Towards a Safe, Verified Runtime
Monitor for Embedded Systems: R2U2 in Embedded Rust*

Alexis Aurandt/0000—0003—2008—673X]
b
Phillip H. Jones[0000—0002-8220-7552] "4 Kristin Yvonne Rozier/0000—0002—6718—2828]

Towa State University, USA {aurandt, phjones, kyrozier}@iastate.edu

Abstract. Stream-based runtime monitors can effectively verify specified system be-
havior in a real-time online manner, but the effectiveness of these monitors relies heavily
on complying with the system’s timing and resource constraints and the correctness
of the monitor’s implementation. The R2U2 runtime monitoring framework provides
real-time guarantees and a resource-aware architecture; however, we further reduce
R2U2’s overhead by optimizing both Mission-time Linear Temporal Logic (MLTL) and
past-time MLTL (ptMLTL) operators and their corresponding instruction formats. We
evaluate our optimizations on a suite of benchmarks and observe a significant decrease
in latency and memory requirements. To improve the correctness guarantees of R2U2,
we manually transpile the previous C version to safe embedded Rust and verify the
correctness with hand-constructed proofs, testing, and code verification with Verus. We
specifically target safe embedded Rust (i.e., no_std) to allow for deployment on embedded
platforms with bare-metal environments (e.g., microcontrollers), and we provide complete
proofs for all of R2U2’s operators and verify the Rust code implementation of 25 of
these operators with Verus code contracts.

Keywords: Stream-based Runtime Monitor - Mission-time Linear Temporal Logic -
Past-time Mission-time Linear Temporal Logic - R2U2 - Embedded Rust - Verus.

1 Introduction

Stream-based runtime monitors analyze an input stream of system data against a set of system
requirements and produce an output stream of corresponding verdicts. These monitors enable the
detection of requirement violations in a real-time online manner, enabling appropriate mitigation
actions to be taken [8,22]. When online runtime monitors are executing onboard an existing sys-
tem, they must fit within the system’s timing and resource constraints to produce verdicts in real
time. The integration of runtime monitors also raises the question, “How can we trust that the run-
time monitor is correct?” as incorrect violation detections can negatively impact a system [9,23].

The R2U2 (Realizable, Responsive, Unobtrusive Unit) stream-based monitoring frame-
work is known for its real-time guarantees and resource-aware architecture [26,29,42.45],
and the success of R2U2 has been exemplified by its deployment on several mission-critical,
resource-constrained, real-time systems [5,13,15,24,25,29,44]. R2U2 supports both past-time
and future-time monitoring, but most of R2U2’s recent optimizations have only been applied to
R2U2’s future-time monitoring capabilities (e.g., [26,29,42]). R2U2 natively encodes Mission-
time Linear Temporal Logic (MLTL) as its future-time logic but encoded ptMTL [2,32], instead
of ptMLTL, as its past-time logic. To aid in consistency and decrease the resource overhead
of R2U2’s past-time monitoring, we formally define ptMLTL and encode ptMLTL operators
similar to R2U2’s latest future-time optimizations in [29]. Furthermore, we decrease R2U2’s
resource overhead by optimizing which MLTL and ptMLTL operators are directly encoded

* Supported by NSF:CPS Award 2038903. Additional details available at hstps://temporallogic.org/
research/R2U2Rust.

2 A. Aurandt et al.

in R2U2 and which are encoded via their semantic equivalent, and we further reduce memory
requirements by refining the format of the instructions R2U2 reasons over.

R2U2’s software implementation was previously only written in C. Given that both C and
C++ are unsafe languages that contain several memory safety vulnerabilities (e.g., [18,35,50]),
R2U2’s C implementation is susceptible to memory safety issues, e.g., reading or writing beyond
array bounds. Embedded Rust has become a popular alternative to C to eradicate such issues
with C code [39,47,48]. Therefore, to avoid the memory safety vulnerabilities that exist in
R2U2’s C implementation, we manually transpile from C to safe embedded Rust.

To the best of our knowledge, RTLola [11,21] and TeSSLa [28] are the only other runtime
verification frameworks that support a Rust implementation, but both of these tools only compile
to Rust code that utilizes the Rust standard library (i.e., std). Rust’s standard library requires
an operating system, which isn’t feasible on embedded systems with bare-metal environments
as required by some applications [5,19,24]; therefore, we specifically target embedded Rust
with no_std, which allows for systems with or without an operating system to utilize R2U2 [1].

To verify monitor correctness, the VeriMon [9,10,43] and Vydra [40] monitors were formal-
ized and verified in Isabelle/HOL and are executable using Isabelle-generated OCaml code. In
[12] and [14], executable OCaml code was extracted from a runtime monitor specified in Coq.
While utilizing proof assistants to produce verified monitors ensures correctness, these techniques
automatically generate code in languages not typically utilized for real deployment (e.g., OCaml,
Scala, Haskell) and may lack in optimizations that a human programmer would implement.
On the other hand, the developers of Copilot recently introduced the CopilotVerifier, which
generates What4 SMT queries to provide a mathematical proof verifying that the original Copilot
specification and the compiled C monitor are bisimilar [46]. Additionally, Lola specifications can
be generated into imperative Rust code and verified with generated Prusti code contracts in [21].
Both Copilot and Lola compile specification(s) into a monitor in an imperative language (i.e., C or
Rust) such that these techniques require verification of any newly compiled monitor, which can be
costly as in [21]. R2U2 differs in that it is a static monitor that can interpret any MLTL/ptMLTL
specification(s) at runtime, which makes it “more challenging” and “problematic” to verify [21].

To verify the correctness of R2U2’s implementation, we construct complete proofs for all of
R2U2’s directly encoded operators. Through hand-constructing these proofs, we found several
errors in the previous implementation of R2U2, which have now been corrected. To verify
the correctness of the Rust code implementation, we verify that the Rust code matches all
conditions in the proof using deductive code verification. We examined utilizing Creusot [17],
Prusti [3,4], and Verus [33,34] for verifying R2U2’s code and decided upon utilizing Verus due
to its applicability and usability in verifying R2U2’s implementation.

Our contributions include (1) syntax, semantics, and propagation delay semantics of ptMLTL
(Section 2), (2) new encoding of ptMLTL operators (Section 3.3), (3) complete proofs for all
of R2U2’s directly encoded operators (Section 3.2 and 3.3) (4) new implementation of R2U2 in
safe embedded Rust as a publicly available crate, ! (5) significant latency and memory reductions
of R2U2 (Section 3, 3.4, and 3.5), and (6) deductive code verification with Verus (Section 4).

2 R2U2 Overview

2.1 Mission-Time Linear Temporal Logic (MLTL) [36,42]

MLTL (or ptMLTL) is a variant of LTL (or ptLTL) over finite traces with temporal intervals
that are bounded, closed, and discrete. MLTL and ptMLTL express the most commonly utilized
future and past-time fragments of MTL [2,32] and STL [37].

U https://crates.iof/ crates/r2u2 core

Towards a Safe, Verified Runtime Monitor for Embedded Systems 3

Definition 1. (MLTL Syntax) The syntax of an MLTL formula ¢ over a set of atomic proposi-
tions AP is recursively defined as:

pr=true | false | p | = | YAE | YVE| Op | O | YU € | Ry €
where p € AP is an atom, ¢ and & are MLTL formulas, and I is a closed interval [/b,ub] where
{b and ub denote the lower and upper bound, respectively, such that /b <ub and {b,ub € Ny.

Definition 2. (ptMLTL Syntax) The syntax of a ptMLTL formula ¢ over a set of atomic
propositions AP is recursively defined as:

pri—true | false | p | b | OAE | OVE | B b | Oy 6] 0 Sy €| T €
where p € AP is an atom, 1) and £ are ptMLTL formulas, and [is a closed interval [Ib,ub] where
b and ub denote the lower and upper bound, respectively, such that /b <wub and Ib,ub € Nj.

Definition 3. (Finite Trace) A finite trace, denoted by r, is a finite sequence of sets of atomic
propositions. The i*" set is denoted by (i) and contains the atomic propositions that are
satisfied at the i*" time step. || denotes the length of 7 (where || < 00), and [lb,ub] denotes
the trace segment (1), w(lb+1),...,m(ub).

Definition 4. (MLTL Semantics) We recursively define 7,i = (finite trace 7 starting from
time index ¢ > 0 satisfies, or “models” MLTL formula () as

o Til=true
mil=p for pe AP iff pew (i)
i =) iff i e
miEY AEiff miEYyand i€
milEY VvV Eiff miEYyormiEE
70,1 = Opip,u) ¥ 1ff |7 <i+1b 2or Vg€ [i+1bi+ub), 7,5 =
7,0 = O, Iff || >i+1b % and 3j € [i+1b,i+ub] such that 7,5 =1
i = Upp) § ff | >i+10 2 and 3j € [i +1b,i +ub] such that 7,5 = ¢ and Vk < j
where k € [i+1bi+ub), Tk EvY

o i =Y Ry & iff 7| <i+1b 2 or if 35 € [i+1b,i+ub] where ,j F~ &, then Tk < j

where k € [i+1b,i+ub] such that 7.k |=1)

Given two MLTL formulas ¢/ and &, they are semantically equivalent (denoted by ¢ =¢) if
and only if 7 =< 7 j=£ for all traces . MLTL also keeps the standard operator equivalences
from LTL, including false=—true, 1) V E=—(—) A =€), p =+ E=—pVE P+ E=—(YBE),

(v Uy &) = (=) Ry =€), = =0 b, Orip = (true Uy 1), and Op¢p = (false Ry v)).
Notably, MLTL discards the next (O) operator since Oy =0y 17%).

Axiom 1. (Early Evaluation of Until Operator) Following directly from Definition 4, the MLTL
formula ¥ Uy, up) § can be evaluated based on & alone in two cases: (1) if 7,i+1b =¢, then
7,0 = Upp,up) € and (2) if B € [i+1b,i+ub] such that 7,j |= &, then 7,1 b 1 Uy &-
Additionally, if 35 € [i + Ib,i + ub] such that 7,5 |= &, then Vm > j and Vn > j where
m,n € [i+1b,i+ub], it is not necessary to know if 7,m =1 and if 7,n = £ to determine if
i Y Uy up) §-

Axiom 2. (Early Evaluation of Release Operator) Following directly from Definition 4, the
MLTL formula ¢)R .)€ can be evaluated based on & alone in two cases: (1) if 7,i+Ib=&,
then 7,4 £) Rypup) § and (2) if V5 € [i +1b,i +ub], 7,5 = &, then 7,0 = ¥ Rypup) &
Additionally, if 35 € [¢ 4 Ib,i + ub] such that 7,7 =+ and 7,5 |= &, then Vm > j where
m € [i+1b,i+wub], it is not necessary to know if m,m |= ¢ and if 7,m |= £ to determine if
T, EY Rip,up) §-

2 In stream-based monitoring, we always assume that there will be an extension of the trace 7.

4 A. Aurandt et al.

Definition 5. (prMLTL Semantics) We recursively define 7r,i = (finite trace 7 starting from

time index ¢ > 0 satisfies, or “models” ptMLTL formula ¢) as
o T il=true

mifEp forpe AP iff pem(i)

i =) iff i e

miEY A€iff miEYy and miEE

miEY VEiffmiEYyormiEE

70,8 = Bl up) ¥ iff || <i—ub 2orVj €[i—ubi—Ib], m,j =1

70, = Oy ¥ 1ff 7| >i—ub * and 3j € [i —ub,i—1b] such that 7, =1

i =Y Sip,up) € iff || >i—ub? and 3j € [i —ub,i —1b] such that 7,j =& and Vk > j

where k € [i —ub,i—1b], m,k =

o i =Y Typup & iff 7| <d—ub 2 or if 35 € [i —ub,i — Ib] where ,j [~ &, then Tk > j
where k € [—ub,i—Ib] such that 7,k =1

Given two ptMLTL formulas v and &, they are semantically equivalent (denoted by ¢ = &)
if and only if 7 = ¢ < 7 |= £ for all traces 7. ptMLTL also keeps the standard operator
equivalences from ptLTL, including false = —true, v V {=—(—p A =€), v = VE,
P> E=(YDE), O =, &1 = (true Sy), and Fp = (false T). Notably,
ptMLTL discards the previous (©) operator since QY =[=jy,17%.

Axiom 3. (Early Evaluation of Since Operator) Following directly from Definition 5, the
ptMLTL formula ¢ Sjgp, ., € can be evaluated based on £ alone in two cases: (1) if 7,i—b E¢,
then i =1 Sy, € (2) if #j € [i — ub,i — 1b] such that 7,5 = &, then i = ¥ Sy &-
Additionally, if 35 € [{ —ub,i — [b] such that 7,j =& and Vk > j where k € [i —ub,i — (1],
7,k =1), then it is not necessary to know if 7,k |=¢ to determine 7, =10 Sy,) &

Axiom 4. (Early Evaluation of Trigger Operator) Following directly from Definition 5, the
ptMLTL formula v Ty, 4] € can be evaluated based on § alone in two cases: (1) if 7,i—1b &,
then 7r,i (=) Tiip,up) € (2) if Vi € [i—ub,i—1b], 7,5 =&, then 7,3 =10 Ty up) €. Additionally, if
3j € [i—ub,i—1b] such that 7,j =1 and 7,5 =€ and Vk > j where k € [i —ub,i—1b], 7.k =&,
then it is not necessary to know if 7,k = to determine 7,i =1 Typ, up) §-

2.2 Abstract Syntax Tree Architecture

R2U2 is a stream-based runtime monitor that reevaluates
MLTL and ptMLTL formulas for each time index ¢. The
Configuration Compiler for Property Organization (C2PO)
[26] compiles MLTL and ptMLTL formula(s) for input into
R2U2. C2PO decomposes the MLTL and ptMLTL formula(s)
into subformula nodes represented in an Abstract Syntax Tree
(AST) and optimizes the AST by applying Common Subex-
pression Elimination [26,29] and various rewriting rules [27].
C2PO then outputs assembly-style instructions for R2U2 to
reason over. Figures 1 and 2 illustrate an AST and the compiled
instructions for (g 3%) Ujz,4) €, respectively.

In the outputted assembly, there are configuration instructions and computation instructions.
The configuration instructions are run once upon initialization to configure the AST in terms of
sizing and metadata (e.g., the lower and upper bounds of temporal operators). The computation
instructions are saved in a table and sequentially iterated over at each timestamp. The computation
instructions are ordered such that R2U2 reasons over the AST by determining the evaluation of

Fig. 1. AST for (D[O,3]w) U[QA] £

Towards a Safe, Verified Runtime Monitor for Embedded Systems 5

each subformula node from the bottom-up and : scqo l‘f“ﬁ alf
. . : scqy global scqg
propagating verdicts to the parent node(s). - seq load €
Each node of the AST computes and stores : scqa until scq; scqy
verdict-timestamp tuples T, = (v,7) for its sub- : seqo size = i
1 8Cqp size =
formula ¢, where v € {“crue‘,false} and 7 € .No. - scq, Ib— 0 and ub = 3
Each node stores the verdict-timestamp tuples in a : scgs size = 4
shared connection queue (SCQ), where the SCQ is s scqz size =1
a circular buffer that overwrites verdict-timestamp s EA TS
tuples in a circular and aggregated manner. Fig. 2. Instructions compiled by C2PO for

Propogation Delay. To compute the SCQ size of (B[0,31%) Upz,4) §. Instructions 0-3 are the com-
each node in the AST, the propagation delay of putation 1ns@cthns, and' instructions 4-9 are
each subformula must first be computed. the configuration instructions.

Definition 6. (Propagation Delay [29]) The propagation delay of an MLTL/ptMLTL formula
 is the time between when a set of propositions 7(¢) arrives and when the verdict of 7,i =
is determinable. The best-case propagation delay (v.bpd) is its minimum time delay, and the
worst-case propagation delay (.wpd) is its maximum time delay.

