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sensors and passive elements contribute a substantial share of the
total carbon footprint.

We then conduct a detailed case study comparing three microcon-
trollers (Arduino Nano 33 BLE Sense, Coral Dev Board Micro, and
Raspberry Pi Pico) under realistic workloads and deployment con-
ditions. We evaluate two energy supplying scenarios: solar energy
harvesting and AA battery power. Our results show that energy
e#ciency alone does not guarantee carbon optimality. For example,
while the Coral Dev Board Micro is the most energy-e#cient for
a keyword spotting workload, its higher embodied carbon makes
it suboptimal for short-term battery-powered deployments, where
the Arduino Nano yields lower lifetime emissions. Conversely, un-
der long-term use or solar provisioning, energy-e#cient devices
can amortize their embodied cost and become the more sustainable
choice.

These "ndings challenge the conventional wisdom that systems
powered by renewable sources are always more sustainable, or
that energy-e#cient compute inherently results in lower carbon
emissions. We demonstrate that the carbon-optimal edge con"gura-
tion is highly sensitive to workload, deployment time, and power
source. As such, carbon-aware edge system design demands holistic
analysis and context-speci"c provisioning. Our work serves as a
blueprint for researchers, designers, and manufacturers seeking to
align embedded computing with sustainability goals.

2 BACKGROUND AND RELATED WORK
Carbon emissions of computing can be categorized into two types:
operational and embodied. Operational carbon refers to the carbon
emission that occurred during hardware use: the combination of
energy consumption and carbon intensity of the energy source that
powers the device. Embodied carbon refers to the carbon emission
that occurred during the chip manufacturing process [13, 14]
While several prior works [13, 14, 18, 27, 33] have LCA of com-

puting devices, most focus on modeling compute and memory chips.
However, edge computing has its distinct paradigm, characterized
by tightly integrated sensors, communication modules, and energy-
constrained power sources and necessitates its own sustainability
modeling and carbon-aware design strategies.
Carbon Modeling for Edge Computing Despite the increasing
deployment of edge devices, sustainability work speci"c to IoT and
intermittently powered systems remains limited. A notable excep-
tion is the bottom-up LCA framework proposed in [26], which cate-
gorizes emissions from IoT device components (processors, sensors,
actuators, etc.) and estimates cradle-to-gate emissions for consumer
devices such as the Google Home Mini and Apple Watch. How-
ever, their approach generalizes hardware speci"cations and relies
heavily on size- and quantity-based estimations, often overlook-
ing critical technology-level variations that signi"cantly in$uence
carbon emissions, especially in compute, memory, and sensing cate-
gories.

Some prior work has studied the LCA of speci"c electronic com-
ponents, such as CMOS image sensors [1], processors [4, 13, 18],
memory [33, 37], and capacitors [28]. Fairphone [7], on the other
hand, discloses detailed LCA data for an entire cellphone product,
serving as a valuable reference for edge computing LCAs. Since
calculating carbon emissions for all electronic components is not

always straightforward, DeltaLCA [39] adopts a comparative ap-
proach, avoiding absolute metrics by analyzing trade-o!s between
di!erent electronic designs.
Last but not least, prior modeling e!orts have largely focused

on the cradle-to-gate embodied carbon emissions of IoT devices,
often neglecting how application workloads and usage patterns (e.g.,
device lifetime, duty cycle) can in$uence onboard resource provi-
sioning—and ultimately, the device’s embodied emissions. Our work
addresses this gap by integrating embodied carbon modeling with
system design. We consider user requirements early in the design
phase and provision onboard components accordingly, enabling
more carbon-aware edge system design.
Sustainability for Edge Computing While sustainable edge com-
puting is still an emerging area, several studies have explored the
carbon trade-o!s involved in intermittent computing and the sens-
ing pipeline from edge to cloud. 𝐿𝑀2𝐿𝑁𝑂𝑃[25] introduces a carbon-
aware hardware–software co-design framework for intermittent
computing, demonstrating how choices in energy storage can in-
$uence scheduling decisions. However, this work is limited to a
"xed PCB size and a speci"c processor with a prede"ned carbon
footprint, and the evaluation only accounts for the carbon emissions
of the capacitors used. Desai et al. [16] has examined the carbon
impact of the full sensing pipeline—from the sensing device to the
cloud—analyzing how di!erent energy harvesting approaches and
data storage methods a!ect the overall carbon footprint of ML-
enabled devices. Despite these e!orts, conclusions in prior studies
are typically drawn from highly-speci"c workloads, hardware plat-
forms, and sensing use cases. In contrast, our work aims to provide
generalizable design guidance for commonly available o!-the-shelf
boards and representative workloads.

