C IEEES @ CompuTer S 'S § Machine Learning in
gﬂmoc /| SOCIETY Processing mr ications and

o HE

IEEE Transactions on

Received 7 February 2024; revised 29 May 2024; accepted 21 August 2024.
Date of publication 26 August 2024; date of current version 2 September 2024.

The associate editor coordinating the review of this article and approving it for publication was G. Yu.

Digital Object Identifier 10.1109/TMLCN.2024.3449834

ML-Enabled Millimeter-Wave
Software-Defined Radio With
Programmable Directionality

MARC JEAN "™, MURAT YUKSEL ~ (Senior Member, IEEE),
AND XUN GONG ™ (Senior Member, IEEE)

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA
CORRESPONDING AUTHOR: M. JEAN (ma935977 @ ucf.edu)

This work was supported in part by U.S. National Science Foundation under Award 1836741.

ABSTRACT The increasing demand for gigabit-per-second speeds and higher wireless node density is
driving the need for spatial reuse and the utilization of higher frequencies above the legacy sub-6 GHz bands.
Since these super-6 GHz bands experience high path loss, directional beamforming has been the main method
of access to the large amount of bandwidth available at these higher frequencies. Hence, the programming
of wireless beams with specific directions is emerging as a requirement for software-defined radio (SDR)
platforms. To address this need, we introduce an affordable millimeter-wave (mmWave) testbed. Using a
multi-threaded software architecture, the testbed allows for the convenient programming of mmWave beam
directions using a high-level programming language, while also providing access to machine learning (ML)
libraries as well as SDR methods traditionally deployed in Universal Software Radio Peripheral (USRP)
devices. To showcase the potential of the testbed, we tackle the Angle-of-Arrival (AoA) detection problem
using reinforcement learning (RL) methods on the receiver side. AoA detection and direction finding is a
crucial need for the emerging use of super-6 GHz spectra. We design and implement Q-learning, Double
Q-learning, and Deep Q-learning algorithms that passively inspect the Received Signal Strength (RSS) of
the mmWave beam and autonomously determine the predicted AoA. The results indicate the feasibility of
programming directionality of the wireless beams via ML-based methods as well as solving difficult problems
pertaining to emerging directional wireless systems.

INDEX TERMS Beamforming, SDR, mmWave, USRP, ML, Q-learning, double Q-learning, deep Q-
learning, AoA.

I. INTRODUCTION

INCE legacy sub-6 GHz bands are highly contested, the

wireless community has turned to super-6 GHz spec-
tra for addressing the capacity problem [3], [4], [S] in the
emerging 5G [6] and the envisioned 6G [7] standards. Yet,
accessing the super-6 GHz bands requires directionality in
wireless signal propagation. Due to strong attenuation at
these frequencies, directional beams are employed to reach
longer ranges with the same transmit power. Directional
mmWave [8], [9] approaches are being tried for higher capac-
ity at the expense of less mobility, as these bands are fragile to
mobile operation and experience high path loss in non-line-
of-sight (NLoS) channels. In order to successfully integrate

these super-6 GHz bands (22 GHz and above including the
Terahertz and free-space optical bands) into legacy mobile
networking at scale, there is a need for joint hardware and
software innovations.

Directionality offers wideband, energy-efficient, and
inherently secure wireless communications. While offering
higher spatial reuse and less interference [10], [11], [12],
directional transceivers have key advantages in (4) wide
bandwidth and effective data rate as they operate with much
shorter wavelengths than legacy sub-6 GHz bands, (+)
energy efficiency (i.e., low energy-per-bit transfers) as they
dissipate transmit power to a smaller volume, and (4) secu-
rity (i.e., low probability-of-intercept) as they attain better

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2024

1159

https://orcid.org/0000-0003-1689-7126
https://orcid.org/0000-0003-0387-7038
https://orcid.org/0000-0001-7111-736X

[IEEE Transactions on

~IEEE [reee e oy B
: Signal 5 Machine Learning i
&gmgg’s @/SCOOCNIEP.IECTER P‘r%)régs§jpg m p lachine L ea'"""gn,'::’

containment of the radio signal and enable innovative spatial
security solutions such as null space beamforming [13].
On the other hand, directionality has disadvantages in terms
of tolerance to mobility and antenna size. Higher direc-
tionality requires (-) transmitter and receiver to be facing
towards each other, i.e., line-of-sight (LoS) establishment or
alignment, and (-) larger antenna form factor to realize high
gain which forces directional transceivers to be plausible only
at high frequency bands with significant path losses.

Due to their directionality, attaining mobility at super-6
GHz frequencies is challenging mainly because directional
beams require constant attention for maintaining LoS align-
ment. Beamsteering antennas integrated with SDRs offer an
opportunity to solve these challenges arising from direction-
ality in mobile settings. Very interesting set of ‘software-
defined beamforming’ designs become possible, if such inte-
gration of beamsteering antennas with SDRs is done at scale
and in a manner that enables advanced algorithmic methods in
beamforming technologies. Equipping legacy SDR platforms
with an application programming interface (API), such as
setDirection () or setAngle () functions to manip-
ulate directionality, enables ML-based treatment of beam
directions as well as PHY-MAC hybrid designs involving
directional beamforming while maintaining multiple simul-
taneous links with neighbors. Unlike traditional tracking and
acquisition done in hardware, such Directional SDR enables
handling of LoS detection and establishment via software.

Realizing programmable directionality as a prominent
approach in SDRs necessitates seamlessly coupling high-
level programming environments (where advanced algorith-
mic methods such as ML and data structures are available)
and directional beamforming capability in the PHY layer.
In this work, we present an mmWave SDR testbed that
enables ML-based programming of the directional features
of the beams while keeping the data-plane processing over
field-programmable gate array (FPGA). The testbed employs
a USRP device and conveniently allows Python programming
of directionality of the mmWave beams. We use the testbed
in mmWave AoA detection and demonstrate the application
of RL methods in real time.

Direction finding is a crucial need for the emerging highly
directional mmWave systems. The detection of AoA for RF
signals, as discussed in [14], holds a pivotal role in enhanc-
ing the alignment of mmWave beams. This capability is a
crucial aspect of directional wireless technology, employed
for identifying signals transmitted within the surrounding
environment, as emphasized in [15]. Precise AoA estimation
facilitates the fine adjustment of beam alignment between
transmit and receive antennas, resulting in more accurate
Channel State Information (CSI). Consequently, this leads to
an enhancement in RSS, contributing to an improved overall
signal-to-noise ratio (SNR) and enhanced link performance.
A significant portion of the available literature focuses on the
utilization of phase or complex signals to determine the radio
source’s direction [16]. Employing either of these approaches
for pinpointing the signal source’s direction entails repetitive

1160

sampling. Consequently, the algorithm may necessitate a sig-
nificant time investment to detect the signal source, rendering
it less suitable for real-world applications, especially in sce-
narios involving fast-moving targets.

For mmWave AoA detection, we adapt model-free RL
algorithms. Our RL-based approach to detecting AoA is com-
patible with mmWave SDR systems as we show it in our
testbed. Our approach only considers the receiver side and can
passively detect AoA without help from the transmitter or any
other localization system. We utilize three RL methods, Q-
learning, Double Q-learning, and Deep Q-learning for AocA
detection. Q-based learning algorithms are widely used for a
wide variety of applications that require fast learning capa-
bility, such as in gaming, or fast detection capability, such as
detecting a drone flying through an indoor environment [17].
Our RL algorithms for AoA detection follow a Markovian
model, using actions to explore different states of a given
environment [18], [19]. We design a reward function that does
not necessitate anything other than passive measurements of
RSS and tune the algorithms’ greediness and learning rates to
obtain a balance between faster convergence and accuracy in
Ao0A detection.

Our work aims to address experimental challenges in inte-
gration of hardware and software components for mmWave
systems. A key goal is to demonstrate the feasibility of
using machine learning (ML) in solving various challenges of
mmWave systems due to their directional operation. As a key
application, we focus on AoA detection and direction finding
using RSS. Main contributions of our work are as follows:

e Design and implementation of a low-cost SDR-
compatible testbed platform for ML-in-the-loop
mmWave beamforming.

o Design of a multi-threaded software integration method
that enables handling of timescale difference and asyn-
chrony between a high-level programming environment,
Python, and the underlying mmWave (or super-6 GHz)
antenna system.

o A modular API that can be adapted for a variety of
mmWave antennas, such as, horn or patch antenna
arrays.

« Adaptation of Q-learning, Double Q-learning, and Deep
Q-learning methods for mmWave AoA detection.

o Tuning the hyper parameters (the learning rate « and
exploration policy €) of both Q- and Double Q-learning
to detect AoA within 2° of accuracy.

o Tuning the hyper parameter exploration policy € and the
number of hidden layers of Deep Q-learning to detect
AoA within 2°.

o Design of a threshold-based convergence criteria
for both Q-learning, Double Q-learning, and Deep
Q-learning using coefficient of variation (CoV) of RSS
data samples.

The rest of the paper is organized as follows: Section II
covers the related literature on experimental mmWave
SDR efforts and AoA detection. Section III presents the

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

architecture design of our experimental platform and how
AoA detection algorithms may be implemented on it.
Section IV presents our RL algorithms for AoA detection and
discusses results from their implementation on the testbed.
Finally, Section V makes a summary of our work and dis-
cusses future directions.

Il. BACKGROUND AND RELATED WORK

In recent years, there has been an exponential growth in
mobile users [20]. This has caused a significant increase
in network traffic. With the deployment of highly dense
Internet-of-Things (IoT) networks, the demand for larger
data rates is increasing. To address this issue, upcoming
5G networks are tapping into unlicensed mmWave bands,
beyond 22 GHz [21]. Such super-6 GHz bands enable data
rates on the order of gigabits per second (Gbps). While
using mmWave bands can have numerous advantages, the
short wavelength is impacted by environmental factors, pri-
marily absorption [22]. mmWave signals are also fragile in
mobile applications, due to multi-path propagation caused by
environmental reflection. As a result of these environmental
losses, mmWave signals can severely degrade with respect to
distance traveled.

To combat environmental loss, high gain mmWave anten-
nas with beamforming features are used to aim the radiated
power to desired directions. Using highly directional anten-
nas have numerous beneficial features. If the beam is aligned
well, the RSS is notably better than omni-directional signals,
yielding a better SNR. As a result, the user data rates will
increase due to the directional beams offered by the mmWave
beamforming antennas. Further, directionality offers energy
efficient communication links, enabling the spatial reuse of
frequencies that are available in the spectrum. However,
directionality is difficult to work with under mobility as it
brings the problems of frequent beam alignment and mainte-
nance of LoS.

The mmWave antenna beam direction can be steered
mechanically or electronically. Older mmWave platforms
mechanically steered horn antennas to align the trans-
mit and receive beams [23]. Today, more advanced patch
antenna array systems are used to electronically steer the
beams. Usually, digital phase shifters are used to control the
beam direction via software. Beamforming, while optimizing
for several desired metrics (e.g., throughput, security, and
energy), using these antenna systems proved to be difficult
— triggering the need for advanced algorithmic methods,
such as ML, in SDR platforms [24], [25], [26]. Integrating
these highly directional beamforming mmWave antennas into
general purpose networking platforms is an open research
problem [27]. This requires both software and hardware solu-
tions enabling mmWave experimentation capability with ML
methods while being able to work with varying mmWave
antenna hardware in a cost-efficient manner [28], [29]. Our
work fills this gap by integrating a multi-threaded software
design with a conventional SDR in a testbed, and showcasing

VOLUME 2, 2024

the practicality of the approach on solving the problem of
Ao0A detection by applying RL algorithms. Hence, our work
relates to mmWave testbed design as well as AoA detection,
both of which we survey next.