Definition 7. (MLTL Propagation Delay Semantics [29]) Let 1) and £ be subformulas of an
MLTL formula ¢ where ¢.bpd and p.wpd are structurally defined as follows:

) pwpd=0 __Jpwpd=+pawpd
'WGAP'{p.bpdzo *v= w'{¢.bpd:¢.bpd

p.wpd=mazx(p.wpd, E.wpd)

SP=UNVETP=PAL: {np.bpd:min(w.bpd, ¢.bpd)

p.wpd=1v.wpd+ub

=0 u = w :
o o=0p up)¥ or ©=pp,up)? {ap.bpd—w.bderlb

p.wpd=max(V.wpd, £.wpd)+ub
=Y Unpw =1 Rup,up §: .
*P=Y Uy Lor 9= Rynun & {ap.bpd:mm(w.bpd,£.bpd)—|—lb

Definition 8. (ptMLTL Propagation Delay Semantics) Let 1) and £ be subformulas of a ptMLTL
formula ¢ where ¢.bpd and .wpd are structurally defined as follows:

) pwpd=0 . Jpwpd=1.wpd
.(’DGAP'{ *e= w'{go.bpd_zp.bpd

p.bpd=0
p.wpd=mazx(y.wpd, &.wpd)

SP=UNVETP=YAL: {cp.bpdzmin(w.bpd, ¢.bpd)

p.wpd=1).wpd—1b

® o=Eupun¥ or 9=y up ¥ {@ bpd=1).bpd—ub

w.wpd=max(.wpd, £.wpd)—1b

P S € o £ = v & {<P.bpd:mm(¢.bpd, €bpd) —1*

3 ©.bpd in this case is determined by Ib (not ub) as ptMLTL requires either) or & to be known at —Ib
to determine if 7,7 =) Sjyp,up) & oF 7,0 =10 Tpp,up) € according to Axioms 3 and 4, respectively.

6 A. Aurandt et al.

SCQ Memory Size. To minimize the required memory resources of R2U2, the SCQs are
minimally sized such that the SCQ will never overwrite a verdict-timestamp tuple required by
its parent node. The minimum SCQ size of an AST node ¢ is determined by the worst-case
propagation delay of its sibling nodes and its own best-case propagation delay; in the worst case,
a node (must store verdict-timestamp tuples in its SCQ until all of ¢’s siblings have the same
timestamp 7 for these tuples to be consumed by their parent node. Therefore, the size of node
©’s SCQ corresponds to the maximum timestamp mismatch between node ¢ and ¢’s siblings.
Let S, be the set of all of ¢’s sibling nodes, then the size of ¢’s SCQ is given by the following
(proof available in [51]):

SCQsize(p) =maz(maz{s.wpd | s€S,}—p.bpd, 0)+1)
Aggregation. A verdict-timestamp tuple T, = (v,7) is stored in ’s SCQ using aggregation
[29,42]. Aggregation occurs such that if an incoming tuple’s verdict v is equivalent to the
previous tuple’s verdict v, then the incoming tuple’s timestamp 7 overwrites the previous tuple’s
timestamp 7. For example, if ¢’s SCQ contains {(true,3),(false,7)}, then ¢ = false for the
entire timestamp interval [4,7], and if encounters an incoming tuple T, = (false,8), then ¢’s
SCQ becomes {(true,3),(false,8)}. This aggregated storing of verdict-timestamp tuples allows
R2U2 to easily reason over multiple timestamps (with equivalent verdicts) at once.

Booleanizer. To produce atomics for the leaf nodes of the AST, either atomics can be loaded
directly into R2U2 or the Booleanizer [26] can be utilized. R2U2’s Booleanizer enables boolean
expressions over booleans, integers, and/or float input signals using arithmetic, bitwise, relational,
and set operators (e.g., “forexactlyn” or “foratmostn”). Similar to the MLTL/ptMLTL AST, the
Booleanizer decomposes the expression(s) into subexpression(s) represented in an AST and
produces computation instructions for R2U2 to reason over.

3 Optimized and Proved R2U2 Implementation

Previously, R2U2 directly encoded only a subset of MLTL operators: =), 1) A&, Oy, and
1 Uy € (as shown in yellow in Fig. 3) [26,29,42]. The full MLTL semantics were encoded
by utilizing the appropriate semantic equivalents. In many cases, this required extra negation
subformulas in the AST; consequently, this required extra negation instructions for R2U2 to
reason over. For example, the encoding of the Release (R) operator required four instructions

Original F ! Previous Encoding New Encoding
rigmat ormula Formula [# of instructions| Formula [# of instructions
— % 1 1
PAE YA 1 1
e ~(~pA=E) 4 1
=& ~(PA=E) 3 YVE 2
P (WY A=EA (-9 AE)) 6 1
YOE (WA A (= (=9 AE)) 8 (P<§) 2
Sry true Uy 1 true Uy o 1
Or 07 ¢ 1 false R; ¢ 1
YUTE YU & 1 1
PR —(—p Ur =€) 4 1
O Ot 1 true Sy ¥ 1
Er ¥ Er ¥ 1 false 77 £ 1
81§ 81§ 1 1
T € - - 1

Fig. 3. Comparison of previous [26,29,42] and new encodings of MLTL and ptMLTL formulas in R2U2.
Both the previous and new encoding directly encode a subset of operators shown in yellow and blue,
respectively. The formulas with indirect encodings are given by semantic equivalents.

Towards a Safe, Verified Runtime Monitor for Embedded Systems 7

(i.e., three extra negation instructions) since ¥ R; & was encoded as —(—) Uy —€). This
increase in instructions negatively affects R2U2’s timing and resource requirements; R2U2 had
to reason over extra instructions, allocate additional SCQs, and store extra instructions in its
table. Therefore, we directly encode a different subset of MLTL operators: =), A&, P VE,
Y& YU € and Y Ry € (as shown in blue in Fig. 3). We optimized the selection of MLTL
operators with direct encodings to reduce both timing and resource requirements. As shown in
Figure 3, every MLTL/ptMLTL operator that previously required more than one instruction has
been reduced. Since R2U2 is designed to fit within tight memory-constrained systems, the size
of the extra logic also had to be considered. For example, Ot is easily encoded as false Ry ¢
without additional instructions; therefore, we only directly encode the R operator to eliminate
extra redundant logic that would be required to encode both. In the rest of this section, we
provide correctness proofs for the SCQ read and write operations and all encoded MLTL and
ptMLTL temporal operators.*

3.1 Shared Connection Queues

The algorithms for the SCQ read and write operations were first presented in [29]; however,
no formal proof of correctness was provided and the algorithms contained various errors. For
example, if the read pointer and write pointer point to the same SCQ slot, the read operation
would always return an empty verdict-timestamp tuple, which is not the desired behavior (e.g., a
SCQ of size one always returned an empty tuple such that no valid tuple was ever read). Some
of the errors were fixed in future releases of R2U2, but R2U2 v3.0 [26] (i.e., the latest version of
R2U2) still contained errors such that the SCQ sizing given in Equation 1 required +3 instead of
+1 to mask the underlying problem. Therefore, we provide the SCQ read and write operations
in Algorithm 1, and the correctness of the aggregated write and aggregated read are proved in
Theorems 1 and 2, respectively. Note that the correctness of the MLTL and ptMLTL operators
depends greatly on the correctness of the SCQ operations.

Algorithm 1: Shared Connection Queue (SCQ) Operations for Node ¢

1 Initialize:

2 .write_ptr=0

3 @.read; -ptr =0 and ¢.reads _-ptr =0
4

5

©.SCQ[0]= Empty

function read(read-ptr,desired_time) is

Input: Read pointer: read_ptr; Desired timestamp: desired-time
Output: T\, or Empty

6 if .SCQ[read_ptr| = Empty and read_ptr =0 then // SCQ is empty
7 return Empty // Return Empty, indicating there is no new T, in SCQ
8 do // Scan forward in SCQ
9 if p.SCQ[read_ptr].T >=desired_time then
10 | return ».SCQread-ptr] // T, is new; therefore return T,
1 read-ptr = (read_ptr+1)%SCQsize (@) // Step forward in SCQ
12 while read_ptr # p.write_ptr;

/* Hit write_ptr while scanning forward; take a step back */
13 read_ptr=(read_ptr —1)%SCQsizc(p)
14 return Empty // Return Empty, indicating there is no new T, in SCQ

15 function write(T,) is
Input: Verdict-timestamp tuple to write: T,

16 prev_write_ptr = (p.write_ptr —1)%SCQsize(p) // Find the previous write pointer
/% Check if aggregating write */

17 if 1(¢.SCQ|p.write_ptr]= Empty and p.write_ptr =0) then // SCQ is not empty

/% Previous verdict matches T,.v */

18 if p.SCQ[prev_write_ptr].v=p.SCQ[p.write_ptr].v then

19 @.write_ptr =prev_write_ptr

20 ©.SCQ[p.write_ptr] =T,

21 p.write_ptr = (p.write_ptr+1)%SCQsize () // Move write pointer forward

* Proofs for the boolean connectives are available in Appendix A.

8 A. Aurandt et al.

Theorem 1 (Aggregated Write to SCQ). Given an AST subformula node p, ©’s write
pointer p.write_ptr, and a verdict-timestamp tuple T.,,, the write function in Algorithm 1 (i.e.,
go.write(Tw)) is guaranteed to store results in strictly increasing order using aggregation such
that p.write_ptr is always either an empty slot or the oldest entry in the SCQ.

Proof. Sequential writes to a SCQ are always in strictly increasing order in terms of 7;,.7;
this directly follows from the implementation of R2U2’s MLTL and ptMLTL operators (e.g.,
Algorithms 2 and 3). There are two ways that a tuple T, is written in ¢’s SCQ:

(1) Aggregate Write: If the SCQ is not completely empty, then there was a previous write to
the SCQ. If a previous write exists (line 17), the previous slot in the SCQ is checked by
decrementing the write pointer in a circular manner on line 16 (i.e., if the write pointer is
at the first slot of the SCQ, the previous slot is the last slot of the SCQ). If the verdict is
the same in the previous slot as T,,.v (line 18), then the write pointer is re-assigned to the
previous slot on line 19. The tuple 7, then overwrites the previous slot on line 20.

(2) Non-aggregate Write: If there was no previous write to the SCQ (line 17) or the previous
write to the SCQ didn’t contain the same verdict as the input tuple T;, (line 18), then the
tuple T, is simply written at the write pointer on line 20.

In both cases, the write pointer is then incremented in a circular manner on line 21 such that the

write pointer is set to the next slot. Since the write pointer is always incremented in a circular

manner to the slot after where the current write occurred, the value of the write_ptr at the end
of execution is always either empty or the oldest value, and the value at the previous entry is
always the newest value. |

Theorem 2 (Aggregated Read from SCQ). Given an AST subformula node , the read

pointer read_ptr, and the timestamp desired_time, reading from ’s SCQ as defined in

Algorithm 1 (i.e., go.r@ad(rcad_ptr,dcsir@d_timc)) will return the verdict-timestamp tuple
T, iff T,,.v is the verdict for the entire interval [desired_time,T,.T|. Figure 4 provides a
visualization of this theorem.

desired_time T,

|||\«[||||T“"v||||]A/||||=

Fig. 4. Pictorial representation of aggregated read from SCQ in Theorem Z.T

Proof. Each node stores two read pointers, ¢.read; _ptr and @.reads_ptr; one for each of
its possible children. When a parent node is reading a child node ¢, the desired_time is
always increasing such that desired_time indicates the next timestamp required for evaluation
of the parent node ¢; this directly follows from the implementation of R2U2’s MLTL and
ptMLTL operators (e.g., Algorithms 2 and 3). The minimal SCQ size in Equation 1 (proof
available in [51]) guarantees that the SCQ will either contain the desired_time upon a call to
p.read(read_ptr,desired_time) or will in the future.

At the beginning of each call to ¢.read(read_ptr,desired_time), read_ptr will point to
the earliest slot that might be of interest as it will either be (1) pointing to the first slot but
no value has ever been read before (initial condition), (2) pointing to the last value that was
read from the previous execution (line 10) such that we will either read from this slot (due to
aggregation) or a future slot, or (3) still pointing to the latest value in the SCQ from the previous
execution (line 13; follows from Theorem 1).

(only-if direction) T;,.v is the verdict for the entire interval [desired_time,T,,.T] — return
T,: If the SCQ is completely empty (i.c., no tuples have ever been written to the SCQ),
then there are no new tuples to read; therefore, Empty is returned on line 7. Based on
correct SCQ sizing and behavior of desired_time and read_ptr described above, if the slot
at read_ptr has a timestamp > desired_time, then T;,.v is the verdict for the entire interval

Towards a Safe, Verified Runtime Monitor for Embedded Systems 9

[desired_time,T,.7] and T, is returned on line 10. If not, then perhaps a future slot may
contain this information; therefore, read_ptr is incremented in a circular manner on line 11
such that the SCQ will be incrementally scanned to find a tuple such that the timestamp
> desired_time. If one is found (since we are incrementally scanning forward), T;,.v is the
verdict for the entire interval [desired_time,T,,.7| and T, is returned on line 10. If one is not
found, the scanning will stop when the read_ptr is now pointing to the oldest value in the SCQ
(i.e., p.write_ptr) on line 12. Then, read_ptr is decremented such that read_ptr is pointing
to the latest written entry on line 13 (following from Theorem 1) and Empty is returned.
(if direction) return T,, — T ,.v is the verdict for the entire interval [desired_time,T,,.]: A
tuple T, is only returned on line 10, which requires T:,.7 > desired_time; this requires that
either the slot at read_ptr or a slot between read_ptr and the latest entry to be > desired_time.
Since lines 8—12, incrementally scan forward in the SCQ until a tuple with timestamp >
desired_time is found, T,,.v is the verdict for the entire interval [desired_time,T,,.7]. If the
SCQ is completely empty, then there are no new tuples to read; therefore, Empty is returned on
line 7. If no entry has a timestamp > desired_time, then Empty is returned on line 14. 0O

3.2 MLTL Temporal Operators

In the latest version of R2U2 (i.e., v3.0 [26]) and prior versions [29,42], only the Global () and
Until (/) MLTL temporal operators had direct encodings, and proofs of correctness were given
in [29]. Although these algorithms provided correct verdicts, the U/ operator required both 1) and
£ to be known (for an arbitrary timestamp 7) to evaluate ¢ Uy &. As stated in Axiom 1, there
are three conditions in which U/ can be evaluated early without knowing both 1) and . Since
runtime monitoring requires early-as-possible identification of failures to enable effective fault
recovery [5,6,29,42,51], verdicts should not be unnecessarily delayed; therefore, we rewrite the
U algorithm in Algorithm 2 to write a verdict when sufficient data is available according to
Axiom 1. We follow the same approach for the Release (R) operator following Axiom 2.

Algorithm 2: Until Operator: o =1 Ujp up) §

1 Initialize:
2 @.previous=—1 // Initialize ¢.previous; stores the last 7 written
3 @.next_time=1b // Initialize @.next.time; stores the next time for 2 and &

4 procedure Until(1,£)

Input: Node: 1/; Node: £
5 Ty = ¢.read(p.read; -ptr,p.next_time) // Read Node
6 Te =&.read(p.ready ptr,p.next_time) // Read Node &
7 if Te # Empty then // New Tg
8 if T¢ .v then // Te.v=true
9 p.previous=Te.T—1b
10 p.next time=Te.7+1
11 p.write(true,Te .7 —1b) // Writing T, = (true,T¢.T—1b)
12 return
13 if T, # Empty then // New Ty and Tg
14 Tmin =man(Ty.7,Te.T)
15 p.nexttime="Tmin+1
16 if |(T’y,.v) then // Ty.w=false and T¢.v="false
17 ©.Previous = Tmin —lb
18 p.write(false, Ty in —Ib) // Writing T, =(false,T;min —Ib)
19 return
20 if Te.7 > p.previous+ub then // (Ty=Empty or Ty.v=true) and T¢.v=false
21 p.previous =Te. T—ub
2 p.next_time=max(p.next_time,p.previous+1lb+1)
23 p.write(false, Te .7 —ub) // Writing T, = (false,T¢. 7 —ub)

Theorem 3 (Correctness of the Until Operator). Given the interval [Ib,ub] and two children
nodes 1) and &, Algorithm 2 writes the tuple T,, to ©’s SCQ when sufficient data is available
such that for all i >0, T, = (true,i) iff m,i =1 Upp up) &

10 A. Aurandt et al.

Proof. The p.previous variable stores the previous time index ¢ that node o =1 Upp) §

wrote to its SCQ. Before the first tuple is produced, @.previous is initialized to —1 (line 2)

such that the condition on line 20 can be rewritten as T¢.7 > —1+-ub or rather T¢.7 > 0-+ub=

Te¢.m>ub. Whenever a verdict-timestamp tuple is written, the .previous variable is updated

to that timestamp (lines 9, 17, and 21).

