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Cutting operations often involve machining parts of similar geometry repeatedly, offering opportunities for
learning-based improvements. While past studies have focused on enhancing machining accuracy through
part-to-part learning, this work shifts the focus to optimizing feedrate under servo error constraints. A data-
driven model, trained online on prior machining data, predicts future servo errors and enables iterative fee-
drate optimization. Confidence in the model improves as more parts are machined, permitting progressively
higher feedrates. Experimental results demonstrate significant speed gains within a few iterations, showcas-
ing the potential of part-to-part learning for autonomously achieving faster machining without violating
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1. Introduction

In manufacturing settings, it is common to produce multiple copies
of similar or identical parts on the same machine tool. Given the simi-
larity in part geometry and machining conditions, servo errors for suc-
cessive parts tend to exhibit predictable patterns. This consistency
presents an opportunity for learning from past machining operations
to improve the performance of future ones. Such part-to-part learning
has typically been explored in the context of iterative learning control
(ILC) [1], where servo error compensation strategies are refined over
successive parts to enhance motion accuracy. There are generally two
approaches for performing ILC. The first involves iteratively learning
the compensation signal to progressively reduce servo errors [2—4].
However, such methods are only effective for compensating the servo
errors of identical part geometries machined under the exact same
conditions. The second approach involves iteratively tuning the param-
eters of a compensation model to progressively reduce servo errors
[5—7]. This approach is more versatile in its effectiveness for compen-
sating the servo errors of similar but non-identical parts.

Regardless of the adopted approach, the existing work on part-to-
part learning has so far mainly focused on minimizing servo errors.
However, in practice, when servo tolerance requirements are already
met, further improvements in accuracy yield diminishing returns. In
these scenarios, manufacturers are more interested in enhancing pro-
ductivity while maintaining desired quality levels. Along this direction,
Rattunde et al. [8] proposed an approach for optimally scheduling fee-
drate subject to spindle power constraints by progressively learning a
model of spindle power online, using Gaussian process regression, as
parts were machined. However, to the authors’ best knowledge, there
have been no efforts to achieve part-to-part learning where the goal is
to optimize feedrate subject to servo error constraints.

Note, however, that numerous studies have investigated optimizing
feedrate while considering constraints related to servo errors. Most
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feedrate optimization methods focus on kinematic limitations such as
speed, acceleration, and jerk [9—12]. However, such methods fail to
impose direct constraints on servo error. To address servo error explic-
itly, some feedrate optimization techniques incorporate kinematic con-
straints along with servo error constraints using physics-based or
empirical servo error models that are determined offline [13—17]. The
problem is that, because such models are not updated online, they fail
to account for unmodeled dynamics or uncertainties in the motion or
cutting forces, significantly hindering their accuracy and effectiveness
in constraining servo errors.

The shortcomings of offline servo error models have recently led
to efforts to leverage online learning for feedrate optimization. For
example, Chang et al. [18] utilized a model predictive control
(MPC) framework to achieve feedrate optimization subject to servo
error and kinematic constraints. The servo error model was
updated online through state observers. Their method was experi-
mentally shown to constrain servo errors with reasonable accuracy.
Kim and Okwudire [19] presented a digital twin (DT) based frame-
work for feedrate optimization that integrated a physics-based
model of servo dynamics with a data-driven component, updated
online, to accurately predict and constrain servo errors induced by
motion and cutting forces. Furthermore, Kim et al. [20] proposed
an approach for performing feedrate optimization using an uncer-
tainty-aware DT that integrated stochastic physics-based and data-
driven models. Updated online via sensor feedback, the DT
accounted for model uncertainties, enabling feedrate optimization
while enforcing servo error constraints with quantified confidence
levels. However, none of the methods discussed above addressed
how to transfer online learning from one part to another to facili-
tate feedrate optimization subject to servo error constraints.

