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Abstract

Stellar parameters for large samples of stars play a crucial role in constraining the nature of stars and stellar
populations in the Galaxy. An increasing number of medium-band photometric surveys are presently used in
estimating stellar parameters. In this study, we present a machine learning approach to derive estimates of stellar
parameters, including [Fe/H], log g, and T, based on a combination of medium-band and broadband photometric
observations. Our analysis employs data primarily sourced from the Stellar Abundances and Galactic Evolution
Survey (SAGES), which aims to observe much of the Northern Hemisphere. We combine the uv-band data from
SAGES DRI with photometric and astrometric data from Gaia EDR3, and apply the random forest method to
estimate stellar parameters for approximately 21 million stars. We are able to obtain precisions of 0.09 dex for
[Fe/H], 0.12 dex for log g, and 70K for T, Furthermore, by incorporating Two Micron All Sky Survey and
Wide-field Infrared Survey Explorer infrared photometric and Galaxy Evolution Explorer ultraviolet data, we are
able to achieve even higher precision estimates for over 2.2 million stars. These results are applicable to both giant
and dwarf stars. Building upon this mapping, we construct a foundational data set for research on metal-poor stars,
the structure of the Milky Way, and beyond. With the forthcoming release of additional bands from SAGES such
DDO51 and Ha, this versatile machine learning approach is poised to play an important role in upcoming surveys
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1. Introduction

Accurate determination of stellar parameters for large
samples of stars in our Galaxy plays an important role in
many fields, including stellar physics and the structure and
evolution of the Milky Way. Spectroscopic observations can
accurately determine stellar parameters from spectral lines. As
early as 2009, the Sloan Extension for Galactic Understanding
and Exploration (B. Yanny et al. 2009) project, part of the
Sloan Digital Sky Survey (SDSS; D. G. York et al. 2000), used
low-resolution (R ~ 1800) spectra to obtain stellar parameters
for some 240,000 stars. Results for an additional 118,958
unique stars were reported on by C. M. Rockosi et al. (2022).
Subsequently, the SDSS APOGEE project (S. R. Majewski
et al. 2017) obtained stellar parameters for over 700,000 stars
using high-resolution (R ~ 22,500) near-infrared spectra. With
the advent of the Large Sky Area Multi-Object Fiber
Spectroscopy Telescope (LAMOST, X.-Q. Cui et al. 2012;
G. Zhao et al. 2012), multifiber spectroscopic survey telescopes
have greatly improved the efficiency of acquiring spectra. To
date, LAMOST has observed more than 11 million stars, with
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over 7 million stars with available parameters, increasing the
sample size by an order of magnitude. However, compared to
photometric survey projects with over a billion stars at limiting
magnitudes of around G =20, such as Gaia DR3 (Gaia
Collaboration et al. 2021), there is still a 1-2 order of
magnitude gap between the sample sizes of photometric
surveys and spectroscopic surveys, underscoring the impor-
tance of obtaining stellar-parameter estimates through the use
of photometry.

Stellar-parameter estimates based on multiband photometric
surveys have expanded over the past several decades. The
Hauck—Mermilliod sky survey (HM; B. Hauck & M. Mermill-
iod 1998) and the Geneva—Copenhagen Survey (GCS;
B. Nordstrom et al. 2004), contemporaneous with the SDSS,
included medium-band filters, but had limiting magnitudes of
only v ~ 8, far from meeting current research needs. Z. Ivezi¢
et al. (2008) used spectral and photometric data from SDSS to
estimate metallicities for some 200,000 FGK dwarfs, with a
precision of about 0.2-0.3 dex down to [Fe/H] ~ —2.0. With
improvements in photometric accuracy and precision, H. Yuan
et al. (2015) estimated metallicities for some 500,000 FGK
dwarfs to a level of 0.1-0.2 dex in SDSS/Stripe 82 down to
[Fe/H] ~ —2. R.-Y. Zhang et al. (2021) demonstrated that
estimates for giant stars can also achieve 0.2 dex precision
down to a similar limit, with differing model parameters
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compared to FGK stars. However, estimating parameters of
giant stars using dwarf-star models could introduce a certain
degree of systematic bias (D. An & T. C. Beers 2020). Space-
based telescopes offer higher photometric accuracy and more
uniform survey coverage. S. Xu et al. (2022) used Gaia EDR3
data to provide metallicity estimates for 27 million FGK stars
across the sky with 0.2 dex precision. Due to the bandwidth
limitations of wide-band photometric survey filters, it is
difficult to significantly improve upon metallicity and other
stellar-parameter estimates further using such filters alone.

