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Probability Density Function (PDF) methods, which allow for the direct integration
of chemical kinetics, are well established to accurately simulate turbulent flames with
strong turbulence-chemistry interactions. While adaptive chemistry techniques have
been proven effective in reducing the high CPU cost and memory requirements asso-
ciated with the handling of chemistry in such simulations, performance metrics have
mostly been focussed on the primary oxidation pathways converting fuel to major prod-
ucts. In contrast, this work investigates the ability of adaptive techniques, in this case,
the pre-partitioned adaptive chemistry (PPAC) approach, to handle secondary kinetics
pathways that are parallel, but tightly coupled to the main oxidation process, taking
NOy formation as a case study. PPAC relies on a partitioning of the composition space
into a user-specified number of regions, on which specialised reduced models are gen-
erated using the Directed Relation Graph with Error Propagation (DRGEP) reduction
technique. The direct application of that methodology to a mix of hydrocarbon oxida-
tion and nitrogen-related targets is shown to yield excessively detailed region-specific
reduced mechanisms in order to properly capture both the main oxidation and the
secondary NOy formation processes, thereby decreasing the benefits of the adaptive
approach. To address this issue, a sequential approach is proposed for the generation
of the region-specific reduced mechanisms, in which the primary combustion pathways
relevant for each region are identified first, followed by the selective addition, directly
at the reduced level, of any secondary pathways relevant for that region using a recently
developed build-up technique. This new strategy is assessed in the context of propane
combustion in a partially stirred reactor (PaSR) and methane combustion in the San-
dia Flame D configuration, demonstrating in both cases the benefits of the sequential
approach for reduced model generation.

Keywords: adaptive chemistry; PPAC; DRGEP; building algorithm; LES/PDF

1. Introduction

With recent developments in combustion research, using accurate chemical kinetic mod-
els has become essential to simulate multidimensional reactive flow problems. However,
accommodating such detailed chemistry in actual computational fluid dynamics (CFD)
simulations for realistic fuels and their surrogates is still prohibitively expensive. Espe-
cially for turbulent combustion models based on a particle LES/PDF approach, the CPU
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cost and memory requirements of retaining the full species state vector to evaluate the
chemical source term impose a low upper limit of the number of variables that can be used
to describe the chemistry [1].

Adaptive chemistry approaches, which tailor the fidelity and size of the kinetic models
used for reaction integration to the local flame conditions, have gained significant attention
recently due to their ability to accurately describe the relevant combustion kinetics with
significantly fewer variables and equations. The reduced mechanisms can be developed
on-the-fly [2-4] or in an offline pre-processing stage [5-8]. The pre-partitioned adaptive
chemistry (PPAC) [7] follows the latter approach: a set of reduced models is developed in
an offline, pre-processing step by partitioning the composition space into several regions,
and applying the DRGEP technique [9] in each of those regions using a sample composi-
tion database assumed to be representative of the composition space accessed at runtime.
Those models are then dynamically selected and used in the actual CFD simulation based
on local conditions. This technique has shown good performance in both partially stirred
reactors (PaSR) [7, 10] and LES/PDF simulations [11]. However, in all cases, the per-
formance metrics were defined in terms of the main combustion features: prediction of
temperature and mass fractions of species directly involved in the hydrocarbon oxidation
process. In this work, we further investigate the performance of PPAC, taken here as a
representative of adaptive chemistry approaches, in accurately capturing both the main
oxidation pathways and some secondary chemical process whose kinetics are driven by,
but remain distinct from, the combustion itself. We take NOy formation as a specific case
study.

In DRGEP-based PPAC, the region-specific reduced kinetic mechanisms are obtained by
ranking species and reactions by their importance in the prediction of a set of targets (e.g.
species or heat release), and removing from the detailed mechanism those species and reac-
tions deemed unimportant. Typical targets included to capture the main oxidation process
are heat release, fuel, and some major products (CO,) or radical (OH). Capturing the path-
ways associated with NOy formation requires the addition of nitrogen-containing targets,
the most obvious choices being NO and NO,. We show in the following that when NOy
species are included in the set of targets, the DRGEP reduction procedure becomes overly
conservative compared to the oxidation-only case, yielding region-specific reduced models
much larger than one would expect for a given level of accuracy in targets prediction.

