or

steaminess). In addition, modelets for predicting storm and

EHP are trained respectively by the shrunk data time series of

the top 5% wind speed-relevant data and the top 5% pressure-

relevant data. For each extreme weather phenomena, we have

2592 (= 2 × 90 × 24 × 12 × 5%) training samples, and

1296 (= 90 × 24 × 12 × 5%) testing samples.

MiMa modelets are trained in the same way by shrunk data

time series as by original data time series described earlier, for

predicting parameter values at 12 subsequent time points 5 min

apart. The forecasting accuracy results of MiMa modelet and

their counterparts, with respect to the shrunk data time series

derived from the third season of 2020, are given in Table IX,

where the best ones are bold. As can be observed from the

table results, MiMa modelets accurately predict all extreme

weather situations except one (aridity), with their MAE values

staying within 0.50.

Forecasting extreme low humidity suffers from relatively

large inaccuracy, yielding MAE (or RMSE) equal to 5.49 (or

8.38). When compared with their counterparts (i.e., Micro and

WRF-HRRR), MiMa modelets predict all extreme weather

situations more precisely, by solid margins. For example,

the MiMa modelet enjoys 8.5% (or 11.2%) better aridity

prediction under the MAE (or RMSE) metric, than its best

counterpart, the Micro model. It achieves 26.3% (or 32.0%)

better EHP prediction than the Micro model in terms of MAE

(or RMSE).

VI. REGIONAL MIMA MODELING

To enhance the utility of MiMa modelets, we leverage

the transfer learning capabilities of modelets by incorporating

elevation data into the training process to let MiMa mod-

elets be trained on data from multiple stations. Specifically,
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TABLE X

RMSE AND MAE VALUES FOR Re-MiMa AT EIGHT STATIONS NOT INVOLVED IN MODELET TRAINING
⋄

we inject elevation-specific knowledge to modelets by adding

the elevation as an input parameter to both the Micro and the

Macro encoders depicted in Fig. 4. This allows the elevation

data to be tagged with corresponding Micro and Macro data

during encoding, thus correlating Micro and Macro data with

the elevation data, giving rise to the development of Re-MiMa

(regional MiMa) modeling, whose structure is identical to

Fig. 4, except for replacing its Xmicro (or Xmacro) input to the

Micro (or Macro) Encoder with XmicroRe
(or XmacroRe

), which is

specified below with the size of ⟨n×ζ, α+1⟩ (or ⟨n×ζ, β+1⟩).

In general, Re-MiMa modelets are trained using data from

a few (say, 3 or 4) representative stations in the region of

interest, along with their elevations. The representative stations

should cover the elevation range of the region, including those

with two extremes and one (or two) in-between elevations. The

input data frame of the Micro encoder comprises parameter

readings observed at those ζ representative stations, together

with their corresponding elevations, as follows:

XmicroRe
=

[

SF
(

R1
)

, SF
(

R2
)

, . . . , SF
(

Ri
)

, . . . , SF(Rn)
]T

where SF(Ri ) indicates the shuffling operation of Ri , which

signifies those ζ streams of α most relevant parameters

observed at those ζ representative stations involved in training,

plus stations’ elevations, at the i th timestamp, for 1 ≤ i ≤ n,

under the lookback window time window of n. The group of

ζ streams of Ri is given by

Ri =











P i
1,1 P i

1,2 P i
1,3 · · · P i

1,α Esta−1

P i
2,1 P i

2,2 P i
2,3 · · · P2

2,α Esta−2

...
...

...
. . .

...
...

P i
ζ,1 P i

ζ,2 P i
ζ,3 · · · P i

ζ,α Esta−ζ











where Esta is the elevation of the station involved in modelet

training. Those ζ streams of (α + 1) values in Group Ri for

the i th timestamp are shuffled randomly, to yield different

orders from one group to the next, expressed by SF(Ri ). This

shuffling strategy aims to prevent model training from being

biased toward the data observed at any single station, ensuring

that data from those ζ representative stations in a given region

are employed for training fairly without criticality. The Micro

encoder has its input size of (n × ζ ) by (α + 1).

Similarly, the input data frame of the Macro encoder com-

prises the values of the β most relevant parameters obtained by

WRF-HRRR computation of the ζ geogrids aligned with those

representative stations, plus their corresponding elevations,

as expressed by

XmacroRe
=

[

SF
(

R1
)

, SF
(

R2
)

, . . . , SF
(

Ri
)

, . . . , SF(Rn)
]T

where Ri is the same as what is outlined above, except that

each row contains β most relevant WRF-HRRR parameters.

Its size equals (n × ζ ) by (β + 1).