To address this shortcoming of prior work, this paper makes the fol-
lowing original contributions:

(1) It proposes a novel method for online part-to-part learning
that iteratively optimizes feedrate based on machining data
from prior parts of identical or similar geometry.
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(2) The part-to-part learning is enabled by a stochastic data-driven
servo error model that starts out conservatively with low confi-
dence but progressively builds confidence as it gathers more data
that confirms its predictions.

The predicted contour errors are integrated as constraints into an
existing feedrate optimization algorithm [21] that increases feedrate as
the servo error model’s confidence grows. The effectiveness of the pro-
posed method is validated using air-cutting experiments on a 3-axis
desktop milling machine, where it demonstrates significant increases
in feedrate within a few iterations while enforcing servo error con-
straints with high accuracy.

The outline of the paper is as follows. Section 2 discusses the pro-
posed approach, including details of the data-driven model for part-to-
part learning, the tuning of its hyperparameters, and its integration
into an existing feedrate optimization algorithm. Section 3 then
presents the experimental validation while conclusions and future
work are presented in Section 4.

2. Methodology
2.1. Overview of proposed approach

Fig. 1 provides an overview of the proposed approach for feedrate
optimization based on part-to-part learning. It comprises an actual
machine tool (MT) and its digital twin (DT). Motion commands for
machining identical or similar parts are sent to both the MT and its DT.
Each part is parameterized using a path coordinate system with path
variable s. Without loss of generality, the servo errors of both the MT
and its DT are represented as contour errors derived from the tracking
errors of each of its axes. The DT consists of a data-driven contour error
model that is iteratively trained online using contour errors measured
from the MT. The contour errors predicted by the model are used as
constraints in feedrate optimization, and the optimized feedrates are
sent to the MT.

Initially, the DT is assumed to have no reliable contour error model.
Therefore, conservative feedrates are sent to the MT to cut the first few
parts to initialize the model. The contour errors measured after cutting
the first few parts are sent to the DT to learn a contour error model
along with its confidence in the model. As one would expect, the confi-
dence in the model is initially low, hence the large credible interval.
The feedrate optimizer, uses the predicted contour errors and credible
intervals to determine the highest feedrate that satisfies the error con-
straints. The low confidence of the model leads to relatively low fee-
drates. The process is repeated for subsequent parts and the
confidence of the model increases as it observes consistent patterns
from the measured data that confirm its model, leading to higher fee-
drates.

Note that the proposed approach differs in a few ways from the tra-
ditional ILC for servo error compensation using part-to-part learning
[1-7]. First, even when the geometric path is identical from iteration to
iteration, the commanded feedrate is not. Therefore, the motion trajec-
tory changes from iteration to iteration, which could trigger unmodeled
speed-dependent dynamics. Second, the potential for iteration-to-itera-
tion variance in servo dynamics necessitates the incorporation of uncer-
tainty into the model to avoid overconfidence in its predictions until a
consistent pattern of contour errors is observed and learned. This is in
some ways similar to the safe learning approach adopted by Rattunde et
al. [8] using Gaussian process regression.

First few parts

2.2. Data-driven contour error model

When machining similar parts, one expects that the contour errors ¢
of the parts have similar trends with respect to the path variable s.
Accordingly, the data-driven contour error model f, is assumed to be a
function of s that is dependent on the features ¢ representing feedrate
and part geometry, i.e.,

E(s) =f(¢:3) 1

where ¢ (representing the predicted contour errors) can be discretized
with sampled path variables s;, i=0, 1, 2,...,N, and downsampled
using the B-spline basis functions ¢;,j = 0, 1, 2,...,m, as

e = [etsorieton)| = [eoien] = > vy = v @
[oieton)] = o] -3

W is the concatenated matrix of ¥;, and p is the vector of the coeffi-
cients for the basis functions. Therefore, the data-driven model
of Eq. (1) reduces to creating a data-driven model for each coefficient
y; that captures its variation from part to part:

Vi :ny (‘l’j) (3)

where ¢; is the feature vector that is used for the prediction of y;, the
Jj-th element of p, and is a subset of ¢ in Eq. (1). We opt to define f,
using a Bayesian linear regression model of the form:

vi=9Bi+n 4

where g; is a vector of stochastic weights to be learned from mea-
sured contour errors, while the deterministic feature vector @, is
designed as

ol =8 h 1] (5)

and n is the error term consisting of measurement noise and unmod-
eled dynamics. In Eq. (5), $ is the feedrate-related feature, h is the
geometry-related feature, represented by the height of the part, and 1
is the bias term.

