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Abstract—Wireless localization and sensing are increasingly
important capabilities when the networks are evolving towards
the 6'" generation era. While the physics-inspired geometrical
models are known to perform well in line-of-sight (L.oS) dominant
scenarios, harnessing the power of artificial intelligence (AI) to
improve robustness, efficiency, and performance in more complex
propagation scenarios is an intriguing prospect. To this end,
the hypernetwork (HN) is an emerging neural network (NN)
architecture, where one model is used to parameterize the weights
of the other, promising dynamic weight adaptation among other
performance improvements. In this work, we propose the concept
of Hypernetwork Localization (HypLoc) — a hybrid HN-based
architecture for localization in beamforming millimeter-wave
(mmWave) networks, while combining angle-of-arrival (AoA),
time-of-flight (ToF), and received power (RP) as representative
measurements. Considering a realistic urban vehicular environ-
ment, we first demonstrate the baseline effectiveness of HypLoc
with a fixed and known gNodeB (gNB) deployment scenario.
We then also study a scenario where the factory pre-training
covers multiple different gNB deployment constellations and show
that the proposed HypLoc clearly outperforms the traditional
NNs. Finally, we also show that the HypLoc adapts faster and
requires less training data when adapting to a previously unseen
deployment scenario. Overall, the proposed approach facilitates
efficient factory pre-training when operating under multiple
different gNB deployment options.

Index Terms—Deep learning, factory pre-training, hypernet-
work, localization, mmWave networks, vehicular systems

I. INTRODUCTION

One of the key enablers and assets of the next-generation
wireless networks will be integrating artificial intelligence (AI)
technology into various network functionalities [1]. To this end,
pursuing machine learning (ML) and neural network (NN) solu-
tions within the different protocol layers and network capabilities,
outperforming classical model-based solutions is one timely and
active research challenge [2]-[7]. In this regard, high-accuracy
localization and sensing represent one important application
and capability domain where ML and NN based approaches
are under active research [8]. The emerging location-based
services (LBS) that require more and more accurate and reliable
localization [9], together with the requirements for seamless
mobility management and handover procedures, catalyze the
technology development and research innovations in this field.

Utilizing data-driven models in wireless localization over
traditional model-based ones is of high interest within the
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research community, and numerous works introducing off-
the-shelf NN models within the fifth generation (5G) and
beyond networks have been published. To this end, a user
equipment (UE) positioning system utilizing the beam-specific
reference signal received power (RSRP) values as the features
was presented in [10]. Signal propagation time as a feature has
also raised interest in numerous works including [11], where
time-of-arrival (ToA) measurements were used with a recurrent
NN to track mobile users such as connected vehicles. More-
over, beamforming active antenna arrays in millimeter-wave
(mmWave) networks allow for directional signal transmission
and reception, enabling angle-based cellular positioning within
NN-driven systems [12]. Furthermore, combining numerous
network measurements have been shown to be beneficial when
utilizing NN models in complex non-line-of-sight scenarios [7].

Factory pre-training is one of the promising concepts for
enabling the deployment of the Al-driven base stations (BSs),
such as 5G gNodeBs (gNBs), without lengthy on-site data
acquisition and subsequent NN model training. Generating
representative synthetic data is cheaper and faster, while models
trained on such data are capable of reaching competitive
performance [13]. For example, [14] introduced a paradigm to
generate a high-accuracy 5G localization dataset, considering
a realistic ray-tracing model and channel frequency response
as the actual feature. Apart from generating representative and
reliable data, the capabilities of the pre-trained models are
determined by the selected NN model architecture. The utiliza-
tion of hypernetworks (HNs) is an emerging concept carrying
strong potential while still being only marginally explored,
especially in the communications domain. The HN approach
considers a pair of NNs, one generating the parameters for the
other, and is expected to enable dynamic model adaptation and
improved performance, while also allowing combination with
any type of NN structure [15].

