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Abstract. Stream-based runtime monitors can effectively verify specified system be-

havior in a real-time online manner, but the effectiveness of these monitors relies heavily

on complying with the system’s timing and resource constraints and the correctness

of the monitor’s implementation. The R2U2 runtime monitoring framework provides

real-time guarantees and a resource-aware architecture; however, we further reduce

R2U2’s overhead by optimizing both Mission-time Linear Temporal Logic (MLTL) and

past-time MLTL (ptMLTL) operators and their corresponding instruction formats. We

evaluate our optimizations on a suite of benchmarks and observe a significant decrease

in latency and memory requirements. To improve the correctness guarantees of R2U2,

we manually transpile the previous C version to safe embedded Rust and verify the

correctness with hand-constructed proofs, testing, and code verification with Verus. We

specifically target safe embedded Rust (i.e., no std) to allow for deployment on embedded

platforms with bare-metal environments (e.g., microcontrollers), and we provide complete

proofs for all of R2U2’s operators and verify the Rust code implementation of 25 of

these operators with Verus code contracts.

Keywords: Stream-based Runtime Monitor · Mission-time Linear Temporal Logic ·

Past-time Mission-time Linear Temporal Logic · R2U2 · Embedded Rust · Verus.

1 Introduction

Stream-based runtime monitors analyze an input stream of system data against a set of system

requirements and produce an output stream of corresponding verdicts. These monitors enable the

detection of requirement violations in a real-time online manner, enabling appropriate mitigation

actions to be taken [8,22]. When online runtime monitors are executing onboard an existing sys-

tem, they must fit within the system’s timing and resource constraints to produce verdicts in real

time. The integration of runtime monitors also raises the question, “How can we trust that the run-

time monitor is correct?” as incorrect violation detections can negatively impact a system [9,23].

The R2U2 (Realizable, Responsive, Unobtrusive Unit) stream-based monitoring frame-

work is known for its real-time guarantees and resource-aware architecture [26,29,42,45],

and the success of R2U2 has been exemplified by its deployment on several mission-critical,

resource-constrained, real-time systems [5,13,15,24,25,29,44]. R2U2 supports both past-time

and future-time monitoring, but most of R2U2’s recent optimizations have only been applied to

R2U2’s future-time monitoring capabilities (e.g., [26,29,42]). R2U2 natively encodes Mission-

time Linear Temporal Logic (MLTL) as its future-time logic but encoded ptMTL [2,32], instead

of ptMLTL, as its past-time logic. To aid in consistency and decrease the resource overhead

of R2U2’s past-time monitoring, we formally define ptMLTL and encode ptMLTL operators

similar to R2U2’s latest future-time optimizations in [29]. Furthermore, we decrease R2U2’s

resource overhead by optimizing which MLTL and ptMLTL operators are directly encoded

⋆ Supported by NSF:CPS Award 2038903. Additional details available at https://temporallogic.org/

research/R2U2Rust.
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in R2U2 and which are encoded via their semantic equivalent, and we further reduce memory

requirements by refining the format of the instructions R2U2 reasons over.

R2U2’s software implementation was previously only written in C. Given that both C and

C++ are unsafe languages that contain several memory safety vulnerabilities (e.g., [18,35,50]),

R2U2’s C implementation is susceptible to memory safety issues, e.g., reading or writing beyond

array bounds. Embedded Rust has become a popular alternative to C to eradicate such issues

with C code [39,47,48]. Therefore, to avoid the memory safety vulnerabilities that exist in

R2U2’s C implementation, we manually transpile from C to safe embedded Rust.

To the best of our knowledge, RTLola [11,21] and TeSSLa [28] are the only other runtime

verification frameworks that support a Rust implementation, but both of these tools only compile

to Rust code that utilizes the Rust standard library (i.e., std). Rust’s standard library requires

an operating system, which isn’t feasible on embedded systems with bare-metal environments

as required by some applications [5,19,24]; therefore, we specifically target embedded Rust

with no std, which allows for systems with or without an operating system to utilize R2U2 [1].

To verify monitor correctness, the VeriMon [9,10,43] and Vydra [40] monitors were formal-

ized and verified in Isabelle/HOL and are executable using Isabelle-generated OCaml code. In

[12] and [14], executable OCaml code was extracted from a runtime monitor specified in Coq.

While utilizing proof assistants to produce verified monitors ensures correctness, these techniques

automatically generate code in languages not typically utilized for real deployment (e.g., OCaml,

Scala, Haskell) and may lack in optimizations that a human programmer would implement.

On the other hand, the developers of Copilot recently introduced the CopilotVerifier, which

generates What4 SMT queries to provide a mathematical proof verifying that the original Copilot

specification and the compiled C monitor are bisimilar [46]. Additionally, Lola specifications can

be generated into imperative Rust code and verified with generated Prusti code contracts in [21].

Both Copilot and Lola compile specification(s) into a monitor in an imperative language (i.e., C or

Rust) such that these techniques require verification of any newly compiled monitor, which can be

costly as in [21]. R2U2 differs in that it is a static monitor that can interpret any MLTL/ptMLTL

specification(s) at runtime, which makes it “more challenging” and “problematic” to verify [21].

To verify the correctness of R2U2’s implementation, we construct complete proofs for all of

R2U2’s directly encoded operators. Through hand-constructing these proofs, we found several

errors in the previous implementation of R2U2, which have now been corrected. To verify

the correctness of the Rust code implementation, we verify that the Rust code matches all

conditions in the proof using deductive code verification. We examined utilizing Creusot [17],

Prusti [3,4], and Verus [33,34] for verifying R2U2’s code and decided upon utilizing Verus due

to its applicability and usability in verifying R2U2’s implementation.

Our contributions include (1) syntax, semantics, and propagation delay semantics of ptMLTL

(Section 2), (2) new encoding of ptMLTL operators (Section 3.3), (3) complete proofs for all

of R2U2’s directly encoded operators (Section 3.2 and 3.3) (4) new implementation of R2U2 in

safe embedded Rust as a publicly available crate, 1 (5) significant latency and memory reductions

of R2U2 (Section 3, 3.4, and 3.5), and (6) deductive code verification with Verus (Section 4).

2 R2U2 Overview

2.1 Mission-Time Linear Temporal Logic (MLTL) [36,42]

MLTL (or ptMLTL) is a variant of LTL (or ptLTL) over finite traces with temporal intervals

that are bounded, closed, and discrete. MLTL and ptMLTL express the most commonly utilized

future and past-time fragments of MTL [2,32] and STL [37].

1 https://crates.io/crates/r2u2 core
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Definition 1. (MLTL Syntax) The syntax of an MLTL formula ϕ over a set of atomic proposi-

tions AP is recursively defined as:

ϕ ::=true | false | p | ¬ψ | ψ∧ξ | ψ∨ξ |2Iψ |3Iψ | ψ UI ξ | ψ RI ξ
where p∈AP is an atom, ψ and ξ are MLTL formulas, and I is a closed interval [lb,ub] where

lb and ub denote the lower and upper bound, respectively, such that lb≤ub and lb,ub∈N0.

Definition 2. (ptMLTL Syntax) The syntax of a ptMLTL formula ϕ over a set of atomic

propositions AP is recursively defined as:

ϕ ::=true | false | p | ¬ψ | ψ∧ξ | ψ∨ξ | I ψ | I ψ | ψ SI ξ | ψ TI ξ
where p∈AP is an atom,ψ and ξ are ptMLTL formulas, and I is a closed interval [lb,ub] where

lb and ub denote the lower and upper bound, respectively, such that lb≤ub and lb,ub∈N0.

Definition 3. (Finite Trace) A finite trace, denoted by π, is a finite sequence of sets of atomic

propositions. The ith set is denoted by π(i) and contains the atomic propositions that are

satisfied at the ith time step. |π| denotes the length of π (where |π|<∞), and π[lb,ub] denotes

the trace segment π(lb),π(lb+1),...,π(ub).

Definition 4. (MLTL Semantics) We recursively define π,i |=ϕ (finite trace π starting from

time index i≥0 satisfies, or “models” MLTL formula ϕ) as

• π,i |=true

• π,i |=p for p∈AP iff p∈π(i)
• π,i |=¬ψ iff π,i |̸=ψ
• π,i |=ψ ∧ ξ iff π,i |=ψ and π,i |=ξ
• π,i |=ψ ∨ ξ iff π,i |=ψ or π,i |=ξ
• π,i |=2[lb,ub]ψ iff |π|≤i+lb 2 or ∀j∈ [i+lb,i+ub], π,j |=ψ

• π,i |=3[lb,ub]ψ iff |π|>i+lb 2 and ∃j∈ [i+lb,i+ub] such that π,j |=ψ

• π,i |=ψ U[lb,ub] ξ iff |π|>i+lb 2 and ∃j∈ [i+lb,i+ub] such that π,j |= ξ and ∀k<j
where k∈ [i+lb,i+ub], π,k |=ψ

• π,i |=ψ R[lb,ub] ξ iff |π|≤ i+lb 2 or if ∃j ∈ [i+lb,i+ub] where π,j |̸= ξ, then ∃k<j
where k∈ [i+lb,i+ub] such that π,k |=ψ

Given two MLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ξ) if

and only if π |=ψ⇔π |=ξ for all traces π. MLTL also keeps the standard operator equivalences

from LTL, including false≡¬true, ψ ∨ ξ≡¬(¬ψ ∧ ¬ξ), ψ→ξ≡¬ψ∨ξ, ψ↔ξ≡¬(ψ⊕ξ),
¬(ψ UI ξ)≡ (¬ψ RI ¬ξ), ¬3Iψ≡2I¬ψ, 3Iψ≡ (true UI ψ), and 2Iψ≡ (falseRI ψ).
Notably, MLTL discards the next ( ) operator since ψ≡2[1,1]ψ.