3 CRADLE-TO-GATE EMBODIED CARBON FOR
OFF-THE-SHELF EMBEDDED SYSTEM COMPONENTS

To understand the carbon impact of edge devices and enable carbon-
aware design, we "rst quantify the emissions of common edge com-
puting components, including processors, sensors, and their power
supplies (e.g., batteries, capacitors, and energy harvesters, etc.). This
section presents a cradle-to-gate analysis of o!-the-shelf embedded
components, encompassing raw material extraction, manufacturing,
and, where available, transportation.
We begin by detailing how to estimate emissions for high con"-

dence components—such as SoCs, memory, image sensors, resistors,
and solar panels—based on prior literature [1, 13, 29, 37]. These
estimates are speci"c to manufacturing processes and technologies
but often lack transportation data. For the remaining components,
we use ecoinvent [11], which includes transportation but relies on
broader categorizations.

To evaluate the embodied carbon of o!-the-shelf microcontrollers,
we extract the Bill of Materials (BoM) from public disclosures and
schematics. Each BoM is categorized by component type, and the
total carbon footprint is computed accordingly. The "ve o!-the-shelf
microcontrollers and microprocessors we evaluate in this paper
are Coral Dev Board Micro, Raspberry Pi Pico, MAX780000 FTHR,
Raspberry Pi model 3 A+ and Arduino Nano 33 BLE Sense.

ACM SIGENERGY Energy Informatics Review Volume 5 Issue 2, July 2025
126



Fig. 2. Cradle-to-gate embodied carbon emissions of common o!-the-shelf microcontrollers breaking into categories. Components estimated using well-
documented literature and process-specific data sources are marked as high confidence and shown with hatching, while components estimated using emission
factors from ecoinvent [11] are marked as low confidence.

Image Sensor Resolution Embodied Carbon (g)
HM5040 2592 × 1944 88.4
HM2140 1920 × 1080 76.0
HM1091 1280 × 720 20.4
OV2640 1632 × 1232 81.0
OV7670 656 × 488 42.8

Table 1. Embodied carbon of common o!-the-shelf CMOS image sensors

3.1 High-confidence Components
Integrated Circuit For all Integrated Circuit (IC) embodied emis-
sions calculations, we adopt the methodology described in ACT [13].
The embodied carbon of a given System-On-Chip (SoC) is estimated
as the product of the carbon per area and the area of the IC. Carbon
per area of the given IC is dependent on the technology node of the
chip and fabrication location. We relied on ACT [13] and Life-cycle
Assessment of Semiconductors [4] to generate the embodied carbon
emission per area for each technology node for each corresponding
manufacturer. To refer the die area for each chip, we rely on the
package-to-die ratio published in DeltaLCA [39] and Lall, et al [19].
For memory chips, we estimate embodied carbon based on memory
size and type, using data disclosed in prior works [13, 33, 37].
CMOS Image Sensors The embodied carbon of a CMOS image
sensor depends on its pixel size, resolution, manufacturing location,
and technology node. We estimate silicon area using Equation 1,
which multiplies pixel dimensions by resolution and adds a 0.3 mm
margin for connectivity [1]. Since datasheets often omit technology
node details, we approximate it using a 20:1 pixel-to-node ratio [35].
While some advanced sensors use dual-layer transistor pixel tech-
nology [24], most IoT-class sensors follow a conventional stacked
architecture, making them compatible with our area-based estima-
tion model. We present some of the common o!-the-shelf image
sensors in Table 1.