To address this issue, we propose a sequential approach to the generation of the
region-specific kinetic models that leverages a new additive procedure for kinetic model
reduction [12]. First the fuel oxidation pathways are identified in each region of the com-
position space using the original PPAC methodology, only including oxidation species as
targets. This initial step is followed by selectively adding, directly at the reduced level, the
appropriate NOy reactions using the “building” algorithm recently developed by Heberle
etal. [12].

This paper is organised as follows: the configurations and simulation frameworks used
in the study, namely a partially stirred reactor and a CFD solver with LES/PDF capabilities
are presented in Section 2, followed by a brief description of the two algorithmic compo-
nents of this work: PPAC [7] and the building algorithm [12] in Section 3, and how those
two components are integrated into the sequential procedure for region-specific reduced
model development. The results of the two specific cases investigated as part of this work,
a propane/air partially stirred reactor and a LES/PDF of Sandia Flame D are then presented
and analysed in Section 4. Conclusions are provided in Section 5.
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2. Numerical framework

Two numerical configurations are used in this work: a zero-dimensional partially stirred
reactor, and a LES/PDF three-dimensional turbulent flame. A brief description of each that
includes the most relevant information is provided here, the reader being referred to the
cited work for additional details.

2.1. Partially stirred reactor (PaSR)

A PaSR represents a statistically spatially homogeneous flow-field with a constant num-
ber of particles evolving in time according to three distinct processes, or fractional steps:
inflow/outflow, mixing, and reaction. In the inflow/outflow step, particles are selected ran-
domly, and their compositions are replaced by fixed inflow compositions according to a
user-specified residence time and stream mass flow rates. A pairwise mixing model is then
used to partially mix compositions (¢" and ¢**! for particles n and n + 1, respectively)
between randomly chosen pairs of particles [13] based on a user-specified mixing time
scale, Tmix:

dqb(”) ¢(n) _ ¢(n+l)

dr Tmix
d¢(n+1) <b(n-H) _ ¢(n)
=— . (1)
dr Tmix

Finally, all compositions evolve in time due to reaction under adiabatic, isobaric condi-
tions:

d¢(n) _ -
” =S") 2

where S is the rate of change due to chemical reactions (or chemical source term) of com-
position ¢™. A PaSR first goes through a transient stage for a few residence times before
reaching a statistically stationary state. The PaSR implementation used in this work is
described exhaustively in Liang et al. [7].

2.2. LES/PDF flow solver

The LES/PDF of Sandia Flame D is a hybrid mesh-particle method, which is performed
here using the variable density low-Mach solver NGA [14]. The LES solver computes
the filtered velocity field with second-order accurate discretization in space and time. The
turbulent viscosity and diffusivity are computed using a Lagrangian dynamic subgrid-scale
model [15].

For the reacting flows, a Lagrangian particle PDF method has been implemented in
NGA [11] to solve for the one-point one-time joint density weighted filtered PDF of species
mass fractions and enthalpy. In this approach, an equivalent particle system is designed to
represent the PDF and its evolution. For each particle, a set of stochastic differential equa-
tions (SDE) is solved to account for particle transport, mixing, and reaction [16]. These
SDEs are integrated using a simple first-order splitting method. The transport fractional
step updates the particle position in physical space, the mixing fractional step handles
changes occurring in particle compositions due to molecular mixing, and the reaction frac-
tional step advances particle compositions to account for chemical reactions. The transport
fractional step is performed using a simple forward Euler method. The mixing fractional
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step uses the IEM model [17]. Finally the reaction fractional step is performed efficiently
using a dynamic load balancing strategy [18].