To implement the Bayesian linear regression for the prediction of
the contour error, the prior of the model weights g; are predetermined
as Bjo~-1"(rng0,24.0) where g0 and X4 o are the prior mean and
prior variance, respectively. The error term » is also assumed to be
n~.4"(0, a%), which is independent and identically distributed. Given
a new measurement of the contour error ¢ from a machined part, the
corresponding ground truth y is first obtained by the pseudoinverse
y = Ve Then, each element vj is used to derive the posterior distribu-

tion of the corresponding model parameter
Bja~ - (g 1,2g,1) as follows:
_ 1
Zg1= (Eﬁﬁo =10 )
! (6)

1 1
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n

Finally, the predicted y; ~. 7" (1y, 1, 03’_1 ), given the posterior distri-
bution of B;, can be computed as
Hy1 = (0}-#,9,,1
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Fig. 1. Overview of proposed approach for feedrate optimization using part-to-part learning in repeated machining.
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After determining the predicted mean and the credible intervals of
7, defined as j,, 1 + 30, 1 in this paper, the mean and credible intervals
of the predicted contour error can then be computed as

e8¢ =W(nyq£30,1) (8)

2.3. Determination of hyperparameters

The performance of Bayesian linear regression is highly affected by
its hyperparameters, i.e., 2 1g 00200 and 02 Here, we provide guidelines
for effectively determining the hyperparameters We start by assuming
that g o = 0 following the ridge regression process. Accordingly, 24 o
and o7 ‘are tuned using the contour error data gathered from the first
part. Spec1ﬁcally, after collecting contour error measurements from the
first part, a set of randomly chosen 34 o are applled to Egs. (6)-(7) to
get mg and the residual errors n=y;— (p Rp1- This process is
repeated several times on the same set of mltlal contour error data.
Assuming that each iteration for calculating M1 and n converges, and
is bias free, n can be considered to be the distribution of the measure-
ment noise and the unmodeled dynamics. Therefore, the root mean
square of n is used as o,. Finally, given any ug ;, to determine 34 o, we
assume that «% of the data populatlon is within the range of the pre-

diction. Accordingly, 34,0 = 6% o, With o is obtained by

max{pug 1}
fl——2—| =1-0.0la 9
er ( Uﬁ,O\/j ) (9)

where erf is the error function.
2.4. Contour-error-constrained feedrate optimization

The contour errors and credible intervals predicted from the data-
driven model from prior parts are used for the feedrate optimization
for the next part. The feedrate optimization is achieved using a sequen-
tial linear programming (SLP) method presented in [21]. It formulates
feedrate optimization by maximizing a normalized path variable s(k),
0 < s(k) < 1, which represents the distance travelled at each time step
k. Constraints are applied to the maximum feedrate Vpax, acceleration
Amax, jerk Jmax, and contour errors Epay, i.e.,

K-1
ming Y~ —s(k) = —1"s
k=0
Subject to :
$(0)=0, s(K—-1)=1
s(k—1)<s(k)
Dis]

0<L == <Vimax (S)=<Emax (10)
N
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where 1 is a vector with all elements equal to 1, K is the maximum
number of timesteps, L is the path length of the entire part, x,4(s) and y,
(s) are the x- and y-axes reference commands, which are functions of s,
while D, D? and D? are the 1st, 2nd and 3rd-order time derivative oper-
ators. Note that, contrary to the approach in [21], the vector size of ¢(s)
can be different from those of x4(s) and y4(s). The reference x4(s) and y,
(s) need to be discretized at timesteps k due to the calculation of fee-
drate and higher order time derivative terms. However, for (s), one
can choose any discretization points of interest, e.g., based on the
geometry, by adjusting the B-spline matrix ¥ in Eq. (2).

