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Abstract—As wireless systems have started to use millimeter-
wave (mmWave) frequencies to exploit the abundant bandwidth,
large antenna arrays with high beamforming gain have become
necessary for compensating severe path loss. However, deploying
large number of antennas extends the near-field (NF) region
where effective beamforming requires the knowledge of not
only the user equipment (UE)’s direction, but also distance.
In this paper, we present a fast NF beam training method
for analog extremely large (XL) true-time-delay (TTD) arrays
using only a single orthogonal frequency-division multiplexing
(OFDM) pilot symbol. In the proposed virtual sub-array sparse
rainbow (VSSR) algorithm, we virtually partition the antenna
array into smaller aperture sub-arrays so that a UE falls in
the far-field region of each sub-array. By exploiting properties
of the rainbow beamforming, we obtain near-orthogonal sub-
array measurements such that UE directions with respect to each
sub-array can be estimated with a sparse recovery algorithm.
Then, these sub-array referenced UE directions are combined to
estimate UE’s location. Our simulation results demonstrate that
the proposed method enables near-optimal beam training using
only a single OFDM symbol, achieving an average of at least the
95% of the optimal array gain under various channel conditions.

I. INTRODUCTION

To address the diverse demands of next-generation mo-

bile networks—spanning massive communications, ubiqui-

tous connectivity, and integrated sensing and communication

(ISAC)—mmWave frequencies and beyond are anticipated to

be explored to leverage their abundant bandwidth. As these de-

sired frequencies exhibit prohibitive path loss, extremely large

aperture arrays (ELAAs) emerged as a compelling solution

featuring massive number of antennas and high beamforming

gain [1]. However, as the number of antennas increases, con-

ventional assumptions on channel propagation characteristics

may not hold [2].

In conventional multi-antenna systems, UE is assumed to

be in far-field region with planar electromagnetic propagation

characteristics. Therefore, the knowledge of the UE’s direction

is sufficient to properly form the high gain beam towards the

UE. The boundary separating the far-field and NF regions

is determined by Rayleigh distance where any UEs beyond

this distance are assumed to be in the far-field region. As

the Rayleigh distance is proportional to the square of the

This material is based upon work supported by the National Science
Foundation under Grant No. #2224322, and by the Research Council of
Finland under the Grants #357730 and #359095.

array aperture [2], the NF region expands with the growing

number of antennas. So, the electromagnetic waves have to

be accurately modeled as spherical waves. For example, for a

uniform linear array (ULA) with 255 antennas operating at 100
GHz, the Rayleigh distance is ∼ 96 meters on the boresight.

Due to spherical propagation characteristics, the estimation of

UE’s both direction and distance is required for efficient beam

alignment [3], [4]. Consequently, beam training for NF UEs

may involve substantial pilot and computational overhead.

Recently, several low overhead NF beam training algorithms

are proposed. In [5], authors propose a polar codebook-

based compressive channel estimation algorithm using multi-

ple OFDM pilot symbols. In [6], a two-stage hierarchical beam

training method is proposed where the coarse UE direction is

first estimated with conventional far-field hierarchical beam

training followed by distance and direction refinement over

multiple OFDM pilot symbols. Whereas, [7] estimates the

direction and distance of the UE with a neural network from

the output of the far-field DFT codebook. Although these

methods can reduce the beam training overhead, they employ

arrays with only frequency-independent phase shifters and

can only create a single beam per OFDM symbol, requiring

multiple OFDM pilot symbols for beam training.

TTD arrays enable low-cost frequency-dependent beam-

forming capabilities and can simultenously probe multiple

directions with a single OFDM symbol. In [8], a far-field

TTD based rainbow beamforming was proposed to perform

beam training using a single OFDM pilot. This approach has

been adapted to NF channels to probe multiple directions with

different frequency measurements over a given path [9] or a

region [10], thereby reducing the required number of pilots.

Recently, sub-array based TTD architecture has been proposed

[11] such that only a partition of the entire array is active per

one OFDM pilot measurement. Thus, a UE that is in NF for

entire array falls into the far-field region of each sub-array.