The LES/PDF solver is two-way coupled, with the LES solver using a resolved density
computed from the PDF solution. Additionally, the resolved composition from the PDF
solver is used to compute the kinematic viscosity and molecular diffusivity. The resolved
velocity field and turbulent diffusivity from the LES solver are used to advance the particle
positions.

3. Methodology

Two key components are integrated in the proposed sequential approach for reduced
model generation: the adaptive chemistry approach itself, and the additive methodology,
referred to as the building algorithm below, used to identify the kinetics associated with
the secondary pathways.

3.1. Pre-partitioned adaptive chemistry (PPAC)

PPAC [7] is tailored for particle PDF methods to simulate turbulent combustion systems,
and consists of two stages: an offline pre-processing stage and the adaptive simulation
stage. The pre-processing stage entails the generation of a set of reduced models, and the
adaptive simulation stage selectively utilises those models during the reaction fractional
step. The pre-processing stage consists of the following steps:

(1) Database creation: A database of compositions is assembled first using the detailed
kinetic mechanism. The database is expected to be representative of the compositions
likely to be encountered at runtime.

(2) Partitioning: Using this database and a cutting-plane algorithm, the composition
space is partitioned into a user-specified number of regions, so that the compositions
in each region are kinetically similar. The partition is stored conveniently in the form
of a binary tree.

(3) Generation of Reduced models: A reduced kinetic model and its corresponding rep-
resentation are then generated for each region using DRGEP, the compositions in the
database belonging to that region, a set of user-specified targets, and an error cut-
off parameter .. The actual error is quantitatively measured a-posteriori by directly
comparing reduced and detailed predictions of the targets and temperature:

) e

where the maximum is taken over all particles in the database belonging to the region
‘R under consideration, Y7 (At) and T(A¢) are the targets mass fraction vector and
the temperature after At, and the superscripts D and R refer to the use of detailed and
reduced models, respectively.

.o <||YTD<Az>—YTR<Ar)||z TP (A1) — TR(AD)
R Yr2wanl, TP (A1)

During the actual simulation, the key steps through which a particle composition evolves
in time are as follows:

(1) Reconstruction: Before the mixing fractional step, the detailed representation of the
particle composition is reconstructed from its reduced skeletal representation.



1102 P. Sharma et al.

(2) Mixing: In their detailed representation, the compositions are mixed following
Equation (1).

(3) Classification: After mixing, each composition is classified into one of the regions
using an efficient low-dimensional binary tree search algorithm.

(4) Reduction: Each particle composition is then converted to its reduced skeletal
representation corresponding to the region it belongs to.

(5) Integration: The particle compositions in their reduced representations are then
advanced in time due to reaction following Equation (2).

A full description of the PPAC algorithm is provided in [7].

3.2. Building algorithm

The building algorithm is a DRGEP-based iterative bottom-up approach to generate
reduced kinetic mechanisms. Unlike the conventional graph-based reduction methods that
rely on simulations using the detailed mechanisms to identify and remove unimportant
species and reactions in a top-down fashion, the building algorithm follows an add-as-
needed approach. Here the reduced mechanisms are progressively “built” with reactions
selected from the detailed mechanism using a DRGEP-derived criterion in order to accu-
rately predict the evolution of a set of user-defined targets, 7. Most importantly, this
algorithm provides a framework to incrementally expand existing reduced models to
accommodate a wider range of conditions, or to include new chemical pathways, such as
NOy chemistry in this work. A summary of the algorithm as used in this paper is provided
here, with further implementation details available in Heberle et al. [12].

Let’s consider a set of compositions, an initial reduced mechanism My, a time interval
At, a list of additional target species that were not accounted for in the original reduction
T8, and a desired error cut-off parameter .. The objective of the building process is to
identify a minimal set of additional reactions required to properly capture the evolution of
each composition over the time interval Af within an error ¢ < .. Since ¢ is an a posteriori
measure, that is, it can only be calculated when the reduced mechanism is known, a surro-
gate criterion corresponding to a DRGEP coefficient cut-off, eprggp, is used instead during
the building process. eprggp 1S initialised to a large value. The steps are as follows:

(1) We define the edge of the mechanism M, denoted by § M, as the set of reactions
from the detailed mechanism that satisfy one of the following conditions: (a) every
reactant in the reaction is already present in M, or (b) every product in the reaction is
already present in M. The union of M and § M is called the test mechanism (M).

