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Abstract—Wireless localization and sensing are increasingly
important capabilities when the networks are evolving towards
the 6

th generation era. While the physics-inspired geometrical
models are known to perform well in line-of-sight (LoS) dominant
scenarios, harnessing the power of artificial intelligence (AI) to
improve robustness, efficiency, and performance in more complex
propagation scenarios is an intriguing prospect. To this end,
the hypernetwork (HN) is an emerging neural network (NN)
architecture, where one model is used to parameterize the weights
of the other, promising dynamic weight adaptation among other
performance improvements. In this work, we propose the concept
of Hypernetwork Localization (HypLoc) – a hybrid HN-based
architecture for localization in beamforming millimeter-wave
(mmWave) networks, while combining angle-of-arrival (AoA),
time-of-flight (ToF), and received power (RP) as representative
measurements. Considering a realistic urban vehicular environ-
ment, we first demonstrate the baseline effectiveness of HypLoc
with a fixed and known gNodeB (gNB) deployment scenario.
We then also study a scenario where the factory pre-training
covers multiple different gNB deployment constellations and show
that the proposed HypLoc clearly outperforms the traditional
NNs. Finally, we also show that the HypLoc adapts faster and
requires less training data when adapting to a previously unseen
deployment scenario. Overall, the proposed approach facilitates
efficient factory pre-training when operating under multiple
different gNB deployment options.

Index Terms—Deep learning, factory pre-training, hypernet-
work, localization, mmWave networks, vehicular systems

I. INTRODUCTION

One of the key enablers and assets of the next-generation

wireless networks will be integrating artificial intelligence (AI)

technology into various network functionalities [1]. To this end,

pursuing machine learning (ML) and neural network (NN) solu-

tions within the different protocol layers and network capabilities,

outperforming classical model-based solutions is one timely and

active research challenge [2]–[7]. In this regard, high-accuracy

localization and sensing represent one important application

and capability domain where ML and NN based approaches

are under active research [8]. The emerging location-based

services (LBS) that require more and more accurate and reliable

localization [9], together with the requirements for seamless

mobility management and handover procedures, catalyze the

technology development and research innovations in this field.

Utilizing data-driven models in wireless localization over

traditional model-based ones is of high interest within the
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research community, and numerous works introducing off-

the-shelf NN models within the fifth generation (5G) and

beyond networks have been published. To this end, a user

equipment (UE) positioning system utilizing the beam-specific

reference signal received power (RSRP) values as the features

was presented in [10]. Signal propagation time as a feature has

also raised interest in numerous works including [11], where

time-of-arrival (ToA) measurements were used with a recurrent

NN to track mobile users such as connected vehicles. More-

over, beamforming active antenna arrays in millimeter-wave

(mmWave) networks allow for directional signal transmission

and reception, enabling angle-based cellular positioning within

NN-driven systems [12]. Furthermore, combining numerous

network measurements have been shown to be beneficial when

utilizing NN models in complex non-line-of-sight scenarios [7].

Factory pre-training is one of the promising concepts for

enabling the deployment of the AI-driven base stations (BSs),

such as 5G gNodeBs (gNBs), without lengthy on-site data

acquisition and subsequent NN model training. Generating

representative synthetic data is cheaper and faster, while models

trained on such data are capable of reaching competitive

performance [13]. For example, [14] introduced a paradigm to

generate a high-accuracy 5G localization dataset, considering

a realistic ray-tracing model and channel frequency response

as the actual feature. Apart from generating representative and

reliable data, the capabilities of the pre-trained models are

determined by the selected NN model architecture. The utiliza-

tion of hypernetworks (HNs) is an emerging concept carrying

strong potential while still being only marginally explored,

especially in the communications domain. The HN approach

considers a pair of NNs, one generating the parameters for the

other, and is expected to enable dynamic model adaptation and

improved performance, while also allowing combination with

any type of NN structure [15].