Axiom 1. (Early Evaluation of Until Operator) Following directly from Definition 4, the MLTL

formula ψ U[lb,ub] ξ can be evaluated based on ξ alone in two cases: (1) if π,i+lb |=ξ, then

π,i |=ψ U[lb,ub] ξ and (2) if ∄j ∈ [i+ lb,i+ub] such that π,j |= ξ, then π,i |̸=ψ U[lb,ub] ξ.
Additionally, if ∃j ∈ [i+ lb,i+ ub] such that π,j |= ξ, then ∀m ≥ j and ∀n > j where

m,n∈ [i+lb,i+ub], it is not necessary to know if π,m |=ψ and if π,n |= ξ to determine if

π,i |=ψ U[lb,ub] ξ.

Axiom 2. (Early Evaluation of Release Operator) Following directly from Definition 4, the

MLTL formula ψR[lb,ub]ξ can be evaluated based on ξ alone in two cases: (1) if π,i+lb |̸=ξ,
then π,i |̸= ψ R[lb,ub] ξ and (2) if ∀j ∈ [i+ lb,i+ub], π,j |= ξ, then π,i |= ψ R[lb,ub] ξ.
Additionally, if ∃j ∈ [i+ lb,i+ub] such that π,j |= ψ and π,j |= ξ, then ∀m> j where

m∈ [i+ lb,i+ub], it is not necessary to know if π,m |=ψ and if π,m |= ξ to determine if

π,i |=ψ R[lb,ub] ξ.

2 In stream-based monitoring, we always assume that there will be an extension of the trace π.
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SCQ Memory Size. To minimize the required memory resources of R2U2, the SCQs are

minimally sized such that the SCQ will never overwrite a verdict-timestamp tuple required by

its parent node. The minimum SCQ size of an AST node ϕ is determined by the worst-case

propagation delay of its sibling nodes and its own best-case propagation delay; in the worst case,

a node ϕmust store verdict-timestamp tuples in its SCQ until all of ϕ’s siblings have the same

timestamp τ for these tuples to be consumed by their parent node. Therefore, the size of node

ϕ’s SCQ corresponds to the maximum timestamp mismatch between node ϕ and ϕ’s siblings.

Let Sϕ be the set of all of ϕ’s sibling nodes, then the size of ϕ’s SCQ is given by the following

(proof available in [51]):

SCQsize(ϕ)=max(max{s.wpd | s∈Sϕ}−ϕ.bpd, 0)+1 (1)

Aggregation. A verdict-timestamp tuple Tϕ=(v,τ) is stored in ϕ’s SCQ using aggregation

[29,42]. Aggregation occurs such that if an incoming tuple’s verdict v is equivalent to the

previous tuple’s verdict v, then the incoming tuple’s timestamp τ overwrites the previous tuple’s

timestamp τ . For example, if ϕ’s SCQ contains {(true,3),(false,7)}, then ϕ= false for the

entire timestamp interval [4,7], and if ϕ encounters an incoming tuple Tϕ=(false,8), then ϕ’s

SCQ becomes {(true,3),(false,8)}. This aggregated storing of verdict-timestamp tuples allows

R2U2 to easily reason over multiple timestamps (with equivalent verdicts) at once.

Booleanizer. To produce atomics for the leaf nodes of the AST, either atomics can be loaded

directly into R2U2 or the Booleanizer [26] can be utilized. R2U2’s Booleanizer enables boolean

expressions over booleans, integers, and/or float input signals using arithmetic, bitwise, relational,

and set operators (e.g., “forexactlyn” or “foratmostn”). Similar to the MLTL/ptMLTL AST, the

Booleanizer decomposes the expression(s) into subexpression(s) represented in an AST and

produces computation instructions for R2U2 to reason over.

3 Optimized and Proved R2U2 Implementation

Previously, R2U2 directly encoded only a subset of MLTL operators: ¬ψ, ψ∧ξ, 2Iψ, and

ψ UI ξ (as shown in yellow in Fig. 3) [26,29,42]. The full MLTL semantics were encoded

by utilizing the appropriate semantic equivalents. In many cases, this required extra negation

subformulas in the AST; consequently, this required extra negation instructions for R2U2 to

reason over. For example, the encoding of the Release (R) operator required four instructions

Original Formula
Previous Encoding New Encoding

Formula # of instructions Formula # of instructions

¬ψ ¬ψ 1 ¬ψ 1
ψ∧ξ ψ∧ξ 1 ψ∧ξ 1
ψ∨ξ ¬(¬ψ∧¬ξ) 4 ψ∨ξ 1
ψ→ξ ¬(ψ∧¬ξ) 3 ¬ψ∨ξ 2
ψ↔ξ ¬(ψ∧¬ξ)∧(¬(¬ψ∧ξ)) 6 ψ↔ξ 1
ψ⊕ξ ¬(¬(ψ∧¬ξ)∧(¬(¬ψ∧ξ)) 8 ¬(ψ↔ξ) 2
3I ψ true UI ψ 1 true UI ψ 1
2I ψ 2I ψ 1 falseRI ψ 1
ψUIξ ψ UI ξ 1 ψ UI ξ 1
ψRI ξ ¬(¬ψ UI ¬ξ) 4 ψRI ξ 1

I ψ I ψ 1 true SI ψ 1

I ψ I ψ 1 false TI ξ 1
ψ SI ξ ψ SI ξ 1 ψ SI ξ 1
ψ TI ξ − − ψ TI ξ 1

Fig. 3. Comparison of previous [26,29,42] and new encodings of MLTL and ptMLTL formulas in R2U2.

Both the previous and new encoding directly encode a subset of operators shown in yellow and blue,

respectively. The formulas with indirect encodings are given by semantic equivalents.
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(i.e., three extra negation instructions) since ψ RI ξ was encoded as ¬(¬ψ UI ¬ξ). This

increase in instructions negatively affects R2U2’s timing and resource requirements; R2U2 had

to reason over extra instructions, allocate additional SCQs, and store extra instructions in its

table. Therefore, we directly encode a different subset of MLTL operators: ¬ψ, ψ∧ξ, ψ∨ξ,
ψ↔ξ, ψ UI ξ, and ψ RI ξ (as shown in blue in Fig. 3). We optimized the selection of MLTL

operators with direct encodings to reduce both timing and resource requirements. As shown in

Figure 3, every MLTL/ptMLTL operator that previously required more than one instruction has

been reduced. Since R2U2 is designed to fit within tight memory-constrained systems, the size

of the extra logic also had to be considered. For example, 2Iψ is easily encoded as falseRI ψ
without additional instructions; therefore, we only directly encode the R operator to eliminate

extra redundant logic that would be required to encode both. In the rest of this section, we

provide correctness proofs for the SCQ read and write operations and all encoded MLTL and

ptMLTL temporal operators.4

3.1 Shared Connection Queues

The algorithms for the SCQ read and write operations were first presented in [29]; however,

no formal proof of correctness was provided and the algorithms contained various errors. For

example, if the read pointer and write pointer point to the same SCQ slot, the read operation

would always return an empty verdict-timestamp tuple, which is not the desired behavior (e.g., a

SCQ of size one always returned an empty tuple such that no valid tuple was ever read). Some

of the errors were fixed in future releases of R2U2, but R2U2 v3.0 [26] (i.e., the latest version of

R2U2) still contained errors such that the SCQ sizing given in Equation 1 required +3 instead of

+1 to mask the underlying problem. Therefore, we provide the SCQ read and write operations

in Algorithm 1, and the correctness of the aggregated write and aggregated read are proved in

Theorems 1 and 2, respectively. Note that the correctness of the MLTL and ptMLTL operators

depends greatly on the correctness of the SCQ operations.

