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Abstract: Technological advances have paved the way for collecting high-resolution
network data in basketball, football, and other team-based sports. Such data con-
sist of interactions among players of competing teams indexed by space and time.
High-resolution network data are vital to understanding and predicting the per-
formance of teams, because the performance of a team is more than the sum of
the strengths of its individual players: Whether a collection of players forms a
strong team depends on the strength of the individual players as well as the inter-
actions among the players. We introduce a continuous-time stochastic process as
a model of interactions among players of competing teams indexed by space and

time, discuss basic properties of the continuous-time stochastic process, and learn



the stochastic process from high-resolution network data by pursuing a Bayesian
approach. We present simulation results along with an application to Juventus

Turin, Inter Milan, and other football clubs in the premier Italian soccer league.

Key words and phrases: Continuous-time stochastic processes; Relational event

data; Soccer games; Spatio-temporal data; Sport analytics.

1. Introduction

Sport analytics has witnessed a surge of interest in the statistics community

(see, e.g., |Albert et al., [2017), driven by technological advances that have

paved the way for collecting high-resolution tracking data in basketball,
football, and other team-based sports.

Traditional sport analytics has focused on predicting match outcomes

based on summary statistics (Dixon and Coles| [1997; Karlis and Ntzoufras,

2003; Baio and Blangiardol [2010; Cattelan et al., [2013). In more recent

times, the advent of high-resolution tracking data has expanded the role of

statistics in sport analytics (Albert et al., |2017) and has enabled granular

evaluations of players and teams (Cervone et al., 2014; [Franks et al., 2015;

\Cervone et al., 2016; Wu and Bornn, 2018; [Yurko et al., 2019; [Hu et al.|

2023) along with in-game strategy evaluations (Fernandez and Bornn, [2018;

Sandholtz et al., [2020; Nguyen et al., 2023). High-resolution tracking data




fall into two categories: optical ball- and player-tracking data obtained from
video footage collected by multiple cameras in sport arenas, and data col-
lected by wearable devices. Some recent papers have used high-resolution
tracking data to evaluate the defensive strength of teams (Franks et al.
2015); constructing a dictionary of play types (Miller and Bornn, 2017);
assessing the expected value of ball possession in basketball (Cervone et al.,
2016; Santos-Fernandez et al., 2022); and constructing deep generative mod-
els of spatio-temporal trajectory data (Santos-Fernandez et al., 2022).

As a case in point, we focus on soccer—that is, European football.
Soccer is a fast-paced sport that generates high-resolution network data in
the form of ball-tracking data indexed by space and time. The statistical
analysis of high-resolution network data generated by soccer poses many

challenges, including—but not limited to—the following:

1. Scoring a goal in a soccer match is a rare event, and useful predictors
are hard to come by: e.g., a soccer team may score 0, 1, or 2 goals
during a typical match, and scoring a goal requires a sequence of

complex interactions among players of two competing teams.

2. Soccer teams consist of more players and the interactions among the
players are more complex than, e.g., in basketball and other team-

based sports. The fact that soccer teams are larger than teams in



many other team-based sports implies that the actions of players on
the field need to be coordinated. To facilitate coordination, each soc-
cer team adopts a formation, which assigns each player in the team to
a specific position (e.g., goalkeeper, striker). Two popular formations
of soccer teams, known as 4-4-2 and 3-5-2, are shown in Figure 1 in
Supplement A. The chosen formation can affect the defensive and of-
fensive strategies of a soccer team and can hence affect the outcome
of a match. In addition, players may have different roles in different

formations, and the formations of teams may change during matches.

3. Soccer matches are zero-sum games: One team’s gain is another
team’s loss. For example, if the ball changes hands, one team loses

control of the ball while the other team gains control of the ball.

We address the lack of a comprehensive statistical analysis of the net-
work of interactions among soccer players by introducing a continuous-time

stochastic process, which helps shed light on

e which player controls the ball and how long, and how ball control
depends on the player’s attributes (including the player’s position in
the team’s formation and the player’s spatial position on the field,

provided that the spatial positions of players on the field are known);



1.1 Comparison with non-network models of sport data

e whether a change in ball control is a failure (i.e., the ball is lost to the
opposing team) or a success (i.e., the ball remains within the team in
control of the ball), and how the probability of a failure or a success

depends on attributes of players;

e whether a team on track to winning a match decreases its pace and
plays more defensively, while its opponent increases its pace and plays

more offensively to change the outcome of the match in its favor;

e unobserved attributes of players that may affect ball control and in-

teractions among players.