Hence, beam training problem reduces to utilizing far-field

rainbow beams [8] over different sub-arrays with multiple

OFDM pilot symbols.

In this work, we propose a novel NF beam training algo-

rithm using a TTD array that requires only a single OFDM

pilot symbol. In the proposed method, we virtually partition

the TTD array into smaller sub-arrays that effectively operate

in far-field [11] while utilizing all sub-arrays simultaneously.
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Fig. 1. Illustration of a 2N + 1 antenna-equipped base station (BS) with a
TTD array and a single antenna UE.

We then show that by utilizing simple and uniform time

delay and phase values as in Rainbow beamforming [8],

the received signals from different sub-arrays become near-

orthogonal. As a result, UE direction referenced to each sub-

array can be recovered with only a single OFDM pilot symbol.

Then, by utilizing the known array structure and per sub-array

UE directions, the UE’s location can be angulated to enable

effective beam alignment [11].

II. ELAA SYSTEM MODEL

We consider an uplink OFDM system with a BS comprising

ELAA and a single antenna UE. The system utilizes OFDM

waveform operating at center frequency fc with the total

bandwidth W and M = 2M +1 subcarriers. The BS centered

at the origin is equipped with analog uniform linear TTD array

with N = 2N + 1 antennas and single RF chain where each

antenna n ∈ [−N,N ] is connected to a phase shifter, ϕn, and

time delay element τn as illustrated in Fig. 1.

The UE’s location is defined as (rue, γue) where rue is the

radial distance between the UE and the center of the antenna

array and γue = sin(αue) is the corresponding direction for

the UE angle αue. For LOS scenario and ignoring large-

scale fading, the NF channel corresponding to m-th subcarrier

hm,rue,γue
∈ C

N×1 is defined as [9]

[hm,rue,γue
]n = e−jkmruee−jkm(−ndγue+n2d2 1−γ2

ue
2rue

) (1)

where km = 2πfm
c

is the wave number, fm denotes the

frequency of the m-th subcarrier, fm = fc + W m
M

, and

d = λc/2 where λc is the wavelength at fc. If the UE

is farther than the Rayleigh distance i.e. rue > (N−1)2λc

2 ,

UE’s channel can be approximated as a far-field channel [2]

hm,rue,γue
≈ hm,γue

∈ C
N×1 where

[hm,γue
]n = e−jkmrueejkmndγue (2)

where e−jkmrue term is generally ignored [9]. The TTD

beamforming vector for the m-th subcarrier is formulated as

[11]

[vm]n =
1√
N

e−j(2πfmτn−ϕn) (3)

Unlike analog arrays using only frequency-independent phase

shifters, the TTD array delay units enable frequency-dependent

beamforming. Using conventional OFDM processing, the re-

ceived signal after the combining yrue,γue
∈ C

M×1 is given

by
[yrue,γue

]m = vH
m(hm,rue,γue

+ nm)

=
N∑

n=−N

[vm]∗n([hm,rue,γue
]nsm + [nm]n)

(4)

where nm ∼ CN (0, σ2IN ) ∈ C
N×1 is a complex zero-mean

Gaussian noise with variance σ2 mutually independent for

each m and sm is the m-th subcarrier pilot symbol.

The objective of the beam training algorithm is to design

a TTD beamforming vector vm that is aligned with the

channel vector hm,rue,γue
to maximize the received power

|vH
mhm,rue,γue

|2|sm|2 for all m. If the UE’s location (rue, γue)
is known at the BS, alignment and maximum power can be

achieved by configuring time delays as τn = 1
c
(−ndγue +

n2d2
1−γ2

ue

2rue
) [9] which results in:

|vH
mhm,rue,γue

|2|sm|2 =
1

N
|hH

m,rue,γue
hm,rue,γue

|2|sm|2

= N |sm|2
(5)

In order to maximize the beamforming gain towards the UE,

beam training algorithm needs to estimate the UE’s location

(rue, γue) from the received signal yrue,γue
.