Algorithm 1: Shared Connection Queue (SCQ) Operations for Node ϕ

1 Initialize:
2 ϕ.write ptr=0
3 ϕ.read1 ptr=0 andϕ.read2 ptr=0
4 ϕ.SCQ[0]=Empty
5 function read(read ptr,desired time) is

Input: Read pointer: read ptr; Desired timestamp: desired time
Output: Tϕ orEmpty

6 ifϕ.SCQ[read ptr]=Empty and read ptr=0 then // SCQ is empty

7 returnEmpty // Return Empty, indicating there is no new Tϕ in SCQ

8 do // Scan forward in SCQ

9 ifϕ.SCQ[read ptr].τ >=desired time then
10 returnϕ.SCQ[read ptr] // Tϕ is new; therefore return Tϕ
11 read ptr=(read ptr+1)%SCQsize(ϕ) // Step forward in SCQ

12 while read ptr≠ϕ.write ptr;
/* Hit write ptr while scanning forward; take a step back */

13 read ptr=(read ptr−1)%SCQsize(ϕ)
14 returnEmpty // Return Empty, indicating there is no new Tϕ in SCQ

15 functionwrite(Tϕ) is
Input: Verdict-timestamp tuple to write: Tϕ

16 prev write ptr=(ϕ.write ptr−1)%SCQsize(ϕ) // Find the previous write pointer

/* Check if aggregating write */

17 if !(ϕ.SCQ[ϕ.write ptr]=Empty andϕ.write ptr=0) then // SCQ is not empty

/* Previous verdict matches Tϕ.v */

18 ifϕ.SCQ[prev write ptr].v=ϕ.SCQ[ϕ.write ptr].v then
19 ϕ.write ptr=prev write ptr
20 ϕ.SCQ[ϕ.write ptr]=Tϕ
21 ϕ.write ptr=(ϕ.write ptr+1)%SCQsize(ϕ) // Move write pointer forward

4 Proofs for the boolean connectives are available in Appendix A.
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[desired time,Tϕ.τ ] and Tϕ is returned on line 10. If not, then perhaps a future slot may

contain this information; therefore, read ptr is incremented in a circular manner on line 11

such that the SCQ will be incrementally scanned to find a tuple such that the timestamp

≥desired time. If one is found (since we are incrementally scanning forward), Tϕ.v is the

verdict for the entire interval [desired time,Tϕ.τ ] and Tϕ is returned on line 10. If one is not

found, the scanning will stop when the read ptr is now pointing to the oldest value in the SCQ

(i.e., ϕ.write ptr) on line 12. Then, read ptr is decremented such that read ptr is pointing

to the latest written entry on line 13 (following from Theorem 1) andEmpty is returned.

(if direction) return Tϕ→Tϕ.v is the verdict for the entire interval [desired time,Tϕ.τ ]: A

tuple Tϕ is only returned on line 10, which requires Tϕ.τ≥desired time; this requires that

either the slot at read ptr or a slot between read ptr and the latest entry to be≥desired time.
Since lines 8–12, incrementally scan forward in the SCQ until a tuple with timestamp ≥
desired time is found, Tϕ.v is the verdict for the entire interval [desired time,Tϕ.τ ]. If the

SCQ is completely empty, then there are no new tuples to read; therefore,Empty is returned on

line 7. If no entry has a timestamp ≥desired time, thenEmpty is returned on line 14. ⊓⊔

3.2 MLTL Temporal Operators

In the latest version of R2U2 (i.e., v3.0 [26]) and prior versions [29,42], only the Global (2) and

Until (U) MLTL temporal operators had direct encodings, and proofs of correctness were given

in [29]. Although these algorithms provided correct verdicts, the U operator required both ψ and

ξ to be known (for an arbitrary timestamp τ) to evaluate ψ UI ξ. As stated in Axiom 1, there

are three conditions in which U can be evaluated early without knowing both ψ and ξ. Since

runtime monitoring requires early-as-possible identification of failures to enable effective fault

recovery [5,6,29,42,51], verdicts should not be unnecessarily delayed; therefore, we rewrite the

U algorithm in Algorithm 2 to write a verdict when sufficient data is available according to

Axiom 1. We follow the same approach for the Release (R) operator following Axiom 2.

Algorithm 2: Until Operator: ϕ=ψ U[lb,ub] ξ

1 Initialize:
2 ϕ.previous=−1 // Initialize ϕ.previous; stores the last i written

3 ϕ.next time=lb // Initialize ϕ.next time; stores the next time for ψ and ξ

4 procedureUntil(ψ,ξ)
Input: Node:ψ; Node: ξ

5 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
6 Tξ = ξ.read(ϕ.read2 ptr,ϕ.next time) // Read Node ξ
7 if Tξ ≠Empty then // New Tξ
8 if Tξ.v then // Tξ.v=true

9 ϕ.previous=Tξ.τ−lb
10 ϕ.next time=Tξ.τ+1
11 ϕ.write(true,Tξ.τ−lb) // Writing Tϕ=(true,Tξ.τ−lb)
12 return

13 if Tψ ≠Empty then // New Tψ and Tξ
14 τmin=min(Tψ.τ,Tξ.τ)
15 ϕ.next time=τmin+1
16 if !(Tψ.v) then // Tψ.v= false and Tξ.v= false

17 ϕ.previous=τmin−lb
18 ϕ.write(false,τmin−lb) // Writing Tϕ=(false,τmin−lb)
19 return

20 if Tξ.τ >ϕ.previous+ub then // (Tψ=Empty or Tψ.v=true) and Tξ.v= false

21 ϕ.previous=Tξ.τ−ub
22 ϕ.next time=max(ϕ.next time,ϕ.previous+lb+1)
23 ϕ.write(false,Tξ.τ−ub) // Writing Tϕ=(false,Tξ.τ−ub)

Theorem 3 (Correctness of the Until Operator). Given the interval [lb,ub] and two children

nodes ψ and ξ, Algorithm 2 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is available

such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ U[lb,ub] ξ.
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above. Therefore, Tξ.v=true at i+lb and/or ∀k∈ [i+lb,ϕ.next time], π,k |=ψ. As a result,

π,i |=ψ U[lb,ub] ξ for ϕ.previous<i≤Tξ.τ−lb (following directly from Axiom 1).

Tϕ=(false,i) tuples are only written on lines 18 and 23 such that Tξ.v=false. In both cases,

Tξ.v is guaranteed to have never been true from [ϕ.previous+lb+1,Tξ.τ ] since the result

would have been written on line 11 and the ϕ.next time and ϕ.previous variables would

have been updated (lines 9–10). If Tψ.v= false, then π,i |̸=ψ U[lb,ub] ξ for ϕ.previous<
i≤min(Tψ.τ,Tξ.τ)− lb (line 18). If Tψ.v ≠ false and Tξ.τ >ϕ.previous+ub, then ∄j ∈
[i+lb,i+ub] such that π,j |=ξ; therefore, π,i |̸=ψ U[lb,ub] ξ for ϕ.previous<i≤Tξ.τ−ub
(line 23).

There are three conditions under which no verdict-timestamp tuples were written to ϕ’s SCQ

since there is not enough information to determine if π,i |=ψ U[lb,ub] ξ:

(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψ U[lb,ub] ξ.

(2) Tψ is not empty and Tξ is empty: There is not enough information to determine if

∃j ∈ [i+ lb,i+ ub] such that π,j |= ξ, then ∀k < j where k ∈ [i+ lb,i+ ub] such

that π,k |=ψ; therefore, if π,i |=ψ U[lb,ub] ξ cannot be determined.

(3) Tξ.v=false and Tξ.τ≤ϕ.previous+ub and Tψ ≠false: There is not enough information

to guarantee that Tξ.v=false from [i+lb,i+ub] where i=ϕ.previous+1. There is still a

chance that ∃j∈ [Tξ.τ+1,i+ub] such that π,j |=ξ; therefore, if π,i |=ψ U[lb,ub] ξ cannot

be determined.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψU[lb,ub]ξ, and

Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψU[lb,ub]ξ. ⊓⊔

The algorithm and proof of the Release (R) operator follow very similarly to the Until (U)

operator and are available in Appendix B.

3.3 ptMLTL Temporal Operators

The SCQ architecture of R2U2 was developed in [29] and greatly reduced the memory

requirements of the previous implementation [42] as exemplified by R2U2’s integration on the

heavily resource-constrained FPGA of the Robonaut2’s knee joint. However, this new SCQ

architecture was only applied to R2U2’s MLTL operators. The past-time logic still implemented

the approach in [41] which utilized single read queues and encoded ptMTL [2,32] rather than

ptMLTL. Note that in ptMTL, there is no Trigger (T ) operator (see Figure 3), and the satisfaction

of π,i |=ψ S[lb,ub] ξ requires ψ to hold from the position where ξ holds in [i−ub,i−lb] to

position i, while in ptMLTL, ψ is only required to hold within the interval [i−ub,i−lb] after ξ
holds. Therefore, we compose new Since (S) and Trigger (T ) algorithms that utilize the SCQ

architecture and implement ptMLTL. Similar to the Until and Release operators (Section 3.2),

we ensure verdicts are written as soon as sufficient data is available according to Axioms 3 and

4. The algorithm of the Since (S) operator is available in Algorithm 3 and its corresponding

proof is available in Appendix C. The algorithm and proof of the Trigger (T ) operator follow

very similarly to the Since operator and are available in Appendix D.

3.4 Reduction of Instruction Size

As discussed in Section 2.2, R2U2 stores its computation instructions in a table; therefore, these

instructions require memory resources. We evaluated the current instruction format for both the

booleanizer and temporal logic (i.e., MLTL and ptMTL) instructions as present in R2U2 v3.0

[26] and were able to reduce the memory footprint of each (Figure 9). Within the booleanizer

instructions, we reduced the opcode down from 4 bytes (i.e., allows 4,294,967,296 opcodes) to 1
byte (i.e, allows 256 opcodes); R2U2 only currently supports 40 different booleanizer operations,
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the operand is an atomic, a subformula, or a constant. These simple optimizations are significant

as each booleanizer instruction decreased from 28 bytes to 20 bytes and each temporal logic

instruction decreased from 28 to 16 bytes.

3.5 Latency and Memory Analysis

(a) 95% tail latency (µs) (b) Total queue memory (KB) (c) Total instruction memory (KB)

Fig. 10. Comparison of latency and memory requirements between R2U2 C v3.0 [26] and R2U2 Rust.