A survey on HNs was presented in [15], introducing basic

concepts and applications, while [16] provides several hands-on

experiments, combining HNs with convolutional and sequential

models. A multiple-input multiple-output (MIMO) detector im-

plemented as a sequential HN model was proposed in [3] with

promising results. Similarly, to avoid the necessity to re-train

the whole NN-based detector for each channel realization, [17]

proposes a HN structure to dynamically adapt the model

weights. HN was also utilized for a non-stationary channel

prediction in [4], adapting the model based on the received
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channel state information (CSI). A joint source-channel coding

using hypernetworks was introduced in [5], taking channel

conditions as inputs and generating weights for the channel

encoder and decoder at the same time, improving model

adaptability, memory efficiency, and transmission accuracy.

HN was used to improve the channel estimation in a mmWave

system in [6]. Utilizing a HN to estimate the parameters for

different models than NNs was attempted in [18] and [19],

combining the concept with expectation consistent signal

recovery algorithm and a Kalman filter, respectively.

While the HN is an emerging topic in the field of wireless

communications, this is the first localization-oriented study

utilizing and exploring this promising technique. The proposed

localization model consists of a HN structure combined with a

traditional NN model to enable seamless, efficient, and accurate

positioning performance. Specific emphasis in the study is

on improved robustness against different gNB deployment

constellations while also seeking to generalize towards unseen

deployments. One important application scenario of the pro-

posed method is localizing and tracking vehicles in complex

built environments with complicated propagation characteristics

that hinder the efficiency of classical methods.

The main technical contributions and novelty of the work

can be summarized as follows:

• We introduce and discuss the main concepts of the HN

structure and propose the Hypernetwork Localization

(HypLoc) concept, a novel HN-based architecture for

wireless localization;

• We evaluate the feasibility of utilizing HypLoc as a

positioning model in a well-established urban environ-

ment, incorporating cars and other vehicles as UE, and

adopt accurate ray tracing tools for realistic propagation

modeling in the considered 28 GHz mmWave network;

• We study the advantages and drawbacks of the HN

architecture within HypLoc as compared to traditional NN

models in terms of positioning performance, generalization

capabilities, and adaptability to new data.

The rest of this paper is organized as follows: Section II

discusses the basic concepts of HNs and presents the considered

5G network positioning measurements. Section III introduces

the technical specifics of the proposed model, in terms of

architecture, hyperparameters and training, while Section IV

provides the numerical evaluation results, along with the details

on the evaluation scenario and evaluated models. Finally,

Section V concludes the work.

II. HYPERNETWORKS AND 5G POSITIONING

Apart from describing the model determining the parameters

of the main network, the term hypernetwork is interchangeably

used within the literature to describe the pair of hypernetwork

and the main model as a structure. For terminological clarity

within this manuscript, the term hypernetwork (HN) denotes

the general concept and the model, while the pair of HN and

the main model is referred to as hypernetwork structure (HNS).
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gNodeB

UE RP
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?,?
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Fig. 1. General concept of wireless positioning, where UE is localized based
on measured channel or received signal features at multiple gNBs.

A. Hypernetworks

While the basic concepts of deep learning are widely

known [20], the concept of HNs has only recently emerged

within the scientific domain. The basic idea of a HNS consists

of two NNs, where one, called a HN, determines the weights

and biases (parameters) for the second, called main or primary

network. Both networks can be trained in an end-to-end

manner [15]. Utilizing a HNS enables several crucial things,

which include reducing the number of trainable parameters

(thus reducing the training complexity) [16], enabling near-

optimal weight initialization [15], improving the overall perfor-

mance [6], and adjusting the model’s weights in each iteration

of the model [17], effectively adapting the NN to the given

circumstance or environment.