A survey on HNs was presented in [15], introducing basic
concepts and applications, while [16] provides several hands-on
experiments, combining HNs with convolutional and sequential
models. A multiple-input multiple-output (MIMO) detector im-
plemented as a sequential HN model was proposed in [3] with
promising results. Similarly, to avoid the necessity to re-train
the whole NN-based detector for each channel realization, [17]
proposes a HN structure to dynamically adapt the model
weights. HN was also utilized for a non-stationary channel
prediction in [4], adapting the model based on the received
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channel state information (CSI). A joint source-channel coding
using hypernetworks was introduced in [5], taking channel
conditions as inputs and generating weights for the channel
encoder and decoder at the same time, improving model
adaptability, memory efficiency, and transmission accuracy.
HN was used to improve the channel estimation in a mmWave
system in [6]. Utilizing a HN to estimate the parameters for
different models than NNs was attempted in [18] and [19],
combining the concept with expectation consistent signal
recovery algorithm and a Kalman filter, respectively.

While the HN is an emerging topic in the field of wireless
communications, this is the first localization-oriented study
utilizing and exploring this promising technique. The proposed
localization model consists of a HN structure combined with a
traditional NN model to enable seamless, efficient, and accurate
positioning performance. Specific emphasis in the study is
on improved robustness against different gNB deployment
constellations while also seeking to generalize towards unseen
deployments. One important application scenario of the pro-
posed method is localizing and tracking vehicles in complex
built environments with complicated propagation characteristics
that hinder the efficiency of classical methods.

The main technical contributions and novelty of the work
can be summarized as follows:

o We introduce and discuss the main concepts of the HN
structure and propose the Hypernetwork Localization
(HypLoc) concept, a novel HN-based architecture for
wireless localization;

o We evaluate the feasibility of utilizing HypLoc as a
positioning model in a well-established urban environ-
ment, incorporating cars and other vehicles as UE, and
adopt accurate ray tracing tools for realistic propagation
modeling in the considered 28 GHz mmWave network;

o« We study the advantages and drawbacks of the HN
architecture within HypLoc as compared to traditional NN
models in terms of positioning performance, generalization
capabilities, and adaptability to new data.

The rest of this paper is organized as follows: Section II
discusses the basic concepts of HNs and presents the considered
5G network positioning measurements. Section III introduces
the technical specifics of the proposed model, in terms of
architecture, hyperparameters and training, while Section IV
provides the numerical evaluation results, along with the details
on the evaluation scenario and evaluated models. Finally,
Section V concludes the work.

II. HYPERNETWORKS AND 5G POSITIONING

Apart from describing the model determining the parameters
of the main network, the term hypernetwork is interchangeably
used within the literature to describe the pair of hypernetwork
and the main model as a structure. For terminological clarity
within this manuscript, the term hypernetwork (HN) denotes
the general concept and the model, while the pair of HN and
the main model is referred to as hypernetwork structure (HNS).
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Fig. 1. General concept of wireless positioning, where UE is localized based
on measured channel or received signal features at multiple gNBs.

A. Hypernetworks

While the basic concepts of deep learning are widely
known [20], the concept of HNs has only recently emerged
within the scientific domain. The basic idea of a HNS consists
of two NNs, where one, called a HN, determines the weights
and biases (parameters) for the second, called main or primary
network. Both networks can be trained in an end-to-end
manner [15]. Utilizing a HNS enables several crucial things,
which include reducing the number of trainable parameters
(thus reducing the training complexity) [16], enabling near-
optimal weight initialization [15], improving the overall perfor-
mance [6], and adjusting the model’s weights in each iteration
of the model [17], effectively adapting the NN to the given
circumstance or environment.