1.1 Comparison with non-network models of sport data

In contrast to the literature on basketball and other team-based sports,
we do not focus on individual summaries, such as the expected ball posses-
sion of individual players (e.g.,/Cervone et al., 2016; |Santos-Fernandez et al.,
2022). Instead, we focus on the network of interactions among players, be-
cause the performance of a team is more than the sum of the strengths of its
players. In other words, a collection of strong players may or may not form
a strong soccer team: Whether a collection of players forms a strong soccer
team depends on the one hand on the strength of the individual players

and on the other hand on how the players interact.



1.2 Comparison with discrete-time models of sport data

Some recent publications (e.g., (Chacoma et al., |2020; Hirotsu et al.,
2023; [Narizuka et al., [2023) have studied soccer matches by using prob-
abilistic models, but the mentioned publications focus on time-dependent
motion processes and ignore the network of interactions among players. By
contrast, the proposed stochastic modeling framework focuses on the net-
work of interactions among players and helps incorporate the formations of
soccer teams in addition to the spatial distances between players, provided
that the spatial positions of players are known.

Compared with the continuous-time within-play valuation models of
American football in [Yurko et al.| (2020)), the proposed stochastic modeling
framework focuses on the pace of soccer matches, who is in control of the
ball, whether a change in ball control is a failure or a success, and who
secures control of the ball, rather than focusing on action evaluations. As
a result, the proposed stochastic modeling framework can provide a more
comprehensive understanding of team work in soccer and other team-based

sports than the existing literature.

1.2 Comparison with discrete-time models of sport data

State-space models and other discrete-time stochastic processes have

been used as predictive models for National Football League (NFL) game



1.2 Comparison with discrete-time models of sport data

scores and other team-based sports (e.g., |Glickman and Stern|, 2005; Shaw
and Glickman| 2019). By contrast, we focus on continuous-time Markov
processes, for at least two reasons.

First, continuous-time Markov processes are natural models of real-
world processes where events can occur at any time ¢t € [0, +00), including
fast-paced soccer matches.

Second, continuous-time Markov processes can be viewed as discrete-
time Markov chains with the time gaps between transitions of the Markov
chains filled with Exponential holding times (see, e.g., Chapter 3 of [Nor-
ris, |1997). In other words, continuous-time Markov processes model when
changes take place, and which changes take place. Therefore, continuous-
time Markov processes help build richer models than discrete-time Markov
processes. For example, in applications to soccer matches, continuous-time
Markov processes help shed light on:

e Clock: When a change in ball control occurs, and how a change de-

pends on the attributes of the player in control of the ball.

e Transitions: Who passes the ball to whom, and how a change in ball

control depends on the attributes of the players involved.



1.3 Comparison with relational event models

1.3 Comparison with relational event models

On mathematical grounds, the closest relatives of the proposed stochas-
tic modeling framework are relational event models (e.g., Butts, 2008; |Perry
and Wolfe, |2013; [Stadtfeld, 2011). Having said that, there are important
differences between relational event models and the proposed stochastic
modeling framework:

1. Soccer matches revolve around the ball. A reasonable stochastic model
of soccer matches needs to reflect the fact that soccer matches revolve
around the ball: e.g., at any given time ¢, a single player is in con-
trol of the ball and can initiate a relational event (e.g., a pass), and
a stochastic model of soccer matches should reflect that. By con-
trast, relational event models assume that any actor can initiate a
relational event at any time: e.g., at any given time ¢, any employee

of a company can send an email to one or more other employees.

2. Soccer matches are zero-sum games: One team’s gain is another
team’s loss. As a result, a reasonable stochastic model of soccer
matches should distinguish between successful and unsuccessful rela-
tional events (e.g., passes), which can affect the outcomes of a match.

By contrast, relational event models are not concerned with zero-sum



1.4 Structure of paper

games and do not distinguish between successful and unsuccessful re-
lational events: e.g., email communications between the employees of
a company are not zero-sum games, and the event that employee A
sends an email to employee B does not necessarily result in a gain or

a loss for employee A or employee B.