Formally, while the standard NN model can be interpreted as

a function F (X,Φ), which is trained through backpropagation

while minimizing the loss function L(l, l̂) where l = (x, y)
denotes labels and l̂ = (x̂, ŷ) label estimates, the HNS can

be similarly expressed as F (X,H(Z,Ψ)), where H(Z,Ψ))
denotes the HN model. Here, X denotes the input features of

the NN, Z denotes the input features of the HN, and Φ and

Ψ denote the trainable parameters composed of weights and

biases of each network, respectively. The difference between

the two models has clear and direct consequences regarding

their behavior. By exchanging Φ for H(Z,Ψ)), the structure

transforms the static weights to a set of variables, which

may change based on the input Z. Thus, HN can adaptively

change the behavior of the main model, leading to greater

generalization properties, as well as implementing the degrees

of freedom within the model itself.

B. Positioning Concept and Considered 5G Measurements

Utilizing a NN for radio-based positioning is realized by

feeding the network measurements to a positioning model,

which outputs the location estimates of the user. Generally, any

type of measurements can be utilized, ranging from received

power [10], angular information [12], propagation time [11], to

channel frequency responses [21] and their combination [7], as

depicted in Fig. 1. Multiple gNBs receive the signal transmitted

by the target UE and variations in their measurements due to

different signal propagation enable the model to learn how

to localize the user. To learn the NN model, a so-called

training database needs to be acquired with representative and
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Fig. 2. Design of the overall HNS, where the HN estimates the parameters of
the main network. The addition of a trainable network within the proposed
HypLoc structure transforms the HN and main network models into powerful
feature extractors.

location-tagged measurements, which can be either measured

or synthetically acquired via simulations.

The considered physical quantities related to the received

signal and the underlying radio channel are angle-of-arrival

(AoA), time-of-flight (ToF), and received power (RP). In

practical networks, gNBs equipped with antenna arrays are

capable of harnessing information on distinct radio propagation

paths in terms the ToF and AoA (at the gNB) through multi-

round trip time (MRTT) measurements utilizing uplink (UL)

sounding reference signal (SRS) and downlink (DL) positioning

reference signal (PRS) [22], [23]. In the 5G standard, the

considered measurements can be obtained by following the

procedures and specific signalling structures related to the

MRTT and uplink angle-of-arrival (UL-AoA) positioning [23].

III. PROPOSED METHODS

A. Hybrid Model Architecture

In this work, we seek to especially exploit the generalization

properties of the HNS to adapt the positioning model to

the variations in the deployment coverage and extend the

generalization capabilities to the previously unseen scenario.

We include an additional model, denoted as the trainable model,

in a series after the main network, as shown in Fig. 2, to

alleviate some of the HN’s drawbacks discussed later in the text.

The general HNS is specified in Fig. 2 when not considering

the separated trainable model.

In the proposed HypLoc architecture only a part of the main

data pipeline is parametrized by the HN, while the other part

remains static. With this solution, we aim to create a robust

model incorporating the advantages of both the static model

(trainable network) and the HNS (main network + HN pair).

To this end, following the general structure depicted in Fig. 2,

the data flow within the model is as follows: the inputs Z are

passed through the HN, which estimates the weights and biases

for the main network. The main network is then parametrized

and the inputs X are then passed through it. The outputs

of the main network are fed to the static, trainable network.

Following the notation in Section II-A, the trainable network

considers the main network’s outputs F (X,H(Z,Ψ)) as input

features, while its parameters Ψ remain static. In the training

process, the loss L(·) is calculated between the estimates and

the labels, and by applying the backpropagation through the

whole system the trainable parameters Ψ and Φ are updated

in both the trainable network and the HN, since all operations

within the structure are differentiable.

B. Related Challenges

Utilizing a HN brings several challenges that need to

be either considered or directly targeted. Among the most

significant ones is the large number of trainable parameters

and weights the HN has to generate, despite the relatively

small size of the main network. More concretely, each neuron

in a NN contains Din + 1 parameters, where Din denotes

the dimension of its input and 1 refers to that neuron’s bias.