Formally, while the standard NN model can be interpreted as
a function F(X, ®), which is trained through backpropagation
while minimizing the loss function L(,[) where | = (x,7)
denotes labels and [ = (Z,7) label estimates, the HNS can
be similarly expressed as F'(X, H(Z,V)), where H(Z, ¥))
denotes the HN model. Here, X denotes the input features of
the NN, Z denotes the input features of the HN, and & and
U denote the trainable parameters composed of weights and
biases of each network, respectively. The difference between
the two models has clear and direct consequences regarding
their behavior. By exchanging ® for H(Z, ¥)), the structure
transforms the static weights to a set of variables, which
may change based on the input Z. Thus, HN can adaptively
change the behavior of the main model, leading to greater
generalization properties, as well as implementing the degrees
of freedom within the model itself.

B. Positioning Concept and Considered 5G Measurements

Utilizing a NN for radio-based positioning is realized by
feeding the network measurements to a positioning model,
which outputs the location estimates of the user. Generally, any
type of measurements can be utilized, ranging from received
power [10], angular information [12], propagation time [11], to
channel frequency responses [21] and their combination [7], as
depicted in Fig. 1. Multiple gNBs receive the signal transmitted
by the target UE and variations in their measurements due to
different signal propagation enable the model to learn how
to localize the user. To learn the NN model, a so-called
training database needs to be acquired with representative and
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Fig. 2. Design of the overall HNS, where the HN estimates the parameters of
the main network. The addition of a trainable network within the proposed
HypLoc structure transforms the HN and main network models into powerful
feature extractors.

location-tagged measurements, which can be either measured
or synthetically acquired via simulations.

The considered physical quantities related to the received
signal and the underlying radio channel are angle-of-arrival
(AoA), time-of-flight (ToF), and received power (RP). In
practical networks, gNBs equipped with antenna arrays are
capable of harnessing information on distinct radio propagation
paths in terms the ToF and AoA (at the gNB) through multi-
round trip time (MRTT) measurements utilizing uplink (UL)
sounding reference signal (SRS) and downlink (DL) positioning
reference signal (PRS) [22], [23]. In the 5G standard, the
considered measurements can be obtained by following the
procedures and specific signalling structures related to the
MRTT and uplink angle-of-arrival (UL-AoA) positioning [23].

III. PROPOSED METHODS
A. Hybrid Model Architecture

In this work, we seek to especially exploit the generalization
properties of the HNS to adapt the positioning model to
the variations in the deployment coverage and extend the
generalization capabilities to the previously unseen scenario.
We include an additional model, denoted as the trainable model,
in a series after the main network, as shown in Fig. 2, to
alleviate some of the HN’s drawbacks discussed later in the text.
The general HNS is specified in Fig. 2 when not considering
the separated trainable model.

In the proposed HypLoc architecture only a part of the main
data pipeline is parametrized by the HN, while the other part
remains static. With this solution, we aim to create a robust
model incorporating the advantages of both the static model
(trainable network) and the HNS (main network + HN pair).
To this end, following the general structure depicted in Fig. 2,

the data flow within the model is as follows: the inputs Z are
passed through the HN, which estimates the weights and biases
for the main network. The main network is then parametrized
and the inputs X are then passed through it. The outputs
of the main network are fed to the static, trainable network.
Following the notation in Section II-A, the trainable network
considers the main network’s outputs F'(X, H(Z, ¥)) as input
features, while its parameters W remain static. In the training
process, the loss L(-) is calculated between the estimates and
the labels, and by applying the backpropagation through the
whole system the trainable parameters U and ® are updated
in both the trainable network and the HN, since all operations
within the structure are differentiable.

B. Related Challenges

Utilizing a HN brings several challenges that need to
be either considered or directly targeted. Among the most
significant ones is the large number of trainable parameters
and weights the HN has to generate, despite the relatively
small size of the main network. More concretely, each neuron
in a NN contains D;n + 1 parameters, where D;n denotes
the dimension of its input and 1 refers to that neuron’s bias.
Consequently, a simple, single-layer main network with 100
inputs and 50 neurons requires 50-(100+1) = 5050 parameters
to be provided by the HN. In turn, the HN requires as many
neurons in its last layer, i.e. 5050, while the previous HN’s
layer needs to be adequately large to pass enough information,
e.g. consisting of 500 neurons (which is understated to say at
least). Consequently, only the last layer of the HN consists of
5050 - (500 + 1) = 2530050 trainable parameters to operate a
single, 100-neuron main network. Maintaining the dimensions
of both networks is thus a critical objective to consider and
overcome.