3. The formations of soccer teams and the locations of players on the
field can affect the outcome of a match. By contrast, if an employee
of a company considers sending an email, the location of the employee
is unimportant: As long as the employee is connected to the World
Wide Web, the employee can send an email from any location on

planet Earth.

1.4 Structure of paper

We first introduce the data that motivated the proposed stochastic modeling
framework (Section [2)) and then introduce the stochastic modeling frame-
work (Section . A Bayesian approach to learning the stochastic modeling
framework from data is described in Section 4, and Bayesian computing is
discussed in Section [fl An application to the motivating data is presented

in Section [6l Simulation results can be found in Section [Tl



2. High-resolution network data

We consider data provided by Hudl & Wyscout (https://footballdata.
wyscout.com/)). The data consists of 380 matches during the 2020/21 sea-
son of Serie A, the premier league of the Italian football league system.
The data include ball-tracking data, but not player-tracking data. In other
words, we know which player is in control of the ball, but we do not know
where the players are located on the field.

Figure 2 in Supplement A shows a subset of the data: passes between
the players of Juventus Turin (with 4-4-2 formation) and Inter Milan (with
3-5-2 formation). These data are based on the home games of Juventus
Turin versus AC Milan and Inter Milan versus AC Milan in 2020/21. The
figure reveals that passes depend on the formations of teams. Figure 2(a)
in Supplement A shows that the midfield players and defenders of Juventus
Turin (with 4-4-2 formation) dominate ball control. By contrast, strikers
do not control the ball all too often, but are key to scoring goals and hence
winning matches. Figure 2(b) in Supplement A reveals that the midfield
players of Inter Milan (with 3-5-2 formation) likewise dominate ball control.
In addition, the right wing of Inter Milan plays an important role in Inter
Milan’s 3-5-2 formation, by passing the ball to the strikers and in so doing

helping the team launch counterattacks straight out of the backfield. Other


https://footballdata.wyscout.com/
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descriptive summaries, including detailed information on the formations
and players of Juventus Turin, Inter Milan, and other soccer clubs in Serie

A are presented in Supplement C.

3. Stochastic modeling framework

We introduce a continuous-time stochastic process as a model of soccer
matches starting at time ¢y := 0 and stopping at time 7" € [90, +00).
Soccer matches involve two competing teams. Each team consists of
11 players and can substitute up to 5 players during a match, effective
2022/23. Let T7, be the set of players of one of the two teams and T, be
the set of players of the opposing team at time ¢ € [0, T'). The two sets T,
and Ty, are disjoint, in the sense that Ty, N Ty, = {} for all ¢ € [0, T').
The compositions of the two teams T; ; and T, can change during a match,
because players may be injured; players may be substituted; and the referee
may remove players from the field due to violations of rules. We consider

changes in the compositions of 77, and T5; to be exogenous.

3.1 Generic continuous-time stochastic process

We introduce a generic continuous-time stochastic process that captures

salient features of soccer matches.



3.1 Generic continuous-time stochastic process

Scoring goals: rare events. We focus on who is control of the ball,
whether a change in ball control is a failure or a success, and who secures
control of the ball, but we do not model the process of scoring goals. While
scoring goals is important for winning matches, the event of scoring a goal
is a rare event and useful predictors are hard to come by, because scoring
a goal requires a sequence of complex interactions among players of two
competing teams. We leave the construction of models for scoring goals
to future research and focus here on ball control and interactions among

players, which are important for scoring goals and winning matches.

Ball control and interactions among players. We first describe
a generic continuous-time stochastic process. We then introduce a specifi-
cation of the continuous-time stochastic process in Section and discuss

basic properties of the continuous-time stochastic process in Supplement D.

A generic continuous-time stochastic process of a soccer match starting

at time ¢y := 0 and stopping at time 7" € [90, +00) takes the following form:

1. At time ty := 0, the referee starts the match. The player who secures
control of the ball at time ¢, is chosen at random from the set J7 ;, U

T2, and is denoted by i;.

2. At time t,,, == t;_1 + by (m = 1,2,...), the ball passes from player



3.2 Specification of continuous-time stochastic process

im € T1t,, U Tay,, to player j,, € T1p,, U Toy, \ {im}, where h,, ~

Exponential();,,) and 4, = j,-1 (m = 2,3,...). The process of

im

passing the ball from player i,, to player j,, is decomposed as follows:

2.1 The change in ball control is either a failure (indicated by S;, =
0) in that player i,, loses the ball to a player of the opposing
team, or is a success (indicated by S;,, = 1) in that 4,, succeeds

in passing the ball to a player of 7,,’s own team.