We manually transpile R2U2 v3.0 [26] from C to safe embedded Rust and apply the

optimizations and proved algorithms given in Sections 3–3.4. To evaluate the effectiveness

of our optimizations, we compare the latency and memory requirements of our Rust im-

plementation against R2U2 v3.0 on a suite of benchmarks. The benchmarks utilized are as

follows: (1) 22 MLTL specifications utilized to verify the electrical power system of the

CySat-I CubeSat [5], (2) 16 MLTL specifications for the Nova Somnium sounding rocket’s

aerobraking control system [24], (3) 35 random hand-written MLTL specifications, and

(4) 35 random hand-written ptMLTL specifications.5 In Figure 10a, we recorded the 95%
tail latency (i.e., 95% of recorded latencies are less than or equal to the given latency) for

each time step where |π| = 1,000,000 on a 2.8 GHz Quad-Core Intel® i7 processor with

16GB of RAM; a 1.5–10.5x decrease in latency was observed depending on the bench-

mark, which can mostly be accredited to the reduction of instructions through direct encod-

ings.5 Figure 10b reveals a 1.5–3x decrease in total queue memory size for each benchmark;

Benchmark Clock Cycles Time (ms)

CySat-I 257836 5.371
Sounding Rocket 117827 2.454
MLTL Random 266507 5.552

ptMLTL Random 384825 8.017
Fig. 11. Latency on STM32F3DISCOVERY

this is accredited to the reduction in the num-

ber of instructions through direct encodings,

removal of the two extra entries in each queue

from the previous implementation of the SCQ

read/write operations (Section 3.1), and mod-

ifying past-time to utilize SCQs (Section 3.3).

Figure 10c indicates a 2–2.7x decrease in in-

struction memory size as a result of directly encoding instructions and refining R2U2’s instruction

format (Section 3.4). We also ran our embedded Rust implementation on a resource-constrained

bare-metal STM32F3DISCOVERY microcontroller with 48MHz system clock, 256KB of flash

memory, and 48KB of RAM [49], and the average latency observed is recorded in Figure 11.

While the latency on the STM32F3DISCOVERY microcontroller is greater than on the Intel® i7

processor, these latencies still indicate real-time performance.

4 Verification of R2U2’s Rust Implementation

We examined three Rust code verification tools to verify R2U2’s Rust implementation: Creusot

[17], Prusti [3,4], and Verus [33,34]. Creusot encodes a Rust application in the WhyML

5 Benchmarks and more analysis available at https://temporallogic.org/research/R2U2Rust
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intermediate verification language for use in Why3 [20], where Why3 directly encodes SMT

queries for input into backend solvers like the Z3 SMT solver [16]; Prusti translates an entire

Rust application into the Viper intermediate verification language [38] and the Viper program

is verified using Viper’s symbolic execution verifier (which further translates to SMT queries

for Z3); and Verus encodes Rust code directly to SMT-LIB [7] for input into Z3. As a result,

Verus is faster than both Creusot and Prusti as it directly encodes SMT queries, and Prusti is the

slowest as it involves several additional steps, including re-verifying Rust’s type checking in

Viper [33]. On the other hand, Prusti was the simplest tool to run as the full tool is available as a

plugin extension directly inside VSCode, compared to Creusot and Verus which each require

local installations. Prusti and Creusot are also directly compatible with Rust’s Cargo package

manager, but currently, Verus is not. Verus is only compatible with rustc (i.e., the Rust compiler),

which requires directly specifying compilation flags (including linking dependencies).

After experimenting with each tool, we found pre- and post-conditions easier to compose with

Verus’s ‘requires’ and ‘ensures’ blocks, compared to Prusti and Creusot’s clauses. For example,

Creusot could not automatically reason about our structs with a ‘Default’ implementation,6 and

Prusti cannot unwrap ‘Option’ Rust types in pre- and post-conditions.7 As a result, we were

unable to directly specify the complex specifications required for R2U2’s temporal operators in

Prusti or Creusot. Therefore, we utilized Verus to verify R2U2. It is important to note that there

are still parts of R2U2 that could not be verified with Verus such as floats, modulo operations,

and certain &mut references, and we also discovered a bug within Verus where arrays cannot

be sized according to constant values.8 While Verus has its shortcomings, we were able to

overcome most of them and found it easier than Prusti or Creusot for verifying R2U2.

Verus automatically detected multiple locations within the booleanizer implementation

(Section 2.2) that could result in underflow or overflow; this included operators that added,

subtracted, or multiplied two integers together. For release builds, Rust will perform wrapping

operations by default where the underflow and overflow bits are just ignored. To eradicate

the possibility of unnoticed underflow or overflows, we specified saturating add, subtract, and

multiply operators such that if the result underflows, the result will be the minimum value that

can be stored in the result type, and if it overflows, the result will be the maximum value that

can be stored in the result type. Since the booleanizer will eventually compare integers utilizing

comparators (i.e.,>,<, ≤, ≥, and =), saturating operations are safer. Furthermore, we added

an overflow detection flag that can easily be read, reset, and mitigated by the monitored system.

We specify pre- and post-conditions for every R2U2 operator that is possible with Verus. The

pre- and post-conditions in the booleanizer are directly mapped to ensure saturating operations

and correct overflow detection. The pre- and post-conditions for the MLTL and ptMLTL

operators directly ensure all cases and claims in the hand-constructed proofs presented in Section

3. In total, there are 487 lines of code contracts that verify a total of 25 operators. Through these

pre- and post-conditions, we are able to ensure correct implementation of our algorithms in

Rust. During this process, we also found Verus helpful in refining our initial hand-constructed

algorithms by removing vacuous conditions. On the other hand, Verus was not able to verify all

of R2U2’s Rust code nor was it able to consider the correctness of the C2PO compiler; therefore,

we also exhaustively test all of our MLTL operators according to the strategy in [30].

6 https://github.com/creusot-rs/creusot/issues/792
7 https://github.com/viperproject/prusti-dev/issues/1306
8 https://github.com/verus-lang/verus/issues/1334
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5 Conclusion and Future Work

We developed a new implementation of R2U2 written in safe embedded Rust that significantly

decreases its previous resource overhead and provides improved guarantees of correctness

through hand-constructed proofs, testing, and Verus code contracts. While we hand-constructed

our proofs, we eventually hope to formalize R2U2 in a proof assistant such as Isabelle/HOL,

and we also anticipate more intuitive automatic test generation that can test a wider range of

both MLTL and ptMLTL formulas against an oracle such as [31]. While Verus has its current

limitations, we look forward to the further development of Verus’s capabilities and plan to

incorporate more deductive code verification as features become available.
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A Boolean Connectives

Algorithm 4: Negation Operator: ϕ=¬ψ

1 procedureNegation(ψ)
2 Initialize:
3 ϕ.next time=0 // Initialize ϕ.next time; stores the next time for ψ

Input: Node:ψ
4 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
5 if Tψ ≠Empty then // New Tψ
6 if !(Tψ.v) then // Tψ.v= false

7 ϕ.next time=Tψ.τ+1
8 ϕ.write(true,Tψ.τ) // Writing Tϕ=(true,Tψ.τ)
9 else // Tψ.v=true

10 ϕ.next time=Tψ.τ+1
11 ϕ.write(false,Tψ.τ) // Writing Tϕ=(false,Tψ.τ)

Theorem 4 (Correctness of the Negation Operator). Given the child node ψ, Algorithm

4 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is available such that for all i≥ 0,

Tϕ=(true,i) iff π,i |=¬ψ.

Proof. The ϕ.next time variable determines what timestamp is desired from node ψ to make

the next evaluation. Theϕ.next time variable is initialized to 0 on line 3. If a verdict-timestamp

tuple is written, then ϕ.next time is updated to i+1 (lines 7 and 10).

The ϕ.next time variable is then an input into the read function on line 4 (defined in

Algorithm 1) such that if the timestamp ϕ.next time is available in node ψ, then Tψ.v is the

verdict for the interval [ϕ.next time,Tψ.τ ] (following from Theorem 2).

(only-if direction) π,i |= ¬ψ → Tϕ = (true,i): We consider all possibilities of Tψ to

determine if π,i |=¬ψ:

(1) Tψ is empty: There is no new information based in ϕ.next time to evaluate if π,i |=¬ψ;

therefore, the algorithm does nothing.
(2) Tψ.v=false: Tψ.v=false for [ϕ.next time,Tψ.τ ] such that π,i |̸=ψ for ϕ.next time≤

i≤Tψ.τ ; therefore, (true,Tψ.τ) is written to ϕ’s SCQ on line 8.
(3) Tψ.v=true: Tψ.v=true for [ϕ.next time,Tψ.τ ] such that π,i |=ψ for ϕ.next time≤

i≤Tψ.τ ; therefore, (false,Tψ.τ) is written to ϕ’s SCQ on line 11.

(if direction) Tϕ=(true,i)→π,i |=¬ψ:

Tϕ=(true,i) tuples are only written toϕ’s SCQ on line 8, which requires that Tψ.v=false from

[ϕ.next time,Tψ.τ ]; therefore, π,i |̸=ψ for ϕ.next time≤ i≤Tψ.τ . As a result, π,i |=¬ψ
for ϕ.next time≤i≤Tψ.τ .

Tϕ=(false,i) tuples are only written to ϕ’s SCQ on line 11, which requires that Tψ.v=true

from [ϕ.next time,Tψ.τ ]; therefore, π,i |= ψ for ϕ.next time ≤ i ≤ Tψ.τ . As a result,

π,i |̸=¬ψ for ϕ.next time≤i≤Tψ.τ .
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There is only one condition under which no verdict-timestamp tuples were written to ϕ’s SCQ

since there is not enough information to determine if π,i |=¬ψ: Tψ is empty.