Carefully optimizing the training algorithm of the HNS is
of critical importance. While the weights of the traditional
NN are being iteratively adjusted in very small instances, the
HN needs to ensure that the weights it provides are consistent,
stable, and efficient. Carefully selecting the hyperparameters of
the model and tracking the training progress is crucial, as HN
is susceptible to inaccuracies and biases. Furthermore, ensuring
the stability of the training data further enables seamless
operation of the HN. Uncertainties, inconsistencies, and outliers,
all can lead to performance degradation.

C. HypLoc Hyperparameters and Training

To keep the main and trainable network powerful yet
lightweight while maintaining the HN parametrization in a
reasonable range, the main network was constructed as a single-
layer, densely connected model with 32 neurons and a Gaussian
error linear unit (GELU) activation function [24]. The same
input vector is considered for both the main network and the
hypernetwork, i.e., X = Z, and consists of 56 elements in
total (described in Sec. IV-A). Consequently, the HN has to
provide 1824 parameters to the main network. To address
the challenge of training parameters’ count, the HN was
experimentally established as a 3-layer NN with 64, 128, and
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TABLE I: HYPLOC ARCHITECTURE - BASIC INFORMATION

Model |Layers|Neurons | Parameters | Trainable parameters
Main model 1 32 1824 0

Hypernetwork |3 2016  [247264 |247264

Trainable model|3 66 2178 2178

Total 7 2114 251266 249442

1824 neurons, which limits the number of trainable parameters
to 247264, out of which 235296 are within the last layer. The
first two layers have GELU activation, while the third considers
a sigmoid activation to limit and stabilize the output. The
trainable network is a 3-layer, densely connected NN with 32,
32, and 2 neurons, respectively. The first two layers consider
GELU activation, while the output layer has no activation to
enable a continuous range of outputs.

The overall information and hyperparametrization of each
NN are summarized in Table I, which clearly shows that the
HN is by far the most complex model within HypLoc.

The HypLoc model was trained for 30 epochs in total,
with Adam optimizer specified with learning rates starting
at 0.001 and decreasing by 4% for every 10000 optimizer
steps (processed samples). Mean squared error was selected
as a quadratic loss function, consistent with the positioning
error. The decaying learning rate first allows all models to
adapt to the environment and the data and later enables the
hypernetwork to stabilize its outputs.

IV. NUMERICAL RESULTS
A. Evaluation Scenario and Assumptions

The evaluation environment utilized in this work is real-
ized using ray-tracing-based channel measurements based on
Wireless Insite®software [25]. We employ the map-based
Madrid grid proposed by the METIS society [26], recognized
as the relevant urban scenario by 3rd Generation Partnership
Project (3GPP) in 5G New Radio (NR) specifications [27]. The
Madrid grid layout introduces generally a rich radio propagation
environment with varying street widths and open areas, which
provide solid generalization and scalability options for the
model trained in the considered environment and setup.

The simulated urban scenario contains eighteen 5G mmWave
gNBs, illustrated along Fig. 3 with red rectangles. Each gNB is
equipped with a uniform cylindrical antenna array placed at 5 m
height. The network is configured to operate at 28 GHz carrier
frequency. The AoA and ToF measurements are obtained based
on the corresponding characteristics of the radio propagation
path with the highest received power, building on the signals
and measurement procedures described in Section II-B. The
obtained AoA measurements are acquired with a 20 degrees
resolution, reflecting the limited directional resolution of the
gNB. The network measurements corresponding to the samples
with path-loss higher than 160 dB are not considered, while in
general, the environment shown in Fig. 3 possesses large areas
and street segments with severe multi-bounce phenomena.