(2) DRGEP reaction coefficients (as defined in [9]) are computed for all compositions
using M over the time interval At.

(3) Reactions in § My with a DRGEP reaction coefficient larger than eprggp are added to
M.

Steps 1-3 are repeated with the updated M, until there is no reaction left in § M sat-
isfying the criteria in step 3. At this point, the actual error metric ¢ is evaluated. If it is
larger than &, the process is restarted using a smaller eprggp in order to refine the resulting
reduced model. The process stops when & becomes smaller than ¢..
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3.3. Additive treatment of secondary pathways in PPAC

In the regular PPAC process (simply labelled “PPAC” below), the region-specific reduced
models for a given &, are directly obtained using a single set of targets including both
oxidation and nitrogen-related species. In contrast, when using the building algorithm to
handle the secondary processes, the algorithm, labelled “PPAC-Additive” below, proceeds
in two distinct stages, both done during pre-processing:

(1) Reduction: In the first stage, region-specific reduced models are generated according
to the desired error cut-offs, but using the oxidation targets only.

(2) Building: In the second stage, starting from the oxidation-only reduced mechanisms,
the building algorithm is applied using a set of targets relevant for the secondary pro-
cesses only (e.g. NO, NO,, and heat release). The second stage stops when all regions
satisfy their error cut-off criterion, now defined based on the secondary set of targets.

The resulting region-specific models are then used in a similar way during the adap-
tive simulations. The next section quantifies in two different configurations the benefits of
using the latter, 2-stage approach. To improve the treatment of PPAC-Additive, two addi-
tional modifications are performed compared to the original PPAC and building algorithm,
discussed in the previous sections.

(1) M1: The first key modification is in the PPAC algorithm itself. The error cut-off param-
eter &, in the pre-processing stage of PPAC is combined with a scaling process similar
to the one initially developed for DRGEP [9], to create a region-specific cut-off, which
allows for greater model reduction in regions where the targets are less chemically
active. The region-specific error cut-off &’ for region i is defined as:

1
g, = S—IC where ag = M “4)
ag max; (&) eT

where o! is the scaling coefficient of target ¢ corresponding to the compositions that
belong to region i [7, 9], and (-),.7 denotes the mean over the set of targets, 7. In
essence, a; is unity for the most important region for 7, and a lower than unity value
of oziG results in an increase in sf., and therefore, more reduced models. Note that in
PPAC-Additive, ¢, is set to the same value for both reduction and building stages.
However, because the targets and their corresponding scaling coefficients are different
in these stages, the values of region-specific ¢’ do vary across regions and between the
two stages.

(2) M2: The building algorithm is modified in PPAC-Additive from its original form [12]
as described below:

a. (a)In the building stage of PPAC-Additive, both species and reaction DRGEP coef-
ficients are evaluated for M*. Then reactions in § M, with a DRGEP reaction
coefficient larger than eprgep and involving the species with the highest DRGEP
coefficients are added to M.

b. (b)In contrast to the original building algorithm where eprggp is set to a fixed
value [12], eprgep in PPAC-Additive is adjusted iteratively in each region until
all reactions needed to bring the error below the corresponding region-specific
error threshold ¢’ have been added. Therefore, the cut-off parameter &, is the only
parameter that needs to be specified by the user.
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4. Results and discussion
4.1. PaSR configuration

The first configuration under consideration is a non-premixed piloted propane-air PaSR.
The detailed propane mechanism used is that of Petersen et al. [19], with an added NOy
sub-mechanism [20], yielding a mechanism with 140 species and 1695 reactions. The PaSR
parameters are those used in [7], with 100 particles and three inflow streams: pure fuel,
air, and a burnt gas pilot. The PaSR is initially run for three residence times after which
it reaches a statistically stationary state. 10,000 distinct compositions are then randomly
sampled over the next 10 residence times to form the composition database. The number
of regions is specified to be 10. The oxidation targets are the fuel, CO,, CO, OH, and heat
release, the nitrogen related targets being NO and NO,.