The Skymapper Southern Sky Survey (SMSS; S. Keller et al.
2007), led by the Australian National University, has adopted
the Stromgren—Crawford filter system (B. Stromgren 1964;
D. L. Crawford et al. 1970), similar to the GCS and HM
surveys in some of its filters, covering as faint as a 20th of a
magnitude (at 50) in the Southern Hemisphere over 21,000
square degrees. Y. Huang et al. (2019) used polynomial fitting
to establish empirical relationships between stellar parameters
and photometric colors, deriving accurate atmospheric para-
meters for about one million red giants from SMSS DRI.1.
A. Chiti et al. (2021) used a grid-based synthetic-photometry
method to obtain over 250,000 photometric metallicities for
giants from SMSS DR2. Subsequently, using recalibrated
SMSS DR2 data and Gaia EDR3 data, Y. Huang et al. (2022)
employed polynomial-fitting methods to produce a catalog of
stellar parameters, including metallicity, for about 24 million
stars with a precision of 0.1-0.3 dex, with carefully selected
training data sets enabling metallicity estimates down to
[Fe/H] ~ —3.5.

By installing a single narrowband filter with a response
curve centered around the Ca Il H and K lines on the CFHT, the
Pristine Survey (E. Starkenburg et al. 2017) is capable of
observing thousands of square degrees to a depth of about a
20th of a magnitude, while maintaining a 0.1-0.2 dex precision
in metallicity estimates down to [Fe/H] ~ —3.5 in their DR1
(N. F. Martin et al. 2024).

With the advent of multiple narrowband photometric
surveys, such as J-PLUS (A. J. Cenarro et al. 2019), S-PLUS
(C. Mendes de Oliveira et al. 2019), and J-PAS (S. Bonoli et al.
2021), traditional grid-based, parameter-fitting, and other
empirically based algorithms become increasingly difficult to
handle in such high-dimensional scenarios. Therefore, various
machine learning algorithms have been employed in the
measurement of stellar parameters. Examples include neural
networks (V. F. Ksoll et al. 2020; D. D. Whitten et al. 2021;
L. Yang et al. 2022), and random forest algorithms (Y. Bai
et al. 2019; C. A. Galarza et al. 2022). These studies have
demonstrated that machine learning algorithms are highly
effective methods for extracting stellar parameters from high-
dimensional data.

The Stellar Abundance and Galaxy Evolution Survey
(SAGES, W. Wang et al. 2014; J. Zheng et al. 2018, 2019;
K.-F. Tan et al. 2022; Z. Fan et al. 2023) is a photometric
survey in the Northern Hemisphere that includes narrow- and
medium-band filters. Its vi-band central wavelength coincides
with the location of the Call H and K lines, and its # band is
similar to SMSS, providing the opportunity to obtain more
accurate atmospheric parameters, and reducing the impact of
molecular carbon bands. In addition to the u- and v-band data
used in this work, broadband photometric data, such as SDSS-
like g, r, i, and medium-band data, such as DDO51 and Ha,
will continue to be released. In this approach, an algorithm
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must be chosen that can be applied to both low-dimensional
data and complex high-dimensional data. This is necessary,
since the current techniques (e.g., Y. Huang et al. 2023,
hereafter H23) of measuring stellar parameters based on DR1
data cannot be iterated with the release of additional filter bands
in SAGES. Robust statistical methods have played a significant
role in handling high-dimensional astronomical data sets, and it
is logical to expect that they would perform similarly well or
even better in low dimensions. By applying such statistical
methods to low-dimensional data sets, such as multiband
photometric data from SAGES, it is possible to simultaneously
attain high-precision stellar parameters, and gain experience for
the future exploration of large multidimensional photometric
data sets.