The p.next_time variable determines what timestamp is desired from both node ¢ and node
¢ to make the next evaluation. The p.next_time variable is initialized on line 3 to b since
Y Uy) € can only be evaluated when || >i+-1b on the interval [i+1b,i+ub] where i >0,
such that [0,lb— 1] is never required for evaluation. The .next_time variable is then updated
during execution based on what is unknown about ¢/ and . If both T3, and 7¢ are not empty,
then if Ty, 7> T, its unknown if 3j € [T¢.7+1,T,,.7] such that 7,5 =&, and if T,.7 <Tg.T,
then its unknown if Vk € [T),.7 +1,T¢.7] such that 7,k |=). Therefore, p.next_time will
be updated to min(Ty.7,T¢.7)+1 on line 15. Because of early evaluation (following from
Axiom 1), if a verdict-timestamp tuple is written, then @.next_time is updated to whichever
is greater: i-+1b+1 (i.e., the [b of the next evaluation) or min(Ty.7,T¢.7)+1 (as described
above) on lines 10 and 22. Note that on line 10 this can be rewritten as just T¢.7+1 since
i+Ib+1=(Te.7—1b)+1b+1=T¢.7+1, and if Tyy. 7 <T¢.7, then Tpy,.7 <i+1b+1. Figures
5, 6,7, and 8 illustrate examples of how the @.next_time variable is updated.

The @.next_time variable is then an input into the read functions on lines 5-6 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1, then T;,.v is the
verdict for the interval [go.next_time,Tw .7], and if @.next_time is available in node &, then
Te.v is the verdict for the interval [p.next_time,Te.7] (following from Theorem 2).

(only-if direction) i =1 Upp,) §— T, = (truei):

We consider all possible combinations of T, and T to determine if 7, =1 Uip,up) &

(1) Ty and T¢ are both empty: There is no new information based on ¢.next_time to evaluate
ifriEy Uip,up) §; therefore, the algorithm does nothing.

(2) T, is not empty and T is empty: There is not enough information to determine if
3j € [i +1b,i + ub] such that 7,5 = &, then Vk < j where k € [i + Ib,i + ub] such
that 7,k =1 (where i = p.previous—+1); therefore, the algorithm does nothing.

(3) Tew = true (and Ty is empty or Ty.v = false or T)y.v = true): T¢.v is the verdict
from [p.next_time,T¢.7| such that p.next_time is Ib (initial condition) or was set by
the previous execution to @.previous + b+ 1 or min(Ty.7,T¢.7) 4+ 1 as described
above. Therefore, T¢.v = true at p.previous+1b+ 1 and/or Yk € [p.previous + b+
1, p.next_time — 1], m, k = 1 (since the condition on line 16 was not met by the
previous execution). As a result, 7,i =1 Ujyy,) & (following directly from Axiom 1) for
p.previous < i <Tg.T—Ib; therefore, (true, Tz.7—1b) is written to ’s SCQ on line 11.
Figure 5 provides a visualization of this case.

[Ty.v = true L/T5‘T — b

1 next_time
[T,.p.v:true —
Te.v = true L/TE'T
NN A D G U NS G AN SN N 0 G G A T T I

/ 'if i+ [);) \\i +ub T
previous previous + ub
Fig. 5. Pictorial representation of =1 Uy,) & for Theorem 3 Case (3).
4) Ty.v=false and T; v =false: If both T';,.v and T .v are false, then they are both guaranteed
to be false from [p.next_time,min(Ty,.7,T¢.7)]. Furthermore, T¢.v is guaranteed to have

Towards a Safe, Verified Runtime Monitor for Embedded Systems 11

never been true from [p.previous+1b+1,T¢.7] since the result would have been written
on line 11 and the p.next_time and op.previous variables would have been updated
(lines 9-10). As a result, 7,i {1 Uy,) & for @.previous <i <min(Ty.1,T¢.7) —b;
therefore, (false,min(Ty,.7,T¢.7)—1b) is written to ’s SCQ on line 18. Figure 6 provides
a visualization of this case.

man(Ty.7,Te.T) — b

[T,.v = false

next_time
—

T¢.T

[G G
A D A X.
/ Y i+1b nexttime \ i+ ub

previous previous + ub
Fig. 6. Pictorial representation of ¢ =1 U 4] & for Theorem 3 Case (4).
(5) Te.v=false (and Ty, is empty or T;y.v=true): There are two sub-cases to consider:

(a) There is enough information to determine that 3j € [i+1b,i+ub] such that ,j =&:
Te.v is guaranteed to have never been true from [p.previous+1b+1,T¢.7] since
the result would have been written on line 11 and the p.next_time and p.previous
variables would have been updated (lines 9-10). If T¢.7 > @.previous 4 ub, then
3j € [i+1b,i+ub] such that ,j = & where i € [p.previous+1,T¢.T —ub]. As a
result, 7r,i [) Uy, up) € for p.previous < i < Te.m —ub (following directly from
Axiom 1); therefore, (false,Tz.7 —ub) is written to ¢’s SCQ on line 23. Figure 7
provides a visualization of this case.

TE.’I‘ —ub
A" next_time
—
Tg.T —ub+10b

[S
./ i” i+ ﬁ, \Ki + ub
previous previous + ub
Fig. 7. Pictorial representation of ¢ =1 Uy, s & for Theorem 3 Case (5)(a)

(b) There is currently not enough information to determine if 35 € [i+1b,i+ub] such that
m,j E& I Te.m <p.previous—+ub, then there is not enough information to guarantee
that T¢.v =false from [i+1b,i+ub] where i = p.previous+1. There is still a chance
that 37 € [T¢.7+1,i+ub] such that 7,5 [=&; therefore, the algorithm does not write a
tuple. Figure 8 provides a visualization of this case.

next_time
—
Tg.T
SN I D S S —1 1 1 1 14
/'L)' i+ﬁ) \i-l-ub T

previous previous + ub

Fig. 8. Pictorial representation of =1 U, .5 & for Theorem 3 Case (5)(b)
(if direction) T, = (true,i) — i =1 Upp up) &:
T, = (true,i) tuples are only written to ¢’s SCQ on line 11, which requires that T¢.v =true
is the verdict from [p.next_time,T¢.7] such that p.next_time is [b (initial condition) or was
set by the previous execution to .previous +1b+1 or min(Ty.7,T¢.7)+ 1 as described

12 A. Aurandt et al.

above. Therefore, T¢.v=true at i+1b and/or Vk € [i+1b,.next _time], m,k=1. As a result,

7, = 1) Unp,) & Tor .previous <i <Tg.7—1b (following directly from Axiom 1).

T, = (false,i) tuples are only written on lines 18 and 23 such that T¢.v =false. In both cases,

T¢.v is guaranteed to have never been true from [p.previous+1b+1,T¢.7| since the result

would have been written on line 11 and the p.next_time and o.previous variables would

have been updated (lines 9-10). If T',.v = false, then 7, [1) Uy,) € for p.previous <

i <min(Ty.7,T¢.7)—1b (line 18). If T;y.v # false and T¢.m > @.previous +ub, then Pjc

[i+1b,i+-ub] such that 7,5 = &; therefore, m,i [~ Upp,) & for p.previous <i <Te.m—ub

(line 23).

There are three conditions under which no verdict-timestamp tuples were written to ’s SCQ

since there is not enough information to determine if 7,i =1 Upp,up) &

(1) Ty and T¢ are both empty: There is not enough information to evaluate if 7,7 =1 U, ,p) €.

(2) Ty is not empty and T¢ is empty: There is not enough information to determine if
35 € [i + 1b,i + ub] such that 7,j |= &, then Vk < j where k € [i + Ib,i + ub] such
that 7,k |=1); therefore, if i |=1) Uy, o, € cannot be determined.

(3) Te.v=false and T¢. T < p.previous+ub and T, # false: There is not enough information
to guarantee that T¢.v=false from [i+1b,i+ub] where i =p.previous+1. There is still a
chance that 3j € [T¢.74-1,i+ub] such that 7,j = &; therefore, if 7,3 = 1) Upp,) & cannot
be determined.

Verdict-timestamp tuples 7, = (true,i) are only written to ’s SCQ iff i =yl 1€, and

T, = (false,i) are only written to ¢’s SCQ iff 7,3 [1)Uy 1) €. O

The algorithm and proof of the Release (R) operator follow very similarly to the Until (/)
operator and are available in Appendix B.

3.3 ptMLTL Temporal Operators

The SCQ architecture of R2U2 was developed in [29] and greatly reduced the memory
requirements of the previous implementation [42] as exemplified by R2U2’s integration on the
heavily resource-constrained FPGA of the Robonaut2’s knee joint. However, this new SCQ
architecture was only applied to R2U2’s MLTL operators. The past-time logic still implemented
the approach in [41] which utilized single read queues and encoded ptMTL [2,32] rather than
ptMLTL. Note that in ptMTL, there is no Trigger () operator (see Figure 3), and the satisfaction
of 7,3 =1 Spip,up) & requires ¢ to hold from the position where & holds in [i —ub,i—1b] to
position 4, while in ptMLTL, 1 is only required to hold within the interval [i —ub,i—[b] after &
holds. Therefore, we compose new Since (S) and Trigger (7") algorithms that utilize the SCQ
architecture and implement ptMLTL. Similar to the Until and Release operators (Section 3.2),
we ensure verdicts are written as soon as sufficient data is available according to Axioms 3 and
4. The algorithm of the Since (S) operator is available in Algorithm 3 and its corresponding
proof is available in Appendix C. The algorithm and proof of the Trigger (7)) operator follow
very similarly to the Since operator and are available in Appendix D.

3.4 Reduction of Instruction Size

As discussed in Section 2.2, R2U2 stores its computation instructions in a table; therefore, these
instructions require memory resources. We evaluated the current instruction format for both the
booleanizer and temporal logic (i.e., MLTL and ptMTL) instructions as present in R2U2 v3.0
[26] and were able to reduce the memory footprint of each (Figure 9). Within the booleanizer
instructions, we reduced the opcode down from 4 bytes (i.e., allows 4,294,967,296 opcodes) to 1
byte (i.e, allows 256 opcodes); R2U2 only currently supports 40 different booleanizer operations,

Towards a Safe, Verified Runtime Monitor for Embedded Systems 13

Algorithm 3: Since Operator: =1 Sjip,up) §

1 Initialize:

2 p.edge=—1

3 @.previous=—1 // Initialize ¢.previous;
4 p.nexttime=0 // Initialize ¢.next_time;

5 procedure Since(),§)

Input: Node: v; Node: £

6 Ty =v.read(p.ready -ptr,p.next_time)
7 Te =& .read(p.reads _ptr,p.next_time)
8

9

// Initialize @.edge; stores the last ¢ where milE¢§

stores the last % written
stores the next time for % and &

// Read Node
// Read Node &

if p.previous+1—1b <0 then // i—=1b<0
@.previous=1lb—1
10 @.write(false,lb—1) // Writing T, =(false,lb—1)
1 if T¢ # Empty then // New Tg
12 if T¢ v then // Te.v=true
13 p.edge=Te.T // Updating ¢.edge to last true edge
14 p.next_ time=Te.7+1 // Updating ¢.next_time to after .edge
15 if T .7 > .previous —1b then // mi—lbEE
16 p.previous=Te. 741
17 p.write(true,Te . 7+1b) // Writing T, =/(true,T¢.7+1b)
18 return
19 else // Te.v=false
20 if p.edge <p.previous—ub or p.edge=—1 then // ﬁje[i—ub,Tg.T]m’,j =&
21 p.next time=Te.T+1 // Move @.nexttime forward
2 if Te .7 > @.previous —1b then // FjE[i—ubi—Ib],m,j=E
23 p.previous=Te.7+41b
2 p.write(false, Te.7+1b) // Writing T, =(false,T¢.T+1b)
25 return
26 if Ty, # Empty then // New Ty
27 if /(T .v) then // Ty.v=false and T¢.v=false
28 p.nexttime=Tg.T+1 // Move @.nexttime forward
29 if Te .7 > @.previous—Ib then
30 p.previous=T¢. 7+1b
31 p.write(false, Te . 7+1b) // Writing T, =(false,T¢.T+1b)
32 return
33 if T, # Empty then // New Ty
/+ Jep.edge € [i—ub,i—1b], such that Vk>¢.edge where k>i—1b, mkEY */

34 if Ty .v and Ty, .7 > p.previous—1b and p.edge > ¢ .previous —ub and p.edge # —1 then
35 p.previous =min(Ty.T+1b,p.edge+ub) // Limit ¢ based on ¢.edge
36 p.next_time=max(p.nexttime,p.previous —ub+1)
37 p.write(true,p.previous) // Writing Ty, = (true,p.previous)

and 1 byte still allows the booleanizer to sup-
port 216 more opcodes without increasing
the size. On the other hand, we increased the
size of the memory reference address field
from 1 (i.e., allowed for only 256 boolean
instructions total) to 4 bytes. We kept the first
operand field as 8 bytes to allow for possible
loading of doubles, but reduced the second
operand field to 4 since this field will only
ever contain an address to another booleanizer
instruction, which is constricted to a max of
4 bytes. Lastly, we removed the parameters
to store the final result of the booleanizer (i.e.,
atomic address and store flag) from every
instruction. There is now a separate store in-

1 4 1 1 8 8
Serence | opeode | e | amic Joporand tfoperand 2
(a) Previous Booleanizer Instruction Format
8 4 4 1
operand 1|operand 2 ;ggfe?]rg]e opcode

(b) New Booleanizer Instruction Format

4 4 4 4 4 8
operand 1 operand 2| memory
opcode [operand 1 type operand 2 type roference

(c) Previous Temporal Logic Instruction Format

4 4 4 1 1 1
memory |operand 1|operand 2 .
operand 1loperand 2| ogoen o type type opcode

(d) New Temporal Logic Instruction Format

Fig. 9. Comparison of previous [26] and new
instruction formats

struction for when the booleanizer has completed its computations and needs to return/store the
atomic for the temporal logic operators to read. Within the temporal logic instructions, we also
decreased the opcode down from 4 bytes to 1 byte, and we decreased the operand type values
down from 4 bytes to 1 byte as these flags only store a value of 0, 1, or 2, indicating whether

14 A. Aurandt et al.

the operand is an atomic, a subformula, or a constant. These simple optimizations are significant
as each booleanizer instruction decreased from 28 bytes to 20 bytes and each temporal logic
instruction decreased from 28 to 16 bytes.

3.5 Latency and Memory Analysis
30
50 R2U2 C v3.0 R2U2 C v3.0

. R2U2 Rust || . REUZ R 200 R2U2 C v3.0
R » o2 st 2 - R202 Rust

225

IS

17.5

3

= 15.0

10.0

Memory (KB
- o
Memory (KB

%)
15

= 7.5

Latency (microseconds)

5.0

2.5

0 " T T 0 e 0.0
CySat-I Sounding MLTL ptMLTL CySat-I Sounding MLTL ptMLTL CySat-I Sounding MLTL ptMLTL
Rocket Random Random Rocket Random Random Rocket Random Random

(a) 95% tail latency (u.s) (b) Total queue memory (KB) (c) Total instruction memory (KB)
Fig. 10. Comparison of latency and memory requirements between R2U2 C v3.0 [26] and R2U2 Rust.