Consequently, a simple, single-layer main network with 100
inputs and 50 neurons requires 50·(100+1) = 5050 parameters

to be provided by the HN. In turn, the HN requires as many

neurons in its last layer, i.e. 5050, while the previous HN’s

layer needs to be adequately large to pass enough information,

e.g. consisting of 500 neurons (which is understated to say at

least). Consequently, only the last layer of the HN consists of

5050 · (500 + 1) = 2530050 trainable parameters to operate a

single, 100-neuron main network. Maintaining the dimensions

of both networks is thus a critical objective to consider and

overcome.

Carefully optimizing the training algorithm of the HNS is

of critical importance. While the weights of the traditional

NNs are being iteratively adjusted in very small instances, the

HN needs to ensure that the weights it provides are consistent,

stable, and efficient. Carefully selecting the hyperparameters of

the model and tracking the training progress is crucial, as HN

is susceptible to inaccuracies and biases. Furthermore, ensuring

the stability of the training data further enables seamless

operation of the HN. Uncertainties, inconsistencies, and outliers,

all can lead to performance degradation.

C. HypLoc Hyperparameters and Training

To keep the main and trainable network powerful yet

lightweight while maintaining the HN parametrization in a

reasonable range, the main network was constructed as a single-

layer, densely connected model with 32 neurons and a Gaussian

error linear unit (GELU) activation function [24]. The same

input vector is considered for both the main network and the

hypernetwork, i.e., X = Z, and consists of 56 elements in

total (described in Sec. IV-A). Consequently, the HN has to

provide 1824 parameters to the main network. To address

the challenge of training parameters’ count, the HN was

experimentally established as a 3-layer NN with 64, 128, and
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TABLE I: HYPLOC ARCHITECTURE - BASIC INFORMATION

Model Layers Neurons Parameters Trainable parameters

Main model 1 32 1824 0

Hypernetwork 3 2016 247264 247264

Trainable model 3 66 2178 2178

Total 7 2114 251266 249442

1824 neurons, which limits the number of trainable parameters

to 247264, out of which 235296 are within the last layer. The

first two layers have GELU activation, while the third considers

a sigmoid activation to limit and stabilize the output. The

trainable network is a 3-layer, densely connected NN with 32,

32, and 2 neurons, respectively. The first two layers consider

GELU activation, while the output layer has no activation to

enable a continuous range of outputs.

The overall information and hyperparametrization of each

NN are summarized in Table I, which clearly shows that the

HN is by far the most complex model within HypLoc.

The HypLoc model was trained for 30 epochs in total,

with Adam optimizer specified with learning rates starting

at 0.001 and decreasing by 4% for every 10000 optimizer

steps (processed samples). Mean squared error was selected

as a quadratic loss function, consistent with the positioning

error. The decaying learning rate first allows all models to

adapt to the environment and the data and later enables the

hypernetwork to stabilize its outputs.

IV. NUMERICAL RESULTS

A. Evaluation Scenario and Assumptions

The evaluation environment utilized in this work is real-

ized using ray-tracing-based channel measurements based on

Wireless Insite®software [25]. We employ the map-based

Madrid grid proposed by the METIS society [26], recognized

as the relevant urban scenario by 3rd Generation Partnership

Project (3GPP) in 5G New Radio (NR) specifications [27]. The

Madrid grid layout introduces generally a rich radio propagation

environment with varying street widths and open areas, which

provide solid generalization and scalability options for the

model trained in the considered environment and setup.

The simulated urban scenario contains eighteen 5G mmWave

gNBs, illustrated along Fig. 3 with red rectangles. Each gNB is

equipped with a uniform cylindrical antenna array placed at 5m

height. The network is configured to operate at 28GHz carrier

frequency. The AoA and ToF measurements are obtained based

on the corresponding characteristics of the radio propagation

path with the highest received power, building on the signals

and measurement procedures described in Section II-B. The

obtained AoA measurements are acquired with a 20 degrees

resolution, reflecting the limited directional resolution of the

gNB. The network measurements corresponding to the samples

with path-loss higher than 160 dB are not considered, while in

general, the environment shown in Fig. 3 possesses large areas

and street segments with severe multi-bounce phenomena.