A. mmWAVE TESTBEDS

Most of the software-controlled mmWave experimenta-
tion has utilized FPGAs to handle the wireless signals.
OpenMilli [30] utilized an FPGA-based data plane while
accessing mmWave bands with a patch antenna array. Fol-
lowing this seminal effort, several studies expanded mmWave
experimentation capabilities using FPGA-based designs. A
12-element phased array [31] emulated PHY and enabled
studying various aspects of indoor 60 GHz links. Tick [32],
offering programmability using XML, expanded the exper-
imentation capability to MAC along with mmWave PHY.
By separating control and data paths to different multiple RF
chains, M-Cube [33] demonstrated an improved mmWave
multi-input multi-output (MIMO) experimentation capabil-
ity. Being limited to a single datastream (i.e., communication
can take place only with one neighbor node at a time), the
design included a USRP that guides an FPGA on the control
path while a separate data path connects to the host machine.
MilimeTerra [34] envisioned a similar capability with com-
mercial off-the-shelf mmWave or Terahertz antennas.

There have also been experimental efforts to investigate
mobility effects on mmWave systems. As we discussed ear-
lier, dynamic channel conditions generated by the mobility
necessitates software techniques to manipulate the direc-
tions of the mmWave beams. In [35], the authors, using
FPGA to process the RF signals, showed software imple-
mentation of a beam alignment method for IEEE 802.11ad.
A mobile Orthogonal Frequency-Division Multiplexing link
was demonstrated [36] using a 64-element mmWave phased
array where the baseband module was switched between an
FPGA and USRP to overcome USRP’s limited bandwidth.
The FPGA in the baseband module controls the phased
array’s weights, which limits the programmability.

A drawback of the FPGA-based designs is that their
programmability is limited to the hardware language. Even
though FPGAs do act as programmable hardware interfaces,
translation of high-level programming languages to hardware
languages of FPGAs (e.g., Verilog or VHDL) is limited
to certain commands as FPGAs have to be pre-configured
before operation. This disallows the capability of program-
ming directionality (of potentially multiple antennas) in real
time. SDR designs using USRPs can utilize a large swathe
of ML and multi-threaded algorithmic methods available
at high-level languages. The closest to our work was [37],
where a USRP-based mmWave testbed, utilizing 60 GHz
horn antennas, was shown to capture channel measurements
using GNU Radio. The main difference of our testbed is
the beamsteering capability controlled from a high-level pro-
gramming language, i.e., Python. This capability allows us to
define programmable directional software interfaces, which

1161

IEEE Transactions on
Machine Learning in
C ications and

QlEEES Emputer a D §
&25”.95 | SOCIETY P%ré%fﬁjﬂg

can be used to implement a variety of algorithms that can steer
directions of the mmWave beams while performing other
tasks, such as sensing and computing, that run in parallel
using other threads. This approach allows the SDR program-
mer to conveniently utilize directionality of the beams as part
of sophisticated software methods to attain higher level goals,
e.g., beam alignment [38], beam discovery and tracking [39],
or AoA detection [40].

B. AoA DETECTION

Ao0A detection or direction estimation/finding has been an
extensively studied problem within the context of wireless
localization [41]. With the recent advent of directional beam-
forming capabilities in super-6 GHz systems, AoA detection,
in particular, has gained a renewed interest due to emerg-
ing applications using such systems [42]. Researchers have
relied on virtual environments and simulations to perform
AoA detection or directionality in mmWave bands. These
virtual environments have gotten more sophisticated with the
usage of 3D ray tracing. In [43], 3D ray tracing is used to
simulate mmWave signals in virtual environments. Users can
use the open source software to design large intelligent reflec-
tive surfaces and determine AoA using compressive sensing
algorithms. Although using simulation-based approaches
is cost effective, they do not render the physical world
and fall short of precisely modeling complicated physi-
cal communication channel dynamics in mmWave or other
super-6 GHz bands.

Recently, cheaper off-the-shelf SDRs have been used to
setup testbed platforms for AoA detection. The testbed plat-
form [15] uses a Kerberos radio with four whip antennas
at the receiving end. At the transmitting end a long range
(LoRa) radio is used to transmit a signal at 826 MHz.
LoRa is beneficial for long range communication and uses
low transmit power. The transmitter includes a GPS and
compass unit used to label the direction of the trans-
mitted signal. The labeled data set is the ground truth
that is trained in the ML algorithm. The data is trained
using a deep learning Convolutional Neural Network (CNN)
model [15].

Multiple Signal Classification (MUSIC) is a widely used
Ao0A detection algorithm and assumes that the received signal
is orthogonal to the noise signal. MUSIC uses this assumption
to decompose the noise from the received signal into separate
sub-spaces. The power spectral density (PSD) of the signal
is taken as a function of angle [44]. The angular value which
results in the maximum power is estimated to be the AoA. The
assumption that the received signal is orthogonal to the noise
signal is not valid in real world scenarios. Therefore, MUSIC
does poorly in environments that involve NLoS propagation.
Since mmWave signals can experience severe environmental
path loss and involve multiple NLoS signals, MUSIC may not
be a good choice for mmWave AoA detection.

Support Vector Regression (SVR), a supervised ML
algorithm, has also been used to estimate AoA. Regression

1162

Transmit Side Coax

Data plane Lo Coax ADMV Coax Tx Horn
Control plane (1013) Antenna

Reconfigurable RF Front-End \

pC ADMV Coax Ry Horn
Passive (1014) Antenna
measurements
Coax
- Loop Enabled for =
Rx signal Antenr’:: I:Iolnltorlng ML Operation % %
features odule Lo Ei by
B /
Commands| |
to antenna 8 5
Antenna Controller API Arduino DC Lines Servo
(e.g., setangle) Controller Motor
Antenna Controller Hardware

Receive Side

FIGURE 1. Testbed architecture.

ADMV 1013

ADMV 1014

FIGURE 2. Testbed configuration.

does poorly in estimating AoA from impinging signals at
multiple time steps [15]. The algorithm cannot be used
to determine AoA since the number of impinging sig-
nals is unknown [45]. As a result, the algorithm can be
used for detecting AoA for a single source at a time.
This makes SVR less robust for AoA detection in environ-
ments with multiple signal sources. Therefore, SVR is not a
good choice for mmWave AoA detection. The CNN model
used in [15] adapts a hybrid configuration. A classifica-
tion method is used to determine the number of impinging
receive signals and two regressive heads are used to deter-
mine the AoA. The study showed that CNN outperformed
the other classical ML methods, MUSIC and SVR. Fur-
ther, the CNN model was able to estimate AoA within 2°
of error.

To the best of our knowledge, our RL-based AoA detection
approach is the first to apply RL on RSS measurements.
Previous efforts used either (i) supervised learning on the
RSS (or other signal) measurements [15], [45] or (ii) multi-
element receiver antenna to detect phase differences [44].
The former methods require training of the machine learning
algorithm and the latter requires multiple antennas on the
receive side and coherency in the transmitted signal’s phase
that is orthogonal to noise. The key difference of our AoA
detection approach is that it does not use supervised learning.
Our RL-based AoA detection methods do not require the
ground truth and determine the AoA based only on the RSS
observations at the receiver.

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

lll. mmWAVE TESTBED ARCHITECTURE AND DESIGN
The testbed design is centered around three goals: (1)
enabling the programmability of mmWave beam’s direction
from a high-level programming language, (2) enabling access
to existing (and future) advanced algorithmic techniques in
cognitive radio literature, and (3) using open-source modular
software to provide a high degree of programmability in com-
munication components. For the first, second, and third goals,
we respectively use Python code (some of which is produced
by GNU Radio), USRP, and GNU Radio. Figure 1 shows
a block diagram representation of the overall testbed archi-
tecture. The architecture utilizes a multi-threaded software
integration (in the PC in Figure 1) to establish a closed-loop
operation capability. This is needed for ML operation to
implement an action-reward loop, i.e., the ML algorithm
takes an action by updating the mmWave antenna’s beam-
forming configuration and that results in a change on the
reward which is observed by inspecting the received data
signal. Due to the timescale difference, each software module
in the host PC is a separate thread coordinated via a timer.

We focused on showing the proof-of-concept and opted for
the most inexpensive way of building the testbed. The effec-
tive bandwidth of the testbed can be improved with higher
end components by using the same architecture. A USRP
N210 is used to transmit and receive signals via coaxial
connections through the RF frontends and antennas. Figure 2
presents a picture of the actual testbed configuration with
labels mentioned in the block diagram.

A. INTEGRATION WITH USRP

1) RF CHAIN

External RF frontends are used to up/down convert the trans-
mit and receive signals to address the frequency limitation
of USRP devices. Shown in [46], RF mixers and amplifiers
are connected in series to up/down convert the signals. This
approach is costly, due to the high cost of the individual com-
ponents. Further, connecting numerous devices adds weight
and makes the testbed less mobile. To up/down-convert the
transmit and receive signals we use off-the-shelf mmWave
frontends, ADMV1013 [47] and ADMV 1014 [48]. These RF
frontends can operate at 24-44 GHz and are manufactured
on PCB boards making them low in cost. Signal generators
connected to the RF frontends are used to produce the local
oscillator (LO) signals used for mixing.

2) ANTENNAS

We used two K band horn antennas that operate at 18-27 GHz.
The antennas have a gain of 15 dBi. On the Rx side, the
antenna is mounted onto an MG995 servo that can be steered
by an Arduino micro-controller which is connected to a PC
via USB. The servo is powered by the Arduino’s 5V DC
port. A pulse width modulated (PWM) signal, generated by
the Arduino, can rotate the servo within [0°,180°]. Instead of
horn antennas, electronically steered antenna arrays, such as
phased arrays, can be integrated to the testbed by controlling

VOLUME 2, 2024

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 1M

Autoscale: Yes

UHD: USRP Source
Device Address: 300..68.10.3

ZMQ PUB Sink
Address: tcp:/1....0.1:55555
fif| Timeout (msec): 100

Pass Tags: No

Filter Key:

command|

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 1M

Autoscale: Yes

Complex to Mag~2 [G0H

UHD: USRP Sink
Device Address: add...68.10.3

Sps| |async_msgs|
Cho: Center Freq (Hz): 2G
ChO: Gain Value: 0
ChO: Antenna: TX/RX

Initial Phase (Radians): 0

FIGURE 3. GNU radio software configuration.

Quadrature

— T — —
2 0
In-phase

FIGURE 4. 8-PSK demodulation.

the bias voltages of the digital phase shifters via the PWM
signals from the Arduino. A phased array antenna is currently
under development, and the use of horn antennas does not
compromise the testbed’s architectural value.

3) mmWAVE WITH GNU RADIO

GNU Radio is open source and can be used with high-level
programming languages, such as, Python. This makes it
convenient to work with the USRP. It has built-in digital
communication and signal processing blocks, such as modu-
lation schemes, filters, and Fast Fourier Transform, available
via a Graphical User Interface (GUI). These GUI blocks are
implemented in Python and the user does not have to program
them from scratch. As a result, GNU radio has been widely
used, by the cognitive radio community. Figure 3 presents
a simple GNU Radio GUI block interface used to transmit
and receive a Cosine signal over the USRP. The UHD:USRP
Sink block is used to tune and transmit the signal from the
device. The UHD: USRP Source block is used to process
the receive signal and output complex base-band samples.
The two blocks communicate with the USRP N210 via an
Ethernet connection.

The USRP N210’s maximum sampling frequency
is 25 MHz via 1 Gigabit Ethernet connection. In the setup
in Figure 3, the sampling rate is set to 2.5 MHz. The Tx
and Rx signals are tuned to 2 GHz center frequency. Since
we are working with a mmWave channel, the Tx signal is
up-converted to 26 GHz and down-converted to 2 GHz at

1163

IEEE Transactions on
Machine Learning in
C ications and

—~IEEE IEEE IEEE (\ EE
COMSQC‘“ COMPUTER Signal &=/
182 Commanicatons socity /| SOCIETY Processing

Antenna Monitoring Module

RSS ~ RSSReader ()
(Thread)

GNU
Radio
(Thread)

Micro-to-milli Algorithm
Operational P seconds
timescales of ML detectAoA ()
USRP algorithm and (Thread)
the antenna
hardware could /

@ be different @

setAngle ()

Milliseconds O
Rx Antenna Arduino board.digital[10].write()
(Servo for Horn) Turn Controller Sleep(sleepTimer);
left/right H

Antenna Controller Hardware Antenna Controller APy

FIGURE 5. Software architecture: Ideal sequence of events for
accurate measurement of RSS while there is timescale
difference between the ML algorithm and antenna hardware.