We manually transpile R2U2 v3.0 [26] from C to safe embedded Rust and apply the
optimizations and proved algorithms given in Sections 3-3.4. To evaluate the effectiveness
of our optimizations, we compare the latency and memory requirements of our Rust im-
plementation against R2U2 v3.0 on a suite of benchmarks. The benchmarks utilized are as
follows: (1) 22 MLTL specifications utilized to verify the electrical power system of the
CySat-I CubeSat [5], (2) 16 MLTL specifications for the Nova Somnium sounding rocket’s
aerobraking control system [24], (3) 35 random hand-written MLTL specifications, and
(4) 35 random hand-written ptMLTL specifications.> In Figure 10a, we recorded the 95%
tail latency (i.e., 95% of recorded latencies are less than or equal to the given latency) for
each time step where |7| = 1,000,000 on a 2.8 GHz Quad-Core Intel® i7 processor with
16GB of RAM; a 1.5-10.5x decrease in latency was observed depending on the bench-
mark, which can mostly be accredited to the reduction of instructions through direct encod-
ings.’ Figure 10b reveals a 1.5-3x decrease in total queue memory size for each benchmark;
this is accredited to the reduction in the num-
ber of instructions through direct encodings,
removal of the two extra entries in each queue
from the previous implementation of the SCQ
.rea.d/wrlte operatlons‘ (Sectlon 3.1), apd mod- ptMLTL Random| 384825 3017
ifying past-time to utilize SCQs (Section 3.3).)

Figure 10c indicates a 2-2.7x decrease in in- Y& 11. Latency on STM32F3DISCOVERY
struction memory size as a result of directly encoding instructions and refining R2U2’s instruction
format (Section 3.4). We also ran our embedded Rust implementation on a resource-constrained
bare-metal STM32F3DISCOVERY microcontroller with 48MHz system clock, 256KB of flash
memory, and 48KB of RAM [49], and the average latency observed is recorded in Figure 11.
While the latency on the STM32F3DISCOVERY microcontroller is greater than on the Intel® i7
processor, these latencies still indicate real-time performance.

4 Verification of R2U2’s Rust Implementation

We examined three Rust code verification tools to verify R2U2’s Rust implementation: Creusot
[17], Prusti [3,4], and Verus [33,34]. Creusot encodes a Rust application in the WhyML

Benchmark |Clock Cycles| Time (ms)
CySat-1 257836 5.371

Sounding Rocket| 117827 2.454
MLTL Random | 266507 5.552

3 Benchmarks and more analysis available at https://temporallogic.org/research/R2U2Rust

Towards a Safe, Verified Runtime Monitor for Embedded Systems 15

intermediate verification language for use in Why3 [20], where Why3 directly encodes SMT
queries for input into backend solvers like the Z3 SMT solver [16]; Prusti translates an entire
Rust application into the Viper intermediate verification language [38] and the Viper program
is verified using Viper’s symbolic execution verifier (which further translates to SMT queries
for Z3); and Verus encodes Rust code directly to SMT-LIB [7] for input into Z3. As a result,
Verus is faster than both Creusot and Prusti as it directly encodes SMT queries, and Prusti is the
slowest as it involves several additional steps, including re-verifying Rust’s type checking in
Viper [33]. On the other hand, Prusti was the simplest tool to run as the full tool is available as a
plugin extension directly inside VSCode, compared to Creusot and Verus which each require
local installations. Prusti and Creusot are also directly compatible with Rust’s Cargo package
manager, but currently, Verus is not. Verus is only compatible with rustc (i.e., the Rust compiler),
which requires directly specifying compilation flags (including linking dependencies).

After experimenting with each tool, we found pre- and post-conditions easier to compose with
Verus’s ‘requires’ and ‘ensures’ blocks, compared to Prusti and Creusot’s clauses. For example,
Creusot could not automatically reason about our structs with a ‘Default’ implementation,® and
Prusti cannot unwrap ‘Option” Rust types in pre- and post-conditions.” As a result, we were
unable to directly specify the complex specifications required for R2U2’s temporal operators in
Prusti or Creusot. Therefore, we utilized Verus to verify R2U2. It is important to note that there
are still parts of R2U2 that could not be verified with Verus such as floats, modulo operations,
and certain &mut references, and we also discovered a bug within Verus where arrays cannot
be sized according to constant values.® While Verus has its shortcomings, we were able to
overcome most of them and found it easier than Prusti or Creusot for verifying R2U2.

Verus automatically detected multiple locations within the booleanizer implementation
(Section 2.2) that could result in underflow or overflow; this included operators that added,
subtracted, or multiplied two integers together. For release builds, Rust will perform wrapping
operations by default where the underflow and overflow bits are just ignored. To eradicate
the possibility of unnoticed underflow or overflows, we specified saturating add, subtract, and
multiply operators such that if the result underflows, the result will be the minimum value that
can be stored in the result type, and if it overflows, the result will be the maximum value that
can be stored in the result type. Since the booleanizer will eventually compare integers utilizing
comparators (i.e., >, <, <, >, and =), saturating operations are safer. Furthermore, we added
an overflow detection flag that can easily be read, reset, and mitigated by the monitored system.

We specify pre- and post-conditions for every R2U2 operator that is possible with Verus. The
pre- and post-conditions in the booleanizer are directly mapped to ensure saturating operations
and correct overflow detection. The pre- and post-conditions for the MLTL and ptMLTL
operators directly ensure all cases and claims in the hand-constructed proofs presented in Section
3. In total, there are 487 lines of code contracts that verify a total of 25 operators. Through these
pre- and post-conditions, we are able to ensure correct implementation of our algorithms in
Rust. During this process, we also found Verus helpful in refining our initial hand-constructed
algorithms by removing vacuous conditions. On the other hand, Verus was not able to verify all
of R2U2’s Rust code nor was it able to consider the correctness of the C2PO compiler; therefore,
we also exhaustively test all of our MLTL operators according to the strategy in [30].

S https:// github.com/ creusot-rs/ creusot/issues/ 792
7 https:// github.com/viperproject/prusti-dev/issues/ 1306
8 https://github.com/verus-lang/verus/issues/ 1334

16

5

A. Aurandt et al.

Conclusion and Future Work

We developed a new implementation of R2U2 written in safe embedded Rust that significantly
decreases its previous resource overhead and provides improved guarantees of correctness
through hand-constructed proofs, testing, and Verus code contracts. While we hand-constructed
our proofs, we eventually hope to formalize R2U2 in a proof assistant such as Isabelle/HOL,
and we also anticipate more intuitive automatic test generation that can test a wider range of
both MLTL and ptMLTL formulas against an oracle such as [31]. While Verus has its current
limitations, we look forward to the further development of Verus’s capabilities and plan to
incorporate more deductive code verification as features become available.

References

1.
2.

3.

10.

11.

12.

13.

14.

A no_std rust environment, https.//docs.rust-embedded.org/book/ intro/ no- std.html

Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In: LICS. pp. 390-401.
IEEE (1990)

Astrauskas, V., Bily, A., Fiala, J., Grannan, Z., Matheja, C., Miiller, P., Poli, F.,, Summers, A.J.: The
prusti project: Formal verification for rust. In: NASA Formal Methods Symposium. pp. 88-108.
Springer (2022), https://doi.org/10.1007/978-3-031-06773-0_5

. Astrauskas, V., Miiller, P,, Poli, F., Summers, A.J.: Leveraging rust types for modular specification

and verification. Proceedings of the ACM on Programming Languages 3(OOPSLA), 1-30 (2019),
https://doi.org/ 10.1145/3360573

. Aurandt, A., Jones, PH., Rozier, K.Y.: Runtime verification triggers real-time, autonomous fault

recovery on the cysat-i. In: NASA Formal Methods Symposium. pp. 816-825. Springer (2022),
https://temporallogic.org/research/ CySat-NFM22/CySat-NFM22.pdf

. Aurandt, A., Jones, PH., Rozier, K.Y., Wongpiromsarn, T.: Multimodal model predictive runtime

verification for safety of autonomous cyber-physical systems. In: International Conference on Formal
Methods for Industrial Critical Systems. pp. 220-244. Springer (2024), https://temporallogic.org/
research/ MMPRV/MMPRV.pdf

. Barrett, C., Stump, A., Tinelli, C., et al.: The smt-lib standard: Version 2.0. In: Proceedings of the 8th

international workshop on satisfiability modulo theories (Edinburgh, UK). vol. 13, p. 14 (2010)

. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Nic¢kovi¢, D., Sankaranarayanan,

S.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and appli-
cations. Lectures on Runtime Verification: Introductory and Advanced Topics pp. 135-175 (2018).
https://doi.org/https://doi.org/10.1007/978-3-319-75632-5_5

. Basin, D., Dardinier, T., Hauser, N., Heimes, L., Huerta y Munive, J.J., Kaletsch, N., Krsti¢, S.,

Marsicano, E., Raszyk, M., Schneider, J., et al.: Verimon: a formally verified monitoring tool.
In: International Colloquium on Theoretical Aspects of Computing. pp. 1-6. Springer (2022),
https://doi.org/10.1007/978-3-031-17715-6_1

Basin, D., Dardinier, T., Heimes, L., Krsti¢, S., Raszyk, M., Schneider, J., Traytel, D.: A formally
verified, optimized monitor for metric first-order dynamic logic. In: Automated Reasoning: 10th
International Joint Conference, IICAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I 10. pp.
432-453. Springer (2020), https://doi.org/10.1007/978-3-030-51074-925

Baumeister, J., Finkbeiner, B., Kohn, F., Scheerer, F.: A tutorial on stream-based monitoring. In:
International Symposium on Formal Methods. pp. 624-648. Springer (2024), https://doi.org/10.1007/
978-3-031-71177-0_33

Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: International Con-
ference on Formal Engineering Methods. pp. 494-509. Springer (2012), https://doi.org/10.1007/
978-3-642-34281-3_34

Cauwels, M., Hammer, A., Hertz, B., Jones, P, Rozier, K.Y.: Integrating Runtime Verification into an
Automated UAS Traffic Management System. In: DETECT. Springer, L’ Aquila, Italy (September
2020), https://r2u2.temporallogic.org/wp-content/uploads/2020/ 12/ CHHJR20.pdf
Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal logic with quantitative
semantics. In: Runtime Verification: 20th International Conference, RV 2020, Los Angeles, CA,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Towards a Safe, Verified Runtime Monitor for Embedded Systems 17

USA, October 6-9, 2020, Proceedings 20. pp. 383—403. Springer (2020), https://doi.org/10.1007/
978-3-030-60508-7_21

Dabney, J.B., Badger, J.M., Rajagopal, P.: Trustworthy autonomy for gateway vehicle sys-
tem manager. In: 2023 IEEE Space Computing Conference (SCC). pp. 57-62. IEEE (2023).
https://doi.org/https://doi.org/10.1109/SCC57168.2023.00018

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: International conference on Tools
and Algorithms for the Construction and Analysis of Systems. pp. 337-340. Springer (2008),
https://doi.org/10.1007/978-3-540-78800-3 24

Denis, X., Jourdan, J.H., Marché, C.: Creusot: a foundry for the deductive verification of rust
programs. In: International Conference on Formal Engineering Methods. pp. 90-105. Springer (2022),
https://doi.org/10.1007/978-3-031-17244-1_6

Durumeric, Z., Li, F, Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N., Adrian, D., Paxson,
V., Bailey, M., et al.: The matter of heartbleed. In: Proceedings of the 2014 conference on internet
measurement conference. pp. 475-488 (2014), https://doi.org/10.1145/2663716.2663755

Ehlers, R.: Efficient temporal logic runtime monitoring for tiny systems. In: International Conference
on Tests and Proofs. pp. 3-21. Springer (2024), https://www.ruediger-ehlers.de/papers/tap2024.pdf
Filliatre, J.C., Paskevich, A.: Why3—where programs meet provers. In: Programming Languages and
Systems: 22nd European Symposium on Programming, ESOP 2013, Held As Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings 22. pp. 125-128. Springer (2013), https://doi.org/ 10.1007/978-3-642-37036-6_8
Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified rust monitors for lola specifications.
In: International Conference on Runtime Verification. pp. 431-450. Springer (2020), https://doi.org/
10.1007/978-3-030-60508-7 24

Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B.H., Winikoff, M., Yorke-Smith, N.: Towards a
framework for certification of reliable autonomous systems. Autonomous Agents and Multi-Agent
Systems 35, 1-65 (2021). https://doi.org/https://doi.org/10.1007/s10458-020-09487-2

Goodloe, A.E., Havelund, K.: High-integrity runtime verification. Computer 57(4), 3745 (2024),
https://doi.org/10.1109/MC.2023.3322902

Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket
control system. In: NASA Formal Methods Symposium. pp. 151-159. Springer (2021).
https://doi.org/https://doi.org/10.1007/978-3-030-76384-8_10

Johannsen, C., Anderson, M., Burken, W., Diersen, E., Edgren, J., Glick, C., Jou, S., Kumar,
A., Levandowski, J., Moyer, E., et al.: Openuas version 1.0. In: 2021 International Conference
on Unmanned Aircraft Systems (ICUAS). pp. 1449-1458. IEEE (2021), https://doi.org/10.1109/
ICUAS51884.2021.9476814

Johannsen, C., Jones, P., Kempa, B., Rozier, K.Y., Zhang, P.: R2u2 version 3.0: Re-imagining a
toolchain for specification, resource estimation, and optimized observer generation for runtime
verification in hardware and software. In: International Conference on Computer Aided Verification.
pp- 483-497. Springer (2023), https.//research.temporallogic.org/papers/JIKRZ23.pdf
Johannsen, C., Kempa, B., Jones, PH., Rozier, K.Y., Wongpiromsarn, T.: Impossible made possible:
Encoding intractable specifications via implied domain constraints. In: International Conference
on Formal Methods for Industrial Critical Systems. pp. 151-169. Springer (2023), https://research.
temporallogic.org/papers/JKIRW23.pdf

Kallwies, H., Leucker, M., Schmitz, M., Schulz, A., Thoma, D., Weiss, A.: Tessla—an ecosystem for
runtime verification. In: International Conference on Runtime Verification. pp. 314-324. Springer
(2022), https://doi.org/10.1007/978-3-031-17196-3 20

Kempa, B., Zhang, P, Jones, PH., Zambreno, J., Rozier, K.Y.: Embedding Online Runtime Verification
for Fault Disambiguation on Robonaut2. In: Proceedings of the 18th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS). pp. 196-214. Lecture Notes in
Computer Science (LNCS), Springer, Vienna, Austria (September 2020), http://research.temporallogic.
org/papers/ KZJZR20.pdf

Kempa, B.C.S.: Enumerating test cases for mltl runtime monitors. In: Engineering trust in space with
runtime verification. Ph.D. thesis. Iowa State University (2024)

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

A. Aurandt et al.

Kosaian, K., Wang, Z., Sloan, E., Rozier, K.: Formalizing mltl formula progression in isabelle/hol.
arXiv preprint arXiv:2410.03465 (2024), https://arxiv.org/abs/2410.03465

Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time systems 2(4),
255-299 (1990), https://doi.org/10.1007/BF01995674

Lattuada, A., Hance, T., Bosamiya, J., Brun, M., Cho, C., LeBlanc, H., Srinivasan, P, Achermann,
R., Chajed, T., Hawblitzel, C., et al.: Verus: A practical foundation for systems verification. In:
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. pp. 438-454
(2024), https://doi.org/10.1145/3694715.3695952

Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe, 1., Zhou, Y., Howell, J., Parno, B., Hawblitzel,
C.: Verus: Verifying rust programs using linear ghost types. Proceedings of the ACM on Programming
Languages 7(OOPSLAL1), 286-315 (2023), https://doi.org/10.1145/3586037

Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. Computer 26(7), 1841
(1993), https://doi.org/10.1109/MC.1993.274940

Li, J, Vardi, MY, Rozier, K.Y.: Satisfiability checking for mission-time LTL. In:
International Conference on Computer Aided Verification. pp. 3-22. Springer (2019).
https://doi.org/https://doi.org/10.1007/978-3-030-25543-5_1

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152—-166. Springer (2004),
https://doi.org/10.1007/978-3-540-30206-3_12

Miiller, P, Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for permission-
based reasoning. In: Verification, Model Checking, and Abstract Interpretation: 17th International
Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings 17. pp. 41-62.
Springer (2016), https://doi.org/10.1007/978-3-662-49122-5_2