𝑄 = (𝑅𝑃𝑆𝐿 · 𝑇𝑈𝑉𝑀 + 0.3mm) · (𝑅𝑃𝑆𝑁 · 𝑇𝑈𝑉𝑂 + 0.3mm) (1)

Capacitors, Resistors, InductorsWe use a combination of weight-
based and package-based analyses to estimate the environmental
impact of capacitors, resistors, and inductors. For package-based
assessments, we rely on the component-level data disclosed in
DeltaLCA [39]. When capacitor package data is unavailable, we
apply a weight-based approach using emission factors speci"c to
di!erent capacitor types: multi-layer ceramic capacitors (MLCC),
tantalum electrolytic capacitors (TEC) [28], and aluminum elec-
trolytic capacitors [38]. For resistors and inductors not covered by
DeltaLCA [39]’s package list, we use the generic emission factors
for resistors and inductors provided by ecoinvent [11].
PCB FR-4 is a common PCB substrate widely used in edge devices.
We estimate the carbon emissions of PCBs by multiplying their
area by an emission factor of 0.006125 grams of CO2 equivalent per
𝑊𝑊2 per 1mm-thick layer [9, 22, 39]. The number of PCB layers is
determined based on the component schematics.

3.2 Low-Confidence Components Based on ecoinvent
Data

While conducting the LCA for microcontrollers, we observed that
not all components are thoroughly documented or studied using up-
to-date methodologies and data. Several components lack detailed
academic assessments of their emissions. These include: connectors,
switches, diodes, timing devices, jumpers, single surface mount
transistors, thermistors, ferrite beads, and microphones.
Emissions factors for these components are available from pri-

vate databases used in industrial LCAs. In this study, we accessed
Sustainable Minds [31], which leverages the EcoInvent Version 2.0
database [11]. While some components had exact category matches
in the database, others required approximation through broader
or similar classi"cations. We estimated the emissions of each com-
ponent by multiplying its weight by the corresponding emissions
factor.
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Boards CPU ML accelerator RAM Flash IDE Cost ($)

Coral Dev
Board Micro

NXP i.MX RT1176 MCU
(ARM Cortex-M7 @ 800 MHz,
ARM Cortex-M4 @ 400 MHz)

Google Edge TPU coprocessor:
4 TOPS (int8); 64MB 128MiB FreeRTOS 79.99

Arduino Nano
33 BLE Sense

nRF52840
(ARM Cortex-M4 with FPU @ 64MHz) N/A 256KB 1MB Arduino 38.7

Raspberry Pi Pico Dual-core Arm Cortex-M0 @ 133 MHz N/A 264KB 2MB Pico SDK 4
Table 2. List of development boards used in the experiment with processor and memory information

Workload Dataset Model Size
KWS-S [34] Speech Command [36] CNN 117KB
KWS-L [3] Speech Command [36] DS-CNN 384KB
PD [34] VWW Dataset [21] MobileNet 294KB

Table 3. Inference workloads used in our experiments, including person
detection (PD) and keyword spo"ing models—small (KWS-S) and large
(KWS-L).

3.3 LCA Results and Discussion
The embodied carbon of the "ve o!-the-shelf microcontrollers and
microprocessors we examined ranges from 0.53 kg CO2e to 2.59 kg
CO2e. A detailed breakdown of total embodied carbon emissions
is shown in Figure 2, where shaded regions indicate components
estimated with high con"dence. Integrated circuits are the dominant
contributors to embodied carbon across most devices. However,
in compute-lean microcontrollers—such as the Raspberry Pi Pico,
MAX78000 FTHR, and Arduino Nano 33 BLE Sense—the integrated
circuit accounts for less than 50% of total embodied emissions. This
is partly due to the substantial contribution of timing devices and
diodes, which may be overestimated due to the limitations of the
ecoinvent [11] database. Speci"cally, timing devices are categorized
as active components, sharing the same emission factor as integrated
circuits and displays, which likely in$ates their estimated carbon
impact.

While some microcontrollers, such as the Arduino Nano 33 BLE
Sense, include onboard sensors, others, like the Raspberry Pi Pico,
require external sensor modules. As a result, the embodied carbon
of devices like the Raspberry Pi Pico can increase depending on the
sensor type and deployment context. We account for this variability
in our case study in section 4.