Tx position at 90 degrees

[e

Rx rotating antenna

Rx rotating antenna

Tx position at 135 degrees

FIGURE 7. Misaligned: Transmitter at 135°.

Rx Rotating Antenna

“

Tx Position at 150 Degrees

[« %

FIGURE 8. Misaligned: Transmitter at 150°.

reception. Figure 4 is an example of a demodulated 8 phase
shift keyed (8-PSK) signal that was transmitted at a carrier
of 26 GHz.

B. PROGRAMMING DIRECTIONALITY IN PYTHON

GNU Radio is an excellent platform for manipulating several
radio properties from a high-level programming language
such as Python. However, software interfaces that allow easy
manipulation of beam direction are mostly lacking. Program-

1164

—&—5ms
—<—10ms
15ms
—*—20ms
—*—25ms |
50ms
—*—75ms | |
—#—100ms
——F—200ms

RSS (dBFS)
o
8

60 80 100 120 140 160 180
Rotation Angle (Degrees)

FIGURE 9. Full Sweep: Transmitter at 90°.

0.025

—&—5ms

&—10ms

15ms.
—+—20ms |
% 25ms
50ms
—*—75ms
—+—100ms | 4
—+—200ms

o
2
&

RSS (dBFS)

=4
o

0.005

0 . . . PR PR PRRRERRRR
120 130 140 150 160 170 180
Rotation Angle (Degrees)

FIGURE 10. Full Sweep: Transmitter at 135°.

mer typically has to figure out the best radio configuration
for beamforming, mostly in an antenna-specific manner [46],
[49], [50], [51]. Software constructs that will allow the pro-
grammer to conveniently program the directionality of the
mmWave beams while working with other physical layer
radio parameters are heavily needed. In this section, we illus-
trate one such design which uses multiple threads while
building directional SDR capabilities.

The flow of our software design at the receiver side can
be seen in Figure 5. The figure shows the ideal sequence
of events that needs to take place for an accurate mea-
surement of RSS to be provided to the ML algorithm.
The horn antenna can only be steered via the servo, con-
trolled by the Arduino. Along with the antenna steering
capability, we aimed to retrieve the received signal strength
(RSS) so that ML-based advanced tasks such as AoA
detection can be easily programmed. Our ML algorithm
is implemented within the detectAoA () function, which
continuously monitors the change in RSS received from
RSSReader (). RSSReader () receives RSS data via a
ZMQ socket connection from GNU Radio. The connec-
tion and RSSReader () implement the Antenna Monitoring
Module and can be reconfigured to receive other RF signal
parameters such as phase and frequency. The ML algorithm
for detectAoA () uses RSS data in calculating its reward
value so as to decide which action to take.

When an action is taken by the ML algorithm, it needs to
be translated into beamforming steps for the antenna. In our
design, the ML algorithm thread makes a blocking call to the
Antenna Controller API to send the beamforming command

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

8x103

~
T

=
T

o
T

RSS (dBFS)
o ow s

0 = L L L G
120 130 140 150 160 170 180
Rotation Angle (Degrees)

FIGURE 11. Full Sweep: Transmitter at 135°.

to the Antenna Controller Hardware. This design makes it
modular to customize the Antenna Controller API without
having to change the antenna hardware. The setAngle ()
function implements the API by executing the command to
rotate the servo to the desired angle. After this command
(which executes the beamforming action), setAngle ()
executes a sleep for a duration of sleepTimer to make
sure its caller thread, i.e., detectZAoA () waits before call-
ing RSSReader () to observe the result of its action. This
design segregates the antenna’s execution of the action from
the API’s implementation, which enables modularity of the
APIL. An alternative to this approach would be to make the
API’s execution of the beamforming action command (i.e.,
board.digital[10].write() for the servo-based horn antenna)
a blocking call, which would make the thread executing
setAngle () (and hence its caller detectAoA () wait
until the antenna completes the beamforming action. How-
ever, not all antennas can accommodate this as it requires the
antenna to report the status of the command back to the API.
Thus, we chose to make the command non-blocking.

The multi-threaded design with blocking and non-blocking
calls make it necessary to tune timescales of threads running
different components of the software system. Figure 5 shows

the right sequence of events, @ — , in order for the ML
the n

algorithm thread to accurately read ew RSS value after
sending a beamforming command to the directional antenna
control API. Further details of the software design of the
testbed, including code snippets, are available in [1].

C. TUNING sleepTimer: A NAIVE AoA DETECTION
ALGORITHM

A key parameter to tune for the testbed is sleepTimer as
setting it too small can cause inaccurate measurements and
too large will slow down the testbed operation unnecesarily.
To observe sleepTimer’s effect on the performance and
tune it properly, we implemented a naive AoA detection
algorithm and measured the accuracy of the AoA detection as
sleepTimer varies. The algorithm simply scans from the
Rx antenna’s starting angular position to 180° and predicts
A0A to be the angle yielding the highest RSS. We tested the
AoA detection algorithm in three different scenarios, shown

VOLUME 2, 2024

in Figs 6-8. The first scenario (Figure 6) has the Tx antenna in
perfect alignment with the Rx antenna at 90°. The Rx antenna
starts from 60° and scans up to 180°. The second (Figure 7)
and third (Figure 8) scenarios involve misalignment, where
Tx antenna is positioned at 135° and 125°, respectively,
towards the wall. In these two scenarios, the Rx antenna starts
scanning from 125° up to 180°. In the first two scenarios,
the Tx antenna is a K band Horn antenna sending a 26 GHz
signal, and the Tx and Rx antennas are 2.5ft apart and placed
1ft away from the wall. The Tx antenna in the third scenario
is a Ka band Horn antenna transmitting at 30 GHz. Another
difference of the third scenario is that the antennas are closer
to each other at 1ft apart. In all the scenarios, we measured the
RSS and AoA by using different sleepTimer, from Sms to
200ms, in the setAngle () function.

The impact of sleepTimer on the accuracy of RSS
measurements and the AoA detection is observable when it
is comparable to the amount of time it takes to steer the
Rx antenna. As shown in Figure 9 of the first scenario, the
RSS increases as the Rx antenna is rotated in increments
of 1°. As sleepTimer becomes faster, the measured RSS
becomes less accurate with a lag across the rotation angle.
This is because the thread measuring the RSS does not wait
long enough for the Rx antenna to get to its correct orientation
after receiving the command to steer 1°. This inaccuracy
becomes unacceptable when sleepTimer is lower than
15ms, causing the peak RSS to occur at a rotation angle
notably larger than desired AoA of 90°’s. When there is a
misalignment, AoA detection becomes more complicated due
to multipath signals reflected from the environment. In the
misalignment scenarios (Figures 7 and 8), we observe that
the impact of faster sleepTimer is stronger as seen in
Figures 10 and 11.

IV. RL-BASED mmWAVE AoA DETECTION

We designed RL algorithms for AoA detection at the receiver
side by only using passive RSS measurements and imple-
mented these algorithms in our testbed. Our aim is to illustrate
the use of the testbed for designing a new set of ML-based
methods to solve a contemporary problem in super-6 GHz
bands. This section presents the RL algorithm designs and
their performance.

A. Q-LEARNING AND DOUBLE Q-LEARNING

Q-learning and its variant Double Q-learning are model-free
RL algorithms. Both algorithms are based on a Markovian
approach that selects random actions [18]. The block diagram
in Figure 12 presents our RL model. The learning agent is
located at the receiver side with the horn antenna that is
mounted onto a servo motor that can be steered. The agent
can choose to take two possible actions: move left or right
by one degree resolution. Since the servo can rotate up to a
maximum angular value of 180 degrees, the time-variant state
values can be s; € (0, 180). For our setup, a positive reward
(i.e., when the action improves the RSS) is set to the current
RSS;. A negative reward (i.e., when the action reduces the

1165

IEEE Transactions on
Machine Learning in
Ce ications and

CIEEES @ | Epurer S §
" ignal =
.Emomgn.gg 4 / SOCIETY Processing

Action:
Turn Left or Right

Environment:
Laboratory

Agent: Positive Reward: RSS,
Rx Horn Antenna Negative Reward: -5

State:
(0-180)

FIGURE 12. RL configuration.

RSS) is set to -5. This design incentivizes the agent to seek
the angular position that maximizes the RSS, which is implied
when the antenna is steered to the correct AoA. Though it
is possible to design a more complex state space with more
contextual information, we have chosen to use the latest angle
only to define the state space. This is a simplifying choice as
it assumes zero knowledge of the transmitted beam as well as
previous steering angles. If more memory space is available,
itis possible to use previous steering angles when defining the
state space. Further, if more information about the transmitter
characteristics (e.g., the maximum possible signal strength) is
available, quantization of RSS becomes possible. This could
enable state spaces that are aware of recent RSS measure-
ments (e.g., RSS;—1 and RSS;_»). In this study, we choose to
use the angle only to define the state space.

By exploring possible states via random actions,
Q-learning observes rewards for its actions and stores its
learned experience in a Q-table. To populate the Q-table as
a function of state, action, and tunable parameters, it uses the
following Bellman’s Equation [17]:

(st ar) = Q(st, ar) + o s (ry + y maxg Q(si41, @) — Qs ap)) (1)

where s; is the current state, a, is the current action, r; is
the reward observed after moving to the current state, sy
is the next state that was chosen by the agent, y € (0, 1) is the
discount factor, € € (0, 1) is the greedy policy, and « € (0, 1)
is the learning rate. Based on the e-greedy policy, the agent
chooses either a random action or the state that offers the
highest possible reward in the Q-table (i.e., max, O(s;, a)).
Smaller values of € cause the algorithm to exploit the Q-
table, by searching for the action that results in the largest Q
value. Increasing € increases the likelihood that the algorithm
will explore the environment, by selecting random actions.
y and « are factors to tune how much the existing Q-table
impacts the learning and how fast are the Q-table values
updated. For our algorithm, we have set y = 0.98 based on
earlier studies encouraging high discount factor values [17].
We have set € and « each to 0.1, 0.2, 0.3, and 0.4, generating
16 combinations.

Q-learning stops when RSS samples have a consistent
CoV as this means the agent has learned the best AoA and
stabilized on it. Algorithm 1 shows the pseudo-code of our

1166

Algorithm 1 AoA Detection With Q-Learning

I: Input: @« € (0,1), the learning rate; ¢ € (0, 1), the
greediness policy; tickCount € (S, 30), the number RSS
samples maintained for implementing convergence crite-
rion; Threshold € (0.01, 1.5) threshold for convergence
criterion.