The aggregate dataset comprises 36 vehicle-like user trajec-

tories, where the mobile UE captures data at 100ms intervals.
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Fig. 3. Considered Madrid map ray-tracing environment with a total of 18 gNBs
marked with red rectangles, out of which 7 are active in a given constellation.
One example constellation is illustrated with black crosses. The figure also
shows the distribution of the received power of a single gNB.

For each trajectory, the initial UE position is set randomly

along the streets. UEs navigate within the region with an equal

probability of moving in any direction at intersections. The

UE speed ranges from 20 km/h to 60 km/h, contingent on the

current street and the proximity to intersections. When nearing

an intersection, the UE decelerates at a rate of 3m/s2 until it

reaches a constant speed of 20 km/h to ensure smooth turning.

Post-turn, the UE accelerates at 2m/s2 until it hits the street-

specific speed limit. The standard speed limit is set at 40 km/h,

except for the right-most vertical street, which has a limit of

20 km/h (refer to Fig. 3), and the broader street next to the

pedestrian area, which is capped at 60 km/h. While all user

trajectories adhere to right-hand traffic rules, the specific UE

paths, and corresponding measurement points differ across the

simulated trajectories.

Furthermore, this work considers numerous different gNB

deployment constellations, each consisting of 7 active base

stations selected randomly out of the available 18. For example,

constellation #1 is denoted in Fig. 3 with black crosses. Out

of 36 available user tracks, 4 were selected for testing, while

the remaining 32 were combined to create a training set. Each

sample is considered individually, with 22775 samples in the

training set and 2406 samples in the test set. Each sample

is represented by received power, ToF, and AoA in the form

of three vectors representing its x, y, and z components for

each gNB, with an additional x, y, and z coordinates of the

corresponding gNB. In total, each sample is a vector of 7 · 8 =
56 elements.

B. Benchmark Models

To fairly assess the performance and effectiveness of the

proposed structure, we utilize several reference NN models,

each providing valuable insights into the HN’s behavior. The

first considered architecture is a NN model constructed as a

feedforward NN with 3 intermediate layers of 32 neurons each,
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and a 2-neuron output layer. By following the architecture

of a main network and the trainable networks, the model’s

performance corresponds to utilizing only the feedforward

pipeline of the proposed structure and consists of 4002 trainable

parameters. The second considered architecture is constructed

as a feedforward NN with 3 intermediate layers of 340
neurons each, and a 2-neuron output layer. This model, in turn,

represents the classical model with similar complexity to the

proposed HN structure, as it has 251942 trainable parameters.

Moreover, the parameters of all reference NN models have

been briefly optimized.

In the evaluation, we often utilize multiple gNB constella-

tions and we either train a single model with all available

data or create multiple models, each corresponding to an

individual deployment constellation. The term single model

denotes that one instance of the model was trained with

all the data corresponding to multiple constellations, while

individual model considers as many instances of each model,

as there are constellations – for example, with 2 constellations,

the results corresponding to single model were obtained by

inferring and learning a single common model, while the results

corresponding to an individual model were obtained from the

average performance of C models, each trained and tested only

with one of the C deployment constellations.

Moreover, we differentiate between the architectures by

adding the + sign, i.e. individual+ and single model+, when

referring to the second, larger NN architecture. To ensure the

fairness of comparison, all considered models were trained

with identical settings.

C. Numerical Results

1) Baseline Positioning Performance for a Single gNB

Constellation: In the first part of the evaluation, we study

the performance of the considered model in a single given

constellation, depicted in Fig. 3 with black crosses, to assess the

baseline capabilities of the HN as a general positioning model.