2.2 Conditional on S;,, € {0, 1}, player i,, cedes control of the ball

m

to player j,, € Ti4, UTas, \ {im}, indicated by i, — .

3. The referee stops the match at time T € [90, +00).

We consider the decision of the referee to stop the match to be exogenous,
so that the stopping time 7" € [90, +00) of the match is non-random. In
practice, soccer matches last 90 minutes, but disruptions of matches due to

injuries and substitutions of players may result in overtime.

3.2 Specification of continuous-time stochastic process

We introduce a specification of the generic continuous-time stochastic pro-
cess introduced in Section [3.1], by specifying the distributions of the holding

times h,,, the success probabilities P(S;, = s;, ), and the pass probabilities

im



3.2 Specification of continuous-time stochastic process

P(iy, = Jm | Si,, = Si,,). Basic properties of the resulting continuous-time
stochastic process are discussed in Supplement D. Throughout, we denote

by Z,, the team of player i,, in control of the ball at time ¢,,.

Holding time distributions A natural specification of the holding time

distributions is

hon | Ni,, ™~ Exponential(\;, ).

To allow the rate \;,, € (0,400) of player i,,’s holding time h,, to depend
on observed attributes of i,, (e.g., the position of i,, in the formation of

im’s team and the location of i,, on the field), we assume that

N, (w) = expw'e;,),

where w € RP is a vector of p parameters and ¢;,, € RP is a vector of p

observed attributes of player i,,.

Success probabilities The probability of a successful pass {S;,, = 1} by

player 7, can be specified by a logit model:

10git(Pay (S, = 1)) = a'@1,, + N1,



3.2 Specification of continuous-time stochastic process

where av € R% is a vector of d; parameters and T, € R% is a vector of
d, observed attributes of player ¢,,. The random effect 1, ,,, € R captures

the effect of unobserved attributes of player 7,, on the success probability.

Pass probabilities The conditional probability of event {i,, — 7.} given

{S;,, = 0} can be specified by a multinomial logit model:

Pgn(im = jm | Si, = 0)

exp(B ®2,,, o + M2
) e, exp(B @, i+ n2y)

if jo & L)y,

0 if jm € L,

where B € R% is a vector of d, parameters and T2, € R% is a vector
of dy observed attributes of players 4,, and j. The random effect 7, ; € R
captures the effect of unobserved attributes of player j on the conditional
probability of securing control of the ball.

Along the same lines, the conditional probability of event {i,, — j..}

given {S;,, = 1} can be specified by a multinomial logit model:

]P)‘Ym(im — Jm | Sim = 1)

0 if iy = Jm O Ju € L
exp(Y T30 T M50
> jezodiny EXP(Y T3 4,,5 + 13,5)

if 4, # Jm and J,, € L,



3.2 Specification of continuous-time stochastic process

where v € R% is a vector of d3 parameters and x3;,, ; € R% is a vector of d3
observed attributes of players 7,, and 7, e.g., whether players i,, and j are
friends, whether player 7,, passed the ball to player j in the past, whether
player i, received the ball from player j in the past, or the spatial distance
between players i,, and j at the time of the pass (provided that the spatial
positions of players are known). The random effect n3; € R captures the
effect of unobserved attributes of player j on the conditional probability of

securing control of the ball.

Random effects Let 1, == (114, 72, 73.) € R? and assume that

n; | Z < MVN3(03, X,
where 03 € R? is the three-dimensional null vector and ¥ € R3*3 is a

positive-definite variance-covariance matrix.

Alternative models It is worth noting that there are other possible
approaches to constructing stochastic models of soccer matches. For ex-
ample, each the two following approaches to constructing models can help

shed light on salient aspects of soccer matches:

(a) Assuming player i,, is in control of the ball at time t,,, first deter-



3.2 Specification of continuous-time stochastic process

mine whether 7,, succeeds in passing the ball to a teamplayer. Then
determine which teamplayer j,, receives the ball provided that the
pass is a success, otherwise determine which player j,, of the oppos-
ing team secures control of the ball provided that the pass is a failure

(the approach pursued here).