III. BEAM TRAINING WITH TTD ARRAYS

Beam training in NF channels can be achieved by aligning

TTD beamforming vector towards different locations over

different OFDM symbols, and probing all possible UE loca-

tions for maximum alignment. Similarly, all possible directions

can be probed over different OFDM symbols for far-field

channels. However, these approaches introduce considerable

training overhead and do not exploit the frequency-dependent

beamforming capabilities of the TTD arrays.

A. Far-field TTD Beam training

For far-field channels, it is shown that TTD arrays can

probe multiple directions over different subcarriers with a

single OFDM symbol, reducing the beam training overhead

significantly [8]. After configuring TTD beamforming vector,

as given in (3), with the following parameters

τn =
n

W
, ϕn =

2πfcn

W
. (6)

the received signal yrue,γue
can be obtained as [8]

[yrue,γue
]m =

e−jkmrue

√
N

sin(π2Nzγue,m)

sin(π2 zγue,m)
(7)

where zγue,m = γue + m(γue
W

Mfc
+ 2

M
). It can be shown

that the maximum value of yrue,γue
is attined when γue =

859
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−2mfc/(Mfm) + 2z, z ∈ Z. Thus, the direction of the UE

can be estimated as
m̂ = argmax |yrue,γue

|

γ̂ue = mod

(

1− 2
m̂fc
Mfm

, 2

)

− 1
(8)

with only a single OFDM symbol. However, this approach

cannot be directly applied to NF channels as TTD array

configuration in (6) does not result in the received signal in

(13), making straightforward subcarrier to direction mapping

in (8) inapplicable.

B. Near-field sub-array TTD Beam training

Recently, sub-array based beam training method is proposed

to utilize far-field rainbow TTD configuration for the NF

channels [11]. As Rayleigh distance is a function of number of

antennas and array aperture, the entire array can be partitioned

into S = 2S +1 sub-arrays with NS = N
S

antennas as shown

in Fig. 2 such that UE falls into far-field region of every sub-

array. Then by utilizing only one sub-array per OFDM symbol,

each sub-array’s direction γk can be estimated by the far-field

TTD configuration described in section III-A, over multiple

OFDM symbols.

Upon obtaining direction γk of each sub-array and utilizing

known sub-array center locations in Cartesian coordinates:

p =






−SNS 0
...

SNS 0




 =

[
px py

]
∈ C

S×2 (9)

UE’s location in Cartesian coordinates (xue, yue) can be

related to sub-array center locations as:

px =






1 − tan arcsin γ−S
...

1 − tan arcsin γS






︸ ︷︷ ︸

R

[
xue

yue

]

(10)

and the UE’s location can be estimated by following equations

[11] where this procedure is termed as angulation:
[
xue

yue

]

= R†px, γue = sin arctan
xue

yue

, rue =
√

x2
ue + y2ue

(11)

where R† is the pseudo-inverse of R and R† =
(RHR)−1RH if rank(R) = 2.

Using this sequential sub-array activation and collecting

measurements using rainbow beams from each sub-array, the

beam training can be achieved with S OFDM symbols. In

the next section, we show that there is no need to separate

measurements from each sub-array and utilize multiple OFDM

symbols. In fact, by simply utilizing rainbow beam TTD

configuration given in (6) direction of each sub-array can be

recovered with only a single OFDM symbol.

IV. VIRTUAL SUB-ARRAY SPARSE RAINBOW (VSSR)

ALGORITHM

In this section, we show that the direction of each sub-

array can be recovered with a single OFDM symbol by

formulating a sparse recovery problem. As utilizing entire

Fig. 2. Virtual partitioning of the TTD array for S = 3 and the VSSR
algorithm rainbow beams.

array is equivalent to using all sub-arrays concurrently, we

first decompose the received signal from the entire array as

a sum of received signals of each sub-array. By exploiting

mutual near-orthogonality of sub-array signals for S = 3,

we recover the direction of each sub-array by Orthogonal

Matching Pursuit (OMP) algorithm [12]. Then, angulation

method in (11) is utilized to estimate the UE’s location.