The corresponding results are depicted in Fig. 4, in terms of

the UE localization error cumulative distributions, where the

localization error is defined as
√

(x− x̂)2 + (y − ŷ)2. The

proposed HypLoc solution provides the lowest errors with

a mean positioning error of 2.81m, followed by the Single

model+ with a mean positioning error of 3.26m. The Single

model, having a significantly lower number of parameters,

performs the poorest with a 4.42m mean positioning error. The

performance of the single model and individual benchmarks

are in this case identical, as only one constellation is so far

considered.

The results show that in a gNB-wise static scenario with a

single constellation, the application of a HN is justified and

more efficient than the traditional models when it comes to

the fundamental localization capabilities. This is stemming

from HN’s ability to dynamically change the model parameters

based on the input array, resulting in adaptive model behavior

depending on the UE’s location.

2) Increasing the Number of gNB Constellations: In the next

evaluations, we study the performance behavior of a standard
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Fig. 4. Distribution of the positioning errors on the test dataset in a single
given gNB constellation.

NN, and that of the HypLoc, when increasing the number of

possible gNB constellations within the environment. We set up

the experiment by randomly creating 10 different constellations

with 7 gNBs in each. Then, by iteratively increasing the number

of constellations, we train the considered models and evaluate

their positioning performance.

The mean positioning results across considered constellations

are depicted in Fig. 5, where the number of gNB constellations

increases from 1 to 10. The figure shows consistent results with

those in Fig. 4 where only a single constellation was considered.

The single model and individual models perform almost the

same, while the same is true for the three larger models. The

slight differences between the performance of individual and

single models at 1 constellation is a direct result of randomness

in NN models’ initialization and training. When increasing the

number of constellations, i.e., the amount of information the

models have to adapt to, we can observe the following. The

performance of the single model degrades fairly linearly with

the increasing number of constellations, with a much greater

slope than that of the remaining models. The HypLoc provides

lower mean positioning errors than both the single model

and the single model+ for all numbers of gNB constellations

while providing the lowest error across all models at 1 and

2 possible constellations, being further outperformed by the

individual+ benchmark consisting of up to 10 individually

trained models for each constellation. The fluctuations in the

observable trends especially with the Individual and Individual+
models are caused by variations in signal coverage within the

overall Madrid Map region across the different constellations

as well as by the inherent randomness within the NN training

and initialization processes. The sudden increase in the mean

localization error at 6 constellations is caused by an unfortunate

selection of the gNBs location, such that a significant part of

the overall Madrid map area is left without signal coverage.

To provide a complementary performance measure, the

normalized error relative to the performance of the Individual

model is depicted in Fig. 6. The figure was obtained by

dividing each model’s mean positioning error by the error

of the Individual model (thus it always yields 1). The data

trends are now smoother, and the relative differences between
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Fig. 5. Mean positioning error across all scenarios ranging from 1 to 10
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Fig. 6. Mean positioning error across all scenarios normalized to the
performance of the Individual model.

the HypLoc’s performance and the benchmarks are also better

recognizable.

Overall, the numerical results provided along Figs. 5 and 6

indicate the superior capabilities of the HypLoc model over

those of the traditional ones when a single neural network

entity is operating under a variety of gNB deployments.

3) Generalizing to an Unseen gNB Constellation: In the

final and most challenging example, the capabilities of the

HypLoc to adapt to a new and previously unseen constellation

are evaluated – in the spirit of transfer learning. First, all models

are trained in 10 known constellations (corresponding to the

results shown in e.g. Fig. 5), being then further re-trained on

the data corresponding to the new, unseen gNB constellation.

We note that the re-trained Individual and Individual+ models

correspond always to the best-performing gNB constellation.

Additionally, we manually selected the constellation so that

the signal coverage is well-distributed throughout the Madrid

map environment, ensuring a feasible localization task.