Note that x4(s) and y,4(s) are typically nonlinear functions of s; thus
their derivatives need to be linearized about the equilibrium points seq.
For the double derivative of x-axis, it can be written as
F4(k) = %4 (seq(0)) + % (s(k)

Seq

A similar equation applies to the y-axis as well as the x- and y-axes
third-order derivative terms but is omitted here for brevity. The pre-
dicted contour error (s) is also a nonlinear function of s, due to the
nonlinear relationship between s-and s. Thus, € (s) also needs to be line-
arized using seq, similar to Eq. (11). SLP addresses the use of lineariza-
tion to approximate nonlinear problems by substituting the solution of
s from the last iteration as s in the next iteration of linear

—Seq(K)) (Im

programming. It repeats the process until convergence between s and
Seq is obtained. Hence, to avoid large changes in the solution from one
iteration to the other, which can make SLP infeasible, the constraint
below is added to Eq. (10):

s — Seq| < 85 (12)

where §; is a user defined maximum step size. Lastly, to further reduce
the dimension of the SLP, s can further be fitted by another B-spline
matrix ¥, i.e.,

s = Wanps (13)

where p; is the coefficient vector having fewer elements than s.

3. Experimental validation
3.1. Experimental setup

To validate the proposed method presented in Section 2, an experi-
mental air-cutting case study is performed on a desktop CNC MT (Car-
bide 3D Nomad 3) used in [19]. The three axes of the MT are actuated
by stepper motors. Two Renishaw RKLC20-S optical linear encoders
(with 5 um resolution) are externally attached to the x- and y-axes to
measure the servo position. To collect data for training of the data-
driven contour error model and to apply the command from feedrate
optimization to the motors, a dSPACE 1007 real-time control board,
running at 1 kHz sampling frequency, along with DRV8825 stepper
motor drivers (driven at 40 kHz), are used to bypass the stock control-
ler board on the Nomad 3. As shown in Fig. 2 the dSPACE control board
is also used to implement an integral feedback controller with K; = 50
to compensate the steady state errors of the stepper motor (i.e., open-
loop) controlled motion, where e, and e, are respectively the x- and y-
axes tracking errors, u, and u, are respectively the x- and y-axes motor
commands, and z is the discrete time forward shift operator.

Stepper motor  Optical linear
drlver encoder

PC
Part

Feedrate |[XoYal
Optimization

Training of | ¢ Measured
data-driven [~— Contour error evel [xy1
model calculation w0 Cy. dSPACE

Fig. 2. Experimental setup of the desktop CNC machine tool.

3.2. Experimental validation

The heart shape trajectory shown in Fig. 1 in three different sizes —
small (S), medium (M), and large (L) — are used as the desired geome-
try, where size M and size L are 1.5x and 2x of size S, which has a
height, h = 13.6 mm. The contour error constraint is set as Emax = 25
um, and the kinematic constraints are given by

Vinax = 30 mm/s, Amax = 1.0 m/s?, Jmax = 50 m/s> (14)

The model is initialized using the first two parts of size S (i.e., parts
S1 and S2) using conservative kinematic limits of

S1: Vimax = 10 mm/s, Amax = 0.3 m/s?, Jmax = 10 m/s3
S2: Vimax = 12 mm/s, Amax = 0.4 m/s?, Jmax = 15 m/s>

Data from two parts are needed to initialize the contour error
model along the speed (s;) component of the model because it is a lin-
ear regression, meaning t jhat it needs at least two data points to build a
model. Once the feedrate optimization converges for size S, the itera-
tion continues for size M and then size L (i.e., the sequence is given by
S1-S8, then M1-M8 and lastly L1-L8). Note that part M1 uses the same
kinematic limits as part S1 to initialize the data-driven model along the
size (h) component of the model.