The aggregate dataset comprises 36 vehicle-like user trajec-
tories, where the mobile UE captures data at 100 ms intervals.
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Fig. 3. Considered Madrid map ray-tracing environment with a total of 18 gNBs
marked with red rectangles, out of which 7 are active in a given constellation.
One example constellation is illustrated with black crosses. The figure also
shows the distribution of the received power of a single gNB.

For each trajectory, the initial UE position is set randomly
along the streets. UEs navigate within the region with an equal
probability of moving in any direction at intersections. The
UE speed ranges from 20 km/h to 60 km/h, contingent on the
current street and the proximity to intersections. When nearing
an intersection, the UE decelerates at a rate of 3 m/s2 until it
reaches a constant speed of 20 km/h to ensure smooth turning.
Post-turn, the UE accelerates at 2m/s? until it hits the street-
specific speed limit. The standard speed limit is set at 40 km/h,
except for the right-most vertical street, which has a limit of
20km/h (refer to Fig. 3), and the broader street next to the
pedestrian area, which is capped at 60 km/h. While all user
trajectories adhere to right-hand traffic rules, the specific UE
paths, and corresponding measurement points differ across the
simulated trajectories.

Furthermore, this work considers numerous different gNB
deployment constellations, each consisting of 7 active base
stations selected randomly out of the available 18. For example,
constellation #1 is denoted in Fig. 3 with black crosses. Out
of 36 available user tracks, 4 were selected for testing, while
the remaining 32 were combined to create a training set. Each
sample is considered individually, with 22775 samples in the
training set and 2406 samples in the test set. Each sample
is represented by received power, ToF, and AoA in the form
of three vectors representing its x, y, and z components for
each gNB, with an additional z, y, and 2z coordinates of the
corresponding gNB. In total, each sample is a vector of 7-8 =
56 elements.

B. Benchmark Models

To fairly assess the performance and effectiveness of the
proposed structure, we utilize several reference NN models,
each providing valuable insights into the HN’s behavior. The
first considered architecture is a NN model constructed as a
feedforward NN with 3 intermediate layers of 32 neurons each,
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and a 2-neuron output layer. By following the architecture
of a main network and the trainable networks, the model’s
performance corresponds to utilizing only the feedforward
pipeline of the proposed structure and consists of 4002 trainable
parameters. The second considered architecture is constructed
as a feedforward NN with 3 intermediate layers of 340
neurons each, and a 2-neuron output layer. This model, in turn,
represents the classical model with similar complexity to the
proposed HN structure, as it has 251942 trainable parameters.
Moreover, the parameters of all reference NN models have
been briefly optimized.

In the evaluation, we often utilize multiple gNB constella-
tions and we either train a single model with all available
data or create multiple models, each corresponding to an
individual deployment constellation. The term single model
denotes that one instance of the model was trained with
all the data corresponding to multiple constellations, while
individual model considers as many instances of each model,
as there are constellations — for example, with 2 constellations,
the results corresponding to single model were obtained by
inferring and learning a single common model, while the results
corresponding to an individual model were obtained from the
average performance of C' models, each trained and tested only
with one of the C' deployment constellations.

Moreover, we differentiate between the architectures by
adding the + sign, i.e. individual+ and single model+, when
referring to the second, larger NN architecture. To ensure the
fairness of comparison, all considered models were trained
with identical settings.

C. Numerical Results

1) Baseline Positioning Performance for a Single gNB
Constellation: In the first part of the evaluation, we study
the performance of the considered model in a single given
constellation, depicted in Fig. 3 with black crosses, to assess the
baseline capabilities of the HN as a general positioning model.
The corresponding results are depicted in Fig. 4, in terms of
the UE localization error cumulative distributions, where the
localization error is defined as /(z — %)%+ (y — §)2. The
proposed HypLoc solution provides the lowest errors with
a mean positioning error of 2.81m, followed by the Single
model+ with a mean positioning error of 3.26m. The Single
model, having a significantly lower number of parameters,
performs the poorest with a 4.42m mean positioning error. The
performance of the single model and individual benchmarks
are in this case identical, as only one constellation is so far
considered.