. Output: detectedAoA, AoA detected by the algorithm.

y < 0.98 > Initialize the discount factor

: RSS[] <[] > Initialize the array of RSS samples

CoV <1 > Initialize the coefficient of variation of RSS

samples

Randomize currentAngle

. 8§y < currentAngle

. previousRSS < Measure RSS at currentAngle

9: RSS.append(previousRSS) > Store RSS sample

10: sampleCount < 1

11: Q <« Zeros

12: while Threshold < CoV do

13: RSS.append(RSS;)

14: if Uniform(0,1)< € then

A

> Initialize to a random angle

®© o

> Initialize the Q-table to Os

> Store RSS data in array

15: a; < round(Uniform[0,1])

16: else

17: a; < arg max, Q(s¢, a)

18: end if

19: if a; == 0 then

20: currentAngle — —; > Turn antenna left by 1 degree
21: else

22: currentAngle + +; > Turn antenna right by 1 degree
23: end if

24: newRSS < Measure RSS at currentAngle

25: RSS.append(newRSS) > Store the new RSS sample and
remove the oldest sample if needed

26: sampleCount + +;

27: Si4+1 < currentAngle

28: ARSS < newRSS — previousRSS Calculate the reward

29: if 0 < ARSS then

30: r; < newRSS > Positive reward

31: else

32: ry < =5 > Negative reward

33: end if

34: OCst,ar) < O(sy,ar) + o * (rp + y maxg O(sy41,a) —
OCst, ar))

35: St <— S > Update current state with next state value

36: if tickCount < sampleCount then

37 CoV <« RSS.std()/RSS.mean() > Compute the CoV

of RSS samples
38: end if
39: end while
40: return s;

Q-learning implementation. First, the hyper-parameters y, «,
and € are initialized. The current state s, is initialized to a
random angular value, based off our experimental scenario.
For the 90° experimental setup, the random angle can be any
value in [80,100] degrees and [120,140] degrees for the 130°.
The Q table used to store the Q values from (1) is initial-
ized to zeros. An outer while loop comparing the Threshold
value and CoV is used to decide the stopping condition for
the algorithm until the threshold is met. Implementing the
e-greedy policy, if the € is greater than a random number
in (0,1), the agent takes a random action, i.e., either turn the
antenna left or right with one degree resolution. If € is less

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

than the random value, then the algorithm will exploit the Q
table by selecting the action that results in the largest Q value,
i.e., the potential reward. A positive reward value is given if
ARSS is greater than zero. If ARSS is less than zero, then the
action resulted in a decrease in RSS. Therefore, the action
yields a negative reward value of -5.

Algorithm 2 Double Q-Learning

Lines 1-10 in Algorithm 1
11: 04 <0 > Initialize the first O-table to 0
12: 08 <0 > Initialize the second Q-table to 0
13: while threshold <= CoV do
14: RSS .append (previousRSS)
15: if Uniform(0,1)< € then

> Store RSS sample

16: a; < round(Uniform[0,1])

17: else

18: 0B (s) < Q"(sr) + 0P (sp)

19: ay <— arg maxg QAB(st, a)

20: end if

21: Lines 19-35 Algorithm 1

22: if Uniform(0,1) < 0.5 then

23: QA(s,, a)+ = o *x (rr + yQB(s,H,argmaxa X
Q4 (si41. @) — (st ar))

24: else

25: QB(si.a+ = o x (rp + yQ*(s;41, argmax, x
0B(si41, @) — 0B(st ar)

26: end if

27: Lines 37-40 Algorithm 1
28: end while
29: return s;

Q-learning uses a single estimator max, Q(s;+1, a), i.e.,
the next state s,y that has the highest Q value among all
possible actions. As shown in [19], this causes the algorithm
to overestimate the desired solution, by causing a positive
bias. As a result, Q-learning can perform poorly in certain
stochastic environments. To improve the performance of Q-
learning, other variants, such as Double Q-learning [19],
Delayed Q-learning [52], Fitted Q-iteration [53], and Phased
Q-learning [54], were developed to improve accuracy and
convergence time. To reduce overestimation, the Double
Q-learning variant uses two Q functions QA(s,, a;) and
QB (s¢, a;) working together to update the Q values, where
QA(st, ay) is able to learn from the experiences of QB (s¢, ar)
and vice versa. The update equations of Double Q-learning
are [19]:

QA(Sta a;) = QA(St, a)
+a(ry + yQ(si1, argmax 0 (s 41, @)
— Q" sr, ar) 2)
0B(si, ar) = 0B(sy, ar)
+a +y Q' (1, argmax 0%(sp41, @)
—08(st, ar)))

where next state selection for O uses the Q values from QF
and vice versa. This approach has been shown [19] to cause
the algorithm to underestimate rather than overestimate the
solution with a positive bias. In conditions where Q-learning

VOLUME 2, 2024

performs poorly, double Q-learning has been shown to con-
verge to the optimum solution [19].

In addition to maintaining two Q tables and updating them
using the Bellman equations (2) and (3), Double Q-learning
must implement a mechanism to choose an action based on
the two Q tables. Our AoA detection algorithm using Double
Q-learning can be seen in Algorithm 2. Like algorithm 1, the
same hyper-parameters are initialized first. Two Q tables 04
and QF are initialized to zeros. The same e-greedy approach
and reward r; calculations are also used in Algorithm 2.
To choose an action, in lines 18-19, we sum the two tables into
an aggregate table Q% and pick the action that results in the
maximum Q value in the Q4Z. To integrate the insights from
the two Q tables, in lines 22-26, we randomly chose to update
either one of the two Q tables with equal probability. Finally,
we use the same convergence criterion of Algorithm 1.

Q-learning based algorithms have to train for a certain
number of iterations. Based on the number of iterations,
the algorithm may or may not converge to the solution.
This makes selecting the number of iterations non-trivial.
To address this issue and devise a stopping criterion, we cal-
culate CoV after a certain number of RSS samples, tickCount.
CoV is a statistical measure of how dispersed data samples are
from the mean of the sample space. It is the ratio of standard
deviation and mean of a certain number of samples. In our
algorithm, the required number of samples to calculate CoV
is initialized to tickCount € (5, 30). The array RSS is used
to store RSS samples as the algorithm is training on the fly.
If the counter sampleCount is greater than or equal to the
tickCount, then enough samples have been collected to cal-
culate the CoV. While the CoV is greater than or equal to
the selected Threshold value, the algorithm will continue to
train. When CoV is less than or equal to the Threshold, the
convergence criterion is met and the algorithm breaks out of
the while loop. The smaller CoV means that the RSS samples
have stabilized and it is safer to stop the algorithm and return
the last steering angle as the detected AoA.

B. DEEP Q-LEARNING

Traditional Q-learning relies on a Q-table to assign Q val-
ues to state-action pairs (sy, ar). Q-learning is advantageous
for solving less complex problems with a small state-action
space. However, in complex settings involving a large number
of (s, a;) pairs, using Q-tables may not be energy efficient
or even may be infeasible. To address this challenge, Deep
Q-learning was introduced, a.k.a. Deep-Q-Network (DQN)
[55]. Unlike conventional Q-learning, DQN does not rely on
a Q-table, but rather employs a neural network to estimate
the Q values for given actions. Figure 13 depicts of neural
networks used in a DQN. State values are fed into the neural
networks. The Q-network is used to determine the value
of O(sy, a) from the Bellman equation, while the target Q
value Q(s;+1, a) is predicted using the target network. The
orange nodes in Figure 13 represent the neurons of the neural
network. At each node, state values are multiplied by given

1167

IEEE Transactions on
Machine Learning in
C ications and ing

CIEEES @ | Epurer SaD §
: ignal -2
.Emomgn.gg d / SOCIETY Processing

Q(st41,@) Q(st, @)

T

Copy Weights

Target Network

‘[— Input

FIGURE 13. Deep Q-learning neural networks.

Q-Network

DQN Loss Calculation |+

Loss Output Predicted Q Values Output Target Q Values

Agent: ac
Rx Horn Antenna St

M Target Q Network

Q Network

reward

St St+1

(st ap, reward, s¢41)

Replay Memory

FIGURE 14. DQN architecture.

weights and summed. The resulting sum is then passed to
an activation function that is used to determine whether to
switch the neuron on or off. Numerous activation functions
are used in neural networks, such as Sigmoid, Hyperbolic
tangent (tanh), and Rectified Linear Unit (ReLU).

The ReLLU function is a piece-wise function defined by
f(x) = max(0, x). Since the function is using the max value
of x, all negative values are by default zero. ReL.U is one of
the most popular activation functions, used mainly in CNNs.
Unlike Sigmoid and tanh, ReL U does not suffer from the van-
ishing gradient problem, which leads to saturation. Recently
in [16], a neural network was used to detect the beam direc-
tion of a four element circular antenna array. The performance
of activation functions ReLLU, Leaky ReLU, and tanh were
compared, and ReL.U outperformed the others for detecting
the azimuth and elevation angle of the antenna beam. For
our DQN setup, we employ ReL.U activation functions in our
hidden layers.

The DQN architecture can be seen in the block diagram
presented in Figure 14. The agent takes actions using the e-
greedy policy. After taking an action, the sample, which is the
tuple of <sy, ay, ¢, $;41>, 1.€., <current state, action, reward,
and next state>, is stored in memory for later use in training.
It is recommended to use a 32 or more samples for training,
for which we used a batch size of N = 64.

Random batches of data samples are selected for network
training. The current state s; is fed into the Q network. The
Q network outputs predicted Q values with respect to all pos-
sible actions. The predicted Q value Qpedicred cOrresponding

1168

to the sampled action a; is selected. The next state s;4.1 value
from the sample is fed into the target network. The maximum
Q value from the output of the target Q network and reward
from the selected sample are used to compute the target Q
value Qyarger, as follows:

Orarger = Reward +y m;lX(Ql » 02, ..0n, @) 4)
Loss = MSE(Qpredicled7 Qtarget) ©)

where the loss is computed by taking the mean squared error
(MSE) between the predicted and target Q value in (5). The
loss is back-propagated to improve the weight values of the
Onetwork- With more accurate weights the Q network can
predict more accurate Q values. After training the Q network
weights are aligned to the target Q network. The process is
then repeated for every episode.

Algorithm 3 AoA Detection With DQN

1: Input: € € (0, 1), the greediness policy; tickCount € (5, 30),
the number of RSS samples maintained for implementing
convergence criterion; Threshold € (0.01, 1.5) threshold
for convergence criterion;

: Output: detectedAoA, AoA detected by the algorithm.

: Lines 3-10 from Algorithm 1

N < 64 > Batch size (samples)
D« N > Replay memory initialized with batch size N
: T <10 > Update rate (samples/update) for aligning weight

values
7: Initialize Qperwork and Qrarger With random weights
8: while Threshold < CoV do
9: RSS.append(RSS;)
10: if Uniform(0,1)< € then

> Store RSS data in array

11: a; < round(Uniform[0,1])

12: else

13: Qpredicted < Onetwork -predict(st) > Predicted Q

values from Q network using current state

14: ar <— Mmaxq Qpredicted (sr, @)

15: end if

16: Lines 19-35 from Algorithm 1

17: Append the new sample (s;, ar, 17, ;1) to the replay
memory D

18: if length(D) > N then > Begin training when batch size is
met

19: retrain() > Call function retrain() to train DQN

20: end if

21: if sample Count % T ==0 then > When update rate is
reached copy weights to target network

22: Orarger weights <— Qnenwork -weights

23: end if

24: Lines 37-40 from Algorithm 1

25: end while

26: return s;

Our DQN implementation’s pseudo-code is presented in
Algorithm 3. At the beginning, the hyper-parameters y and €
are initialized. The batch size D is initialized to a specific size
N. The update rate is set to =10, which is less than the batch
size and should be sufficiently fast as prior studies showed
T > 100 being very successful for various settings [56],
[571, [58]. Both the Q and target Q networks are initialized
to random weight values. Like our previous algorithms, the
current state s, is initialized to a random angular value, based

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

off our experimental scenario. For the 90° experimental setup
the random angle can be any value in [80,100] degrees and
[120,140] degrees for the 130°. An outer while loop com-
paring the Threshold value and CoV is used to decide the
stopping condition for the algorithm until the threshold value
is met.

The agent performs an action based on the e-greedy policy
while taking an action. If € is less than a random number, the
agent takes an action that results in the maximum predicted Q
value QOpyedicrea- If the batch D is greater than N the network
training begins. The retrain() function is called to initiate
network training, during which the operations in (4) and (5)
are applied. As a result, the Q network weights are improved
via training. The Q network weights are then copied onto the
target Q network at a rate of 7.