(b) Assuming player i, is in control of the ball at time ¢,,, suppose that
1, first selects a teamplayer k,, and intends to pass the ball to k,,.
Then determine whether the intended pass i,, — k,, succeeds. If the
intended pass ¢, — k,, succeeds, set k,, = jm,, otherwise select the
player j,, who secures control of the ball from the opposing team (an

approach suggested by an anonymous referee).

While both approaches can be useful, there are two good reasons for choos-
ing approach (a), that is, the approach pursued here.

First, soccer matches revolve around the ball, so soccer teams wish to
retain control of the ball. Thus, the player in control of the ball is first
and foremost responsible for passing the ball to a teamplayer—unless the
player has the rare opportunity to score a goal. By construction, approach
(a) respects the importance of retaining control of the ball.

Second, approach (a) has one advantage over approach (b): If a pass

is a failure, we do not observe the intended receiver k,,. Worse, even when



a pass is a success, we may not observe the intended receiver k,,: e.g.,
i,, may intend to pass the ball to teamplayer k,,, but the ball ends up
in possession of some other teamplayer j,, # k, by accident. In fact,
instead of observing the intended receiver k,,, we observe the actual receiver
Jm, Who may or may not be identical to the intended receiver k,,. In
other words, the data fall short, in that we do not observe the intended
passes i, — kn, but we observe the actual passes i,, — jn, regardless
of whether the passes are failures or successes. As a result, approach (b)
would require augmenting the observed passes %, — J,» by the unobserved,
intended passes i,, — k,,. While it is possible to augment the observed
passes i,, — Jm by the unobserved, intended passes 7,, — k,, using data-
augmentation methods, such methods come at additional computational
costs compared with approach (a). In addition, there may be statistical
costs: It is not clear how much information the data contain about the

unobserved, intended passes 7,, — ky,.

4. Bayesian learning

We pursue a Bayesian approach to learning the stochastic modeling frame-
work introduced in Section [3| from high-resolution network data.

A Bayesian approach is well-suited to online learning, that is, updat-



ing the knowledge about the parameters «, B, v, w, 3 and the random

effects 11,m2,... as soon as additional data points roll in. To demon-
strate, consider two teams and let @y == (hym, i1.m, ij)n]\ffl:l be the out-

come of the first match of the two teams (with M; > 1 passes) and
€3 = (Rom, Go.m, Jom)2, be the outcome of the second match of the two
teams (with My > 1 passes). To ease the presentation, assume that the
compositions of the two teams do not change during the first and second
match, the 22 players of the two teams are labeled 1,...,22, and the ran-
dom effects are denoted by 1 := (n1,...,m22). In addition, assume that the

outcomes of the first and second match x; and x, satisfy

7T(Q31, T2 |aa /87 v, W, 77) = 7T(£131 |a7 /Ba v, @, 77)

X W(wQ | «, /Ba v, w, 1N, $1),

where 7 denotes a generic probability density function. The conditional



probability density function 7(x; | o, 3, v, w, M) is of the form

M,
w(@i e By wom) = [T [N @) exp(=Ai, (@) i)
m=1

X ]P)av'r’(sil,m = Sil,m)

1,m

X Pﬁ,n<i1,m — jl,m ’ Sz

X Poyn(itm = Jim | Sipn = 1)]1(51-1,7”: 1)]

My
X exp (_)\il,M1+1(w) (Tl - th)) ,
k=1

assuming that the start time ¢y, := 0 and the stopping time 77 € [90, +00)
of the match are determined by the referee and are both non-random. The
function 1(.) is an indicator function, which is 1 if its argument is true
and is 0 otherwise. The conditional probability density function 7(xy |
a, B, v,w, n, ;) is of the same form as 7(x; | o, B, v, w, ), but is
based on M, passes rather than M; passes and can depend on the outcome
of the first match ;.