For the contour error model, 361 sampled path variables s;
(N =361) and 77 B-spline basis functions y; (m = 77), both of which
are not uniformly distributed about s but specially selected to empha-
size the parts’ geometric features, are used. For the feedrate optimiza-
tion settings, K = 5001 timesteps or the length of se; from the prior SLP
iteration if it is larger than 5001. The variable §; is linearly spaced from

(15)
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Fig. 3. The optimized feedrate, the corresponding contour errors, and the credible intervals predicted by the data-driven model.

0 to 0.1. The stopping criterion for the SLP is when the RMS value of s —
Seq < 107 or, if the former cannot be satisfied, 21 SLP iterations. Then,
among the feasible solutions of all the SLP iterations, the one that gives
the minimum travel time is selected. For hyperparameter tuning, 100
random values of %4 o are trained for 100 iterations to get the distribu-
tion of  used to compute o,,. The variable « in Eq. (9) is selected as 99%.

Fig. 3 shows the optimized feedrate and the corresponding con-
tour error profiles for the parts based on air cutting. One observes
that for size S, after initialization using S1 and S2, it takes three
more machining iterations (parts) for the feedrate to converge to
the optimum. For size M, although the first part (M1) needs to be
used for initialization via a conservative feedrate, thanks to the
data-driven model developed from training the S-sized parts, the
feedrate for the M-sized parts can be quickly optimized starting
from part M2. The situation is even better for size L, where a close-
to-optimal (not optimal due to linearization difficulty) feedrate pro-
file is obtained from part L1 due to prior training on sizes S and M.
These show the benefit of part-to-part learning in rapidly optimiz-
ing feedrate. The summary of the travel time for each part can be
found in Table 1 and Fig. 4.

Table 1
Summary of the travel time for all parts [unit: s].

Part 1 2 3 4 5 6 7 8

S 422 352 307 246 167 1.67 167 1.67
M 629 257 237 237 237 237 237 237
L 317 317 317 306 3.06 3.06 306 3.06

Comparison of Travel Time

7
—6%
K2 AN
o 9 —— :
£ 4 Small (S) size
E 3@ = @ ‘Medium (M) size
% 5 ~ @ Large (L) size
1

0

1 2 3 4 5 6 7 8
Iteration [-]

Fig. 4. Evolution of travel time for different part sizes.

Further looking into the contour error predicted by the proposed
model, one can also find that the prediction and the measurements are
close to each other, except some peaks which occur at quadrant
glitches that are not captured due to downsamping using Eq. (2). As a
result, the contour error is successfully constrained except for a few

minor violations (e.g., in parts M2 and M3). In general, the upper bound
of the credible intervals hits the error constraints, which limits the fee-
drate at the corresponding locations. Interestingly, one can notice that
for part S3, the credible intervals are far lower than the error limits.
This is caused by the linearization errors in the SLP optimization algo-
rithm.

4. Conclusion and future work

This paper has proposed a framework for a data-driven model to
learn contour errors from part to part in repeated machining, and to
use the model for feedrate optimization during each iteration. The
data-driven model is based on Bayesian linear regression. This allows
the model to be trained on very few samples, and its confidence, hence,
the optimized feedrate, to increase as more data is gathered. Air cutting
experiments are used to show that feedrate profiles can be optimized
within a few iterations of one part size and carried over to facilitate the
optimization of other part sizes.

There are several avenues for future work. Physics-based servo
dynamics models combined with cutting force and friction models
could be incorporated for faster and more accurate learning. Cutting
experiments will be conducted to further validate the proposed
approach. The framework could be extended to part-to-part learning
for parts of non-similar geometries, or machine-to-machine learning,
where a fleet of MTs cutting similar parts learn from one another to
enhance overall outcomes.
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