Verdict-timestamp tuples Tϕ = (true,i) are only written to ϕ’s SCQ iff π,i |= ¬ψ, and

Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=¬ψ. ⊓⊔

Algorithm 5: And Operator: ϕ=ψ ∧ ξ

1 procedureAnd(ψ,ξ)
2 Initialize:
3 ϕ.next time=0 // Initialize ϕ.next time;stores the next time for ψ and ξ

Input: Node:ψ; Node: ξ
4 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
5 Tξ = ξ.read(ϕ.read2 ptr,ϕ.next time) // Read Node ξ
6 if Tψ ≠Empty and Tξ ≠Empty then // New Tψ and Tξ
7 if Tψ.v and Tξ.v then // Tψ.v=true and Tξ.v=true

8 τmin=min(Tψ.τ,Tξ.τ)
9 ϕ.next time=τmin+1

10 ϕ.write(true,τmin) // Writing Tϕ=(true,τmin)
11 return

12 else if !(Tψ.v) and !(Tξ.v) then // Tψ.v= false and Tξ.v= false

13 τmax=max(Tψ.τ,Tξ.τ)
14 ϕ.next time=τmax+1
15 ϕ.write(false,τmax) // Writing Tϕ=(false,τmax)
16 return

17 if Tψ ≠Empty then // New Tψ
18 if !(Tψ.v) then // Tψ.v= false

19 ϕ.next time=Tψ.τ+1
20 ϕ.write(false,Tψ.τ) // Writing Tϕ=(false,Tψ.τ)
21 if Tξ ≠Empty then // New Tξ
22 if !(Tξ.v) then // Tξ.v= false

23 ϕ.next time=Tξ.τ+1
24 ϕ.write(false,Tξ.τ) // Writing Tϕ=(false,Tξ.τ)

Theorem 5 (Correctness of the And Operator). Given the interval [lb,ub] and two children

nodes ψ and ξ, Algorithm 5 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is available

such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ ∧ ξ.

Proof. The ϕ.next time variable determines what timestamp is desired from both node ψ and

node ξ to make the next evaluation. The ϕ.next time variable is initialized to 0 on line 3. If a

verdict-timestamp tuple is written, then ϕ.next time is updated to i+1 (lines 9, 14, 19, and

23).

The ϕ.next time variable is then an input into the read functions on lines 4–5 (defined in

Algorithm 1) such that if the timestamp ϕ.next time is available in node ψ, then Tψ.v is the

verdict for the interval [ϕ.next time,Tψ.τ ], and if ϕ.next time is available in node ξ, then

Tξ.v is the verdict for the interval [ϕ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ ∧ ξ→Tϕ=(true,i): We consider all possible combinations of

Tψ and Tξ to determine if π,i |=ψ ∧ ξ:
(1) Tψ and Tξ are both empty: There is no new information based on ϕ.next time to evaluate

if π,i |=ψ ∧ ξ; therefore, the algorithm does nothing.
(2) (Tψ.v= true and Tξ is empty) or (Tψ is empty and Tξ.v= true): There is not enough

information to determine if both π,i |=ψ and π,i |=ξ; therefore, the algorithm does nothing.
(3) Tψ.v = true and Tξ.v = true: If both Tψ.v and Tξ.v are true, then they are both

guaranteed to be true from [ϕ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ∧ ξ for

ϕ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (true,min(Tψ.τ,Tξ.τ)) is written to ϕ’s

SCQ on line 10.
(4) Tψ.v = false and Tξ.v = false: If both Tψ.v and Tξ.v are false, then they are both

guaranteed to be false from [ϕ.next time,min(Tψ.τ,Tξ.τ)], but one of them is false

from [ϕ.next time,max(Tψ.τ,Tξ.τ)]. As a result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤
max(Tψ.τ,Tξ.τ); therefore, (false,max(Tψ.τ,Tξ.τ)) is written to ϕ’s SCQ on line 15.
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(5) Tψ.v=false and Tξ is empty: Tψ.v=false for [ϕ.next time,Tψ.τ ] such that π,i |̸=ψ for

ϕ.next time≤i≤Tψ.τ . As a result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤Tψ.τ ; therefore,

(false,Tψ.τ) is written to ϕ’s SCQ on line 20.

(6) Tψ is empty and Tξ.v= false: Tξ.v= false for [ϕ.next time,Tξ.τ ] such that π,i |̸=ξ for

ϕ.next time≤i≤Tξ.τ . As a result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤Tξ.τ ; therefore,

(false,Tξ.τ) is written to ϕ’s SCQ on line 24.

(if direction) Tϕ=(true,i)→π,i |=ψ ∧ ξ:

Tϕ=(true,i) tuples are only written toϕ’s SCQ on line 10, which requires that bothTψ.v=true

and Tξ.v=true; therefore, π,i |=ψ and π,i |=ξ for ϕ.next time≤i≤min(Tψ.τ,Tξ.τ). As a

result, π,i |=ψ ∧ ξ for ϕ.next time≤i≤min(Tψ.τ,Tξ.τ).
Tϕ=(false,i) tuples are only written to ϕ’s SCQ on lines 15, 20, and 24:

(1) line 15: It is guaranteed that both Tψ.v and Tξ.v are false from [ϕ.next time,
min(Tψ.τ,Tξ.τ)], but one of them is false from [ϕ.next time,max(Tψ.τ,Tξ.τ)]. As a

result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤max(Tψ.τ,Tξ.τ).
(2) line 20: Tψ.v= false for [ϕ.next time,Tψ.τ ] such that π,i |̸=ψ for ϕ.next time≤ i≤

Tψ.τ . As a result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤Tψ.τ .

(3) line 24: Tξ.v= false for [ϕ.next time,Tξ.τ ] such that π,i |̸= ξ for ϕ.next time≤ i≤
Tξ.τ . As a result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤Tξ.τ .

There are three conditions under which no verdict-timestamp tuples were written to ϕ’s SCQ

since there is not enough information to determine if π,i |=ψ ∧ ξ:

(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψ ∧ ξ.

(2) Tψ.v= true and Tξ is empty: There is not enough information to determine if π,i |= ξ;
therefore if π,i |=ψ ∧ ξ cannot be determined.

(3) Tψ is empty and Tξ.v= true: There is not enough information to determine if π,i |=ψ;

therefore if π,i |=ψ ∧ ξ cannot be determined.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψ ∧ ξ, and

Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψ ∧ ξ. ⊓⊔

Algorithm 6: Or Operator: ϕ=ψ ∨ ξ

1 procedureOr(ψ,ξ)
2 Initialize:
3 ϕ.next time=0 // Initialize ϕ.next time;stores the next time for ψ and ξ

Input: Node:ψ; Node: ξ
4 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
5 Tξ = ξ.read(ϕ.read2 ptr,ϕ.next time) // Read Node ξ
6 if Tψ ≠Empty and Tξ ≠Empty then // New Tψ and Tξ
7 if Tψ.v and Tξ.v then // Tψ.v=true and Tξ.v=true

8 τmax=max(Tψ.τ,Tξ.τ)
9 ϕ.next time=τmax+1

10 ϕ.write(true,τmax) // Writing Tϕ=(true,τmax)
11 return

12 else if !(Tψ.v) and !(Tξ.v) then // Tψ.v= false and Tξ.v= false

13 τmin=min(Tψ.τ,Tξ.τ)
14 ϕ.next time=τmin+1
15 ϕ.write(false,τmin) // Writing Tϕ=(false,τmin)
16 return

17 if Tψ ≠Empty then // New Tψ
18 if Tψ.v then // Tψ.v=true

19 ϕ.next time=Tψ.τ+1
20 ϕ.write(true,Tψ.τ) // Writing Tϕ=(true,Tψ.τ)
21 if Tξ ≠Empty then // New Tξ
22 if Tξ.v then // Tξ.v=true

23 ϕ.next time=Tξ.τ+1
24 ϕ.write(true,Tξ.τ) // Writing Tϕ=(true,Tξ.τ)
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Theorem 6 (Correctness of the Or Operator). Given the interval [lb,ub] and two children

nodes ψ and ξ, Algorithm 6 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is available

such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ ∨ ξ.

Proof. The ϕ.next time variable determines what timestamp is desired from both node ψ and

node ξ to make the next evaluation. The ϕ.next time variable is initialized to 0 on line 3. If a

verdict-timestamp tuple is written, then ϕ.next time is updated to i+1 (lines 9, 14, 19, and

23).

The ϕ.next time variable is then an input into the read functions on lines 4–5 (defined in

Algorithm 1) such that if the timestamp ϕ.next time is available in node ψ, then Tψ.v is the

verdict for the interval [ϕ.next time,Tψ.τ ], and if ϕ.next time is available in node ξ, then

Tξ.v is the verdict for the interval [ϕ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ ∨ ξ→Tϕ=(true,i): We consider all possible combinations of

Tψ and Tξ to determine if π,i |=ψ ∨ ξ:
(1) Tψ and Tξ are both empty: There is no new information based on ϕ.next time to evaluate

if π,i |=ψ ∨ ξ; therefore, the algorithm does nothing.
(2) (Tψ.v= false and Tξ is empty) or (Tψ is empty and Tξ.v= false): There is not enough

information to determine if either π,i |=ψ or π,i |=ξ; therefore, the algorithm does nothing.
(3) Tψ.v = true and Tξ.v = true: If both Tψ.v and Tξ.v are true, then they are both

guaranteed to be true from [ϕ.next time,min(Tψ.τ,Tξ.τ)], but one of them is true from

[ϕ.next time,max(Tψ.τ,Tξ.τ)]. As a result, π,i |= ψ ∨ ξ for ϕ.next time ≤ i ≤
max(Tψ.τ,Tξ.τ); therefore, (true,max(Tψ.τ,Tξ.τ)) is written to ϕ’s SCQ on line 10.