The posterior of o, 3, v, w, X, i based on the outcome of the first



match x; is proportional to

Tr(av /67 vy, @, Ean|w1) X 7T(331 |a7 B) vy, W, T’)

x 7w(n|%) (e, B, 7, w, ),

where 7(at, 3, v, w, ) is the prior of o, 3, 7, w, X. The prior of ¢, 3, v, w, X
is described in Section [5l
As soon as the outcome of the second match a5 is observed, the knowl-

edge about a, 3, v, w, 2, n in light of x5 can be updated as follows:

7T<a7 137 77 w, 27 77 | Iy, wZ)
x m(@, 2 | o, By, w, ) w(n | X) m(e, B, v, w, )

X 7T(132 I O, /37 v, W, N, $1) W(a> /Ba v, @, 27 n I ml)‘

In other words, as soon as the outcome of the second match x5 is ob-
served, we can update the knowledge about «, 3, v, w, X, n in light of x
via m(x2 | @, B, v, w, , 1), with the knowledge about «, 3, v, w, X, n
prior to the second match @, being quantified by 7(e, 3, v, w, 3, n | x1),
the posterior based on the outcome of the first match x;. As a result, a
Bayesian approach is a natural approach to updating knowledge about the
stochastic modeling framework as additional data points roll in. More than

two teams with can be handled, and multiple matches in parallel.



5. Bayesian computing

While a Bayesian approach to learning the stochastic modeling frame-
work introduced in Section |3| from high-resolution network data is natural,
the posterior w(a, 3, v, w, X, n | «) of the parameters a, 3, v, w, X and
the random effects n based on the outcome of a match « is not available in
closed form. We approximate the posterior by using Markov chain Monte
Carlo methods, by sampling from the full conditional distributions of the

parameters and the random effects:

mlafz) o Lla,m; z) ()

(B |x) o< L(B,n; x)7(B)

m(ylz) o Lly,m; z)7(y)

m(wlx) o L(w; z)m(w)

m(n| @) o Lla,m; ) L(B,m; @) L(v,m; @) £(Z; 0)

(X |n) o L(Z; n)w(%),



where

=

L<a7 m; w) X Pav"](Sim - S’L‘m)
m=1
M
LB x) o [[ Ponlim = jm | S, = 0)15m=0
m=1
M
Ly.ma) o ] Pymlim = jm | Si,, = 1)Fm=1
m=1
M M
L(w; :L') x H [/\im (w) exp(—)\im (w) hm)] eXp <_)\ilvl+1 (w) (T - th)>
1

=

1
L£(Zm) o ] det(ZHY? exp (—5 n T m) ,
=1

assuming that « is the outcome of a single soccer match with M > 1 passes

starting at time ¢y = 0 and stopping at time 7" € [90, +00); note that both

the start time ¢y and the stopping time 7" are non-random. We assume that

the prior factorizes according to

(@, B, v, w, %) = w(a)n(B)7n(y)n(w) (%),

with marginal priors of the form

iid

ap ~ N(0,10%), k=1,....d;, [ ~ N(0,10%), k=1,...

iid

e o~ N(0,10%), k=1,...,ds, w, ~ N(0,10%), k=1,...

7d2



where N(0,10?%) is a Gaussian with mean 0 and variance 10*> = 100. To
specify the prior of the variance-covariance matrix 3 of the random effects,

we decompose X according to

o 00 o 00
=10 o,0 Al o o, 0 |
0 0 o, 0 0 o,

where A € [—1,+1]**3 is a correlation matrix. We then assume that
A ~ LKJcorr(2) has a Lewandowski-Kurowicka-Joe (LKJ) distribution
with parameter 2 and ,, ~ Exponential(1) (k = 1,2, 3).

To sample from the full conditionals, we use Markov chain Monte Carlo
methods implemented in R package rstan (Stan Development Team| [2023).
Since the stochastic modeling framework leverages exponential-family dis-
tributions as building blocks (e.g., Bernoulli, Multinomial, Exponential, and
multivariate Gaussians), we do not have more numerical issues than other
exponential-family models, such as generalized linear models, Gaussian and

non-Gaussian graphical models (Efron, [2022).



6. Application

We use the stochastic modeling framework introduced in Section [3| to an-
alyze the data described in Section We focus on the matches of four
soccer teams during the 2020/21 season of Serie A, the premier league of

the Italian football league system:

e Juventus Turin (Juventus F.C.; 15,832 observations);

e Inter Milan (Internazionale Milano; 13,564 observations);

e Crotone (Crotone S.r.l.; 8,125 observations);

e Fiorentina (ACF Fiorentina; 8,107 observations).

Juventus Turin and Inter Milan belong to the most storied Italian soccer
clubs, while Crotone and Fiorentina were mid- and low-level teams during
the 2020/21 season, respectively. The numbers of observations mentioned
above refer to the total numbers of passes during the 2020/21 season, ag-
gregated over all matches played by the selected teams with the dominant
formation. The selected teams have in common that all of them were pro-
ficient users of the 4-4-2 formation (Juventus Turin) or the 3-5-2 formation
(Inter Milan, Crotone, Fiorentina).