Training Re-MiMa modelets to cover the whole elevation

range of a given region, we can perform inference on sta-

tions not included in the training set, making it possible to

expand the model’s applicability and usability. For perfor-

mance evaluation, those eight Kentucky Mesonet stations (out

of 11 stations marked in Fig. 1) not involved in modelet train-

ing serve to benchmark Re-MiMa modelets, with the results

listed in Table X. Our evaluation adopts a proximity-based

approach, where observational data borrowed from the training

station closest in elevation to the target station (which has no

observational data but has corresponding WRF-HRRR data

and its elevation information) are used for prediction. As an

example, for predicting the CCLA station, which is situated

at 764 feet, the observational data from the FARM station

(which is involved in modelet training and located at 559 feet),

plus its elevation data serve as input to the Micro encoders

of Re-MiMa modelets. Leveraging elevation similarity within
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TABLE XI

RMSE AND MAE VALUES FOR 17 ADDITIONAL MESONET STATIONS IN THE KENTUCKY REGION ALONG WITH THEIR RESPECTIVE ERRORS
§§
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TABLE XI

(Continued.) RMSE AND MAE VALUES FOR 17 ADDITIONAL MESONET STATIONS IN THE KENTUCKY REGION ALONG WITH THEIR RESPECTIVE

ERRORS
§§

the region for high accuracy, this approach lets Re-MiMa

modeling generalize well to forecast new (ungauged) locations

by borrowing the elevation-closest observational data available

in the region, thereby enhancing the robustness and reliability

of predicting ungauged locations.

Table X lists the mean errors when predicting weather

parameters at all time points under the 5-min granularity

over 16 days chosen arbitrarily in the third season of 2020.

They demonstrate that Re-MiMa modeling achieves superior

prediction performance for stations that are not included in

model training. This ability of Re-MiMa modelets stems from

transfer learning, enabling accurate forecasts for any location

in a given region. For example, the RMSE values of TEMP (or

PRES) for all eight stations are limited to 1.05% (or 0.03%).

Note that the RMSE value of WSPD at ELST is the largest,

equal to 0.43, which translates to ∼104%, implying that the

station experiences light to no wind most of the time. Interest-

ingly, the Re-MiMa modelets often outperform their original

MiMa counterparts. When comparing Table VI (for the results

of MiMa modelets) and Table X, it reveals that Re-MiMa

modelets provide better forecasts for 22 cases (out of 32),

in terms of the RMSE metric. This is likely due to two key

reasons: 1) data from ζ representative stations are employed

for training, instead of data from one single station and

2) training data from those ζ stations are shuffled randomly,

able to effectively mitigate the risk of the model overfitting

to the unique characteristics of one particular station. With

data from multiple stations shuffled randomly upon training,

it not only prevents the modelets from learning station-specific

patterns that might not generalize well but also encourages

them to recognize broader trends and relationships present

across different stations. Re-MiMa modelets are valuable in
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practice due to their high prediction accuracy at any location

(be ungauged or gauged) in a given region based on observa-

tional data from just a few representative stations therein.

VII. CONCLUSION

This article presents a novel ML model that integrates

ground measurements (the Micro dataset) and atmospheric

numerical outputs (the Macro dataset) for the first time.

This model, referred to as the MiMa model, aims to deliver

precise, location-specific weather parameter predictions over

short-term time horizons in fine resolutions (e.g., 5 or 15 min).

Utilizing the transformer structure with two encoders and one

decoder that all comprise LSTM units, our model effectively

captures temporal variations in weather conditions and incor-

porates two key data sources to forecast relevant weather

parameters for each mesonet station location via a single

model instance per parameter, termed a MiMa modelet. Fur-

thermore, transfer learning is leveraged to generalize MiMa

modelets for accurately predicting weather variables at any

location in a given region, utilizing the observational data of

just a few representative stations (often 3 or 4), plus stations’

elevations, to train modelets. It arrives at Re-MiMa modelets,

with one for each parameter type throughout the whole region.

Experimental results from various Kentucky Mesonet sta-

tion locations demonstrate that our modelets usually achieve

the best meteorological forecasting (for 39 cases out of 44,

under the RMSE metric) with fine temporal granularity among

all examined models. Furthermore, Re-MiMa modelets are

observed to perform as well as, or even better than (in 22 cases

out of 32), their location-specific MiMa counterparts, making

it possible to reduce the modelet count without compromising

forecasting accuracy. The developed Re-MiMa modelets effec-

tively meet the long-standing challenge of precise forecasts

at ungauged locations. Providing accurate regional forecasts

over short time horizons in the fine temporal resolution (e.g.,

at 5 or 15 min), MiMa and Re-MiMa modelets address

the real-world socioeconomic needs of various sectors that

rely on real-time, weather-oriented decision-making. They

are ready for widespread deployment in any region where

near-surface observational data is available for superior fore-

casting accuracy.

APPENDIX

See Table XI.
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