4 CARBON-AWARE IOT DESIGN CASE STUDY
In this section, we examine the decision-making process for selecting
between o!-the-shelf microcontroller (MCU) boards, listed in Table
2 for always-on inference with sustainability in mind. We consider
two scenarios: one where the edge system is powered by solar
panels paired with capacitors, and another where it is powered by
AA batteries.
Experimental Setup: Weuse theDS-CNNkeyword spottingmodel
from the MLPerf Tiny v1.1 benchmark [3], trained on the Speech
Commands dataset with 90% accuracy, as well as the micro speech
and person detection model provided by Tensor$ow Lite Micro [6],
as summarized in Table 3. Runtime and per-inference energy are
measured using Nordic Semiconductor Power Pro"ler kit II [23] and
X-NUCLEO-LPM01A [30]. Results are shown in Figure 3.

Fig. 3. Per-inference energy and latency trade-o!s for three MCUs running
three edge ML workloads. The Coral Dev Board Micro achieves significantly
lower inference latency, with varying energy trade-o!s depending on the
workload.

To ensure a fair comparison, we normalize the number of infer-
ences executed per day across all devices. For example, for MLPerf
tiny’s keyword spotting (KWS) workloads, we use the Arduino
Nano running at a 100% duty cycle as the baseline. Due to its faster
runtime, the Coral Dev Board Micro operates at a 14.7% duty cycle,
while the Raspberry Pi Pico runs at 93.9% for the same model. Based
on the measured energy consumption and runtime per inference,
we size the required capacitors and energy harvesters for each board
accordingly.
Energy Harvester–Powered Case: We estimate the required area
for solar panels based on real irradiance power traces (in 𝑋𝑌 /𝑍𝑊2)
sourced from the EnHANTs dataset [12]. We assume a panel e#-
ciency of 16.65% [20], re$ecting the performance of typical polycrys-
talline solar panels. For each device, we calculate the average power
needed over the course of a day and divide this value by the average
daily irradiance (adjusted for e#ciency) to determine the minimum
panel area required for sustained operation. To convert the solar
panel area to its embodied carbon, we apply an emission factor of
0.0227 kg CO2e per cm2, based on values reported in a systematic
review of life cycle assessments of crystalline silicon photovoltaic
electricity generation [17].
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In our evaluation, we utilized the following real-world setups
from the EnHANTs dataset [12]:

(1) High-light setup (mobile-indoor-outdoor): A pedestrianwalked
around the university campus, which included both indoor
and outdoor environments, while carrying a sensor.

(2) Low-light setup (mobile-car): A car-based road trip where
the sensor was attached to the dashboard.

We pair microcontrollers with di!erent numbers of 470𝑋𝑎 MLCC
capacitors based on the energy needed to do a single inference. A
voltage regulator is added to the Coral Dev Board Micro setup to
boost the supply voltage to 5V as required.

The breakdown of carbon emissions of the energy harvesters and
microcontroller boards is shown in Figure 4. The carbon emission
of capacitors and voltage regulators is negligible in comparison to
energy harvesters and microcontrollers.
While energy e#ciency and runtime are often used as primary

metrics for selecting microcontrollers, our analysis shows that these
do not always align with carbon-optimal design. As illustrated in
Figure 4, the carbon-optimal edge system con"guration depends not
only on the hardware and energy source, but also on the speci"c
workload and deployment environment. For example, the Arduino
Nano 33 BLE Sense consistently yields the lowest embodied carbon
for both the kws MLPerf tiny and person detection workloads across
high- and low-light conditions due to its low board-level emissions.
However, for the kws t$mworkload, the Raspberry Pi Pico is optimal
under high-light conditions, while the Coral Dev Board Micro be-
comes preferable in low-light settings because its energy e#ciency
o!sets the higher board carbon through a smaller solar panel foot-
print. These "ndings highlight that even with the same workload
and set of devices, the lowest-carbon solution can vary based on
deployment context. Therefore, carbon-aware edge system design
must account for workload characteristics, environmental condi-
tions, and energy provisioning strategy—not just energy e#ciency
alone.
Battery-powered Case: We construct the battery-powered sce-
nario by modeling always-on inference systems powered by AA bat-
teries. In our calculation, each battery provides 11,250 J of energy [8]
and carries an embodied carbon footprint of 0.107 kg CO2e [15].
Based on the measured per-inference energy consumption of each
device and its adjusted duty cycle, we estimate the number of bat-
teries required to sustain operation over time and calculate the
resulting lifetime carbon emission.
As shown in Figure 5, the slope of each line corresponds to the