We use the following specification of the stochastic modeling framework:



e Module 1 (M1): The Exponential model of the holding times h,,
uses the following covariates: position-specific indicators of who is in
control of the ball and indicators of whether the player’s team is on
track to winning or losing the match (i.e., the player’s team has scored

at least one more goal or one less goal than its opponent, respectively).

e Module 2 (M2): The logit model of the probability of a successful

pass {.S;,, = 1} uses the following covariates, in addition to an inter-
cept: the length of the pass in terms of two-dimensional Euclidean
distance; an indicator of whether player i,, initiates the pass in the
opposing team’s half of the field; an indicator of whether the ball ends
up in the opposing team’s third of the field; an indicator of whether
the pass is a forward pass; an indicator of whether the pass is an air
pass; indicators of whether the player’s team is on track to winning or
losing the match (i.e., whether the player’s team has scored at least

one more goal or one less goal than its opponent, respectively); and a

position-specific random effect.

e Module 3 (M3): The multinomial logit model of the conditional
probability of event {i,, — j.} given {S;, = 1} uses the following

predictors: the graph distance between players i,, and j,,—defined



as the length of the shortest path between ¢,, and j,,—based on the
nearest-neighbor graph in Figure 3 in Supplement A; the number of
times 7j,, received the ball prior to the m-th pass; and a position-

specific random effect.

It would be interesting to include more features into the multinomial logit
model of the conditional probability of event {i,, — jn,} given {S; = 1},
e.g., the spatial positions of players and additional network features. That
said, we do not have data on the spatial distances between players and
additional network features. Note that these limitations are limitations
of the data, not the model: The model can incorporate spatial distances
between players as well as additional network features. In addition, note
that we focus here on all matches involving the four mentioned teams with
the dominant formation, but we do not use the data of the opposing teams.
As a consequence, we do not specify the conditional probabilities of events
{im — jm} given {S;, = 0}. Last, but not least, note that we use position-
specific rather than player-specific random effects, because the data do not
include complete information about which position is filled by which player.

Posterior sensitivity checks and posterior predictive checks can be found
in Sections and [6.2] respectively: The posterior sensitivity checks sug-

gest that the posterior is not too sensitive to the choice of prior, while the



posterior predictive checks indicate that model-based predictions match
the observed data. Tables 9 and 10 in Supplement E present posterior
summaries of the model parameters, based on the 2020/21 matches of
Fiorentina, Crotone, and Inter Milan (with 3-5-2 formation) and Juventus
Turin (with 4-4-2 formation). Among other things, these results suggest
that the rate at which players pass the ball is reduced when the team is on
track to winning a match, compared to scenarios in which the team is nei-
ther on track to winning nor losing a match (holding everything else fixed).
By contrast, when on track to losing a match, the rate at which players
of Juventus Turin and Inter Milan pass the ball is reduced, while the rate
at which players of Fiorentina and Crotone pass the ball is not reduced.
There is an additional observation suggesting that the modus operandi of
Juventus Turin and Inter Milan is different from the modus operandi of
Fiorentina and Crotone: Starting a pass in the opponent’s half of the field
does not increase the probability of a successful pass among Fiorentina and
Crotone players, but it does increase the probability of a successful pass
among Juventus Turin and Inter Milan players. Taken together, these re-
sults suggest that the modus operandi of Juventus Turin and Inter Milan
differs from the modus operandi of Fiorentina and Crotone, warranting

more research into how these and other soccer teams operate and how the



6.1 Posterior sensitivity checks

modus operandi affects match outcomes. That said, we hasten to point out
that we cannot make causal statements about how soccer teams operate.
Causal inference for soccer and other team-based sports is a challenging but
promising direction for future research, as we discuss in Section 8.5.
Among the position-specific effects, it is worth noting that the length of
time the goal keeper controls the ball tends to be lower than the length of
time other positions control the ball. This observation makes sense, because
the goal keeper has an incentive to remove the ball from the penalty area
as soon as possible, so that the opposing team cannot gain control of the

ball in the penalty area and score an easy goal.