Pinho, A., Couto, L., Oliveira, J.: Towards rust for critical systems. In: 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). pp. 19-24. IEEE (2019),
https://doi.org/10.1109/ISSREW.2019.00036

Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric dynamic logic. In: International
Symposium on Automated Technology for Verification and Analysis. pp. 233-250. Springer (2020),
https://doi.org/10.1007/978-3-030-59152-6 13

Reinbacher, T., Fiigger, M., Brauer, J.: Runtime verification of embedded real-time systems. Formal
methods in system design 44, 203-239 (2014), https://doi.org/10.1007/510703-013-0199-z
Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system
health management of real-time systems. In: Proceedings of the 20th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in
Computer Science (LNCS), vol. 8413, pp. 357-372. Springer-Verlag (April 2014), https.//doi.org/ 10.
1007/978-3-642-54862-8_24

Schneider, J., Basin, D., Krsti¢, S., Traytel, D.: A formally verified monitor for metric first-order
temporal logic. In: Runtime Verification: 19th International Conference, RV 2019, Porto, Portu-
gal, October 8-11, 2019, Proceedings 19. pp. 310-328. Springer (2019), https://doi.org/10.1007/
978-3-030-32079-9_18

. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2u2: monitoring and diagnosis of security threats for

unmanned aerial systems. In: Runtime Verification: 6th International Conference, RV 2015, Vienna,
Austria, September 22-25, 2015. Proceedings. pp. 233-249. Springer (2015), https://doi.org/10.1007/
978-3-319-23820-3_15

Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards real-time,
on-board, hardware-supported sensor and software health management for unmanned aerial systems.
In: PHM. pp. 381401 (October 2013), https://research.temporallogic.org/papers/SRRMMI15.pdf
Scott, R.G., Dodds, M., Perez, 1., Goodloe, A.E., Dockins, R.: Trustworthy runtime verification via
bisimulation (experience report). Proceedings of the ACM on Programming Languages 7(ICFP),
305-321 (2023), https://doi.org/10.1145/3607841

Seidel, L., Beier, J.: Bringing rust to safety-critical systems in space. In: 2024 Security for Space
Systems (3S). pp. 1-8. IEEE (2024), https://doi.org/10.23919/3560530.2024.10592287

Towards a Safe, Verified Runtime Monitor for Embedded Systems 19

48. Sharma, A., Sharma, S., Tanksalkar, S.R., Torres-Arias, S., Machiry, A.: Rust for embedded systems:
Current state and open problems. In: Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security. pp. 2296-2310 (2024), https://doi.org/10.1145/3658644.
3690275

49. STMicroelectronics: Discovery kit with STM32F303VC MCU, https://www.st.com/resource/en/
user_manual/umli570-discovery-kit-with-stm32f303vc-mcu- stmicroelectronics.pdf

50. Weston, D.: Windows security best practices for integrating and managing se-
curity tools (2024), https://www.microsoft.com/en-us/security/blog/2024/07/27/
windows-security-best-practices-for-integrating-and- managing- security-tools/

51. Zhang, P, Aurandt, A., Dureja, R., Jones, PH., Rozier, K.Y.: Model predictive runtime verification for
cyber-physical systems with real-time deadlines. In: International Conference on Formal Modeling
and Analysis of Timed Systems. pp. 158-180. Springer (2023), https://research.temporallogic.org/
papers/ZADJR23.pdf

A Boolean Connectives

Algorithm 4: Negation Operator: ¢ =—1)
1 procedure Negation (1))

2 Initialize:
3 ‘ @.next_time=0 // Initialize @.next_time; stores the next time for
Input: Node: 1/

4 Ty = ¢.read(p.read; _ptr,p.next_time) // Read Node
5 if Ty, # Empty then // New Ty
6 if /(T .v) then // Ty.v=false
7 p.next_time="Ty.T+1

8 ‘ p.write(true, Ty,.T) // Writing T, =(true,Ty.T)
9 else // Ty .v=true
10 p.nexttime="Ty.T+1

1 p.write(false, Ty, .7) // Writing T, =(false,Ty,.7)

Theorem 4 (Correctness of the Negation Operator). Given the child node 1, Algorithm
4 writes the tuple T, to ¢’s SCQ when sufficient data is available such that for all © > 0,
T, = (true,i) iff m,i =—.

Proof. The p.next_time variable determines what timestamp is desired from node v to make
the next evaluation. The (p.next_time variable is initialized to O on line 3. If a verdict-timestamp
tuple is written, then .next_time is updated to ¢+1 (lines 7 and 10).

The p.next_time variable is then an input into the read function on line 4 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1), then T}.v is the
verdict for the interval [p.next_time,T,.7] (following from Theorem 2).

(only-if direction) 7,7 = —¢) — T,, = (true,i): We consider all possibilities of Ty, to
determine if 7,i |=—):

(1) Ty is empty: There is no new information based in y.next_time to evaluate if 7,3 = —);
therefore, the algorithm does nothing.

(2) Ty.v=false: T,y.v=false for [p.next_time,T;,.7] such that 7,i = ¢ for p.next_time <
i <T,.7; therefore, (true,T;;.7) is written to ¢’s SCQ on line 8.

(3) Ty.v=true: Ty,.v=true for [p.next_time,Ty.7| such that i =1 for p.next_time <
i <T,.7; therefore, (false,T;,.7) is written to ’s SCQ on line 11.

(if direction) T, = (true,i) —m,i |=—:

T, = (true,3) tuples are only written to ¢’s SCQ on line 8, which requires that T',.v =false from

[.next_time,Ty.7); therefore, m,i b= 1) for p.next_time <i<T,.7. As aresult, i =—

for p.next time <t <T.7.

T, = (false,i) tuples are only written to ¢’s SCQ on line 11, which requires that T\,.v =true

from [p.next_time, Tp;.7]; therefore, m,7 |= ¢ for p.next_time < i < Tp;.7. As a result,

m,i B for p.next_time <i<Ty.T.

20 A. Aurandt et al.

There is only one condition under which no verdict-timestamp tuples were written to ’s SCQ

since there is not enough information to determine if 7,3 |=—: T}, is empty.
Verdict-timestamp tuples 7., = (true,i) are only written to ¢’s SCQ iff 7,7 = =), and

T, = (false,i) are only written to ¢’s SCQ iff i = —). O

Algorithm 5: And Operator: p=19 A &
1 procedure And(1,£)
2

Initialize:
3 | ¢.nexttime=0 // Initialize @.newt_time;stores the next time for ¢ and &
Input: Node: 1/; Node: £

4 Ty = ¢.read(p.read; -ptr,p.next_time) // Read Node
5 Te =&.read(p.ready ptr,p.next_time) // Read Node &
6 if Ty, # Empty and Te # Empty then // New Ty and Te
7 if Ty .v and T¢ .v then // Ty.v=true and T¢.v=true
8 Tmin =min(Ty.7,Te.T)

9 p.nexttime="Tpin+1

10 p.write(true, T in) // Writing T, = (true,Tmin)
11 return

12 else if !(Ty,.v) and !(T¢ .v) then // Ty.v=false and T¢.v=false
B3 Tmaz =max(Ty.7,T¢.T)

14 p.next_time="Tmaz+1

15 p.write(false,Tmaqx) // Writing T, = (false,Trmaz)
16 return
17 if T, # Empty then // New Ty
18 if |(T’y,.v) then // Ty.v=false
19 <p.next,time:T¢.'r+1

20 ‘ p.write(false, Ty, .7) // Writing T, =(false,Ty,.T)
21 if Te # E'mpty then // New Tg
2 if !|(T¢.v) then // Te.v=false
23 p.next time=Te.7+1

% ‘ p.write(false,T¢.7) // Writing T, =(false,T¢.T)

Theorem 5 (Correctness of the And Operator). Given the interval [Ib,ub] and two children
nodes 1 and &, Algorithm 5 writes the tuple T,, to ©’s SCQ when sufficient data is available
such that for all i >0, T,, = (truei) iff milE=Y A &

Proof. The p.next_time variable determines what timestamp is desired from both node v and

node £ to make the next evaluation. The ¢.next_time variable is initialized to 0 on line 3. If a

verdict-timestamp tuple is written, then ¢.next_time is updated to 41 (lines 9, 14, 19, and

23).

The .next_time variable is then an input into the read functions on lines 4-5 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1), then T}.v is the
verdict for the interval [p.next_time,T,;.7], and if @.next_time is available in node &, then
T¢.v is the verdict for the interval [¢.next_time,T¢.7| (following from Theorem 2).

(only-if direction) 7,i =1 A £ —T,, = (true,i): We consider all possible combinations of
T and T to determine if 7,3 =1 A &:

(1) Ty and T¢ are both empty: There is no new information based on p.next_time to evaluate
if mifE=1Y A & therefore, the algorithm does nothing.

(2) (Ty.v =true and T¢ is empty) or (Ty, is empty and T¢.v = true): There is not enough
information to determine if both 7,3 =1 and 7,i =&; therefore, the algorithm does nothing.

(3) TW.v = true and T¢.v = true: If both T;,.v and T¢.v are true, then they are both
guaranteed to be true from [p.next_time,min(Ty.7,T¢.T)]. As aresult, m,i |=1) A & for
p.next_time <i<min(Ty.7,T¢.7); therefore, (true,min(Ty,.7,T¢.7)) is written to ¢’s
SCQ on line 10.

4) Ty.v = false and T¢.v = false: If both T;,.v and T¢.v are false, then they are both
guaranteed to be false from [p.next_time,min(T,.7,T¢.T)], but one of them is false
from [p.next_time,max(Ty.7,T¢.7)]. As aresult, milE1 A € for p.next_time <i<
max(Ty.7,T¢.7); therefore, (false,max(Ty.7,T¢.7)) is written to ¢’s SCQ on line 15.

Towards a Safe, Verified Runtime Monitor for Embedded Systems 21

(5) Ty.v=false and Ty is empty: T,,.v=false for [p.next_time,T,;.7] such that 7,3 %) for
p.next_time <i<Ty.7. Asaresult, mil= A & for p.next_time <i<T,.T; therefore,
(false,T;.7) is written to ’s SCQ on line 20.

(6) Ty is empty and Tr.v="false: T¢.v =false for [p.next_time,T¢.7| such that i =€ for
p.next time<i<Tg.T. Asaresult, m,i =) A € for p.next_time <i<Tg.7; therefore,
(false, T¢.7) is written to ¢’s SCQ on line 24.

(if direction) T\, = (true,i) > mif=9 A &

T, = (true,i) tuples are only written to ¢’s SCQ on line 10, which requires that both T',.v =true

and T¢.v =true; therefore, 7,4 =1 and i =§ for p.next_time <i <min(Ty.7,T¢.7). Asa

result, i =1 A € for p.next_time <i<min(Ty.7,T¢.7).

T, = (false,i) tuples are only written to ¢’s SCQ on lines 15, 20, and 24:

(1) line 15: It is guaranteed that both T',.v and T¢.v are false from [p.next_time,
min(Ty.7,T¢.7)], but one of them is false from [p.next_time,maz(Ty.7,T¢.7)]. As a
result, m,i =) A & for p.next time <i <max(Ty.7,1¢.7).

(2) line 20: T,y.v =false for [p.next_time,T,.7] such that 7,3 = 1) for p.next _time <i<
Ty.1. As aresult, milE1 A € for p.next_time <i<Ty.T.

(3) line 24: Tr.v = false for [p.next_time,T¢.7] such that 7,3 b~ & for p.next_time <i <
Te.1. Asaresult, mif= A € for p.next_time <i<Tg.T.

There are three conditions under which no verdict-timestamp tuples were written to ¢’s SCQ
since there is not enough information to determine if m,i =1 A &:

(1) Ty and T¢ are both empty: There is not enough information to evaluate if 7,i =1 A .

(2) T)y.v=true and T is empty: There is not enough information to determine if 7,3 }=¢;
therefore if 7,4 =1 A & cannot be determined.

(3) Ty is empty and T¢.v =true: There is not enough information to determine if i =1);
therefore if 7,4 =1 A & cannot be determined.

Verdict-timestamp tuples T, = (true,i) are only written to ’s SCQ iff 7,0 =9 A &, and

T, = (false,i) are only written to ’s SCQ iff m,i e A & O

Algorithm 6: Or Operator: p=1 V &
1 procedure Or(y),£)
2

Initialize:
3 ‘ @.nexttime=0 // Initialize @.next_time;stores the next time for % and §
Input: Node: v; Node: £
4 Ty = ¢.read(p.read; _ptr,p.next_time) // Read Node
5 Te =¢.read(p.reads _ptr,p.next_time) // Read Node &
6 if Ty, # Empty and Te # Empty then // New Ty and T¢
7 if Toy,.v and T .v then // Ty.v=true and T¢.v=true
8 Tmaz =max(Ty.17,Te.T)
9 @p.nexttime="Tmaz+1
10 p.write(true, Trmaz) // Writing T, =(true,Tmaax)
11 return
12 elseif !(T';,.v) and |(T¢ .v) then // Ty.w=false and T¢.v="false
13 Tmin =min(Ty.7,Te.T)
14 w.next_time="Tmin+1
15 p.write(false,Tmin) // Writing T, =(false,Tmin)
16 return
17 if Ty, # Empty then // New Ty
18 if T, .v then // Ty.v=true
19 p.nexttime="Ty.T+1
20 p.write(true, Ty,.T) // Writing T, =(true,Ty.T)
21 if T¢ # Empty then // New Tg
2 if T¢ .v then // Tg¢.v=true
23 <p.nemt,time:Tg.T+l
24 ‘ p.write(true,Te.T) // Writing T, =/(true,T¢.T)

22 A. Aurandt et al.

Theorem 6 (Correctness of the Or Operator). Given the interval [Ib,ub] and two children
nodes 1 and &, Algorithm 6 writes the tuple T,, to ©’s SCQ when sufficient data is available
such that for all i >0, T,, = (truei) iff mifE=y V &

Proof. The p.next_time variable determines what timestamp is desired from both node v/ and

node ¢ to make the next evaluation. The p.next_time variable is initialized to O on line 3. If a

verdict-timestamp tuple is written, then ¢.next_time is updated to 41 (lines 9, 14, 19, and

23).

The .next_time variable is then an input into the read functions on lines 4-5 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1), then T}.v is the
verdict for the interval [p.next_time,T,.7], and if @.next_time is available in node &, then
T¢.v is the verdict for the interval [¢.next_time,T¢.7| (following from Theorem 2).

(only-if direction) 7,i =1 V £ —T,, = (true,i): We consider all possible combinations of
T and T to determine if 7,i =1 V &:

(1) Ty and T¢ are both empty: There is no new information based on ¢.next_time to evaluate
if mi =1 V &, therefore, the algorithm does nothing.

(2) (T'y.v ="false and T¢ is empty) or (T3 is empty and T v = false): There is not enough
information to determine if either 7,3 =1 or i |=&; therefore, the algorithm does nothing.

(3) Ty.v = true and T¢.v = true: If both T;y.v and T¢.v are true, then they are both
guaranteed to be true from [p.next_time,min(Ty.7,1¢.T)], but one of them is true from
[p.next_time,max(Ty.7,Te.7)]. As a result, m,i =9 V & for p.next_time < i <
max(Ty.7,Te.); therefore, (true,max(Ty.7,T¢.7)) is written to ¢’s SCQ on line 10.

4) Ty.v = false and T¢.v = false: If both T,.v and T¢.v are false, then they are both
guaranteed to be false from [p.next_time,min(Ty.7,T¢.7)]. As aresult, m,i 1) V € for
p.next_time <i <min(Ty.7,T¢.7); therefore, (false,min(Tr.7,T¢.7)) is written to s
SCQ on line 15.

(5) Typ.v=true and Ty is empty: Ty,.v = true for [p.next_time,T,,.7| such that 7,i |= ¢
for p.next_time <i <Ty.7. As aresult, m,i =1 V £ for p.next_time <i <Ty.T;
therefore, (true,T,.7) is written to ¢’s SCQ on line 20.