In general, the rate at which any model can learn from

the new data is one crucial characteristic. Fig. 7 provides the

comparison of the considered models in terms of their mean

positioning error based on the number of epochs trained on, while

considering the full set of training samples. The figure shows
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Fig. 7. Mean positioning errors of considered models in a previously unseen
gNB deployment scenario based on the re-training progress.

the achieved positioning performance after the first epoch, as

without any re-training, the mean positioning errors are still very

large. Specifically, without any re-training, the HypLoc provided

140.4m mean positioning error, Single model 187.5m, Single

model+ 193.5m, Individual model 167.4m, and Individual+
model 218.5m. Now, for increasing re-training epoch counts,

the results in Fig. 7 show that the HypLoc model performs the

strongest across the re-training, achieving the lowest positioning

errors across all epochs. This is one strong benefit of the proposed

scheme compared to the reference solutions.

Furthermore, we study each model’s ability to adapt to the

new environment with a limited amount of available new data

– an important practical aspect related to the costs and efforts

in acquiring new data in a new deployment scenario. In the

experiment, the data was deliberately limited to 1%, 2%, 5%,

10%, 25%, and 50% of the original training set size, referring to

227 samples, 455 samples, 1138 samples, 2277 samples, 5693
samples, and 11387 samples, respectively. As can be observed

through the results in Fig. 8, the proposed HypLoc achieves

the lowest positioning error at all data sizes. Additionally, the

Single model+ consistently outperforms the Individual+ model,

showing that the multiple learned environments positively

impact the model’s capability to adapt to the previously

unknown scenario when data is scarce. Interestingly, with

limited data, the Individual model provides better results than

its larger counterpart as smaller models have lower training

requirements than the complex ones.

D. Further Discussion and Future Work

Reference models: We utilized two reference NN architec-

tures, one with identical positioning pipeline to the proposed

HypLoc, and the other, denoted with +, with almost the same

number of trainable parameters and thus similar complexity.

The performance gap between the smaller model (esp. Single

model) shows the direct impact of the HN model on the perfor-

mance, as HypLoc utilizes the same, “lightweight” positioning

pipeline. While the performance gap between the + models and

the HypLoc is smaller there is no downside to implementing

HypLoc, as utilizing it carries no additional strains in terms

of costs or requirements than the standard model.
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Fig. 8. Mean positioning errors of considered models in a previously unseen
gNB deployment scenario based on the available sample scarcity.

Future work: The provided results demonstrate the promising

capabilities of the HN and open several research directions. One

of the drawbacks of the utilized models is the fixed nature of

the implemented architecture in terms of the number of gNBs

which is here fixed to 7. Designing a model capable of adjusting

not only the weights and biases but the entire architecture, is

one challenge that HN may be able to realize. Another major

network aspect the HN-based models can potentially enable is

alleviating the requirement of model re-training completely. By

incorporating enough data and appropriate learning, one may

argue that the model can learn to localize the user while the

locations of gNBs are arbitrary, which we will strive for in our

future work. A natural extension of the current HypLoc model

to further improve its positioning performance is incorporating

a sequence-processing NN. When processing sequences, HN

adapts the weights of the main model in each sample instance

and consequently, unrolling the recurrent model results in a

series of different models.

V. CONCLUSION

In this work, we introduced the so-called HypLoc concept

referring to a novel HN-based architecture for localization

within 5G and beyond networks. After shortly reviewing the

basics of HNs and available 5G positioning measurements, the

paper presented the architectural design, hyperparametrization,

and training approach leading to the proposed HypLoc concept.

The ray-tracing-based numerical evaluations showed the supe-

rior positioning performance of the proposed model in an urban

deployment scenario, to localize vehicular terminals, achieving

almost 20% lower mean positioning error than a traditional

NN model with the same number of parameters. Furthermore,

we investigated the capabilities of HypLoc to generalize across

multiple environments by increasing the number of possible

gNB constellations – again leading to consistently improved

results compared to traditional models. Finally, the advantages

of parametrizing the model using a HN were also shown when

adapting the model to a previously unseen gNB deployment

constellation where the HypLoc model adapts faster and with

less training data than the other existing NN models.
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