C. COMPLEXITY OF RL-BASED AoA DETECTION

Our RL-based AoA detection methods have differences in
terms of computational and memory complexity. Depending
on the resources available at the receiver where these algo-
rithms will be running, these complexities may be important.
These algorithms work with a window of RSS samples (rep-
resented by tickCount in Algorithms 1 and 2) when testing
the convergence criterion. Let W = tickCount indicate the
number of RSS samples being maintained, S indicate the
number of states, and A indicate the number of actions at each
state. The Q-learning and Double Q-learning algorithms will
calculate the new convergence criterion over the W samples
and find the maximum Q value across possible actions two
times, which requires W +2A steps to calculate the next action
to take. Hence, their time complexity is O(W + A). Their
memory needs will be dominated by the Q table size and the
RSS samples being maintained, which amount to SA+ W and
2SA + W for Q-learning and Double Q-learning, respectively.
Hence, both algorithms have a worst-case memory complex-
ity of O(SA + W).

DQN does not use Q tables but a batch of samples (D with
size N in Algorithm 3) and two neutral networks (Qarger
and Qpenvork in Algorithm 3) to perform learning. The size
of a neural network in DQN is dominated by the number
of layers and the number of neurons per layer. For a neural
network with L layers and K neurons per layer, there are 2K +
(L — 1)K?* weights since there will be K input and K output
weights, and K2 weights in between two consecutive layers.
After the batch of samples is full, DQN updates the neutral
network weights during retrain (line 19 in Algorithm 3) when
determining the next action to take. At every 7 samples,
it updates the target neural network Qgrger (line 22). In the
worst case, these neutral network operations can take 2K +
(L — DK? + 2K + (L — 1)K?)/T. Factoring in the action
selection (line 14), the worst-case time complexity of deter-
mining next action in DQN is O(A+2K +(L — 1)K 212K+
(L — DK?)/T) = O(A + 2K + (L — DK?) = O(A + LK?).
Similarly, the memory needed for DQN is dominated by the
batch size N and the neural network size. Considering the
window of RSS samples needed for convergence criterion

VOLUME 2, 2024

TABLE 1. Computational and memory complexity of RL-Based
AoA detection algorithms.

RL-Based Computation Memory
AoA Detection Complexity (s) Complexity (bits)
Q-learning OW+A) O(SA+W)
Double Q-learning OW +A) O(SA+W)
DQN O(A+LK?)* O(N +W +LK?)

*Assuming L > 1. O(A+K) when L=1.

implementation, the worst-case memory complexity is O(N +
2K + (L — DK?> + W) = O(N + W + LK?).

Table 1 shows the worst-case time and memory require-
ments of the three AoA detection algorithms in our study.
The key benefit of DQN is it memory requirement is inde-
pendent of the state-action space size, SA, which makes it a
perfect match for designing more complex state-action space
designs. In our designs, we kept the state-action space to a
minimum, i.e., § = 180 and A = 2, since we have used Horn
antennas which can only be mechanically steered left or right.
However, for phased-array mmWave antenna systems, state-
action space can be quite large as they allow switching the
beam electronically from any beamforming configuration to
any other possible. The benefit of Q-learning and Double Q-
learning is their small time complexity, which is independent
of the state space. DQN, however, requires time complexity
quadratic with K when L > 1. Hence, size of the neural
network, which is essentially used to learn the patterns in the
state-action space, increases the time complexity of DQN.
In our design, we used K = 20 and L = {1, 5}, which did
not cause any issues and the DQN implementation was able
to calculate the next action well before the sleepTimer
was off. However, for fast-responding antenna systems like
phased-arrays, the DQN implementation will need to be care-
fully tuned to make sure it does not become a bottleneck in
the online process of measuring the RSS and deciding the next
action.

D. EXPERIMENTAL EVALUATION AND RESULTS

To understand the efficacy of our RL-based AoA detection
Algorithms 1, 2, and 3, we measured the average AoA error
and average convergence time for different hyper-parameters
as the stopping criterion Threshold varies. The Threshold
value determines how strict the convergence criterion is.
Hence, smaller Threshold causes the AoA detection algo-
rithms to search the AoA for a longer period of time. This
enables them to find a more accurate AoA. Hence, there is a
trade-off between the error in AoA estimate and the conver-
gence time of the algorithms. In terms of hyper-parameters,
we tried different (e,a) combinations for Q-learning and
Double Q-learning, and different € values for DQN.

1) EXPERIMENTAL SETUP

We considered two scenarios for comparing the performance
of the Algorithms 1, 2, and 3. As seen in Figure 15, the
range between the transmit and receive horn antennas is 1.5 ft.

1169

EE IEEE Transactions on

~IEEE IEEE e Oy &
COMPUTER Signal 1=/ Machine Learning in
ﬁgm.sgf @/ S Processing m ps et

OCIETY

FIGURE 15. Experimental setup.

The distance to the wall to the center is 1.2 ft. In the first
experiment scenario, the transmit antenna is fixed to 90°,
pointing towards the receive antenna to compose an LoS path
to the receiver. The receive horn antenna is initialized to a
random angular state value between 80 and 100 degrees. For
the second scenario, the transmit horn antenna is rotated 130°
to the right, composing a NLoS path to the receiver. The
main lobe of the transmitted signal is reflected off the wall.
The initial angle is set to a random value between 120 and
140 degrees.

For Q and Double Q hyper-parameters € and « are set to
0.1, 0.2, 0.3, and 0.4. Likewise, € was set to the same values
in our DQN algorithm. Unlike Q and Double Q, DQN does
not use the learning rate «, since it uses neural networks
to estimate Q values from the Bellman’s equation. For our
Q and Double Q algorithms, hyper-parameters were varied
to measure which combinations of (e, «) resulted in the
best performance with respect to both AoA detection and
convergence time. Using the same procedure, we compare the
performance of DQN to Q and Double Q learning. We train
our DQN model using 20 neurons for the hidden layers of
the neural network. Further, we compare the performance of
using a single layer neural network against 5 hidden layers.
The average AoA error and convergence time was measured
for 13 threshold values from 0.01 to 1.5 in increments of 0.1.
This was done using Q, Double Q, and DQN training for both
the 90° and 130° experimental scenarios.

As a baseline we implement a simple AoA detec-
tion algorithm (detailed in Algorithm 4) and compare the
RL-based algorithms to it. Like the RL-based algorithms, the
horn antenna is initialized to a random angle in [80,100] for
the 90° degree scenario and [120,140] for the 130° scenario.
Then, we randomly choose to move the antenna to left or right
(lines 3-9). If there was a decrease in measured RSS for the
chosen direction, we choose to go the opposite direction (lines
10-12). Then, we continue to steer the antenna in the chosen
direction until we observe a decrease in the measured RSS.
This algorithm is a greedy search mechanism and stops at the
first local optima, minimizing the AoA detection time.

2) CONVERGENCE CRITERIA

A key issue with RL is deciding when to stop as there is no
ground truth or a-priori training. After running the experi-
ments, we analyzed the observed RSS values and the states
the RL algorithms navigated during their search, or training,

1170

Algorithm 4 Baseline Algorithm

Randomize currentAngle
: previousRSS
: if Uniform(0,1) < 0.5 then
currentAngle + +
TurnAngleLeft < True

> Initialize to a random angle
> Measure RSS at currentAngle

> Turn left

currentAngle — —

: TurnAngleLeft < False

: end if

. if currentRSS < previousRSS then

TurnAngleLeft <!TurnAngleLeft
direction

1

2

3

4

5

6: else
7 > Turn right
8

9

0

1

> Turn to the opposite

12: end if

13: previousRSS < currentRSS
14: while True do

15: if TurnAngleLeft then

16: curentAngle + + > Turn left
17: else

18: currentAngle — — > Turn right
19: end if

20: if currentRSS < previousRSS then

21: break > Break out of while loop
22: end if

23: previousRSS < currentRSS

24: end while

Q-learning 90°

Average AoA Error (%)
Average Convergence Time (s)

Threshold

FIGURE 16. 90° LoS: Q-learning.

Double Q-learning 90°

——c=01
=02

—6—c=04

%)

Average AoA Error (%

e
I A e
e ——F—f—F—K

Average Convergence Time (s)

0 L L 0

Threshold

FIGURE 17. 90° LoS: Double Q-learning.

for the best AoA. We tried to find the best convergence crite-
ria. To this end, we applied the stopping condition on the CoV
of the RSS values, as detailed in Algorithm 1, such that CoV
is less than a Threshold for tickCount times contiguously.
To calculate the CoV, we applied Exponentially Weighted
Moving Average (EWMA) on the average and standard devi-
ation of RSS with weights y and B, respectively. The EWMA
weights y and B can be any value in (0,1) and are multiplied

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

—<—layers = 1
—e—layers=5| 8
5 = =Baseline
—x—layers=1| |7
—o—layers=5
= =Baseline

%)

IS
>

Average AoA Error (¢
P ¢ 1
Average Convergence Time (s

0 0

Threshold

FIGURE 18. 90° LoS: DQN.

Q-learning 130°

9
8
7
= =Baseline| |
5
4

Average AoA Error (%)
Average Convergence Time (s)

Threshold

FIGURE 19. 130° NLoS: Q-learning.

5 Double Q-learning 130° T
——e-0.1
——e=02

—E—c=04
25r == =Bascline

——c=01 |]
________ =02 fem|
2 r\ —6—c=04 | 16
\ e == =Baseline
—

Average AoA Error (%)
o
Average Convergence Time (s)

Threshold

FIGURE 20. 130° NLoS: Double Q-learning.

DQN 130°

o < e ::yers iw 1,
[yers=5| 7
= =Baseline
——layers=1] |
16} —&—layers =5
= =Baseline | |_

)

Average AoA Error (%)
Average Convergence Time (s)

Threshold

FIGURE 21. 130° NLoS: DQN.

with the latest RSS sample with 1 — y and 1 — B being
multiplied with the latest moving average value. Higher y
and B means the latest RSS sample gets more weight in the
moving average of the average and standard deviation. Hence,
to obtain a good balance, the EWMA weights must be tuned.
To calculate the predicted AoA, we applied EWMA on the
state s; at which the receiver antenna is positioned over time.
For this purpose, we used the same weight, y, as the RSS

VOLUME 2, 2024

moving average, since RSS should be directly related to the
receiver antenna’s angular position, i.e., the state s;. Using
this predicted AoA, we calculated the AoA detection error,
i.e., the difference between the predicted AoA and the true
AoA.

When tuning the EWMA weights, y and 8, we focused
on minimizing the convergence time as Threshold increases.
Intuitively, when Threshold on the CoV increases the learning
algorithm will stop earlier as it is easier to satisfy the stopping
condition of CoV < Threshold. Likewise, the AoA detection
error should increase and converge to a value as Threshold
increases. To capture this, we searched for the best y and
combination, each being in (0.1,0.9) with step size 0.1, that
yields the quickest and smoothest convergence of the AoA
detection error. To do so, we minimized the total reduction on
the AoA detection error as Threshold increases. As expected,
this tuning process yielded different y and § values for each
hyperparameter combination of the learning algorithms, i.e.,
€ and « for Q and Double Q learning, and € for DQN. Our
analysis found that the best average (y, B) values are (0.69,
0.73), (0.60, 0.72), and (0.55, 0.70) for Q-learning, Double
Q-learning, and DQN.

Another factor that impacts the convergence efficiency
is the tickCount, which is the number of times CoV <
Threshold must satisfy for the learning algorithm to stop.
Hence, higher fickCount yields a more stringent stopping
condition, implying a longer convergence time and lower
Ao0A detection error. Our analysis found that the best average
tickCount values are 33, 22, and 22 for Q-learning, Double
Q-learning, and DQN, respectively.

3) AoA DETECTION ERROR AND CONVERGENCE TIME
To assess the performance of our RL algorithms, we varied
the value of Threshold to examine the behavior of AoA error
and convergence time. Figures 16-18 show the average AoA
error and convergence time for the three RL algorithms in
the 90° LoS case. Similarly, Figures 19-21 show the same
the 130° NLoS case. For Q-learning and Double Q-learning,
we averaged AoA error and convergence time for each € value
with respect to the learning rate o values used for training. For
DQN, we calculated the average AoA error and convergence
time over the four € values for each layer count of 1 and
5. The former shows us how greediness of the Q-learning
impacts the outcome, while the latter shows the impact of
the DQN’s depth on learning efficacy. Overall, the results
verify our intuition that lower Threshold values result in more
accurate AoA detection but slower convergence time, and
larger Threshold values lead to less accurate AoA detection
but faster convergence time.