The results show that in a gNB-wise static scenario with a
single constellation, the application of a HN is justified and
more efficient than the traditional models when it comes to
the fundamental localization capabilities. This is stemming
from HN’s ability to dynamically change the model parameters
based on the input array, resulting in adaptive model behavior
depending on the UE’s location.

2) Increasing the Number of gNB Constellations: In the next
evaluations, we study the performance behavior of a standard
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Fig. 4. Distribution of the positioning errors on the test dataset in a single
given gNB constellation.

NN, and that of the HypLoc, when increasing the number of
possible gNB constellations within the environment. We set up
the experiment by randomly creating 10 different constellations
with 7 gNBs in each. Then, by iteratively increasing the number
of constellations, we train the considered models and evaluate
their positioning performance.

The mean positioning results across considered constellations
are depicted in Fig. 5, where the number of gNB constellations
increases from 1 to 10. The figure shows consistent results with
those in Fig. 4 where only a single constellation was considered.
The single model and individual models perform almost the
same, while the same is true for the three larger models. The
slight differences between the performance of individual and
single models at 1 constellation is a direct result of randomness
in NN models’ initialization and training. When increasing the
number of constellations, i.e., the amount of information the
models have to adapt to, we can observe the following. The
performance of the single model degrades fairly linearly with
the increasing number of constellations, with a much greater
slope than that of the remaining models. The HypLoc provides
lower mean positioning errors than both the single model
and the single model+ for all numbers of gNB constellations
while providing the lowest error across all models at 1 and
2 possible constellations, being further outperformed by the
individual4+ benchmark consisting of up to 10 individually
trained models for each constellation. The fluctuations in the
observable trends especially with the Individual and Individual+
models are caused by variations in signal coverage within the
overall Madrid Map region across the different constellations
as well as by the inherent randomness within the NN training
and initialization processes. The sudden increase in the mean
localization error at 6 constellations is caused by an unfortunate
selection of the gNBs location, such that a significant part of
the overall Madrid map area is left without signal coverage.

To provide a complementary performance measure, the
normalized error relative to the performance of the Individual
model is depicted in Fig. 6. The figure was obtained by
dividing each model’s mean positioning error by the error
of the Individual model (thus it always yields 1). The data
trends are now smoother, and the relative differences between
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Fig. 5. Mean positioning error across all scenarios ranging from 1 to 10
constellations.
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Fig. 6. Mean positioning error across all scenarios normalized to the
performance of the Individual model.

the HypLoc’s performance and the benchmarks are also better
recognizable.

Overall, the numerical results provided along Figs. 5 and 6
indicate the superior capabilities of the HypLoc model over
those of the traditional ones when a single neural network
entity is operating under a variety of gNB deployments.

3) Generalizing to an Unseen gNB Constellation: In the
final and most challenging example, the capabilities of the
HypLoc to adapt to a new and previously unseen constellation
are evaluated — in the spirit of transfer learning. First, all models
are trained in 10 known constellations (corresponding to the
results shown in e.g. Fig. 5), being then further re-trained on

the data corresponding to the new, unseen gNB constellation.

We note that the re-trained Individual and Individual+ models

correspond always to the best-performing gNB constellation.

Additionally, we manually selected the constellation so that
the signal coverage is well-distributed throughout the Madrid
map environment, ensuring a feasible localization task.