6.1 Posterior sensitivity checks

To assess the sensitivity of the posterior to the choice of prior, we con-
sider the following three priors:

e Prior 1:

o o~ N(0,5%), k=1,....d,, B ~ N(0,5?), k=1,...,ds

iid iid

Y ~ N(0,5%), k=1,...,d3s, wp ~ N(0,5%), k=1,...,p;



6.2 Posterior predictive checks

e Prior 2, used in Section [6}

iid

o~ N(0,10%), k=1,....d;, B ~ N(0,10%), k=1,...,d,

iid iid

e S N(0,10%), k=1,....ds, wp ~ N(0,10%), k=1,...,p;

e Prior 3:

iid

o o~ N(0,15%), k=1,....d;, B ~ N(0,15?), k=1,...,d,

iid iid

e S N(0,152), k=1,....ds, w, ~ N(0,152), k=1,...,p;

where N(0,5%), N(0,10%), and N(0,15%) are Gaussians with mean 0 and
variances 52 = 25, 10?2 = 100, and 15? = 225, respectively. The random
effects prior is described in Section [5| and is the same under all three priors.
The posteriors under these priors are similar, as can be seen by comparing

Tables 9 and 10 with the corresponding tables in Supplement F.

6.2 Posterior predictive checks

Using the posterior draws generated in Section [6], we compare model-
based predictions of the waiting times between passes and the proportions of
successful passes to the observed waiting times and the observed proportions
of successful passes by Inter Milan, Crotone, and Fiorentina during the

2020/21 season. The model-based predictions (i.e., posterior predictions)



are shown in Figure 4 in Supplement G and match the observed data.

7. Simulation results

We simulate data from the stochastic modeling framework specified in
Section [6] We choose the data-generating parameters of the model so that
the simulated data mimic the Inter Milan data in Section 6l We simulate
100 short soccer seasons, each with 1,000 passes. To estimate the model
from the 100 simulated soccer seasons, we leverage the Bayesian approach
described in Section [5] using the prior described in Section [ We present
in Figure 5 in Supplement H aggregated simulations results based on all
100 simulated soccer seasons. In addition, we present the data-generating
parameters along with posterior summaries of the parameters based on one
of the 100 simulated soccer seasons in Table 15 in Supplement H. The figure
and table demonstrate that the posterior means of the parameters cluster

around the data-generating parameters.

8. Discussion

We view the proposed stochastic modeling framework as a first step to
modeling soccer matches and other team-based sports as space- and time-

indexed network processes and hope that it will stimulate future research.



8.1 Model specification

To stimulate future research, we conclude with a short discussion of open

questions and directions for future research.

8.1 Model specification

The deluge of high-resolution network data generated by soccer and other
team-based sports implies that there are many possible features that may
be relevant for predicting ball control, goals, and match outcomes. The
specific features used in Section [6] make sense as a starting point, but sound
model selection procedures and more data are needed to shed light on which
features are useful for predicting ball control, goals, and match outcomes.
In addition, the proposed stochastic modeling framework includes player-
specific random effects 1; € R?, which are correlated within players i but
are shared across soccer matches. Since the proposed stochastic modeling
framework is already fairly complex, we stick to the player-specific random
effects. More advanced latent process models—e.g., multilevel models with
position- and team-specific random effects and other more complex latent

process models—constitute an interesting direction for future research.



8.2 Causal inference

8.2 Causal inference

While impressive progress has been made on the foundations of causal in-
ference (e.g., Peters et al., 2017; Imbens and Rubin, 2015; [Pearl, 2009),
causal inference for soccer and other team-based sports poses challenges
(e.g., Hall et al., 2002; Price et al., 2022; Dona and Swartz, 2023). First,
conducting experiments in soccer is hard. Thus, causal inference needs
to rely on observational rather than experimental data. Second, the out-
comes of interest may be player-specific (e.g., scoring goals) or team-specific
(e.g., winning matches) or both. Third, the outcomes of players and teams
may depend on the outcomes of other players in the same team as well
as the opposing team. As a result, there can be interference (Hudgens
and Halloran, 2008; [Savje et al., 2021; Li and Wager, |2022), complicating
causal inference. Last, but not least, soccer matches are network-, space-,
and time-dependent processes, and stochastic processes aspiring to emulate
them will have to reflect the complexity of these real-world processes. As
a consequence, causal inference for soccer and other team-based sports is a

challenging but promising direction for future research.
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