First, we compare the error incurred in the prediction of the NO mass fraction and the
temperature obtained during the adaptive simulation when using the region-specific models
obtained with PPAC and PPAC-Additive, as a function of the relative number of species
used in the kinetic models in each case. The incurred error for a quantity X is defined as:

ne n, |X(n),A _ X(n),Dl
8X — k=1 Zn:l k k , (5)

n, np, (n),D
kt=1 Zn:l |Xk |

where n; is the number of time steps and n,, the number of particles. Xk(”)’A and X,f")’D
represent the values of quantity X for particle n at the kth time step using the adaptive
and detailed chemistry, respectively. The relative number of species used throughout the
simulation is defined as:

1 n Ny

(n),A
Nyl = n, ) (6)
e nnn, Z Z 5.k

k=1 n=1

where ny is the number of species in the detailed model, and nf"k) A is the number of species
in the reduced model used by particle n at time step k. The comparison is shown in Figure 1.

For both model generation techniques, we observe, as expected, an increase in incurred
error for both temperature and NO mass fraction as the relative number of species
decreases, that is, as the region-specific models become more reduced. The temperature
curves for both approaches are very similar, indicating that a similar level of reduction will
yield a similar error in temperature prediction for both approaches. However, the trend
is noticeably different when looking at NO prediction. At very low incurred error levels,
corresponding to 80% of the species included on average in the region-specific models,
the two methodologies do not show any notable difference. However, as the incurred error
increases, the relative number of species required to reach a given error in the prediction
of NO is observed to be significantly smaller in the PPAC-Additive case compared to the
regular PPAC. For instance, to achieve a 3% error in NO mass fraction, PPAC (point ‘1’
in in Figure 1) requires 75% of the detailed species, as opposed to only 56% for PPAC-
Additive (point ‘2’): the model reduction done accounting for all targets at once, oxidation
and NOy formation, appears significantly less efficient at identifying reliably the dominant
pathways necessary to predict NO formation.

Exploring this key observation further, n, is divided into two components: the relative
number of oxidation species, 1 0x, and nitrogen-containing species, 1 No,, both nor-
malised by n,. Those two numbers are plotted against exo in Figure 2. In both approaches,
NrelNO, turns out to be very similar, attributing the difference in n. observed in Figure 1
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--a-- NO (PPAC-Additive) N4
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Figure 1. Relative number of species as a function of incurred error in temperature (circles) and
NO mass fraction (triangles) for PPAC (black solid line) and PPAC-Additive (red dashed line) com-
pared to the non-adaptive case. Points marked as ‘1’ and ‘2’ are used for further analysis in the
text.

solely to an excess number of oxidation species selected by the regular, all-targets-at-once,
reduction procedure.

During the reduction stage of PPAC, the unimportant species are removed according
to their DRGEP species coefficients, which are calculated over all targets of interest.
The results above provide evidence that conventional graph-based reduction methods that
require users to specify a list of targets of interest do not optimally handle sets of targets
associated with chemical pathways very different in nature, e.g. in this case, the primary
pathways (fuel oxidation) and the pollutant formation (NOx chemistry). When different
targets are handled without distinction, unimportant oxidation species are added prior to
the addition of important nitrogen-related species, their DRGEP species coefficients being
lower and consequently appearing much later in the importance ranking. The additive
procedure highlighted in this work effectively decouples primary and secondary targets,
enabling a more selective identification of the species involved in the secondary process
and its coupling to the primary combustion pathways.