A. Virtual Sub-array Signals

By exploiting the linear operations of signal combining, and

inspired by the approach in Section III-B, we can mathemat-

ically partition the array into S = 2S + 1 uniform sub-arrays

with NS = 2NS + 1 antennas. We refer to this operation as

virtual partitioning. Then, the received signal for entire array

can be written as:

[yrue,γue
]m =

N∑

n=−N

[vm]∗n[hm,rue,γue
]n

=
S∑

s=−S

NS∑

n′=−NS

[vm]∗n′−sNS
[hm,rs,γs

]n′

︸ ︷︷ ︸

Signal of sub-array s

(12)

where hm,rs,γs
is the NF channel between the UE and sub-

array s ∈ [−S, S], (rs, γs) is the distance and direction of the

UE with respect to sub-array center as illustrated in Fig. 2.

Assuming S = 3 and the UEs in far-field region for all

virtual-sub-arrays, i.e. mins(rs) ≥ (NS−1)λc

2 , the received

signal can further be simplified as

[yrue,γue
]m =

S∑

s=−S

NS∑

n′=−NS

[v∗
m]n′−sNS

e−j(kmrs−kmndγs)
︸ ︷︷ ︸

[hm,γs ]n′

(13)

where hm,γs
is the far-field channel between the

UE and the s-th sub-array. From known array

geometry and trigonometric identities, we can see that

rs =
√

r2s−1 +N2
Sd

2 − 2γsrs−1NSd. From far field

860
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(a) Received signal gain |y
rue,γue

| (b) Intermediate signal gain |g
γs

|, ∀s

Fig. 3. Gain of the received signal, in (a), and intermediate signals, in (b), for parameters N = 255, S = 3, M = A = 1001 and the UE is located at 10.57
meters on boresight of the ELAA.

assumption, d(NS − 1) ≈ dNS is small compared to rs, ∀s
[9]; thus rs ≈ rs−1 + dNSγs. Then, the received signal for

S = 3 is given as:

[yrue,γue
]m =e−jkmrue

S∑

s=−S

NS∑

n′=−NS

[vm]∗n′−sNS
ejkm(n′−sNS)dγs

︸ ︷︷ ︸

[gs
γs

]m

(14)

where gs
γs
∈ C

M×1 is the intermediate signal, i.e. the received

signal of the sub-array s, depending only on γs.

Utilizing TTD array configuration in (6), intermediate signal

gs
γs

can be calculated as follows:

[gs
γs
]m =

1√
NS

NS∑

n′=−NS

ejπ(n
′−sNS)(γs+

2m
M

+ mW
Mfc

γs) (15a)

=
1√
NS

sin(π2NSzs,m)

sin(π2 zs,m)
e−jπsNSzs,m (15b)

where

zs,m = γs +m(γs
W

Mfc
+

2

M
)

Then, the received signal yrue,γue
can be written as

yrue,γue
= e−jkmrue

S∑

s=−S

gs
γs

(16)

Observe that the intermediate signal given in (15b) is similar

to the received signal given in (13) which is the received signal

of the the sub-array s of the method described in Section

III-B. The only difference is the sub-array-dependent phase

shift introduced by the distance between sub-array centers.

Therefore, if we can recover the intermediate signal of each

sub-array from the received signal yrue,γue
, we can estimate the

direction γs of each sub-array. An example of received signal

and intermediate signals for parameters N = 255, S = 3,

M = A = 1001 and a UE at 10.57 meters in the boresight

is given in Fig. 3. Our goal is to recover intermediate signals

illustrated in Fig. 3b from the received signal shown in Fig.3a.

Next we formulate a sparse recovery problem to recover

intermediate signals and corresponding directions. To support

the approach of compressive estimation, we show that the

measurements from different sub-arrays are nearly-orthogonal.

B. Sparse Recovery Problem Formulation

The intermediate signal for sub-array s, gs
γi

, is uniquely

parametrized by sub-array’s direction γs. To estimate this

direction, we define a dictionary of possible directions as

follows:

Gs = [gs
γ1
, gs

γ2
, . . . , gs

γA
] ∈ C

M×A (17)

where for fair comparison with S-NFBT algorithm UE di-

rections are defined as γa = 2 afc
Afm

, a ∈ [−A,A] and

A = 2A + 1 = M is the number of grid directions. We

estimate each sub-array’s direction based on this grid. The

received sub-array signal gs
γi

for directions on this grid can

be written as:

gs
γi

= Gs








0
1
...