device’s energy e#ciency. The Coral Dev Board Micro is the most
energy-e#cient among the three devices when running kws t$m;
although it starts with relatively high embodied carbon, its op-
erational e#ciency results in the lowest lifetime emissions over
time—surpassing the Arduino Nano 33 BLE Sense after day 97 and
the Raspberry Pi Pico after day 270. Notably, the relative energy
e#ciency of the same set of devices can shift depending on the
workload. For instance, while the Arduino Nano 33 BLE Sense is
the least e#cient for kws t$m, it becomes the most energy-e#cient
option when running kws MLPerf tiny and pd t$m. These results
underscore that carbon-optimal hardware choices are not "xed but

Fig. 4. Carbon emissions of three always-on inference workloads deployed
on three MCU boards under varying light conditions. The carbon-optimal
solution varies by workload and environment, highlighting the need to
jointly consider hardware choice, deployment strategy, and operating con-
ditions in carbon-aware edge system design.

Fig. 5. Carbon emissions of devices running always-on inference with AA
ba"eries over time. For kws tflm, the Coral Dev Board Micro starts with
higher embodied carbon, its superior energy e!iciency eventually results in
the lowest lifetime emissions, highlighting that the most carbon-e!icient
device can vary depending on the workload and deployment time.

depend on the interplay between workload characteristics and en-
ergy consumption.
Deployment Time and Settings: Combining the results from both
the battery-powered and solar-harvested scenarios, we emphasize
that the deployment strategy leading to the lowest carbon emissions
is highly use-case dependent. For instance, if a user intends to deploy
a person detection model inside a car (a low-light environment) for
three months as a temporary security solution, powering the system
with batteries results in lower overall carbon emissions than using
solar panels. This "nding may seem counterintuitive, as renewable
energy is often assumed to be the more sustainable choice by default.
These insights highlight the importance of moving beyond one-

size-"ts-all assumptions. We advocate for a carbon-aware edge sys-
tem design approach that accounts for deployment context, opera-
tional duration, and power provisioning to enable more sustainable
decisions.
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5 CONCLUSION
This work presents a holistic framework for carbon-aware edge
system design, grounded in detailed embodied carbon modeling and
deployment-sensitive analysis. We demonstrate that sustainability
in embedded systems cannot be evaluated solely based on energy
e#ciency or compute footprint. Through a case study of o!-the-
shelf microcontrollers in both solar- and battery-powered scenarios,
we show that carbon-optimal decisions are highly dependent on
workload characteristics, power source, and deployment duration.
Notably, the most energy-e#cient or lowest-emission device in iso-
lation may not be the most carbon-optimal choice in speci"c short-
term or constrained-use deployments. These "ndings highlight the
importance of system-level, context-aware design strategies that
account for both embodied and operational emissions.

6 LIMITATIONS AND FUTURE WORKS
While our analysis focuses on a subset of representative microcon-
trollers and ML inference workloads, extending this framework
to a wider range of edge devices, sensing modalities, and work-
loads beyond machine learning would enable broader applicability.
In particular, incorporating event-driven workloads and heteroge-
neous sensor integrations could uncover additional carbon trade-o!s
across the embedded system design space.
We also aim to re"ne embodied carbon estimates for compo-

nents currently modeled with low-con"dence data, such as timing
devices and diodes, by collaborating with industry partners to ob-
tain more accurate BoM details and leveraging LCA expertise in
academic labs. In addition, extending our framework to support
end-of-life modeling and circularity scenarios, such as Junkyard
Computing [32], could enable more holistic and forward-looking
strategies for carbon-aware edge computing system design.
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