As expected, our baseline method in Algorithm 4 was able
to detect AoA faster than the RL-based methods but with a
notable loss in accuracy. The baseline algorithm was averaged
over 25 episodes. For the 90° scenario, the baseline algorithm
has an average AoA error of 5.5% and convergence time
of 0.64 s. For the 90° scenario, it was able to outperform
Q-learning with € values of 0.2 and 0.3. However, with an

171

CIEEES " @ EpuTer B §
.Emomgn.gs /| sOCIETY Processing

IEEE Transactions on
Machine Learning in
. i)

and

€ value of 0.4, Q-learning has more accurate AoA detection.
Both double Q-learning and DQN outperformed our baseline
algorithm with respect to AoA accuracy, but with a slower
convergence time. The baseline algorithm for the 130° sce-
nario has an average AoA error of 2.15% and a convergence
time of 1.048 s. Likewise, for the 130° scenario, the baseline
outperforms Q-learning with € values of 0.2 and 0.3. The
accuracy in AoA detection is similar for Q-learning with an €
value of 0.4. Similarly, double Q-learning and DQN result in
more accurate AoA detection, but with a slower convergence
time.

As expected, in Q-learning, higher € (i.e., less greedy
policy) gives result to a more accurate AoA detection as
well as lower convergence time. For both the 90° LoS and
130° NLoS scenarios, the € value of 0.4 resulted in the most
accurate detected AoA and faster convergence time compared
to smaller values of € of 0.2 and 0.3. In Q-learning, we could
not obtain consistently convergent results (and, hence, not
shown) when € is set to 0.1, clearly showing that Q-learning
cannot perform well when it is forced to exploit too quickly.

In Double Q-learning, we observed that there is a more
complicated trade-off about greediness. For the 90° LoS
scenario, the algorithm attained similar AoA detection error
when € is 0.1 and 0.4. As expected, the convergence time
is significantly higher when € is 0.4. This means the best
outcome happens, for Double Q-learning, when € is set to
0.1. When we look at the 130° NLoS scenario, however,
we can clearly see that ¢ = 0.4 is the winner. The reason
for this outcome is that the 90° LoS scenario is simpler than
the 130° NLoS scenario, which allows an exploitative setting
(i.e., € = 0.1) for the algorithm attains better outcome. It is
noteworthy that we could not obtain convergent results for
the 130° NLoS scenario when € is set to 0.3, which again
points to the interaction taking place between the difficulty
of learning the scenario and the goals of attaining low AoA
detection error in short time.

Increasing the depth of the neural network in DQN yields
better results. The plots presented in Figures 18 and 21 are
the average AoA error and convergence time for DQN in the
90° LoS and 130° NLoS scenarios, respectively. These results
clearly show that increasing the number of layers attains more
accurate AoA detection as well as faster convergence time.
In the 90° LoS scenario, increasing the layer count from 1 to
5 improves DQN’s performance around 11% (from 2.8% to
2.5%) and 68% (from 6.9 s to 2.2 s) in terms of average
AoA error and convergence time, respectively. Likewise, for
the 130° NLoS scenario, increasing the layer count improves
DQN’s performance around 57% (from 2.1% to 0.9%) and
20% (from 3.5 s to 2.8 s) in terms of average AoA error and
convergence time, respectively.

Based on the average results, DQN outperforms Q-learning
with respect to both AoA detection accuracy and convergence
time. In comparison to DQN, Double Q-learning attains
more accurate AoA detection in similar convergence times.
However, this requires proper tuning of its parameters. For
example, when € = 0.1 for the 90° LoS scenario (Figure 17),

172

124

16 122
20 —~
141
£l \ L 118 E
g N e -
g 116 §
wooqr —*—Q-learning 90° g
:(? —%— Qlearning 130° 14 g
>
© 081 —*k— Q-learning 90° 5
g —— Q-learning 130° 120
Qo6 S
< 110 @
S
04 lg <
/S i e
0.2 T\ F——h—t——t——k—%—* g
x|
0 — 4
0 0.5 1 15
Threshold
(a) Q-learning
06 18
—*— Double Q-learning 90°
—% Double Q-learning 130° *—*—*—*—*—*
05r —#— Double Q-learning 90° | | 17
—— Double Q-leaming 130° | | o
S : g
q
Co4r 16 =
s]
o ®
< =J
S 031 15 &
g S
g o
So2f 142
< g
[
4
<
01t I
0 - 2
0 0.5 1 15

Threshold

(b) Double Q-learning

FIGURE 22. Results minimizing error and convergence time for
Q-learning and double Q-learning.

Double Q-learning attains 0.62% AoA error in about 2.7 s.
Comparatively, with 5 layers, DQN’s best accuracy is around
2.47% in about 2.2 s (Figure 18). Similarly, when ¢ = 0.4 for
the 130° LoS scenario (Figure 20), Double Q-learning attains
0.95% AoA error in about 3.2 s. Comparatively, with 5 lay-
ers, DQN attains around 0.93% AoA error in about 2.8 s
(Figure 21). Increasing the layer count for DQN attains faster
convergence times. However, this requires more memory for
DON.

Overall, a key takeaway is that the trade-off between
AoA detection error and convergence time must be balanced,
which we will delve into in next.

4) BALANCING AoA DETECTION ERROR AND
CONVERGENCE TIME

In order to balance the trade-off between more accuracy
in AoA detection and faster convergence, we exhaustively
search the hyper-parameter combinations of the RL algo-
rithms. For a fixed Threshold value, we find the best
hyper-parameter combination by minimizing both the AoA
error and convergence time at the same time. To do so,
we search for the combination that minimizes the product of
the two metrics, i.e, Average AoA Error and Average Con-
vergence Time. In particular, for Q- and Double Q-learning,

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

25 3
|
g)
e 129
| ——layers = 1
2k | —O—layers=5| {28
| —*—layers =1 -
Q
;@ | —S—layers =5 127 £
= | =
S5 | 126 8
< | |)
| =
g \“ 125 °
[} | =4
[<) | i o
g 1 \ 2.4 %
[}
| {23 &
[
S
05t {22 <
{241
0 - 2
0 0.5 1 15
Threshold
(a) DQN 90°

250 4

145

—*—layers=1
—c—layers =5
——layers = 1 13
—S—layers=5

05F :
125

0 0.5 1 1.5
Threshold

(b) DQN 130°
FIGURE 23. Results minimizing error and convergence time for
DQN.

Average AoA Error (%)

we solve the following problem:

argmin <Avg. AoA Error> % <Avg. Convergence Time>
€,

6)

across all (e,) combinations that yielded a convergent result
in the previous section. DQN doesn’t use learning rate o.
Therefore, we search for the € value that minimized the prod-
uct the two metrics for the various neural network layers used
for training the algorithm. That is, we solve the following
problem for DQN

argmin <Avg. AoA Error> x <Avg. Convergence Time>.
€

(N

In the above optimizations, minimizing the product of error
and convergence time enables us to find a balanced setting.
However, it is possible to give more weight to one of these
metrics as part of a weight geometric mean. We assume equal
weight between the error and convergence time.

Joint minimization of the AoA error and the convergence
time results in improvement on both target metrics. Figure 22
presents the outcome of solving (6) for Q-learning. The joint
minimization of the AoA detection error and the conver-
gence time still follows the trade-off, i.e., lower Threshold
values result in more accurate detected AoA but take longer

VOLUME 2, 2024

to converge. Compared to the average values presented in
Figures 16 and 19, the joint minimization of the two metrics
results in more accurate AoA detection, which quite encour-
aging as it means the joint minimization effectively does not
sacrifice from the accuracy. We observe similar outcomes for
Double Q-learning. When compared to the average values in
Figures 17 and 20, the joint optimization gives better results,
and the AoA error is consistent with less than 1% across all
Threshold values. When comparing the joint minimization
results in Figures 22(a) and 22(b), Double Q-learning is supe-
rior to Q-learning in terms of both metrics. Likewise, as seen
in Figure 23, DQN also outperforms Q-learning for both
accuracy of the detected AoA and the convergence time. Both
Double Q-learning and DQN produced AoA error less than
1% and convergence times of less than 5 seconds. Overall, the
five-layer DQN algorithm outperformed the other algorithms
with respect to AoA error and convergence time.

A key challenge of RL algorithms is to find a good
hyper-parameter combination that can work well across many
cases. As observed thus far, different parameter combinations
perform the best for each algorithm in the two scenarios.
To obtain a high-level understanding of which parameter
values tend to perform the best, we use heat maps to visually
depict to find the best performing values of the parameters.
Thus, in Figure 24, we plotted heat maps of the (o, €) com-
binations for Q-learning and Double Q-learning, and the (e,
layers) combinations for DQN. For Q-learning, the € value
of 0.4 is the obvious choice while the best « turns out to be
0.2 and 0.4 for the 90° LoS and 130° NLoS scenarios, respec-
tively. For Double Q-learning, an € value of 0.1 with @ of
0.3 and 0.4 are the best performing combinations for the 90°
LoS scenario. However, for the 130° NLoS scenario, the best
choice of € is 0.4 and « is 0.2. This indicates that the potential
gain from Double Q-learning is more dependent on careful
setting of its parameters. Finally, for the single layer DQN,
an € value of 0.1 is prevalent while € values of 0.4 and 0.3 are
prevalent for five layers. This seems to indicate that attaining
the best values from DQN configurations with deeper neu-
ral networks requires increasing the algorithm’s exploratory
behavior (i.e., higher €), which means it will likely take longer
to converge.

5) LONGER RANGE AND BLOCKAGE

To evaluate the robustness of the algorithms, we increased the
range between the transmit and receive antennas to approx-
imately 8 ft for the 90° scenario. As seen in Figure 25,
we placed a brick on the perfect alignment angle between the
transmit and receive antennas to establish a more complex
channel. Further, the bench frame is also causing blockage
to the field of view (FOV) of the receive horn antenna.
These blockages constitute a channel in which the receive
angle corresponding to the peak RSS is harder to determine.
We evaluate the performance of the RL algorithms with a y
value of 0.01. With a small value of y the agent will be more

inclined to consider immediate rewards, rather than future
ones.

1173

EE IEEE Transactions on

~IEEE IEEE e Oy &
COMPUTER Signal -/ Machine Learning in

OCIETY

Q-learning 90° Q-learning 130°

30 30
0.1 0.1
0.2 20 0.2 20
w w
03 10 0.3 10
0.4 . 0.4

0

0.1 02 03 04 0.1 02 03 04

« «

Double Q-learning 90° Double Q-learning 130°

0.1 20 0.1
0.2 15 0.2 20
03 10 0.3 10
5
0.4 0.4
0 0
01 02 03 04 01 02 03 04
« [e%
DQN 90° DQN 130°
30 30
0.1 25 0.1 25
0.2 20 0.2 20
v 15 w 15
0.3 10 0.3 10
0.4 5 5
1 5 1 5
Layers Layers

FIGURE 24. Heat map of the best performing parameter
combinations.

FIGURE 25. Blockage set-up.

We compare the performance of the algorithms using the
fine-tuned hyper-parameter values from Figure 24. We use
(e, &) combination of (0.4,0.2) for Q-learning and (0.1,0.3)
for Double Q-learning. For DQN, we use an € value of
0.1 for a neural network with five hidden layers. To improve
the performance of our DQN, we increase the number of
neurons per layer to 64. Figure 26 shows a comparison of the
average AoA error and convergence times as the threshold
varies. Like the previous results, both Double Q-learning
and DQN outperform Q-learning. As before, the AoA detec-
tion and convergence times are comparable between Double
Q-learning and DQN. Double Q-learning attains an AoA
error of 0.88% with a convergence time of 2.2 s. Likewise,
DQN attains an AoA error of 0.88% at a convergence time
of 2.5 s. In comparison to the simple 90° scenario with
1.5 ft range and no blockage (Figures 22a, 22b, and 23a), the
algorithms perform very similarly.