0







= Gsxs ∈ C

M×1 (18)

where xs ∈ C
A×1 is the sparse selection vector with ∥xs∥0 =

1, ∀s. Therefore, we can directly obtain sub-array’s direction

γs, if we know (or have estimate of) the sparse selection vector

xs as follows

â = argmax |xs|
γ̂s = mod (1 + γâ, 2)− 1

(19)
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Fig. 4. The cross coherence values from (25) for two different angles of in-
terest regions, [−75◦, 75◦] and [−60◦, 60◦], respectively when W ∈ [1, 10]
GHz.

Utilizing dictionary representation of intermediate signals,

the received signal yrue,γue
can be written as:

[yrue,γue
]m = e−jkmrue

S∑

s=−S

Gsxs, ∥xs∥0 = 1, ∀s (20)

Hence, we can solve the following Least Squares (LS)

problem to recover sparse selection vector xs of each sub-

array [12].

min
xs, ∀s

∥yrue,γue
−

S∑

s=−S

Gsxs∥2

s.t.∥xs∥0 = 1, ∀s
(21)

However, obtaining the solution of (21) depends on the

properties of the dictionaries Gs, requiring further analysis.

1) Near-orthogonality of Sub-array Signals and Cross Co-

herence: We continue by showing that the intermediate signals

gs
γs

for different sub-arrays with S = 3 are nearly orthogonal

if the systems bandwidth W is negligible compared to fc,

making dictionaries mutually near-orthogonal.

Lemma 1. If a system’s bandwidth is negligible compared

to its central frequency fc, i.e. W << fc and number of

sub-arrays is S = 3, the intermediate signals of different sub-

arrays k ∈ {−1, 0, 1} and s ̸= k ∈ {−1, 0, 1} are orthogonal

for any direction γi, γj ∈ [−1, 1]: gk
γi
⊥ gs

γj
, ∀k, s ̸= k &

∀γi, γj ∈ [−1, 1]

Proof. Let us assume that fractional bandwidth of the system

is very small W << fc and number of sub-arrays is S = 3.

Then, we can approximate zs,m as zs,m ≈ 2
M
(m + γiM

2 ).
We want to prove that the inner product between signals

from different sub-arrays are orthogonal for any direction. The

discrete time Fourier transform (DTFT) of the intermediate

signal [gs
γs
]m can be calculated as:

F{[gs
γs
]m} = Γs(Ω) = ΠNS

(

Ω+
2πsNS

M

)

e+jΩ γsM
2 (22)

along with

ΠNS
(Ω) :=

2π√
NS

NS∑

m′=−NS

δ(Ω− 2π
m′

M
) (23)

Then, the inner product of intermediate signal of sub-array k
and s ̸= k for respective directions γi, γj can be calculated

as:

< gk
γi
, gs

γj
>=

M∑

m=−M

[gk
γi
]∗m[gs

γj
]m (24a)

=
1

2π

∫ π

−π

ΠNS
(Ω + 2π

kNS

M
)∗ΠNS

(Ω + 2π
sNS

M
)

︸ ︷︷ ︸

0

ejΩ
(γj−γi)M

2 dΩ (24b)

= 0 =⇒ gk
γi
⊥ gs

γj
(24c)

where (24b) is the result of the generalized Parseval’s equality

[13] and (24c) is obtained from the the properties of the

ΠNS
(Ω) function defined in (23).