(6) Ty is empty and Tg.v =true: Ty.v =true for [p.next_time,T¢.7] such that 7,i =& for
p.next_time <i<T¢.7. As aresult, 7,1 E v for p.next time<i< T .7 therefore,
(true,T¢.7) is written to ¢’s SCQ on line 24.

(if direction) T;, = (true,i) —»m,if=vy V &

T, = (false,i) tuples are only written to ’s SCQ on lines 10, 20, and 24:

(1) line 10:1tis guaranteed that both T'y,.v and T¢.v are true from [p.next_time,min(Ty.7,T¢.7)),
but one of them is true from [p.next_time,max(Ty.7,T¢.7)]. As aresult, mif=1 V &
for p.next_time <i<max(Ty.1,1¢.T).

(2) line 20: Tyy.v =true for [p.next_time,T,,.7] such that 7,i =1 for p.next_time <i <
Ty.1. As aresult, mi =1 V £ for p.next_time <i<Ty.T.

(3) line 24: Ty v=true for [p.next_time,T¢.T| such that i =¢ for p.next_time <i <Tg.T.
As aresult, m,i =1 V € for p.next_time <i<Tg.T.

T, = (false,i) tuples are only written to ¢’s SCQ on line 15, which requires that both T,.v =

false and T¢.v =false; therefore, 7,i =) and 7,i =& for .next_time <i<min(Ty.7,1¢.T).

As aresult, i~ A € for p.next_time <i<min(Ty.7,T¢.7).

There are three conditions under which no verdict-timestamp tuples were written to ’s SCQ
since there is not enough information to determine if w,i = V &:

(1) Ty and Ty are both empty: There is not enough information to evaluate if 7,i =1 V &.

(2) Ty.v=false and T is empty: There is not enough information to determine if 7,7 |=¢;
therefore if 7,i =1 V £ cannot be determined.

Towards a Safe, Verified Runtime Monitor for Embedded Systems 23

(3) Ty is empty and T v =false: There is not enough information to determine if 7,7 |=1);
therefore if i =1 V € cannot be determined.

Verdict-timestamp tuples T, = (true,i) are only written to ’s SCQ iff 7,i =1 V &, and

T, = (false,i) are only written to ’s SCQ iff i~ V & O

Algorithm 7: Iff Operator: o =1 <> £
1 procedure /ff(1),£)
2

Initialize:
3 ‘ p.nexttime=0 // Initialize @.next.time;stores the next time for % and §
Input: Node: v/; Node: £
4 Ty = ¢.read(p.read; -ptr,p.next_time) // Read Node
5 Te =& read(p.reads _ptr,p.next_time) // Read Node &
6 if Ty, # Empty and Te # Empty then // New Ty and Tg
7 Tmin = min(Tw 'T7T5 'T)
8 p.nexttime="Tmin+1
9 if Ty, .v and T .v then // Ty.w=true and Te.v=true
10 | p.write(true, Trmin) // Writing T, =(true,Tmin)
1 else if !(T';,.v) and |(T¢ .v) then // Ty.v=false and T¢.v="false
12 | p.write(true,Trmin) // Writing T, =(true,Tmin)
13 else
14 | p.write(false, Tin) // Writing T, = (false,7nin)

Theorem 7 (Correctness of the Iff Operator). Given the interval [lb,ub] and two children
nodes 1 and &, Algorithm 6 writes the tuple T, to ©’s SCQ when sufficient data is available
such that for all i >0, T, = (true,t) iff mif=1 < &

Proof. The p.next_time variable determines what timestamp is desired from both node 1/ and
node £ to make the next evaluation. The .next_time variable is initialized to O on line 3. If a
verdict-timestamp tuple is written, then p.next_time is updated to i+ 1 (lines 8).

The p.next_time variable is then an input into the read functions on lines 4-5 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1, then T;,.v is the
verdict for the interval [p.next_time,T,,.7], and if @.next_time is available in node &, then
Te.v is the verdict for the interval [p.next_time,Te.7] (following from Theorem 2).

(only-if direction) 7,i =1 <+ £ —T,,=(true,i): We consider all possible combinations of
T and T¢ to determine if 7,i =1 < &:

(1) Ty is empty or T¢ is empty: There is not enough information to determine both if 7,7 =1
and if 7, =¢&; therefore, the algorithm does nothing.

(2) Ty.v = true and T¢.v = true: If both Toy.v and T¢.v are true, then they are both
guaranteed to be true from [p.next_time,min(Ty.7,1¢.7)]. As aresult, mif=19 <> §
for p.next_time <i<min(Ty.7,T¢.7); therefore, (true,min(Ty.7,T¢.T)) is written to
©’s SCQ on line 10.

(3) Ty.v = false and T¢.v = false: If both T,.v and T¢.v are false, then they are both
guaranteed to be false from [p.next_time,min(Ty.7,T¢.T)]. As aresult, m,i =1 < £
for p.next_time <i <min(Ty.7,T¢.7); therefore, (true,min(Ty.7,1¢.T)) is written to
©’s SCQ on line 12.

4) (Ty.v = true and T¢.v = false) or (T},.v = false and T¢.v = true): Both Ty.v and
T¢.v are guaranteed to be the verdicts from [p.next_time,min(Ty.7,T¢.7)]; therefore,
either m,i =) — € or m,i € — 1 for p.next_time <i<min(Ty.7,T¢.T). As a result,
i < Efor p.next_time <i <min(Ty.7,T¢.T); therefore, (false,min(Ty.7,T¢.T))
is written to ¢’s SCQ on line 14.

(if direction) T\, = (true,i) = mi|=1) < &

T, = (true,i) tuples are only written to ¢’s SCQ on lines 10 and 12:

(1) line 10: 1t is guaranteed that both T',.v and T¢.v are true from [@.next_time,
min(Ty.m,T¢.7)]. As aresult, m,i =1 < £ for p.next_time <i<max(Ty.7,T¢.7).

24 A. Aurandt et al.

(2) line 12: 1t is guaranteed that both T',.v and T¢.v are false from [p.next_time,

min(Ty.7,T¢.7)]. As aresult, m,i|=1) > & for p.next time <i <max(Ty.7,T¢.7).
T, = (false, i) tuples are only written to ¢’s SCQ on line 14, which requires that either
Ty.v=true and T¢.v =false, or T'y.v =false and T¢.v =true; therefore, either 7, HEiv—¢E
or 7,4 = & = ¢ for p.next_time < i < min(Ty.1,Tc.7). As aresult, m,i =19 < £ for
p.next_time <i<min(Ty.7,T¢.T).

There is only one condition under which no verdict-timestamp tuples were written to ¢’s
SCQ since there is not enough information to determine if 7,i =1 <> &: T} is empty or T is
empty.

Verdict-timestamp tuples 7T, = (true,i) are only written to ¢’s SCQ iff 7,i =1 > &, and
T, = (false,i) are only written to ’s SCQ iff w1 ~1) + &. O

B Release (R) Operator

Algorithm 8: Release Operator: 0 =1 R up) §

1 Initialize:

@.previous =—1 // Initialize ¢.previous; stores the last 7 written
@.nexttime=Ib // Initialize @.next_time; stores the next time for % and §
4 procedure Release(1),£)

Input: Node: v/; Node: £
5 Ty =.read(p.read; ptr,p.next_time) // Read Node
6 Te =& read(p.reads _ptr,p.next_time) // Read Node &
7 if T¢ # Empty then // New T¢
8 if |(T¢ .v) then // Te.v=false
9 p.previous =Te.T—1b
10 p.next time=Te.T+1
1 p.write(false, Te. 7 —1b) // Writing T, = (false,T¢.T—1b)
12 return
13 if Ty, # Empty then // New Ty and Te
14 Tmin =min(Ty.7,T¢.T)
15 @p.nexttime="Tpmin+1
16 if Ty, .v then // Ty.v=true and T¢.v=true
17 ©.previous = Tmin —lb
18 p.write(true, Ty, in —Ib) // Writing T, = (true,Tmin —b)
19 return
20 if Tz .7 > p.previous—+ub then // (Ty=Empty or Ty.v=false) and T¢.v=false
21 p.previous ="T¢.T—ub
2 p.next_time=mazx(p.next_time,p.previous+1lb+1)
23 p.write(true, T .7 —ub) // Writing T, =(true,T¢.7 —ub)

Theorem 8 (Correctness of the Release Operator). Given the interval [Ib,ub| and two
children nodes v and £, Algorithm 8 writes the tuple T, to ¢’s SCQ when sufficient data is
available such that for all i>0, T, = (true,i) iff 7,i =1 Ryp,up) &

Proof. The p.previous variable stores the previous time index 7 that node o =1 Ry up) €
wrote to its SCQ. Before the first tuple is produced, w.previous is initialized to —1 (line 2)
such that the condition on line 20 can be rewritten as 7.7 > —14-ub or rather ;.7 > 0+ub=
Te. 7 >ub. Whenever a verdict-timestamp tuple is written, the .previous variable is updated
to that timestamp (lines 9, 17, and 21).

The @.next_time variable determines what timestamp is desired from both node v and node
¢ to make the next evaluation. The p.next_time variable is initialized on line 3 to Ib since
Y Ryp,up) & can only be evaluated when 7| >i+-1b on the interval [i+1b,i+ub] where i >0,
such that [0,lb— 1] is never required for evaluation. The .next_time variable is then updated
during execution based on what is unknown about ¢/ and &. If both T, and T¢ are not empty,
then if Toy.7 > Tp.7, its unknown if 35 € [T;.7+1,T;;.7] such that 7,5 =&, and if T, 7 <Tp.T,
then its unknown if 3k € [T),.7+1,T¢.7] such that 7,k |= . Therefore, p.next_time will

Towards a Safe, Verified Runtime Monitor for Embedded Systems 25

be updated to min(T,.7,7¢.7)+1 on line 15. Because of early evaluation (following from

Axiom 2), if a verdict-timestamp tuple is written, then p.next_time is updated to whichever

is greater: ¢+(b+1 (i.e., the Ib of the next evaluation) or min(Ty.7,T¢.7)+1 (as described

above) on lines 10 and 22. Note that on line 10 this can be rewritten as just 7¢.7+1 since
i+b+1=(Te.7—1b)+1b+1=T¢.7+1, and if Tpy.7 <T¢.7, then T,y.7 <i+1b+1. Figures

12, 13, 14, and 15 illustrate examples of how the p.next_time variable is updated.

The .next_time variable is then an input into the read functions on lines 56 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1), then T3,.v is the
verdict for the interval [p.next_time,Ti;.7], and if p.next_time is available in node &, then
T¢.v is the verdict for the interval [¢.next_time,T¢.7| (following from Theorem 2).

(only-if direction) 7,i =1 Ry up) € — T, = (true,i):

We consider all possible combinations of 77, and T to determine if 7,i =1 Ry up) &

(1) Ty and T are both empty: There is no new information based on .next_time to evaluate
if il Riip,up) & therefore, the algorithm does nothing.

(2) T, is not empty and T is empty: There is not enough information to determine if
35 € [i + 1b,i + ub] such that 7,5 £ &, then Ik < j where k € [i + Ib,7 + ub] such
that 7,k =1 (where i = p.previous+1); therefore, the algorithm does nothing.

(3) T¢.v = false (and Ty, is empty or Ty.v = false or T)y.v = true): T¢.v is the verdict
from [p.next_time,T¢.7| such that p.next_time is Ib (initial condition) or was set by
the previous execution to y.previous + b+ 1 or min(Ty.7,T¢.7) + 1 as described
above. Therefore, T¢.v = false at ¢.previous + lb + 1 and/or Pk € [p.previous +
Ib+1,p.next time — 1], w,k = 1 (since the condition on line 16 was not met by the
previous execution). As a result, 7, 1) Ry, & (following directly from Axiom 2) for
p.previous <i < Tg.T—Ib; therefore, (false,T¢.7—1b) is written to ¢’s SCQ on line 11.
Figure 12 provides a visualization of this case.

[T,.v = false L/Tf'T —ib
y 1 next_time
[Ty.v = false —

Te.v = false J/Tﬁ'T
/D WD W D G N N T (5 S W L N N
/ if i+ [)l'; \Ki + ub T

previous previous + ub

Fig. 12. Pictorial representation of ¢ =1) Ry, ,,4) & for Theorem 8 Case (3).
4) Ty.v=true and T;.v=true: If both To;.v and T¢.v are true, then they are both guaranteed
to be true from [p.next_time,min(Ty,.7,T¢.T)]. Furthermore, T¢.v is guaranteed to have
never been false from [p.previous+1b+1,T¢.7] since the result would have been written
on line 11 and the p.next_time and op.previous variables would have been updated

(lines 9-10). As a result, 7,i =10 Ry, up) € for @.previous <i <min(Ty.7,Te.7)—1b;

therefore, (true,min(Ty.7,T¢.7)—1b) is written to ¢’s SCQ on line 18. Figure 13 provides

a visualization of this case.

(5) T¢.v=false (and Ty is empty or T;,.v=true): There are two sub-cases to consider:

(a) There is enough information to determine that Vj € [i+1b,i+ub] such that 7,j = &:
Te.v is guaranteed to have never been false from [p.previous+1b+1,T¢.7] since
the result would have been written on line 11 and the p.next_time and p.previous
variables would have been updated (lines 9-10). If T¢.7 > @.previous + ub, then
Vj € [i+1b,i+ub] such that 7,5 =& where ¢ € [p.previous+1,Te.7—ub]. As a
result, 7,3 =1 Ry, up) & for @.previous < i < Te.m7—ub (following directly from

26 A. Aurandt et al.

next_time
—

T¢.7’

[
/i i+ f; Nt ub
previous previous + ub
Fig. 13. Pictorial representation of o =1 Ry, .,4) & for Theorem 8 Case (4).
Axiom 2); therefore, (true,Ty.7 —ub) is written to ¢’s SCQ on line 23. Figure 14

provides a visualization of this case.

TE.T —ub
A~ next_time
—
i, Tem—ub+1b
1

| G
VAN

previous i+1b

Kz'+ub

previous + ub
Fig. 14. Pictorial representation of ¢ =1 Ry, ,4) £ for Theorem 8 Case (5)(a)

(b) There is currently not enough information to determine if 35 € [i +1b,i+ub] such that
7,5 P& I Te.m < p.previous—+ub, then there is not enough information to guarantee
that T¢.v =true from [i+1b,i+ub] where i =.previous+1. There is still a chance
that 3j € [T¢.7+1,i+ub] such that 7,j = ; therefore, the algorithm does not write a
tuple. Figure 15 provides a visualization of this case.

next_time
—

[Wt
/ i’ . f
i+1b

previous

Kz' ~+ ub T

previous + ub

Fig. 15. Pictorial representation of ¢ =1 R;5,.s) & for Theorem 8 Case (5)(b)

(if direction) T, = (true,i) —7,i =1 Ryp up) &
T, = (true,i) tuples are only written on lines 18 and 23 such that T¢.v =true. In both cases,
T¢.v is guaranteed to have never been false from [¢.previous+1b+1,T¢.7] since the result
would have been written on line 11 and the p.next_time and @.previous variables would
have been updated (lines 9-10). If Toy.v = true, then 7,i =1 Riip,up) € for p.previous <
i <min(Ty.7,Te.7) — b (line 18). If Tyy.v # true and T¢.7 > @.previous +ub, then Vj €
[i+1b,i+ub] such that 7,5 |=&; therefore, 7,i =1 Ry 1) & for @.previous <i <Tg.m—ub
(line 23).
T, = (false,i) tuples are only written to ¢’s SCQ on line 11, which requires that 7 .v =false
is the verdict from [p.next_time,T¢.] such that .next_time is [b (initial condition) or was
set by the previous execution to .previous +1b+1 or min(T,.7,T¢.7)+ 1 as described
above. Therefore, T;.v = false at i+1b and/or Fik € [i+1b,p.next timel, 7,k =10, As a result,
i) Ryp,up) & for @.previous <i <Te.7—1b (following directly from Axiom 2).
There are three conditions under which no verdict-timestamp tuples were written to ’s SCQ
since there is not enough information to determine if 7,i =1 Ri,up &
(1) Ty and T¢ are both empty: There is not enough information to evaluate if 7,i =1 Riuv,up) &-

Towards a Safe, Verified Runtime Monitor for Embedded Systems 27

(2) Ty is not empty and T¢ is empty: There is not enough information to determine if
3j € [i + 1b,i + ub] such that 7,j = &, then 3k < j where k € [i + Ib,i + ub] such
that 7,k {=1); therefore, if 7,i =1 Ry) € cannot be determined.