V. CONCLUSION AND FUTURE WORK

Using commercially available hardware, we presented an
affordable mmWave SDR testbed platform. Our testbed uses
open source tools such as GNU Radio and the Python
high-level programming language to enable RL-based ML
algorithms such as Q-learning, Double Q-learning, and

1174

5 i 712
—#—— Q-learning
—+—— Double Q-learning 411
—&— DQN (5 layers)

4r —#— Q-learning 110
“ —+—— Double Q-learning
5h —<— DQN (5 layers) 49
|
H
|

4.5

w
&l

w

n
T
L
o

Average AoA Error (%)
= N
[¢,1 (6,1
3
Average Convergence Time (s)

I
3

P D DD O DHDOD G DO DOHDOHDOHOD

0.5 1 15 2 25 3 3.5
Threshold
FIGURE 26. Experimental setup with blockage.

DQN. In order to manage the timescale difference between
mmWave antennas’ beamforming speed and the ML algo-
rithms’ execution speed, we devised a multi-threaded design
where threads for antenna monitoring, ML algorithm, and
GNU Radio work together to make sure measurements
from the underlying antenna system are correct. To pro-
vide a convenient API to the ML algorithms, we designed
and implemented directional programming functions, e.g.,
setAngle (), that encapsulate the beamforming details of
the underlying antenna system.

We designed new AoA detection algorithms and tested
them on our testbed. Using RL, we achieved within 1° of
Ao0A detection in LoS and NLoS mmWave links. Our study
investigated the best combinations of hyper-parameters, € for
greedy policy and « for learning rate, that minimize the AoA
detection error and convergence time for Q-learning and Dou-
ble Q-learning. For DQN, we investigated the greedy policy
€ that minimizes the AoA detection error and convergence
time for the algorithm. Our work shows that both Double
Q-learning and DQN outperform Q-learning. While DQN
may not be necessary due to the simplicity of our state-action
space, we demonstrated that our testbed can employ deep
learning for real-time experimentation. We plan on adapt-
ing DQN for more complex mmWave patch antenna array
systems that can perform 3D beam steering with respect to
azimuth and elevation. Unlike our current setup which can
only steer the antenna either left or right, an antenna array
enables the agent to take actions based on the number of
available beams. For example, in [59], the patch antenna array
system can form sixty-two beam patterns, giving the agent
sixty-two possible choices to select from. With Q-learning,
a Q-table is used to store Q(s;, a;) values at each iteration for
a given action. With sixty-two possible actions, Q-learning
may not be a suitable choice for training the agent. For a larger
state-action, it would be more efficient to use DQN, which
employs a neural network to determine the Q values for all
potential actions.

There are several future directions for our study. First, our
testbed can be improved in terms of its antenna hardware

VOLUME 2, 2024

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

and enable richer set of mmWave beamforming capabilities.
It is feasible to expand our testbed to a MIMO arrange-
ment by incorporating extra USRP units and antennas. Our
setup uses a single USRP model N210, equipped with one
transmit and one receive port. The USRP N210 features
a MIMO expansion port, facilitating connection to another
USRP N210 via an adapter. By adding another USRP N210,
a 2 x 2 MIMO system with two transmit and two receive
ports can be established. However, expanding to a MIMO
setup larger than 2 x 2 requires more hardware though our
software setup can handle such larger designs. Even though
our current proof-of-concept illustrates the ML-based pro-
grammable directionality as a capability, with the usage of
inexpensive servos and horn antennas, our current platform
setup is limited. We plan to equip our tested with phased
array antenna systems, which can steer the antenna beam in
the order of microseconds. This would improve our software
run-time and improve the convergence time of the ML algo-
rithms. Tuning of the sleepTimer for these new antenna
systems will need to be performed.

In terms of AoA detection, reducing the convergence time
further is of high interest. A maximum of 300 ms beam
sweeping period is needed for future vehicle-to-infrastructure
communication systems when the vehicle moves at an aver-
age speed of 10.5 mph [60]. While this maximum will be
smaller for walking speeds, faster AoA detection enables
more practical use of the mmWave communication links, e.g.,
it becomes possible to align the beams for better through-
put. Yet, practical convergence times for AoA detection in
mmWave systems is limited by the antenna response time,
which is driven by the amount of time needed to switch the
mmWave beam from one angle to another. Since we used a
horn antenna system with mechanical steering, our system
is limited by the response time of the servo motor, which
is kept under control by the sleepTimer in the testbed.
Hence, the convergence times we are reporting are based on
the sleepTimer of 200ms. The sleepTimer had to be
long in our experiments because of the mechanical steering
involved in the setup. For phased array mmWave systems, the
switch time can be in the order of microseconds. For example,
patch antenna arrays [59] have enabled mmWave platforms
to switch from one codebook combination (of phases) to
another within microseconds (us). This will mean that the
AoA detection can be done in the order of tens of microsec-
onds. Future work on integrating such patch antenna arrays
to our testbed platform will enable testing the RL-based AoA
detection methods in the order of tens of microseconds. The
RL algorithms will need to be adapted to work with the patch
antenna arrays.

Our RL-based AoA detection algorithms utilized a state
space defined by the latest beamsteering angle. It is pos-
sible to design state spaces that uses the previous steering
angles and the recent RSS measurements for defining a
state. A systematic evaluation of the trade-off between more
state space complexity and the AoA detection needs to be
explored.

VOLUME 2, 2024

Further, more complicated scenarios, e.g, involving multi-
ple transmitters, can be explored to observe the performance
of RL-based AoA detection in mmWave frequencies. In our
design, the ML-based AoA detection takes place in the
receiver side. An interesting direction of research would be to
see if it is possible to align (not just detect AoA) and stabilize
the transmitter and receiver beams when the transmitter and
receiver are individually making ML-based decisions.

ACKNOWLEDGMENT

An earlier version of this paper was presented in part
at the IEEE INFOCOM International Workshop on Com-
puter and Networking Experimental Research using Testbeds
(CNERT) 2023, New York, USA [DOI: 10.1109/INFO-
COMWKSHPS57453.2023.10226092]; and in part at the
IFIP Internet-of-Things Conference 2023, Dallas-Fort Worth,
TX, USA [DOI: 10.1007/978-3-031-45878-1_11].

REFERENCES

[1] M. Jean, M. Yuksel, and X. Gong, “Millimeter-wave software-defined
radio testbed with programmable directionality,” in Proc. IEEE INFO-
COM Conf. Comput. Commun. Workshops, May 2023, pp. 1-8.

[2] M. Jean and M. Yuksel, “Reinforcement learning based angle-of-arrival
detection for millimeter-wave software-defined radio systems,” in Inter-
net of Things. Advances in Information and Communication Technology,
D. Puthal, S. Mohanty, and B.-Y. Choi, Eds., Cham, Switzerland: Springer,
2024, pp. 151-167.

[3] A.V.Lopez, A. Chervyakov, G. Chance, S. Verma, and Y. Tang, ““Opportu-
nities and challenges of mmWave NR,” IEEE Wireless Commun., vol. 26,
no. 2, pp. 4-6, Apr. 2019.

[4] L. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band
communication: An old problem revisited and research directions for
the next decade,” IEEE Trans. Commun., vol. 70, no. 6, pp. 4250—4285,
Jun. 2022.

[5] K. M. S. Hugq, S. A. Busari, J. Rodriguez, V. Frascolla, W. Bazzi, and D.
C. Sicker, “Terahertz-enabled wireless system for beyond-5G ultra-fast
networks: A brief survey,” IEEE Netw., vol. 33, no. 4, pp. 89-95, Jul. 2019.

[6] 5G. Wikipedia. Accessed: Aug. 27, 2024. [Online]. Available:
https://en.wikipedia.org/wiki/5G

[7]1 Z.Zhangetal., “6G wireless networks: Vision, requirements, architecture,
and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28-41,
Sep. 2019.

[8] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter

wave communications (mmWave) for 5G: Opportunities and challenges,”

Wireless Netw., vol. 21, no. 8, pp. 2657-2676, Nov. 2015.

T. Chen et al., “28 GHz channel measurements in the COSMOS testbed

deployment area,” in Proc. 3rd ACM Workshop Millim.-Wave Netw. Sens.

Syst., 2019, pp. 39-44.

[10] S.Yi,Y.Pei, S. Kalyanaraman, and B. Azimi-Sadjadi, “‘How is the capacity
of ad hoc networks improved with directional antennas?”” Wireless Netw.,
vol. 13, no. 5, pp. 635-648, Oct. 2007.

[11] J. Zhang and S. C. Liew, “Capacity improvement of wireless ad hoc
networks with directional antennas,” in Proc. IEEE Veh. Technol. Conf.,
vol. 2, May 2006, pp. 911-915.

[12] A. Spyropoulos and C. S. Raghavendra, “Capacity bounds for ad-hoc
networks using directional antennas,” in Proc. IEEE Int. Conf. Commun.,
vol. 1, May 2003, pp. 348-352.

[13] Y. Yang, C. Sun, H. Zhao, H. Long, and W. Wang, “Algorithms for secrecy
guarantee with null space beamforming in two-way relay networks,” IEEE
Trans. Signal Process., vol. 62, no. 8, pp. 2111-2126, Apr. 2014.

[14] H. Yazdani, S. Seth, A. Vosoughi, and M. Yuksel, “Throughput-optimal
D2D mmWave communication: Joint coalition formation, power, and
beam optimization,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2022, pp. 1539-1544.

[15] Z. Dai, Y. He, V. Tran, N. Trigoni, and A. Markham, “DeepAoANet:
Learning angle of arrival from software defined radios with deep neural
networks,” IEEE Access, vol. 10, pp. 3164-3176, 2022.

[9

1175

€

1 IEEE Transactions on

m Machine Learning in
o C ications and

IEEE IEEE (T
COMPUTER Signal -
” | SOCIETY Processing

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

1176

G. R. Friedrichs, M. A. Elmansouri, and D. S. Filipovic, “‘Angle-of-arrival
sensing using a machine learning enhanced amplitude-only system,” /[EEE
Sensors J., vol. 23, no. 4, pp. 3878-3888, Feb. 2023.

M. M. U. Chowdhury, F. Erden, and I. Guvenc, ‘“RSS-based Q-learning for
indoor UAV navigation,” in Proc. IEEE Mil. Commun. Conf. (MILCOM),
Nov. 2019, pp. 121-126.

C. Watkins and P. Dayan, “Technical note: Q-learning,” Mach. Learn.,
vol. 8, pp. 279-292, May 1992, doi: 10.1023/A:1022676722315.

H. Van Hasselt, “Double Q-learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2010, pp. 2613-2621.

J. Keppo, S. Rinaz, and G. Shah. (2002). Network Pricing With Continuous
Uncertainties and Multiple QoS Classes. [Online]. Available: http://www-
personal.engin.umich.edu/~keppo/QoSPricing.pdf

S. Seth, M. Yuksel, and A. Vosoughi, “Forming coalition sets from direc-
tional radios,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Nov. 2022,
pp. 507-514.

T. Bogale, X. Wang, and L. Le, “mmWave communication enabling
techniques for 5G wireless systems: A link level perspective,” in
mmWave Massive MIMO, S. Mumtaz, J. Rodriguez, and L. Dai,
Eds., Cambridge, MA, USA: Academic, 2017, pp.195-225.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128044 186000091

O. Abari, H. Hassanieh, M. Rodriguez, and D. Katabi, ‘“Millimeter
wave communications: From point-to-point links to agile network
connections,” in Proc. 15th ACM Workshop Hot Topics Netw., Nov. 2016,
pp. 169-175. [Online]. Available: https://api.semanticscholar.org/
CorpusID:135479

T. E. Bogale, X. Wang, and L. B. Le, “Adaptive channel prediction,
beamforming and scheduling design for 5G V2I network: Analytical and
machine learning approaches,” IEEE Trans. Veh. Technol., vol. 69, no. 5,
pp. 5055-5067, May 2020.