(4) Tψ.v = false and Tξ.v = false: If both Tψ.v and Tξ.v are false, then they are both

guaranteed to be false from [ϕ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |̸=ψ ∨ ξ for

ϕ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (false,min(Tψ.τ,Tξ.τ)) is written to ϕ’s

SCQ on line 15.
(5) Tψ.v= true and Tξ is empty: Tψ.v= true for [ϕ.next time,Tψ.τ ] such that π,i |=ψ

for ϕ.next time≤ i≤ Tψ.τ . As a result, π,i |=ψ ∨ ξ for ϕ.next time≤ i≤ Tψ.τ ;

therefore, (true,Tψ.τ) is written to ϕ’s SCQ on line 20.
(6) Tψ is empty and Tξ.v= true: Tξ.v= true for [ϕ.next time,Tξ.τ ] such that π,i |=ξ for

ϕ.next time≤i≤Tξ.τ . As a result, π,i |=ψ ∨ ξ for ϕ.next time≤i≤Tξ.τ ; therefore,

(true,Tξ.τ) is written to ϕ’s SCQ on line 24.

(if direction) Tϕ=(true,i)→π,i |=ψ ∨ ξ:
Tϕ=(false,i) tuples are only written to ϕ’s SCQ on lines 10, 20, and 24:

(1) line 10: It is guaranteed that bothTψ.v andTξ.v are true from [ϕ.next time,min(Tψ.τ,Tξ.τ)],
but one of them is true from [ϕ.next time,max(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ∨ ξ
for ϕ.next time≤i≤max(Tψ.τ,Tξ.τ).

(2) line 20: Tψ.v= true for [ϕ.next time,Tψ.τ ] such that π,i |=ψ for ϕ.next time≤ i≤
Tψ.τ . As a result, π,i |=ψ ∨ ξ for ϕ.next time≤i≤Tψ.τ .

(3) line 24:Tξ.v=true for [ϕ.next time,Tξ.τ ] such that π,i |=ξ forϕ.next time≤i≤Tξ.τ .

As a result, π,i |=ψ ∨ ξ for ϕ.next time≤i≤Tξ.τ .

Tϕ=(false,i) tuples are only written to ϕ’s SCQ on line 15, which requires that both Tψ.v=
false and Tξ.v=false; therefore, π,i |̸=ψ and π,i |̸=ξ for ϕ.next time≤i≤min(Tψ.τ,Tξ.τ).
As a result, π,i |̸=ψ ∧ ξ for ϕ.next time≤i≤min(Tψ.τ,Tξ.τ).

There are three conditions under which no verdict-timestamp tuples were written to ϕ’s SCQ

since there is not enough information to determine if π,i |=ψ ∨ ξ:
(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψ ∨ ξ.
(2) Tψ.v= false and Tξ is empty: There is not enough information to determine if π,i |= ξ;

therefore if π,i |=ψ ∨ ξ cannot be determined.
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(3) Tψ is empty and Tξ.v= false: There is not enough information to determine if π,i |=ψ;

therefore if π,i |=ψ ∨ ξ cannot be determined.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψ ∨ ξ, and

Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψ ∨ ξ. ⊓⊔

Algorithm 7: Iff Operator: ϕ=ψ ↔ ξ

1 procedure Iff(ψ,ξ)
2 Initialize:
3 ϕ.next time=0 // Initialize ϕ.next time;stores the next time for ψ and ξ

Input: Node:ψ; Node: ξ
4 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
5 Tξ = ξ.read(ϕ.read2 ptr,ϕ.next time) // Read Node ξ
6 if Tψ ≠Empty and Tξ ≠Empty then // New Tψ and Tξ
7 τmin=min(Tψ.τ,Tξ.τ)
8 ϕ.next time=τmin+1
9 if Tψ.v and Tξ.v then // Tψ.v=true and Tξ.v=true

10 ϕ.write(true,τmin) // Writing Tϕ=(true,τmin)
11 else if !(Tψ.v) and !(Tξ.v) then // Tψ.v= false and Tξ.v= false

12 ϕ.write(true,τmin) // Writing Tϕ=(true,τmin)
13 else
14 ϕ.write(false,τmin) // Writing Tϕ=(false,τmin)

Theorem 7 (Correctness of the Iff Operator). Given the interval [lb,ub] and two children

nodes ψ and ξ, Algorithm 6 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is available

such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ ↔ ξ.

Proof. The ϕ.next time variable determines what timestamp is desired from both node ψ and

node ξ to make the next evaluation. The ϕ.next time variable is initialized to 0 on line 3. If a

verdict-timestamp tuple is written, then ϕ.next time is updated to i+1 (lines 8).

The ϕ.next time variable is then an input into the read functions on lines 4–5 (defined in

Algorithm 1) such that if the timestamp ϕ.next time is available in node ψ, then Tψ.v is the

verdict for the interval [ϕ.next time,Tψ.τ ], and if ϕ.next time is available in node ξ, then

Tξ.v is the verdict for the interval [ϕ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ ↔ ξ→Tϕ=(true,i): We consider all possible combinations of

Tψ and Tξ to determine if π,i |=ψ ↔ ξ:
(1) Tψ is empty or Tξ is empty: There is not enough information to determine both if π,i |=ψ

and if π,i |=ξ; therefore, the algorithm does nothing.
(2) Tψ.v = true and Tξ.v = true: If both Tψ.v and Tξ.v are true, then they are both

guaranteed to be true from [ϕ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ
for ϕ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (true,min(Tψ.τ,Tξ.τ)) is written to

ϕ’s SCQ on line 10.
(3) Tψ.v = false and Tξ.v = false: If both Tψ.v and Tξ.v are false, then they are both

guaranteed to be false from [ϕ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ
for ϕ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (true,min(Tψ.τ,Tξ.τ)) is written to

ϕ’s SCQ on line 12.
(4) (Tψ.v = true and Tξ.v = false) or (Tψ.v = false and Tξ.v = true): Both Tψ.v and

Tξ.v are guaranteed to be the verdicts from [ϕ.next time,min(Tψ.τ,Tξ.τ)]; therefore,

either π,i |̸=ψ→ξ or π,i |̸=ξ→ψ for ϕ.next time≤ i≤min(Tψ.τ,Tξ.τ). As a result,

π,i |̸=ψ ↔ ξ forϕ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (false,min(Tψ.τ,Tξ.τ))
is written to ϕ’s SCQ on line 14.

(if direction) Tϕ=(true,i)→π,i |=ψ ↔ ξ:
Tϕ=(true,i) tuples are only written to ϕ’s SCQ on lines 10 and 12:

(1) line 10: It is guaranteed that both Tψ.v and Tξ.v are true from [ϕ.next time,
min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ for ϕ.next time≤i≤max(Tψ.τ,Tξ.τ).
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(2) line 12: It is guaranteed that both Tψ.v and Tξ.v are false from [ϕ.next time,
min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ for ϕ.next time≤i≤max(Tψ.τ,Tξ.τ).

Tϕ = (false, i) tuples are only written to ϕ’s SCQ on line 14, which requires that either

Tψ.v= true and Tξ.v= false, or Tψ.v= false and Tξ.v= true; therefore, either π,i |̸=ψ→ξ
or π,i |̸= ξ→ ψ for ϕ.next time≤ i≤min(Tψ.τ,Tξ.τ). As a result, π,i |̸= ψ ↔ ξ for

ϕ.next time≤i≤min(Tψ.τ,Tξ.τ).
There is only one condition under which no verdict-timestamp tuples were written to ϕ’s

SCQ since there is not enough information to determine if π,i |=ψ ↔ ξ: Tψ is empty or Tξ is

empty.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψ ↔ ξ, and

Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψ ↔ ξ. ⊓⊔

B Release (R) Operator

Algorithm 8: Release Operator: ϕ=ψR[lb,ub] ξ

1 Initialize:
2 ϕ.previous=−1 // Initialize ϕ.previous; stores the last i written

3 ϕ.next time=lb // Initialize ϕ.next time; stores the next time for ψ and ξ

4 procedureRelease(ψ,ξ)
Input: Node:ψ; Node: ξ

5 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
6 Tξ = ξ.read(ϕ.read2 ptr,ϕ.next time) // Read Node ξ
7 if Tξ ≠Empty then // New Tξ
8 if !(Tξ.v) then // Tξ.v= false

9 ϕ.previous=Tξ.τ−lb
10 ϕ.next time=Tξ.τ+1
11 ϕ.write(false,Tξ.τ−lb) // Writing Tϕ=(false,Tξ.τ−lb)
12 return

13 if Tψ ≠Empty then // New Tψ and Tξ
14 τmin=min(Tψ.τ,Tξ.τ)
15 ϕ.next time=τmin+1
16 if Tψ.v then // Tψ.v=true and Tξ.v=true

17 ϕ.previous=τmin−lb
18 ϕ.write(true,τmin−lb) // Writing Tϕ=(true,τmin−lb)
19 return

20 if Tξ.τ >ϕ.previous+ub then // (Tψ=Empty or Tψ.v= false) and Tξ.v= false

21 ϕ.previous=Tξ.τ−ub
22 ϕ.next time=max(ϕ.next time,ϕ.previous+lb+1)
23 ϕ.write(true,Tξ.τ−ub) // Writing Tϕ=(true,Tξ.τ−ub)

Theorem 8 (Correctness of the Release Operator). Given the interval [lb,ub] and two

children nodes ψ and ξ, Algorithm 8 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is

available such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ R[lb,ub] ξ.