Further region-specific analysis can be done by comparing the models corresponding to
point ‘1’ (PPAC) and ‘2’ (PPAC-Additive), since both result in a similar incurred error. In
particular, we can investigate the difference in the number of oxidation species retained in
each region between those two cases, normalised by the number of oxidation species in
the detailed mechanism. The results are plotted in Figure 3. The secondary y-axis shows
the probability P, of a particle to be classified to region J during the adaptive PaSR
simulation. The kinetic model associated with Region 1, which is most frequently used
(~ 50% of the particles) contains 18% more oxidation species when the additive process
is not used and all targets are handled together, thus contributing the most to the differ-
ence observed in Figure 1. On the other hand, the kinetic model associated with Region 9,



1106 P. Sharma et al.

oxidation -
0.6;  species (e, 0x) S

—e— OX (PPAC)

5 0.4} ~-*- OX (PPAC-Additive)
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s NO, (PPAC-Additive)
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NO, species (7rel, NOx)
il ' S T " S
0.0} , , . . el
10° 10 10° 10 10" 10°
ENO

Figure 2. Relative number of oxidation (“OX” in legend) and NOy species as a function of incurred
error in NO mass fraction for PPAC and PPAC-Additive.

although containing the same number of oxidation species in both cases, is only used for
3% of the particles. Figure 4 shows the average wall clock time per time step relative to the
detailed simulation. As a direct result of the difference in the number of species retained,
the additive procedure for the generation of the reduced models also significantly impacts
the CPU cost of the adaptive simulations, with for example, a 23% reduction in wall clock
time per time step between PPAC-Additive (‘2°) and the regular PPAC (‘1").

Finally, to emphasise the importance of the modifications M1 and M2 mentioned in
Section 3.3, the same PasR simulations are run using PPAC-Additive without those mod-
ifications, which we label PPAC-Additive-No-Mods in the following. We compare the
error incurred in the predictions of temperature and NO mass fraction for PPAC, PPA-
Additive, and PPAC-Additive-No-Mods as a function of n, in Figure 5. As expected, we
observe that PPAC-Additive-No-Mods requires significantly larger models to achieve the
same level of accuracy compared to the original PPAC-Additive. Indeed, without M1, all
targets are considered equally active and important, forcing the algorithm to retain their
associated production and consumption pathways even when those can safely be neglected
(e.g. fuel decomposition pathways in regions associated with post-flame chemistry). In
addition, M2 provides a more sequential, and therefore more discriminating process to add
reactions to the models, which is shown to be quite effective.

4.2. LES/PDF of sandia flame D

The additive reduction approach is next assessed in the context of LES/PDF with the
simulation of Sandia Flame D [21]. The cylindrical configuration is 60D and 20D in the
axial and radial directions, respectively. A non-uniform 192 (axial) x 140 (radial) x 32
(azimuthal) mesh is used. The mixing model constant is specified to be 4, and the number
of particles per cell is chosen to be 25 [11]. GRI Mech 2.11 [22] with 48 species and 554
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0.051

0.00-

Region index

Figure 3. Region-specific difference in the number of oxidation species retained by the PPAC and
PPAC-Additive reduction procedures, corresponding to an equivalent incurred error in the adaptive
simulation. The circles indicate the probability of a particle to be in region J, P;.

0.8 L '—.— PPAC 1
=~ —-e- PPAC-Additive
0.6} ]
50.4 ]
0.2} ]
0.0 | | | |
10° 10 10° 10 10" 10°
ENO

Figure 4. Average clock time per time step relative to the detailed simulation as a function of
incurred error in NO mass fraction for PPAC and PPAC-Additive.
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Figure 5. Relative number of species as a function of incurred error in (a) temperature, and (b)
NO mass fraction for PPAC (black solid line), PPAC-Additive (red dashed line) and PPAC-Additive
without modifications M1 and M2, compared to the non-adaptive case.

reactions is used for these computations. To accelerate the LES/PDF calculations, in-situ
adaptive tabulation (ISAT) [13] is used in all LES/PDF runs. The ISAT tolerance is speci-
fied to be 10~*, and the maximum table size is set to 500 MB for the detailed mechanism.
During the adaptive simulation, the region-specific ISAT tables are allowed to reach a max-
imum size of 50 MB. The additional error introduced by ISAT is assumed to be negligible
compared to the error introduced by the chemical reduction itself.