(3) Te.v=false and T¢. T < p.previous+ub and T, # false: There is not enough information
to guarantee that T¢.v =true from [¢+1b,i+ub] where i = .previous+1. There is still a
chance that 35 € [T¢.7+1,i+ub] such that 7, [~ &; therefore, if i =1 Ry) € cannot
be determined.

Verdict-timestamp tuples T, (true i) are only written to ¢’s SCQ iff 7,i = YR 1y), and
T, = (false,i) are only Wntten to ©’s SCQ iff 7,0 = YR 1y up)§.-

C Correctness of the Since (S) Operator

Theorem 9 (Correctness of the Since Operator). Given the interval [Ib,ub] and two children
nodes 1 and &, Algorithm 3 writes the tuple T,, to ¢’s SCQ when sufficient data is available
such that for all i >0, T,, = (true,i) iff m,i =1 Sp.up) &

Proof. The ¢.edge variable stores the latest timestamp where T¢.v = true (line 13). The
p.edge variable is initialized to —1 (line 2) such that before T¢.v = true, the conditions on
lines 20 and 34 can be rewritten as (—1 < p.previous — ub or ¢.edge = —1) = true and
(—1> p.previous—ub and @.edge# —1) =false, respectively.

The .previous variable stores the previous time index 7 that node ¢ =1 Sy) § Wrote
to its SCQ. Before the first tuple is produced, y.previous is initialized to —1 (line 3) such
that the condition on line 8 can be rewritten as —1+1—[b<0=0—[b< 0, the conditions on
lines 15, 22, and 29 can be rewritten as T¢.7 > —1—1b or rather T¢.7 > 0—1b, the condition
on line 20 can be rewritten as (p.edge < —1—ub or p.edge=—1)= (p.edge=—1), and the
condition on line 34 can be rewritten as (T7,.v and Ty,.7 > —1—1b and y.edge > 0—wub and
p.edge#—1)=(Ty.v and T;y.7 >0—1b and ¢.edges# —1). Whenever a verdict-timestamp
tuple is written, the .previous variable is updated to that timestamp (lines 9, 16, 23, 30, and
35).

Note that if 4 —ub < 0, then Vi € [0,ub— 1], we can only consider the interval [0, —[b] for
evaluation (lines 20 and 34). Line 20 checks whether T¢.v never equals true between [i —ub,i—
1b); if ¢ —ub < 0, then @.edge < p.previous —ub = (p.edge > —1) < (p.previous —ub <
—1) =false since i = p.previous+1; therefore, line 20 is contingent on whether ¢.edge =—1
(i.e., never a time yet where T¢.v =true). Line 34 performs a similar check to see if T¢.v =true
between [i — ub,i — Ib]; if i —ub < 0, then ¢.edge > @.previous — ub = (edge > —1) >
(p.previous —ub < —1) =true since i = @.previous+1; therefore, line 34 is contingent on
whether p.edge# —1 (i.e., there was a time after or at timestamp 0 where T;.v =true).

The p.next_time variable determines what timestamp is desired from both node v and
node & to make the next evaluation. The p.next_time variable is initialized to O on line 4 and
is then updated during execution based on what is known about £. When T¢.v = true (and
Te.7 <i—Ib), its unknown if Vk > T¢.7 where j € [i —ub,i—1b], 7,k =1, and if T;.v=false
from [i—ub,T¢.7] (and T¢.7 <i—1b), its known if 3j € [Te.7+1 z—lb] such that 7r,j =&, and
if both Tyy.v =false and T¢.v =false (and T¢.7 < i—Ib), it is known if 3j € [Te.7+1,i—1b]
where 7,7 =£ such that Yk > j where j € [T¢.7+1,i—1b], m,k =1. Therefore, .next_time
will be updated to T¢.7+1 on lines 14, 21, and 28. Because of early evaluation (following from
Axiom 3), if a verdict-timestamp tuple is written, then .next_time is updated to whichever is
greater: :—ub+1 (i.e., the i —ub of the next evaluation) or 7.7 +1 (as described above) on lines
14, 21, 28 and 36. Note that on lines 14, 21, and 28, this can be rewritten as just 7¢.7+1 since
i—ub+1=(T¢.7+1b) —ub+1 where [b—ub <0 such that Tz. 7+ (Ib—ub)+1 <T¢.7+1.
Figures 16, 17, 18, and 19 illustrate examples of how the p.next_time variable is updated.

28 A. Aurandt et al.

The @.next_time variable is then an input into the read functions on lines 67 (defined in
Algorithm 1) such that if the timestamp ¢.next_time is available in node 1), then Ty,.v is the
verdict for the interval [p.next_time,T,;.7), and if p.next_time is available in node &, then
Te.v is the verdict for the interval [p.next_time,Te.7] (following from Theorem 2).

(only-if direction) 7,i =1 Sjyp, 1) § — T, = (true,i): As an initial condition, if 0—1b<0
(line 8), then Vi € [0,Ib— 1], no interval exists from [i — ub,i — [b]; therefore, the algorithm
automatically writes false for all time indexes less than the lower bound (line 10). We then
consider all possible combinations of 77, and 7 to determine if 7,i |=1) Spv,ub) &

(1) (T is empty or Ty T < p.previous—1b) and (It is empty or T¢. 7 < p.previous—Ib):
There is not enough information to determine if 3j € [i —ub,i—b] such that 7,j |=£ and
Vk > j where k € [—ub,i—1b], m,k =1 (where i = @.previous + 1); therefore, the
algorithm does not write a tuple.

(2) Tz.v=trueand T¢.T > p.previous—Ib and (T, is empty or Tyy.v =true or Tyy.v =false):
T¢.v is the verdict from [@.next_time,T¢.7] such that p.next_time < p.previous—Ib+
1 since the result would have been previously written on line 17 and the p.next_time
variable would have been updated (line 14). Therefore, T¢.v is guaranteed to be true at
i—Ib where i € [p.previous +1,T¢.7+1b]. As a result, 7,7 = Sy, i) & (following
directly from Axiom 3) for @.previous < i < Te.T 4+ 1b; therefore (true,T¢.7 +1b) is
written to ¢’s SCQ on line 17. Figure 16 provides a visualization of this case.

inext_time N\
— Te.m+ b
ad | —d l l l >
2
) / i — ub T
previous — ub previous

Fig. 16. Pictorial representation of ¢ =1) S[;p,) & for Theorem 9 Case (2)

(3) Tev=false and T¢.m > p.previous—1band (Ty is empty or Toy.v =true or T;,.v =false):

There are two sub-cases to consider:

(a) There is enough information to determine that 3 € [i—ub,i—Ib] such that 7,5 }=&: If
p.edge < p.previous —ub or p.edge = —1, then T¢.v is guaranteed to have never
been true from [max(p.previous—ub+1,0),T¢.7] since p.edge would have been
updated on line 13. Since T¢.7 > @.previous—1b, then 35 € [i—ub,i—1b] such that

7,j =& where i € [p.previous+1,Te.7+1b]. As aresult, 7,i [1) Sy o) & (following
directly from Axiom 3) for y.previous <i < Te.7+1b; therefore (false,T¢.7+1b) is
written to ¢’s SCQ on line 24. Figure 17 provides a visualization of this case.

inegt time N
; Te.m+1b
T§ T &7 +

/J. [R N

X -
Silw Db \ ¢ T
previous — ub previous

Fig. 17. Pictorial representation of 0 =1 Sjp, ,4) £ for Theorem 9 Case (3)(a)
(b) There is currently enough information to etermme 3j € [i—ub,i—1b] where 7,5 =&:

If p.edge > @.previous—ub and p.edge# —1, then 3j € [i —ub,i—1b—1] such that

Towards a Safe, Verified Runtime Monitor for Embedded Systems 29

the latest value of j is p.edge =p.next_time—1 as set by the previous execution on
lines 13 and 14. (Note that if ,i —b}=¢, then the result would have been written on
line 17 and the p.next_time and p.edge variables would have been updated on lines
13 and 14.) There are three sub-cases:

(b.1) There is currently enough information to determine Yk > j where j € [p.edge+
1,i—1b], m k=1 If T, .v="false, T;;.v is guaranteed to be false from [p.edge+
1,Tyy.7] since p.next time = @.edge+1. As a result, 7,i |~ ¥ Spp,) § for
p.previous <i < T¢.7+1b; therefore (false,T¢.7-+1b) is written to ’s SCQ on
line 31. Figure 18 provides a visualization of this case.

inegt time X
; Te.m+1b
Tg.T &7 +

/i Zub \edge N \Ki T

previous — ub previous

Fig. 18. Pictorial representation of ¢ =1 Sp3, 4] £ for Theorem 9 Case (3)(b.1)
(b.2) There is currently enough information fo determine Vk > j where j € [p.edge+

1,i—1b], m,k =) If Typ.v = true and T,.7 > p.previous — Ib, then Vk > j
where k € [p.edge+1,i—1b], 7,k =1 such that i € [p.previous+1,T,,.7+1b].
Since it’s only known that 3j € [i — ub,i — Ib] where 7,j = & such that
i € [p.previous + 1, (p.edge + (ub — b)) + 1b], it’s only known that 7,i =
Y Sipup) € for @.previous < i < min(Ty.7 + Ib,p.edge + ub); therefore,
(true,min(Ty,.7+1b,p.edge+ub) is written to ¢’s SCQ on line 37. Figure 19
provides a visualization of this case.
inext_time
i—

I
) /z —fub \ed_qe ;\— b \\Z
previous — ub previous
Fig. 19. Pictorial representation of o =1 Sy & for Theorem 9 Case (3)(b.2)

(b.3) There is currently not enough information to determine if Vk > j where j €
[p.edge+1,i—1b), 7,k |=: If Tyy.v = true and Tpy.7 < i — b, there is not
enough information to know if vk > j where j € [p.edge+1,i—1b], 7,k =1);
therefore, the algorithm does not write a tuple.

@) Ty.m>i—1band (1 is empty or T¢. 7 <i—1b): There are two sub-cases to consider:

(a) There is enough information to determine that 3j € [i—ub,i—1b] where 7,j =€ such
that ¥k > j where j € [i —1b,i—1b], m,k |= 9 If p.edge > p.previous —ub and
p.edge 7 —1, then this follows directly as Case (3) (b.2) above (following directly
from Axiom 3).

(b) There is not enough information to determine if 3j € [i —ub,i —[b] where 7,5 E &
such that Vk > j where j € [i—1b,i—1b], m,k =: If p.edge < p.previous—ub or
p.edge=—1, then there is still a chance that 35 € [{ —ub,i —Ib] where 7,j =¢ in the
future such that Yk > j where j € [i —1b,i—1b], 7,k =1); therefore, the algorithm does
not write a tuple.

30 A. Aurandt et al.

(if direction) T, = (true,i) —7,i =1 Spp,) &:

T, = (true,i) tuples are only written to ’s SCQ on lines 17 and 37:

(1) line 17: Te.v = true is guaranteed to be the verdict from [p.next_time,T¢.7] such
that p.next_time < p.previous —lb+1 and T¢.7 > @.previous — lb+ 1; therefore,
Te.v=true at i—Ib where i € [p.previous+1,T¢.74-1b]. As aresult, m,i =1 Syp,) §
(following directly from Axiom 3) for g.previous <i <T¢.7+Ib.

(2) line 37: 1t is guaranteed that 35 € [p.previous — ub + 1, @.previous — [b] such that
7,j =& where j=.edge and that T;;.v =true is the verdict from [p.next_time,Ty.7]
where p.next_time = p.edge+1 (as set by the previous execution on line 13—-14) and
Ty > .previous — Ib+ 1; therefore, 3j € [i — ub,i — [b] where ¢ € [p.previous +
1,(p-edge+ (ub—1b))+1b)] and Vk > j where k € [—ub,i—1b], T;.v =true such that
i € [p.previous +1,Ty.7 +1b]. As aresult, 7,i |= ¢ Spypp) § for p.previous < i <
min(Te. 7+1b,p.edge+ub).

T, = (false,i) tuples are only written on lines 10, 24, and 31:

(1) line 10: When i—1b<0 (i.e., i <b), there will never exist an interval [—ub,i—[b]. As a
result, 7,7 E 1) Spyp,up) € for i <Ib.

(2) line 24: T¢ v is guaranteed to have never been true from [¢.previous—Ib+1,p.previous—
ub+1] since the (.edge would have been updated on line 13; therefore, 71 € [i —ub,i—1b]
such that 7,5 =£. As a result, 7, &1 Spiv,up) € (following directly from Axiom 3) for
p.previous <i <Tg+1b.

(3) line 31: 1t is guaranteed that 3j € [p.previous —ub+1,p.previous—1b] such that 7,5 =&
where j = @.edge and j is the latest time in [(¢.previous + 1) — ub, @.previous —
Ib] where 7,5 = &, but Ty,.v = false is the verdict from [p.next_time, Ty;.7] where
p.next_time = p.edge+1 (as set by the previous execution on line 13-14); therefore,
3j € [i —ub,i—1b] such that 7,5 = but there is never an instance where Vk > j where
keli—1bi—ub], 7k, As aresult, i~ Sypup & for p.previous <i <Tg+1b.

There are three conditions under which no verdict-timestamp tuples were written to ’s SCQ

since there is not enough information to determine if ,i = Spp up) &:

(1) (T is empty or Toy.m < p.previous—1b) and (Tt is empty or Ty 7 < p.previous —Ib):
There is not enough information based on ¢.next time to evaluate if 7,i =1 Sy,) &
therefore, the algorithm does not write a tuple.

(2) T¢.v="false and T¢. 7 >1i—1b and Ty.v = true and T),.T <i—1b and p.edge >i—ub
and p.edge —1: If p.edge >i—ub and p.edge# —1, then 3j € [i —ub,i—Ib—1] such
that the latest value of j is p.edge = p.next_time—1 as set by the previous execution on
lines 13 and 14. T\;.v =true is the verdict from [¢.edge+1,T,,.7], but there is not enough
information to determine if 7,k =1 where k € [T,,.7+1,i—b]; therefore, the algorithm
does nothing.