In general, the rate at which any model can learn from
the new data is one crucial characteristic. Fig. 7 provides the
comparison of the considered models in terms of their mean
positioning error based on the number of epochs trained on, while
considering the full set of training samples. The figure shows
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Fig. 7. Mean positioning errors of considered models in a previously unseen
gNB deployment scenario based on the re-training progress.

the achieved positioning performance after the first epoch, as
without any re-training, the mean positioning errors are still very
large. Specifically, without any re-training, the HypLoc provided
140.4m mean positioning error, Single model 187.5m, Single
model+ 193.5m, Individual model 167.4m, and Individual+
model 218.5m. Now, for increasing re-training epoch counts,
the results in Fig. 7 show that the HypLoc model performs the
strongest across the re-training, achieving the lowest positioning
errors across all epochs. This is one strong benefit of the proposed
scheme compared to the reference solutions.

Furthermore, we study each model’s ability to adapt to the
new environment with a limited amount of available new data
— an important practical aspect related to the costs and efforts
in acquiring new data in a new deployment scenario. In the
experiment, the data was deliberately limited to 1%, 2%, 5%,
10%, 25%, and 50% of the original training set size, referring to
227 samples, 455 samples, 1138 samples, 2277 samples, 5693
samples, and 11387 samples, respectively. As can be observed
through the results in Fig. 8, the proposed HypLoc achieves
the lowest positioning error at all data sizes. Additionally, the
Single model+ consistently outperforms the Individual4- model,
showing that the multiple learned environments positively
impact the model’s capability to adapt to the previously
unknown scenario when data is scarce. Interestingly, with
limited data, the Individual model provides better results than
its larger counterpart as smaller models have lower training
requirements than the complex ones.

D. Further Discussion and Future Work

Reference models: We utilized two reference NN architec-
tures, one with identical positioning pipeline to the proposed
HypLoc, and the other, denoted with +, with almost the same
number of trainable parameters and thus similar complexity.
The performance gap between the smaller model (esp. Single
model) shows the direct impact of the HN model on the perfor-
mance, as HypLoc utilizes the same, “lightweight” positioning
pipeline. While the performance gap between the + models and
the HypLoc is smaller there is no downside to implementing
HypLoc, as utilizing it carries no additional strains in terms
of costs or requirements than the standard model.
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Fig. 8. Mean positioning errors of considered models in a previously unseen
¢NB deployment scenario based on the available sample scarcity.

Future work: The provided results demonstrate the promising
capabilities of the HN and open several research directions. One
of the drawbacks of the utilized models is the fixed nature of
the implemented architecture in terms of the number of gNBs
which is here fixed to 7. Designing a model capable of adjusting
not only the weights and biases but the entire architecture, is
one challenge that HN may be able to realize. Another major
network aspect the HN-based models can potentially enable is
alleviating the requirement of model re-training completely. By
incorporating enough data and appropriate learning, one may
argue that the model can learn to localize the user while the
locations of gNBs are arbitrary, which we will strive for in our
future work. A natural extension of the current HypLoc model
to further improve its positioning performance is incorporating
a sequence-processing NN. When processing sequences, HN
adapts the weights of the main model in each sample instance
and consequently, unrolling the recurrent model results in a
series of different models.

V. CONCLUSION

In this work, we introduced the so-called HypLoc concept
referring to a novel HN-based architecture for localization
within 5G and beyond networks. After shortly reviewing the
basics of HNs and available 5G positioning measurements, the
paper presented the architectural design, hyperparametrization,
and training approach leading to the proposed HypLoc concept.
The ray-tracing-based numerical evaluations showed the supe-
rior positioning performance of the proposed model in an urban
deployment scenario, to localize vehicular terminals, achieving
almost 20% lower mean positioning error than a traditional
NN model with the same number of parameters. Furthermore,
we investigated the capabilities of HypLoc to generalize across
multiple environments by increasing the number of possible
gNB constellations — again leading to consistently improved
results compared to traditional models. Finally, the advantages
of parametrizing the model using a HN were also shown when
adapting the model to a previously unseen gNB deployment
constellation where the HypLoc model adapts faster and with
less training data than the other existing NN models.
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