However, if the system has higher bandwidth W , interme-

diate signals are not orthogonal and inner product between

intermediate signals of different sub-arrays become direction

dependent. In order to quantify the coherence between inter-

mediate signals of different sub-arrays, cross coherence metric

is used [14]. This metric calculates the maximum possible

coherence µ between sub-arrays out of all possible direction

values in desired region, formulated as

µ = max
γi,γj ,k ̸=s

|(gs
γi
)Hgk

γj
| (25)

Fig. 4 shows the cross coherence with respect to bandwidth

for a system with fc = 100 GHz, N = 255, M = 1001
and number of sub-arrays S = 3 for uniformly sampled

directions. It can be seen that near-orthogonality is preserved

across different bandwidths if UE’s angular range is limited

to [−60◦, 60◦], meanwhile the orthogonality disappears for

[−75◦, 75◦] as W increases. This constraint to use directions

between [−60◦, 60◦] is common in communications systems

[15] and intermediate signals can be realistically assumed to

be nearly-orthogonal.

C. UE Location Estimation and Proposed Algorithm

As intermediate signals are nearly orthogonal for the region

of UE directions of interest, we can utilize simplified orthog-

onal matching pursuit (OMP) algorithm [12] by exploiting

the observed structure and solve the problem (21). Then,

direction of each sub-array γs can be obtained from the

estimated sparse selection vectors with the equation (19).

Upon determining sub-array directions, UE’s location can be

estimated by angulation as described in (11). The proposed

method is summarized in Algorithm 1 where steps [11-13] are

added to address the angulation failure resulting from off-grid

directions and noise. In such cases, we assume that the UE is

in far-field, and direct a beam based on detected direction of

center sub-array and maximum allowed UE distance, rmax.
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Algorithm 1: VSSR algorithm

Input: Received signal, yrue,γue
∈ C

M×1 obtained by

TTD array with configuration (6),maximum UE

location, rmax

Output: UE’s location, (rue, γue)
1 Set Λ = ∅, y =

yrue,γue

∥yrue,γue
∥

2 for s = −1 : 1 do

3 Create dictionary Gs as defined in (17) and

normalize columns

4 Obtain sparse selection vector x̂s = GH
s y

5 Obtain direction γ̂s from x̂s with (19)

6 Λ← Λ ∪ {gs
γ̂s
}

7 y ← PΛ⊥y

8 y ← y

∥y∥

9 end

10 Obtain UE’s location from (11)

11 if rue < 1e− 16 then

12 (rue, γue)← (rmax, γ̂0)
13 end

TABLE I
ELAA Simulation Parameters

PARAMETER VALUE

Center frequency fc 100 GHz
Bandwidth W 3 GHz
Number of subcarriers M 1001
Number of ULA antenna N 255
Number of sub-arrays S 3
Rayleigh distance (Boresight) 96.7 meters
Rayleigh distance of each sub-array (Boresight) 10.57 meters
UE direction grid numbers (A) 1001
UE Distances 4 : 0.5 : 30 meters
UE directions −60◦ : 0.5◦ : 60◦

SNR Values −10 : 10 : 30 dB

V. NUMERICAL RESULTS

In this section, we demonstrate the performance of the

proposed VSSR algorithm with extensive simulations where

used parameters are listed in the Table I. We calculate the

normalized array gain G(rue, γue) as a performance metric

defined as follows:

G(rue, γue) =
1

M
√
N

M∑

m=−M

|vmhm,rue,γue
|

=
1

M
√
N

M∑

m=−M

|hm,r̂ue,γ̂ue
hm,rue,γue

|
(26)

where (rue, γue) is the actual and (r̂ue, γ̂ue) is the estimated UE

location and vm is configured as in (5) and pre-beamforming

noise variance is σ2 = 1
SNR

.

The following benchmark beam training schemes are uti-

lized in the subsequent performance comparison:

1) S-NFBT algorithm [11]: This is the sequential sub-array

rainbow algorithm described in Section III-B. The required

number of OFDM symbols for this algorithm is S = 3.

2) Dictionary-based S-NFBT (DS-NFBT) algorithm: To

provide a fair comparison, we extend the S-NFBT algorithm

[11] with a dictionary based approach and estimate each sub-

Fig. 5. The empirical CDF comparison of S-NFBT [11], dictionary-based S-
NFBT (DS-NFBT) and VSSR algorithms in terms of the normalized array
gain when the noise-free cases are considered.