As the focus of this work is the performance of the additive reduction procedure in
handling NO, formation in an adaptive chemistry LES/PDF simulation, the composition
database for the partitioning and reduction is obtained by down-sampling the composi-
tion particles obtained from an instantaneous snapshot of the detailed LES/PDF of the
Sandia Flame D itself. The targets and number of regions are the same as for the PaSR
case, and the partitions and region-specific kinetic models of varying levels of reduction
are obtained in a similar fashion as above, using methane oxidation and nitrogen targets
together (PPAC) or first using methane oxidation targets only, followed by the addition of
reduced NOy pathways using the building algorithm (PPAC-Additive). The incurred errors
for the LES/PDF cases are obtained from Equation (5) by integrating the database com-
positions over 50 time steps using the detailed mechanism as reference. The incurred error
in temperature and NO mass fraction as a function of the relative number of species used
is plotted in Figure 6

Similarly to Figure 1, the results clearly show that for a given incurred error in NO mass
fraction, the additive procedure yields smaller region-specific models. Figure 7, which
breaks down the number of species into oxidation and nitrogen-containing species, con-
firms again that the difference in reduced model sizes comes primarily from an excessive
number of oxidation species selected when oxidation and NOy targets are handled together.

Two full-scale Sandia D flames are then simulated using the sets of models obtained
with PPAC and PPAC-Additive generating less than 0.5% incurred error in NO mass frac-
tion (Point ‘1’ for PPAC and point ‘2’ for PPAC-Additive in Figure 6). Note that in the
PaSR case, the points corresponding to PPAC and PPAC-Additive were chosen based on
a 3% error level (Figure 1). That incurred error was evaluated over multiple residence
times involving both reaction and mixing in a PaSR. In contrast, the error evaluation in
Figure 6 is more sensitive as it involves integrating the chemical source terms over a sig-
nificant amount of time without any stabilising mixing processes. This extra sensitivity is
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Figure 6. Relative number of species as a function of incurred error in temperature (circles) and
NO mass fraction (triangles) for PPAC (black solid line) and PPAC-Additive (red dashed line) com-

pared to the non-adaptive case. Point ‘1" and ‘2’ are chosen for the full scale Sandia D runs from
PPAC and PPAC-Additive, respectively.

0.5} '
oxidation “‘~~~‘\
0.4f  species (el 0x) ~o_ ]
503 '
NO, species (frel, NOx)
h
02 T - '

—e— OX (PPAC)
--e- OX (PPAC-Additive)
0.1f —— NO, (PPAC)

--a-- NO, (PPAC-Additive)

10° 102

ENO
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error in NO mass fraction for PPAC and PPAC-Additive.
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Figure 8. Instantaneous particle distribution coloured by temperature (left), NO mass fraction
(middle) and index of the model used for reaction source term integration (right).

accounted for by choosing a smaller error cut-off for the selection of the reduced kinetic
models, so that the overall LES/PDF error evaluated on average species and tempera-
ture profiles is of the order of a few per cent. Figure 8§ shows the instantaneous particle
distribution for the PPAC-Additive (or PPAC)-ISAT LES/PDF simulation coloured with
temperature on the left and NO mass fraction in the middle. The right panel shows the
same particle distribution coloured with the index of the reduced kinetic model used by
the corresponding particle for the chemical source term integration. Figures 9(a ,b) show a
break down of the number of oxidation and NOy species in each of the models for PPAC
and PPAC-Additive, respectively, using the same colour map as the right panel of Figure 8.