Proof. The ϕ.previous variable stores the previous time index i that node ϕ=ψ R[lb,ub] ξ
wrote to its SCQ. Before the first tuple is produced, ϕ.previous is initialized to −1 (line 2)

such that the condition on line 20 can be rewritten as Tξ.τ >−1+ub or rather Tξ.τ≥0+ub≡
Tξ.τ≥ub. Whenever a verdict-timestamp tuple is written, the ϕ.previous variable is updated

to that timestamp (lines 9, 17, and 21).

The ϕ.next time variable determines what timestamp is desired from both node ψ and node

ξ to make the next evaluation. The ϕ.next time variable is initialized on line 3 to lb since

ψ R[lb,ub] ξ can only be evaluated when |π|>i+lb on the interval [i+lb,i+ub] where i≥0,

such that [0,lb−1] is never required for evaluation. The ϕ.next time variable is then updated

during execution based on what is unknown about ψ and ξ. If both Tψ and Tξ are not empty,

then if Tψ.τ≥Tξ.τ , its unknown if ∃j∈ [Tξ.τ+1,Tψ.τ ] such that π,j |̸=ξ, and if Tψ.τ≤Tξ.τ ,

then its unknown if ∃k ∈ [Tψ.τ+1,Tξ.τ ] such that π,k |=ψ. Therefore, ϕ.next time will
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(2) Tψ is not empty and Tξ is empty: There is not enough information to determine if

∃j ∈ [i+ lb,i+ ub] such that π,j |̸= ξ, then ∃k < j where k ∈ [i+ lb,i+ ub] such

that π,k |=ψ; therefore, if π,i |=ψ R[lb,ub] ξ cannot be determined.
(3) Tξ.v=false and Tξ.τ≤ϕ.previous+ub and Tψ ≠false: There is not enough information

to guarantee that Tξ.v=true from [i+lb,i+ub] where i=ϕ.previous+1. There is still a

chance that ∃j∈ [Tξ.τ+1,i+ub] such that π,j |̸=ξ; therefore, if π,i |=ψ R[lb,ub] ξ cannot

be determined.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψR[lb,ub]ξ, and

Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψR[lb,ub]ξ. ⊓⊔

C Correctness of the Since (S) Operator

Theorem 9 (Correctness of the Since Operator). Given the interval [lb,ub] and two children

nodes ψ and ξ, Algorithm 3 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is available

such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ S[lb,ub] ξ.

Proof. The ϕ.edge variable stores the latest timestamp where Tξ.v = true (line 13). The

ϕ.edge variable is initialized to −1 (line 2) such that before Tξ.v= true, the conditions on

lines 20 and 34 can be rewritten as (−1≤ ϕ.previous−ub or ϕ.edge=−1)≡ true and

(−1>ϕ.previous−ub and ϕ.edge≠−1)≡false, respectively.

The ϕ.previous variable stores the previous time index i that node ϕ=ψ S[lb,ub] ξ wrote

to its SCQ. Before the first tuple is produced, ϕ.previous is initialized to −1 (line 3) such

that the condition on line 8 can be rewritten as −1+1−lb<0≡0−lb<0, the conditions on

lines 15, 22, and 29 can be rewritten as Tξ.τ >−1−lb or rather Tξ.τ≥0−lb, the condition

on line 20 can be rewritten as (ϕ.edge≤−1−ub or ϕ.edge=−1)≡(ϕ.edge=−1), and the

condition on line 34 can be rewritten as (Tψ.v and Tψ.τ >−1−lb and ϕ.edge≥0−ub and

ϕ.edge≠−1)≡(Tψ.v and Tψ.τ≥0−lb and ϕ.edge≠−1). Whenever a verdict-timestamp

tuple is written, the ϕ.previous variable is updated to that timestamp (lines 9, 16, 23, 30, and

35).

Note that if i−ub<0, then ∀i∈ [0,ub−1], we can only consider the interval [0,i−lb] for

evaluation (lines 20 and 34). Line 20 checks whether Tξ.v never equals true between [i−ub,i−
lb]; if i−ub< 0, then ϕ.edge≤ϕ.previous−ub≡ (ϕ.edge≥−1)≤ (ϕ.previous−ub<
−1)≡false since i=ϕ.previous+1; therefore, line 20 is contingent on whether ϕ.edge=−1
(i.e., never a time yet where Tξ.v=true). Line 34 performs a similar check to see if Tξ.v=true

between [i−ub,i− lb]; if i−ub < 0, then ϕ.edge > ϕ.previous−ub≡ (edge≥−1)>
(ϕ.previous−ub<−1)≡true since i=ϕ.previous+1; therefore, line 34 is contingent on

whether ϕ.edge≠−1 (i.e., there was a time after or at timestamp 0 where Tξ.v=true).

The ϕ.next time variable determines what timestamp is desired from both node ψ and

node ξ to make the next evaluation. The ϕ.next time variable is initialized to 0 on line 4 and

is then updated during execution based on what is known about ξ. When Tξ.v= true (and

Tξ.τ <i−lb), its unknown if ∀k>Tξ.τ where j∈ [i−ub,i−lb], π,k |=ψ, and if Tξ.v=false

from [i−ub,Tξ.τ ] (and Tξ.τ <i−lb), its known if ∃j∈ [Tξ.τ+1,i−lb] such that π,j |=ξ, and

if both Tψ.v= false and Tξ.v= false (and Tξ.τ <i−lb), it is known if ∃j∈ [Tξ.τ+1,i−lb]
where π,j |=ξ such that ∀k>j where j∈ [Tξ.τ+1,i−lb], π,k |=ψ. Therefore, ϕ.next time
will be updated to Tξ.τ+1 on lines 14, 21, and 28. Because of early evaluation (following from

Axiom 3), if a verdict-timestamp tuple is written, then ϕ.next time is updated to whichever is

greater: i−ub+1 (i.e., the i−ub of the next evaluation) or Tξ.τ+1 (as described above) on lines

14, 21, 28 and 36. Note that on lines 14, 21, and 28, this can be rewritten as just Tξ.τ+1 since

i−ub+1≡ (Tξ.τ+lb)−ub+1 where lb−ub≤0 such that Tξ.τ+(lb−ub)+1≤Tξ.τ+1.

Figures 16, 17, 18, and 19 illustrate examples of how the ϕ.next time variable is updated.
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(if direction) Tϕ=(true,i)→π,i |=ψ S[lb,ub] ξ:
Tϕ=(true,i) tuples are only written to ϕ’s SCQ on lines 17 and 37:

(1) line 17: Tξ.v = true is guaranteed to be the verdict from [ϕ.next time,Tξ.τ ] such

that ϕ.next time ≤ ϕ.previous− lb+1 and Tξ.τ ≥ ϕ.previous− lb+1; therefore,

Tξ.v=true at i−lb where i∈ [ϕ.previous+1,Tξ.τ+lb]. As a result, π,i |=ψ S[lb,ub] ξ
(following directly from Axiom 3) for ϕ.previous<i≤Tξ.τ+lb.

(2) line 37: It is guaranteed that ∃j ∈ [ϕ.previous− ub+1,ϕ.previous− lb] such that

π,j |=ξ where j=ϕ.edge and that Tψ.v=true is the verdict from [ϕ.next time,Tψ.τ ]
where ϕ.next time=ϕ.edge+1 (as set by the previous execution on line 13–14) and

Tψ.τ ≥ ϕ.previous− lb+1; therefore, ∃j ∈ [i−ub,i− lb] where i ∈ [ϕ.previous+
1,(ϕ.edge+(ub−lb))+lb)] and ∀k>j where k∈ [i−ub,i−lb], Tψ.v= true such that

i ∈ [ϕ.previous+1,Tψ.τ + lb]. As a result, π,i |= ψ S[lb,ub] ξ for ϕ.previous < i≤
min(Tξ.τ+lb,ϕ.edge+ub).