(3) (Tt is Empty or Ty. 7 <i—1b) and Toy.m > i—1b and (p.edge < i—ub or p.edge=—1):
There is not enough information to guarantee that 3j € [i —ub,i —Ib] such that 7,3 =&,
where Vk > j such that k € [i—ub,i —1b], 7,k =1). More specifically, it is guaranteed to be
unknown if i —Ib|=£ (as described in Axiom 3); therefore, the algorithm does not write

a tuple.
Verdict-timestamp tuples 7;, = (true,i) are only written to ¢’s SCQ iff 7,i =1 Spp,up) €,
and T, = (false,i) are only written to ’s SCQ iff 7,i =) Sy,) &- a0

D Trigger (7)) Algorithm

Theorem 10 (Correctness of the Trigger Operator). Given the interval [lb,ub] and two
children nodes v and &, Algorithm 9 writes the tuple T,, to ©’s SCQ when sufficient data is
available such that for all i >0, T, = (true,i) iff 7,i =1 Tipup) &

Towards a Safe, Verified Runtime Monitor for Embedded Systems 31

Algorithm 9: Trigger Operator: 0 =1 Tp,up) &

1 Initialize:
2 @.edge=—1 // Initialize ¢.edge; stores the last ¢ where milEE
3 @.previous=—1 // Initialize ¢.previous; stores the last 7 written
4 @.next_time=0 // Initialize @.next_time; stores the next time for % and &
5 procedure T'rigger(y,€)
Input: Node: v; Node: £

6 Ty = ¢.read(p.read; _ptr,p.next_time) // Read Node
7 Te = ¢.read(p.reads_ptr,p.next_time) // Read Node &
8 if p.previous+1—1b <0 then // i—=1lb<0
9 @.previous=1lb—1
10 @.write(true,lb—1) // Writing Ty, =(true,lb—1)
11 if Te # E'mpty then // New Tg
12 if |(T¢ .v) then // Tg.v=false
13 p.edge=Tg.T // Updating @.edge to last false edge
14 p.nexttime=Te.T+1 // Updating @.next-time to after g.edge
15 if T¢ .7 > @.previous —1b then // mi—lblEE
16 p.previous =Te.T+1b
17 p.write(false, Te .7 +1b) // Writing T, =(false,T¢.T+1b)
18 return
19 else // Te.v=true
20 if p.edge <p.previous—ubor p.edge=—1 then // Vj€fi—ubTe.7],mjE=E
21 p.nexttime=Ts.T+1 // Move g.next-time forward
2 if Te .7 > @.previous—1b then // Vj€Eli—ubi—Ib],m,jEE
23 p.previous =Te.T+1b
2 p.write(true,Te . 7+1b) // Writing T, =(true,T¢.7+1b)
25 return
26 if Ty, # Empty then // New Ty
27 if T, .v then // Ty.v=true and T¢.v=true
28 p.nexttime=Te.T+1 // Move g.next-time forward
29 if Te.7 > @.previous —1b then
30 p.previous =Te.T+1b
31 p.write(true,Te . 7+1b) // Writing T, =(true,T¢.7+1b)
2 return
33 if Ty, # Empty then // New Ty

/* Jp.edge € [i—ub,i—1b], such that Fk>¢.edge where k>i—1b, k=1 */
34 if (T, .v) and Ty, .7 > p.previous—1b and p.edge > @.previous —ub and p.edge# —1 then
35 p.previous =min(Ty.T+1b,p.edge+ub) // Limit ¢ based on ¢.edge
36 p.next_time=max(p.next_time,p.previous —ub+1)
37 p.write(false,p.previous) // Writing T, = (false,p.previous)

Proof. The ¢.edge variable stores the latest timestamp where T¢.v = false (line 13). The
(p.edge variable is initialized to —1 (line 2) such that before T .v = false, the conditions on
lines 20 and 34 can be rewritten as (—1 < p.previous —ub or p.edge = —1) = true and
(—1>@.previous—ub and p.edge# —1) =false, respectively.

The @.previous variable stores the previous time index i that node ¢ =1) Ty,) & Wrote
to its SCQ. Before the first tuple is produced, .previous is initialized to —1 (line 3) such
that the condition on line 8 can be rewritten as —1+1—[b<0=0—1[b< 0, the conditions on
lines 15, 22, and 29 can be rewritten as T¢.7 > —1—1b or rather T¢.7 > 0—1b, the condition
on line 20 can be rewritten as (¢.edge < —1—ub or p.edge=—1) = (p.edge=—1), and the
condition on line 34 can be rewritten as (7.v and Ty,.7 > —1—1b and ¢.edge >0 —ub and
p.edge#—1)=(Ty.v and T;y.7 >0—1b and @.edges# —1). Whenever a verdict-timestamp
tuple is written, the y.previous variable is updated to that timestamp (lines 9, 16, 23, 30, and
35).

Note that if ¢ —ub < 0, then Vi € [0,ub— 1], we can only consider the interval [0,i—[b] for
evaluation (lines 20 and 34). Line 20 checks whether T¢.v never equals false between [i —ub,i—
1b); if ¢ —ub < 0, then .edge < p.previous —ub = (p.edge > —1) < (p.previous —ub <
—1) =false since i = .previous+1; therefore, line 20 is contingent on whether ¢.edge=—1
(i.e., never a time yet where T .v =false). Line 34 performs a similar check to see if T¢.v =false
between [i — ub,i — Ib]; if i — ub < 0, then ¢.edge > @.previous — ub = (edge > —1) >

32 A. Aurandt et al.

(p.previous—ub< —1) =true since i = p.previous+1; therefore, line 34 is contingent on

whether ¢.edge# —1 (i.e., there was a time after or at timestamp 0 where T¢.v =false).

The p.next_time variable determines what timestamp is desired from both node v and
node & to make the next evaluation. The ¢.next_time variable is initialized to O on line 4 and
is then updated during execution based on what is known about {. When T¢.v = false (and
Te.m <i—1b), its unknown if 3k > T¢.7 where j € [i—ub,i—1b], m,k =1, and if Te.v =true
from [i—ub,T¢.7] (and T¢.7 <i—1b), its known if 3j € [T¢.7+1,i—1b] such that 7,j =&, and
if both Tpy.v =true and T¢.v =true (and T¢.7 < i—1b), it is known if 3j € [T¢.7+1,i—1b]
where 7,7 ££ such that 3k > j where j € [Te.7+1,i—1b], 7,k =1. Therefore, p.next_time
will be updated to T¢.7+1 on lines 14, 21, and 28. Because of early evaluation (following from
Axiom 4), if a verdict-timestamp tuple is written, then .next_time is updated to whichever is
greater: i —ub+1 (i.e., the i —ub of the next evaluation) or T;.7+1 (as described above) on lines
14, 21, 28 and 36. Note that on lines 14, 21, and 28, this can be rewritten as just 7¢.7+1 since
i—ub+1= (T¢.7+1b) —ub+1 where [b—ub < 0 such that Tz. 7+ (Ib—ub)+1 <T¢.7+1.
Figures 20, 21, 22, and 23 illustrate examples of how the p.next_time variable is updated.

The .next_time variable is then an input into the read functions on lines 67 (defined in
Algorithm 1) such that if the timestamp .next_time is available in node 1, then T;,.v is the
verdict for the interval [p.next_time,T,.7], and if @.next_time is available in node &, then
Te.v is the verdict for the interval [p.next_time,Te.7] (following from Theorem 2).

(only-if direction) i =1 Ty, i) & — T}, = (true,i): As an initial condition, if 0—1b<0
(line 8), then Vi € [0,Ib— 1], no interval exists from [i — ub,i — [b]; therefore, the algorithm
automatically writes true for all time indexes less than the lower bound (line 10). We then
consider all possible combinations of 7y, and T to determine if 7,i =1 Tiv,up) &

(1) (Ty is empty or Ty T < p.previous—1b) and (1t is empty or T 7 < p.previous—Ib):
There is not enough information to determine if 35 € [—ub,i—1b] such that 7,j £ £ and
3k > j where k € [i —ub,i — b, m,k =1 (where i = p.previous + 1); therefore, the
algorithm does not write a tuple.

(2) T¢.v=false andT¢.m > p.previous—Iband (T, is empty or Toy.v =true or Tyy.v =false):
T¢.v is the verdict from [p.next_time,T¢.7] such that .next_time < .previous—Ib+
1 since the result would have been previously written on line 17 and the p.next_time
variable would have been updated (line 14). Therefore, T¢.v is guaranteed to be false at
i—Ib where i € [p.previous +1,T¢.7+1b]. As a result, 7,i (%= 1 Ty up) & (following
directly from Axiom 4) for p.previous < i < T¢.T + 1b; therefore (false,T¢.7 4 1b) is
written to ¢’s SCQ on line 17. Figure 20 provides a visualization of this case.

T,.v = false

inext_time
| Ty.v = true | i— Tg.;\+ Ib

[Te.v = false Ter
S B D G [D G | O N R R B
X -
il N\ T
previous — ub previous

Fig. 20. Pictorial representation of ¢ =1 Tpp) € for Theorem 10 Case (2)

(3) Tz.v=true and T¢.T > p.previous—Ib and (T, is empty or T;,.v =true or Tyy.v =false):
There are two sub-cases to consider:

(a) There is enough information to determine that Vj € [i —ub,i— b such that 7,5 =& If

p.edge < @.previous—ub or p.edge= —1, then T¢.v is guaranteed to have never

Towards a Safe, Verified Runtime Monitor for Embedded Systems 33

been false from [max(p.previous—ub+1,0),T¢.7] since ¢.edge would have been
updated on line 13. Since T¢.7 > p.previous—Ib, then V5 € [i —ub,i—b] such that
7,j =€ where i € [p.previous+1,Te.7+1b]. As aresult, ,i =1 T p) € (following
directly from Axiom 4) for p.previous <i<T¢.T+1b; therefore (true,T¢.7+1b) is
written to ¢’s SCQ on line 24. Figure 21 provides a visualization of this case.

Tp.v = true
ine:ct_time \

! Te. b
1 Tg.’r ET+

/J. | | | |:
/i T N Ni T

previous — ub previous

Fig. 21. Pictorial representation of ¢ =1 T .4 & for Theorem 10 Case (3)(a)

(b) There is currently enough information to determine 3j € [i —ub,i—[b] where 7,j £ E:
If p.edge > @.previous—ub and p.edge# —1, then 3j € [i—ub,i—Ib— 1] such that
the latest value of j is p.edge =p.next_time—1 as set by the previous execution on
lines 13 and 14. (Note that if 7,; — b}~ &, then the result would have been written on
line 17 and the p.next_time and p.edge variables would have been updated on lines
13 and 14.) There are three sub-cases:

(b.1) There is currently enough information to determine 3k > j where j € [p.edge+
1,i—1b], m,k =1 If Typ.v=true, T};.v is guaranteed to be true from [p.edge+
1,Ty.7] since p.next_time = p.edge+1. As a result, 7,i = 1) Ty, up) § for
p.previous <i<Tg.T+1b; therefore (true,Te.7-+1b) is written to ’s SCQ on
line 31. Figure 22 provides a visualization of this case.

inext_time _
i— T,.v = true

kTw-T Tw.T +1b

]] Lo

|
/i Zub \edge L \\i T

previous — ub previous

Fig. 22. Pictorial representation of =1 T} ..+) £ for Theorem 10 Case (3)(b.1)

(b.2) There is currently enough information to determine Pk > j where j € [p.edge+
L,i—1b], m,k |=1: If Typ.v = false and Ty.7 > @.previous — Ib, then ik > j
where k € [p.edge+1,i—1b], 7,k =1 such that i € [p.previous+1,Ty,. 7+1b].
Since it’s only known that 35 € [i — ub,i — [b] where 7, j p~£ € such that
i € [p.previous + 1, (p.edge + (ub — Ib)) + 4], it’s only known that 7,7 p~
Y Tpp,up) € for p.previous < i < min(Ty.7 + Ib,p.edge + ub); therefore,
(false,min(T.7+1b,p.edge+ub) is written to ¢’s SCQ on line 37. Figure 23
provides a visualization of this case.

(b.3) There is currently not enough information to determine if 3k > j where j €
[p.edge+1,i—1b], 7,k |=4: If Ty.v = false and T',.7 < i — Ib, there is not
enough information to know if 3k > j where j € [p.edge+1,i —1b], 7,k = 1);
therefore, the algorithm does not write a tuple.

@) Ty.m>i—1band (1t is empty or T¢. 7 <i—1b): There are two sub-cases to consider:

34 A. Aurandt et al.

E%t_tzme |T<,,.v = falsel

[Ty.v = false edg;\+ ub
Te.v = false Tew = ™~
_[IEII | |I|iv|tn|1e1 L |wT||;
- ¥ >
Silw \edge LTS \ é T
previous — ub previous

Fig. 23. Pictorial representation of =1 T} 4] £ for Theorem 10 Case (3)(b.2)

(a) There is enough information to determine that 35 € [i —ub,i —1b] where m,j =& such
that 3k > j where j € [i —1b,i —1b], 7,k | 9: If p.edge > p.previous —ub and
p.edge # —1, then this follows directly as Case (3) (b.2) above (following directly
from Axiom 4).

(b) There is not enough information to determine if 3j € [i —ub,i —lb| where 7,j =&
such that 3k > j where j € [i—1b,i—1b], m,k E: If p.edge < p.previous—ub or
p.edge=—1, then there is still a chance that 3j € [i —ub,i —1b] where 7,5 =£ in the
future such that 3k > j where j € [i —1b,i—1b], 7,k £ 1); therefore, the algorithm does
not write a tuple.

(if direction) T, = (true,i) —=7,i =1 Tjp,up) &

T,= (true,i) tuples are only written on lines 10, 24, and 31:

(1) line 10: When i—1b<0 (i.e., i < Ib), there will never exist an interval [i —ub,i —Ib]. As a
result, 7,1 =1 Ty, up) € for i <Ib.

(2) line 24: T¢ v is guaranteed to have never been false from [p.previous—1b+1,p.previous—
ub+1] since the p.edge would have been updated on line 13; therefore, V5 € [i —ub,i —1b]
such that 7,5 |=&. As a result, 7,i = T up) € (following directly from Axiom 4) for
p.previous <i <Tg+1b.

(3) line 31: 1t is guaranteed that 35 € [p.previous—ub+1,p.previous—Ib] such that ,j £ £
where j = @.edge and j is the latest time in [(¢.previous + 1) — ub, @.previous —
Ib] where 7, j |= &, but Ty,.v = true is the verdict from [p.next_time, T,;.7] where
p.next_time=p.edge+1 (as set by the previous execution on line 13-14); therefore, if
3j € [i—ub,i—1b] such that 7,5 =&, then Ik > j where k € [i —1bi—ub|, m,k =1. As a
result, 7, =1 Ty, up) & for @.previous <i <Te+Ib.

T, = (false,i) tuples are only written to ’s SCQ on lines 17 and 37:

(1) line 17: Ty.v = false is guaranteed to be the verdict from [p.next_time, T¢.7] such
that p.next_time < @.previous —Ib+1 and T¢.7 > @.previous — b+ 1; therefore,
T¢.v=false at i —Ib where i € [p.previous+1,T¢.7+1b]. As aresult, m,if= 1) Ty up) &
(following directly from Axiom 4) for ¢.previous <i <T¢.T+Ib.

(2) line 37: Tt is guaranteed that 3j € [p.previous — ub+ 1,¢.previous — Ib] such that
m.j =& where j = p.edge but T,,.v=false is the verdict from [p.next_time,T,.7| where
p.next_time=.edge+1 (as set by the previous execution on line 13-14) and T3,.7 >
p.previous —Ib+1; therefore, 35 € [i —ub,i —Ib] where i € [p.previous+1,(p.edge+
(ub—1b))+1b)] but there is never an instance where 3k > j where k € [i —ub,i —[b],
Ty.v=true such that i € [p.previous+1,Ty,.7+1b]. As a result, 7,3 [~ 1) Ty) € for
p.previous <i <min(Te.7+1bp.edge+ub).

There are three conditions under which no verdict-timestamp tuples were written to ¢’s SCQ

since there is not enough information to determine if 7,i =1 Tuv,up) &:

(1) (T is empty or Toy.m < p.previous—1b) and (Tt is empty or T¢. 7 < p.previous—Ib):
There is not enough information based on p.next_time to evaluate if i =1 Tuv,ub) &
therefore, the algorithm does not write a tuple.

Towards a Safe, Verified Runtime Monitor for Embedded Systems 35

(2) Tz.v=true and T¢. 7 >i—1b and T,,.v =false and T\,.T7 <i—1b and p.edge >i—ub
and p.edge# —1:If p.edge >i—ub and p.edge# —1, then 3j € [i —ub,i —Ib—1] such
that the latest value of j is p.edge = p.next_time—1 as set by the previous execution on
lines 13 and 14. T,,.v =false is the verdict from [p.edge+1,T,;.7], but there is not enough
information to determine if 7,k =1/ where k € [T;,.7+1,i—[b]; therefore, the algorithm
does nothing.

(3) (Tt is Empty or Ty. 7 <i—1b) and Ty.7 > i—1b and (p.edge < i—ub or @.edge=—1):
There is not enough information to guarantee that if 35 € [i —ub,i —1b] such that 7,i F£&,
then 3k > j such that & € [i —ub,i—1b], 7,k =1. More specifically, it is guaranteed to be
unknown if i — b}~ € (as described in Axiom 4); therefore, the algorithm does not write
a tuple.

Verdict-timestamp tuples 77, = (true,i) are only written to ¢’s SCQ iff 7,i =1 T up) €,

and T;, = (false,i) are only written to ’s SCQ iff i 1) Ty,) & O

	Towards a Safe, Verified Runtime Monitor for Embedded Systems: R2U2 in Embedded Rust