We observe that the particles in the co-flow region use the reduced model involving the
smallest number of species for both PPAC and PPAC-Additve (model 1). The maximum
NO mass fraction pockets coincide with regions of higher temperature across the flame
brush. These regions can be attributed to the thermal route of NO formation, which is
clearly the most important NOy pathway in Sandia Flame D. Additionally, most of the
particles in these high temperature pockets are integrated by model 6, which includes
the chemistry associated with interaction of N, species with O or OH, important in NO
formation. In case of both model 1 and 6, which are the two most used models in the
LES/PDF runs, PPAC models contain 35% more oxidation species than PPAC-Additive
models, respectively (Figure 9). On the other hand, the prompt NO pathways, which are
dominated by the production of HCN from CH (Fenimore mechanism), are mostly covered
by models 5 and 9. The regions with maximum N,O mass fraction coincide with particles
using model 8, which covers the less important N, O-related pathways. The other models
with high NOy species observed in Figure 9 share both thermal and prompt NO pathways.
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mechanism for (a) PPAC, and (b) PPAC-Additive. The colour pattern matches that of the right panel
of Figure 8.
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Figure 10. Comparison of radial profile of the experimental (Exp) and the computed (Detailed,
PPAC and PPAC-Additive) resolved mean and RMS of temperature and NO mass fraction at two
different axial locations: 15D and 30D.

Finally, the models with the fewer number of nitrogen-containing species are primarily
used near the fuel jet core and in the surrounding area of the flame, where the temperature
is low. Overall, the PPAC run utilises approximately 18% more relative number of species
(Equation (6)) than PPAC-Additive for the reaction fractional step over two flow-through
times, resulting in a 5% reduction in wall clock time per time step for the latter. Note
that consistent with the PaSR results presented above, the speed-up is expected to increase
considerably when dealing with larger kinetic mechanisms due to the combined effect of a
much higher potential for reduction (methane combustion can be described in detail with
less than 50 species only) and an increasing fraction of the computational time spent in
chemistry-related calculations during the LES/PDF simulation.

Figure 10 compares the radial profiles of the resolved mean and RMS of temperature
and NO mass fraction obtained from the detailed, PPAC-Additive and PPAC simulations
at two different axial locations, 15D and 30D from the burner exit (D is the burner diame-
ter). Statistics have been collected for two flow-through times. To quantify the difference
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between the adaptive (PPAC-Additive or PPAC) and detailed simulations, we use the
normalised root mean square difference (RMSD) [23], defined as:

[%‘A — %-D]rms

&) = ;
© Erer

(7

where £4 and £P denote the quantities obtained from adaptive and detailed simulation,
respectively, &.r is the reference value of each quantity of interest. £°' is considered to be
1000K for temperature, and the maximum NO mass fraction among all the radial profiles
at both axial locations: 15D and 30D. The [-],,,s is computed over all the radial locations
at all the considered axial locations. We observe that as expected, there is no significant
difference between the adaptive simulations, with the RMSD values of resolved mean and
RMS of temperature and NO mass fraction remaining below 3% and 5% of the detailed
simulation from both PPAC-Additive and PPAC simulations, respectively.

5. Conclusions

A new approach for the generation of reduced chemistry models describing distinct, but
coupled chemical processes such as fuel oxidation and NOy formation has been presented
in the context of an adaptive chemistry approach. It relies on a sequential approach, in
which reduced models for the primary kinetic process are first developed, followed by a
selective addition, directly at the reduced level, of the reactions necessary to capture the
secondary chemistry process up to a user-level error tolerance. The procedure has been
assessed for NOy formation in two different configurations: a propane/air PaSR and a
LES/PDF of Sandia Flame D. The additive approach was found to be much more selective
in identifying the most important reactions pertaining to the secondary process, compared
to a traditional reduction approach where targets from both chemical processes are handled
simultaneously. The difference between both approaches can be attributed nearly exclu-
sively to an excess number of oxidation species in the traditionally reduced models that
are not related to the NOy formation, and not necessary for the proper prediction of the
main oxidation pathways.
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