B. M. ElHalawany, S. Hashima, K. Hatano, K. Wu, and E. M. Mohamed,
“Leveraging machine learning for millimeter wave beamforming in
beyond 5G networks,” IEEE Syst. J., vol. 16, no. 2, pp. 1739-1750,
Jun. 2022.

T. S. Cousik, V. K. Shah, J. H. Reed, T. Erpek, and Y. E. Sagduyu, “Fast
initial access with deep learning for beam prediction in 5G mmWave
networks,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Nov. 2021,
pp. 664-669.

Z. Xiao et al., “A survey on millimeter-wave beamforming enabled UAV
communications and networking,” IEEE Commun. Surveys Tuts., vol. 24,
no. 1, pp. 557-610, 1st Quart., 2022.

X. Gu et al,, “A multilayer organic package with 64 dual-polarized
antennas for 28GHz 5G communication,” in IEEE MTT-S Int. Microw.
Symp. Dig., Jun. 2017, pp. 1899-1901.

A. Sahin, M. L. Sichitiu, and I. Guveng, “A millimeter-wave software-
defined radio for wireless experimentation,” 2023, arXiv:2302.08444.

J. Zhang, X. Zhang, P. Kulkarni, and P. Ramanathan, “OpenMili: A
60 GHz software radio platform with a reconfigurable phased-array
antenna,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., 2016,
pp. 162-175.

S. K. Saha et al., “x60: A programmable testbed for wideband 60 GHz
WLANS with phased arrays,” Comput. Commun., vol. 133, pp. 77-88,
Jan. 2019.

H. Wu et al., “The tick programmable low-latency SDR system,” in Proc.
23rd Annu. Int. Conf. Mobile Comput. Netw., Oct. 2017, pp. 101-113.

R. Zhao, T. Woodford, T. Wei, K. Qian, and X. Zhang, “M-Cube: A
millimeter-wave massive MIMO software radio,” in Proc. 26th Annu. Int.
Conf. Mobile Comput. Netw., 2020, pp. 1-14.

M. Polese et al., “MillimeTera: Toward a large-scale open-source mmWave
and terahertz experimental testbed,” in Proc. 3rd ACM Workshop Millim.-
Wave Netw. Sens. Syst., Oct. 2019, pp. 27-32.

J. O. Lacruz, D. Garcia, P. J. Mateo, J. Palacios, and J. Widmer, “mm-
FLEX: An open platform for millimeter-wave mobile full-bandwidth
experimentation,” in Proc. 18th Int. Conf. Mobile Syst. Appl. Services,
2020, pp. 1-13.

I. K. Jain, R. Subbaraman, T. H. Sadarahalli, X. Shao, H.-W. Lin, and
D. Bharadia, “MMobile: Building a mmWave testbed to evaluate and
address mobility effects,” in Proc. 4th ACM Workshop Millim.-Wave Netw.
Sens. Syst., Sep. 2020, pp. 1-6.

A. Quadri, H. Zeng, and Y. T. Hou, “A real-time mmWave communica-
tion testbed with phase noise cancellation,” in Proc. IEEE INFOCOM
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2019,
pp. 455-460.

(38]

(39]

(40]

(41]

[42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

(54]

[55]

[56]

(571

(58]

[59]

[60]

H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, and
P. Indyk, “‘Fast millimeter wave beam alignment,” in Proc. Conf. ACM
Special Interest Group Data Commun. New York, NY, USA: Association
for Computing Machinery, Aug. 2018, pp. 432-445.

V. Va, H. Vikalo, and R. W. Heath Jr., “Beam tracking for mobile millime-
ter wave communication systems,” in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), Dec. 2016, pp. 743-747.

C. Zhang, D. Guo, and P. Fan, “Tracking angles of departure and arrival
in a mobile millimeter wave channel,” in Proc. IEEE Int. Conf. Commun.
(ICC), Sep. 2016, pp. 1-6.

F. Zafari, A. Gkelias, and K. K. Leung, ““A survey of indoor localization
systems and technologies,” IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2568-2599, 3rd Quart., 2019.

K. Wu, W. Ni, T. Su, R. P. Liu, and Y. J. Guo, “Recent break-
throughs on angle-of-arrival estimation for millimeter-wave high-speed
railway communication,” IEEE Commun. Mag., vol. 57, no. 9, pp. 57-63,
Sep. 2019.

A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for millime-
ter wave and massive MIMO applications,” 2019, arXiv:1902.06435.

M. Kaveh and A. Barabell, “The statistical performance of the MUSIC and
the minimum-norm algorithms in resolving plane waves in noise,” I[EEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no. 2, pp. 331-341,
Apr. 1986.

M. Pastorino and A. Randazzo, “A smart antenna system for direction
of arrival estimation based on a support vector regression,” IEEE Trans.
Antennas Propag., vol. 53, no. 7, pp. 2161-2168, Jul. 2005.

O. Abari, H. Hassaniech, M. Rodreguiz, and D. Katabi, ‘“Poster: A
millimeter wave software defined radio platform with phased arrays,”
in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., Oct. 2016,
pp. 419-420.

ADMVI1013. Analog Devices. Accessed: Aug. 27, 2024. [Online]. Avail-
able: https://www.analog.com/en/products/admv1013.html

ADMV1014. Analog Devices. Accessed: Aug. 27, 2024. [Online]. Avail-
able: https://www.analog.com/en/products/admv1014.html

E. M. Fennelly, The Utilization of Software Defined Radios for Adaptive,
Phased Array Antenna Systems. Burlington, VT, USA: Univ. Vermont State
Agricultural College, 2020.

B. Sadhu, A. Paidimarri, M. Ferriss, M. Yeck, X. Gu, and A. Valdes-Garcia,
“A software-defined phased array radio with mmWave to software vertical
stack integration for 5G experimentation,” in IEEE MTT-S Int. Microw.
Symp. Dig., Jun. 2018, pp. 1323-1326.

E. Fennelly and J. Frolik, ““Phase measurement and correction for software
defined radio systems,” in Proc. IEEE 21st Annu. Wireless Microw. Tech-
nol. Conf. (WAMICON), Apr. 2021, pp. 1-5.

M. Kearns and S. Singh, “Finite-sample convergence rates for Q-learning
and indirect algorithms,” in Proc. Conf. Adv. Neural Inf. Process. Syst. II.
Cambridge, MA, USA: MIT Press, 1999, pp. 996-1002.

D. Emnst, P. Geurts, and L. Wehenkel, “Tree-based batch mode
reinforcement learning,” J. Mach. Learn. Res., vol. 6, pp.503-556,
Dec. 2005.

C. Szepesviri, “The asymptotic convergence-rate of g-learning,” in Proc.
10th Int. Conf. Neural Inf. Process. Syst. Cambridge, MA, USA: MIT
Press, 1997, pp. 1064-1070.

V. Mnih et al., “Playing Atari with deep reinforcement learning,”
Dec. 2013, arXiv:1312.5602.

G. Yang, Y. Li, D. Fei, T. Huang, Q. Li, and X. Chen, “DHQN: A
stable approach to remove target network from deep Q-learning network,”
in Proc. IEEE 33rd Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2021,
pp. 1474-1479.

S. Kim, K. Asadi, M. Littman, and G. Konidaris, “‘DeepMellow: Removing
the need for a target network in deep Q-learning,” in Proc. 28th Int. Joint
Conf. Artif. Intell., Aug. 2019, pp. 2733-2739.

J. F. Hernandez-Garcia and R. S. Sutton, “Understanding multi-step deep
reinforcement learning: A systematic study of the DQN target,” 2019,
arXiv:1901.07510.

Sivers Semiconductors. (2023). Evaluation Kits & Evaluation Boards.
[Online]. Available: https://www.sivers-semiconductors.com/sivers-
wireless/wireless-products/evaluation-kits

O. Kanhere, A. Chopra, A. Thornburg, T. S. Rappaport, and
S. S. Ghassemzadeh, “Performance impact analysis of beam switching
in millimeter wave vehicular communications,” in Proc. IEEE 93rd Veh.
Technol. Conf. (VTC-Spring), Apr. 2021, pp. 1-7.

VOLUME 2, 2024

http://dx.doi.org/10.1023/A:1022676722315

Jean et al.: ML-Enabled Millimeter-Wave SDR With Programmable Directionality

MARC JEAN received the B.S. and M.S. degrees
in electrical engineering from Virginia Tech,
Blacksburg, VA, USA, in 2014 and 2016, respec-
tively, and the Ph.D. degree in electrical engi-
neering from the University of Central Florida,
Orlando, FL, USA, in 2024. He has been joined
the Networking and Wireless Systems Labora-
tory (NWSL), University of Central Florida since
2021. He is currently a Post-Doctoral Researcher
at NWSL. His area of research is on millimeter
wave (mmWave) antenna beam alignment using software-defined radios
(SDR) platforms. While at NWSL, he designed and configured a novel
SDR testbed that can transmit and receive mmWave signals over the air. His
research work has won two best paper awards.

MURAT YUKSEL (Senior Member, IEEE)
received the B.S. degree in computer engineering
from Ege University, Izmir, Turkey, in 1996, and
the M.S. and Ph.D. degrees in computer science
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1999 and 2002, respectively. He is a
Professor at the ECE Department, University of
Central Florida (UCF), Orlando, FL, USA, and a
Visiting Scientist at MIT Lincoln Labs. He served
as the Interim Chair of ECE at UCF from 2021
to 2022. Prior to UCF, he was a faculty member at the CSE Department,
University of Nevada, Reno, NV, USA. He has published more than 200
papers at peer-reviewed journals and conferences. His research interests are
in the areas of networked, wireless, and computer systems with a recent focus
on wireless systems, optical wireless, spectrum sharing, network economics,
network architectures, and network management. He is a senior member of
ACM. is a co-recipient of five Best Paper, one Best Paper Runner-up, and
one Best Demo Awards. He has been on the editorial boards of Computer
Networks, IEEE Transactions on Communications, IEEE Transactions on
Machine Learning in Communications and Networking, and IEEE Network-
ing Letters.

VOLUME 2, 2024

XUN GONG (Senior Member, IEEE) received
the B.S. and M.S. degrees in electrical engineer-
ing from FuDan University, Shanghai, China, in
1997 and 2000, respectively, and the Ph.D. degree
in electrical engineering from The University of
Michigan, Ann Arbor, in 2005. He is currently a
Professor of Electrical and Computer Engineering
(ECE), University of Central Florida (UCF), and
the Director of the Antenna, RF and Microwave
Integrated Systems (ARMI) Laboratory. He joined
UCF as an Assistant Professor in 2005. He worked at Air Force Research
Laboratory (AFRL), Hanscom, MA, USA, in 2009, under the support of Air
Force Office of Scientific Research (AFOSR) Summer Faculty Fellowship
Program (SFFP). He was with the Birck Nanotechnology Center, Purdue
University, West Lafayette, IN, USA, as a Post-Doctoral Research Associate
in 2005. His research interests include microwave passive components and
filters, sensors, antennas and arrays, flexible electronics, and packaging. He
has been the recipient of the NSF Faculty Early CAREER Award in 2009. He
received the UCF Reach for the Stars Award in 2016. He is awarded the UCF
Lockheed Martin Professorship in 2018 to 2028. He has served on the Edi-
torial Boards of IEEE Transactions on Microwave Theory and Techniques
(TMTT), IEEE Transactions on Antennas and Propagation (TAP), IEEE
Microwave and Wireless Component Letters (MWCL), and IEEE Antennas
and Wireless Propagation Letters (AWPL). He was the Associate Editor of
IEEE TMTT in 2018 to 2019. He served as the Associate Editor of IEEE
MWCL from 2013 to 2018.

177