Fig. 6. The empirical CDF comparison of the normalized array gain between
S-NFBT [11], dictionary-based S-NFBT (DS-NFBT) and VSSR algorithms
when pre-beamforming SNR is set to −10 dB.

array’s direction with(18) and (19) rather than (8). Note that

the required number of the OFDM symbols is the same as in

S-NFBT benchmark.

Fig. 5 shows the empirical CDF of the normalized array

gains with respect to different UE locations for the noise-free

scenario. Results indicate that the VSSR algorithm performs

identical to the SDR algorithm and to benchmark S-NFBT

algorithm, verifying that the intermediate signal of each sub-

array can be recovered with only a single OFDM symbol.

Similarly, Fig. 6 shows the empirical CDF of the normalized

array gains of different UE locations when pre-beamforming

SNR is −10 dB. Even under this channel condition, VSSR

and DS-NFBT perform near-optimal, providing at least 93%
of the optimal array gain for 85% and 98% of the locations,

respectively. The presented results solidify that VSSR can

achieve reliable beam training with a single OFDM symbol

even under low SNR range. Both dictionary based algorithms

outperform S-NFBT as the projection over dictionary vectors

improves SNR.
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TABLE II
Percentage of angulation failure for different SNR and sensitivity conditions

for S-NFBT [11], DS-NFBT and VSSR algorithms.

Detection of rue < 1e− 16
SNR (dB) S-NFBT [11] DS-NFBT VSSR

−10 0.5533% 0.3336% 0.5858%
0 0.7404% 0.0244% 0.0651%
10 0.5858% 0% 0%
20 0.2034% 0% 0%
30 0.0325% 0% 0%
∞ 0% 0% 0%

Detection of rue < 1e− 1
SNR (dB) S-NFBT [11] DS-NFBT VSSR

−10 4.7270% 0.5533% 1.6435%
0 2.8720% 0.0244% 0.0814%
10 1.3750% 0% 0%
20 0.2766% 0% 0%
30 0.0325% 0% 0%
∞ 0% 0% 0%

Table II demonstrates the angulation failure percentage for

different SNR values and different tolerances. Due to noise

and finite direction grid resolution, all algorithms can detect

same or unrealistic directions for different sub-arrays, making

algorithms fail to angulate and return UE location as (0, 0). We

treat these cases as if UE is in far-field and if r̂ue < tolerance

we assign UE the location (rmax, γ̂ue) where γ̂0 is the estimated

direction of the center sub-array and rmax is the maximum

possible UE distance. The presented results demonstrate that

both VSSR and DS-NFBT is resilient to such errors due to

additional gain from projection to dictionary vectors. Failure

percentage can further be reduced by increasing the number

of directiongrid points M for S-NFBT and A for VSSR and

DS-NFBT, respectively.

Fig. 7 shows the average normalized array gain over differ-

ent set of UE locations for different SNR ranges. Across all

SNR conditions, VSSR and SDR achieve near-optimal beam

training performance, providing an average of more than 95%
of the optimal array gain. Furthermore, VSSR improves the

averagenormalized array gain of the S-NFBT by ∼ 33% at

SNR= −10 dB while requiring only a single OFDM symbol.

VI. CONCLUSION

In this work, we proposed a single OFDM pilot symbol NF

beam training algorithm utilizing rainbow beams with analog

TTD array. We showed that by utilizing far-field rainbow

beam configuration in NF and virtually partitioning the array,

the received signal can be expressed as a superposition of

near-orthogonal signals from each sub-array. Based on this

observation, we developed an algorithm to recover each sub-

array’s direction by formulating a sparse recovery problem,

and angulate the UE’s location for effective beam alignment.

Our simulation results demonstrated that the proposed method

achieves near-optimal beamforming gain performance even

under low SNR conditions. In the future, we are planning to

investigate the multi-user scenarios and the design of different

virtual partitioning of the XL TTD , and utilization of machine

learning (ML) for localization and tracking in NF region.

Fig. 7. Average normalized array gain after beam training with S-NFBT [11],
DS-NFBT and VSSR algorithms for different SNR values.
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