Tϕ=(false,i) tuples are only written on lines 10, 24, and 31:

(1) line 10: When i−lb<0 (i.e., i<lb), there will never exist an interval [i−ub,i−lb]. As a

result, π,i |̸=ψ S[lb,ub] ξ for i<lb.
(2) line 24:Tξ.v is guaranteed to have never been true from [ϕ.previous−lb+1,ϕ.previous−

ub+1] since the ϕ.edge would have been updated on line 13; therefore, ∄j∈ [i−ub,i−lb]
such that π,j |=ξ. As a result, π,i |̸=ψ S[lb,ub] ξ (following directly from Axiom 3) for

ϕ.previous<i≤Tξ+lb.
(3) line 31: It is guaranteed that ∃j∈ [ϕ.previous−ub+1,ϕ.previous−lb] such that π,j |=ξ

where j = ϕ.edge and j is the latest time in [(ϕ.previous+1)− ub,ϕ.previous−
lb] where π,j |= ξ, but Tψ.v = false is the verdict from [ϕ.next time,Tψ.τ ] where

ϕ.next time=ϕ.edge+1 (as set by the previous execution on line 13–14); therefore,

∃j∈ [i−ub,i−lb] such that π,j |=ξ but there is never an instance where ∀k>j where

k∈ [i−lb,i−ub], π,k |=ψ. As a result, π,i |̸=ψ S[lb,ub] ξ for ϕ.previous<i≤Tξ+lb.
There are three conditions under which no verdict-timestamp tuples were written to ϕ’s SCQ

since there is not enough information to determine if π,i |=ψ S[lb,ub] ξ:
(1) (Tψ is empty or Tψ.τ ≤ϕ.previous−lb) and (Tξ is empty or Tξ.τ ≤ϕ.previous−lb):

There is not enough information based on ϕ.next time to evaluate if π,i |=ψ S[lb,ub] ξ;
therefore, the algorithm does not write a tuple.

(2) Tξ.v= false and Tξ.τ > i−lb and Tψ.v= true and Tψ.τ < i−lb and ϕ.edge≥ i−ub
and ϕ.edge≠−1: If ϕ.edge≥i−ub and ϕ.edge≠−1, then ∃j∈ [i−ub,i−lb−1] such

that the latest value of j is ϕ.edge=ϕ.next time−1 as set by the previous execution on

lines 13 and 14. Tψ.v=true is the verdict from [ϕ.edge+1,Tψ.τ ], but there is not enough

information to determine if π,k |=ψ where k∈ [Tψ.τ+1,i−lb]; therefore, the algorithm

does nothing.
(3) (Tξ is Empty or Tξ.τ <i−lb) and Tψ.τ≥ i−lb and (ϕ.edge<i−ub or ϕ.edge=−1):

There is not enough information to guarantee that ∄j∈ [i−ub,i−lb] such that π,i |= ξ,
where ∀k>j such that k∈ [i−ub,i−lb], π,k |=ψ. More specifically, it is guaranteed to be

unknown if π,i−lb |=ξ (as described in Axiom 3); therefore, the algorithm does not write

a tuple.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψ S[lb,ub] ξ,
and Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψ S[lb,ub] ξ. ⊓⊔

D Trigger (T ) Algorithm

Theorem 10 (Correctness of the Trigger Operator). Given the interval [lb,ub] and two

children nodes ψ and ξ, Algorithm 9 writes the tuple Tϕ to ϕ’s SCQ when sufficient data is

available such that for all i≥0, Tϕ=(true,i) iff π,i |=ψ T[lb,ub] ξ.
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Algorithm 9: Trigger Operator: ϕ=ψ T[lb,ub] ξ

1 Initialize:
2 ϕ.edge=−1 // Initialize ϕ.edge; stores the last i where π,i |̸=ξ
3 ϕ.previous=−1 // Initialize ϕ.previous; stores the last i written

4 ϕ.next time=0 // Initialize ϕ.next time; stores the next time for ψ and ξ

5 procedure Trigger(ψ,ξ)
Input: Node:ψ; Node: ξ

6 Tψ =ψ.read(ϕ.read1 ptr,ϕ.next time) // Read Node ψ
7 Tξ = ξ.read(ϕ.read2 ptr,ϕ.next time) // Read Node ξ
8 ifϕ.previous+1−lb<0 then // i−lb<0
9 ϕ.previous=lb−1

10 ϕ.write(true,lb−1) // Writing Tϕ=(true,lb−1)
11 if Tξ ≠Empty then // New Tξ
12 if !(Tξ.v) then // Tξ.v= false

13 ϕ.edge=Tξ.τ // Updating ϕ.edge to last false edge

14 ϕ.next time=Tξ.τ+1 // Updating ϕ.next time to after ϕ.edge
15 if Tξ.τ >ϕ.previous−lb then // π,i−lb |̸=ξ
16 ϕ.previous=Tξ.τ+lb
17 ϕ.write(false,Tξ.τ+lb) // Writing Tϕ=(false,Tξ.τ+lb)
18 return

19 else // Tξ.v=true

20 if ϕ.edge≤ϕ.previous−ub orϕ.edge=−1 then // ∀j∈ [i−ub,Tξ.τ],π,j |=ξ
21 ϕ.next time=Tξ.τ+1 // Move ϕ.next time forward

22 if Tξ.τ >ϕ.previous−lb then // ∀j∈ [i−ub,i−lb],π,j |=ξ
23 ϕ.previous=Tξ.τ+lb
24 ϕ.write(true,Tξ.τ+lb) // Writing Tϕ=(true,Tξ.τ+lb)
25 return

26 if Tψ ≠Empty then // New Tψ
27 if Tψ.v then // Tψ.v=true and Tξ.v=true

28 ϕ.next time=Tξ.τ+1 // Move ϕ.next time forward

29 if Tξ.τ >ϕ.previous−lb then
30 ϕ.previous=Tξ.τ+lb
31 ϕ.write(true,Tξ.τ+lb) // Writing Tϕ=(true,Tξ.τ+lb)
32 return

33 if Tψ ≠Empty then // New Tψ
/* ∃ϕ.edge∈ [i−ub,i−lb], such that ∄k>ϕ.edge where k≥i−lb, π,k |=ψ */

34 if !(Tψ.v) and Tψ.τ >ϕ.previous−lb andϕ.edge>ϕ.previous−ub andϕ.edge≠−1 then
35 ϕ.previous=min(Tψ.τ+lb,ϕ.edge+ub) // Limit i based on ϕ.edge
36 ϕ.next time=max(ϕ.next time,ϕ.previous−ub+1)
37 ϕ.write(false,ϕ.previous) // Writing Tϕ=(false,ϕ.previous)

Proof. The ϕ.edge variable stores the latest timestamp where Tξ.v = false (line 13). The

ϕ.edge variable is initialized to −1 (line 2) such that before Tξ.v= false, the conditions on

lines 20 and 34 can be rewritten as (−1≤ ϕ.previous−ub or ϕ.edge=−1)≡ true and

(−1>ϕ.previous−ub and ϕ.edge≠−1)≡false, respectively.

The ϕ.previous variable stores the previous time index i that node ϕ=ψ T[lb,ub] ξ wrote

to its SCQ. Before the first tuple is produced, ϕ.previous is initialized to −1 (line 3) such

that the condition on line 8 can be rewritten as −1+1−lb<0≡0−lb<0, the conditions on

lines 15, 22, and 29 can be rewritten as Tξ.τ >−1−lb or rather Tξ.τ≥0−lb, the condition

on line 20 can be rewritten as (ϕ.edge≤−1−ub or ϕ.edge=−1)≡(ϕ.edge=−1), and the

condition on line 34 can be rewritten as (Tψ.v and Tψ.τ >−1−lb and ϕ.edge≥0−ub and

ϕ.edge≠−1)≡(Tψ.v and Tψ.τ≥0−lb and ϕ.edge≠−1). Whenever a verdict-timestamp

tuple is written, the ϕ.previous variable is updated to that timestamp (lines 9, 16, 23, 30, and

35).

Note that if i−ub<0, then ∀i∈ [0,ub−1], we can only consider the interval [0,i−lb] for

evaluation (lines 20 and 34). Line 20 checks whether Tξ.v never equals false between [i−ub,i−
lb]; if i−ub< 0, then ϕ.edge≤ϕ.previous−ub≡ (ϕ.edge≥−1)≤ (ϕ.previous−ub<
−1)≡false since i=ϕ.previous+1; therefore, line 20 is contingent on whether ϕ.edge=−1
(i.e., never a time yet where Tξ.v=false). Line 34 performs a similar check to see if Tξ.v=false

between [i−ub,i− lb]; if i−ub < 0, then ϕ.edge > ϕ.previous−ub≡ (edge≥−1)>
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(2) Tξ.v= true and Tξ.τ > i−lb and Tψ.v= false and Tψ.τ < i−lb and ϕ.edge≥ i−ub
and ϕ.edge≠−1: If ϕ.edge≥i−ub and ϕ.edge≠−1, then ∃j∈ [i−ub,i−lb−1] such

that the latest value of j is ϕ.edge=ϕ.next time−1 as set by the previous execution on

lines 13 and 14. Tψ.v=false is the verdict from [ϕ.edge+1,Tψ.τ ], but there is not enough

information to determine if π,k |=ψ where k∈ [Tψ.τ+1,i−lb]; therefore, the algorithm

does nothing.

(3) (Tξ is Empty or Tξ.τ <i−lb) and Tψ.τ≥ i−lb and (ϕ.edge<i−ub or ϕ.edge=−1):
There is not enough information to guarantee that if ∃j∈ [i−ub,i−lb] such that π,i |̸=ξ,
then ∃k>j such that k∈ [i−ub,i−lb], π,k |=ψ. More specifically, it is guaranteed to be

unknown if π,i−lb |̸=ξ (as described in Axiom 4); therefore, the algorithm does not write

a tuple.

Verdict-timestamp tuples Tϕ=(true,i) are only written to ϕ’s SCQ iff π,i |=ψ T[lb,ub] ξ,
and Tϕ=(false,i) are only written to ϕ’s SCQ iff π,i |̸=ψ T[lb,ub] ξ. ⊓⊔
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