This paper is organized as follows. Section 2 describes the
data and methods used in this work. Section 3 introduces the
results for the training data. Section 4 describes the stellar
parameters derived for SAGES stars, followed by a summary in
Section 5.

2. Data and Methods

In order to train the random forest algorithm, we constructed
two sets of training data, including the colors and filter
magnitudes provided by SAGES and Gaia and the estimated
stellar parameters provided by spectroscopic surveys, as
described below.

2.1. Photometric Data

The first training set uses photometric data from SAGES
DR1 and Gaia EDR3 (Gaia Collaboration et al. 2021) as input;
the second set additionally includes the photometric data in the
infrared from Two Micron All Sky Survey (2MASS;
R. M. Cutri et al. 2003) and ALLWISE (R. M. Cutri et al.
2021) and ultraviolet from Galaxy Evolution Explorer
(GALEX; L. Bianchi et al. 2014). SAGES is a multiband
photometric survey focused on estimation of stellar parameters
and interstellar extinction. Its narrow v-band filter is quite
sensitive to [Fe/H]. Its u band and v band are located on either
side of the Balmer jump, providing good sensitivity to surface
gravity (hereafter, log g). Gaia EDR3 provides a large amount
of accurate photometric information (the ultrawide Bp and Rp
bands) for the stars in SAGES, so it can provide effective
temperature estimates (hereafter, T.¢). In addition, infrared
photometric information such as from ALLWISE and 2MASS
(K. C. Schlaufman & A. R. Casey 2014), and ultraviolet
photometric information such as from GALEX (X. Lu et al.
2024), can also be used to identify candidate metal-poor stars,
taking advantage of the sensitivity of the infrared and
ultraviolet bands to metallicity .

In this work, two sets of training data are constructed. Data
in the first set are chosen to apply to as large a sample of
SAGES stars as possible, while providing parameter estimates
with reasonable accuracy and precision. Data in the second set
sacrifices sample size in order to improve the accuracy and
precision as much as possible for a subset of the SAGES stars.

For the extinction in the various photometric bands, we
employ the reddening coefficients provided by K.-F. Tan et al.
(2022) to correct the SAGES u- and v-band data, and the
coefficients provided in Table 2 of R. Zhang & H. Yuan (2023)
to correct the rest of data. All values of reddening coefficient



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 277:19 (11pp), 2025 March

Table 1
Reddening Coefficients for Photometry Data Used in this Work

Band Survey Reddening Coefficient  Citation

NUV  GALEX 7.294 R. Zhang & H. Yuan (2023)
u SAGES 4.324 K.-F. Tan et al. (2022)

v SAGES 3917 K.-F. Tan et al. (2022)

G Gaia 2.364 R. Zhang & H. Yuan (2023)
Bp Gaia 2.998 R. Zhang & H. Yuan (2023)
Rp Gaia 1.737 R. Zhang & H. Yuan (2023)
J 2MASS 0.748 R. Zhang & H. Yuan (2023)
H 2MASS 0.453 R. Zhang & H. Yuan (2023)
K 2MASS 0.306 R. Zhang & H. Yuan (2023)
wi WISE 0.194 R. Zhang & H. Yuan (2023)
w2 WISE 0.138 R. Zhang & H. Yuan (2023)

we used are shown in Table 1. The extinction map we used is
SFD98 (D. J. Schlegel et al. 1998).

Figure 1 is the color-magnitude diagram (x: (Bp — Rp)o,
y: Mgo) for SAGES stars, after application of the reddening and
extinction corrections. We have divided the targets into dwarf
stars (yellow dots), giant stars (red dots), hot subdwarfs (blue
dots), and white dwarfs (green dots). Targets with Gaia parallax
errors larger than the parallax itself are considered to be likely
giants. Table 2 lists the constraints we imposed on the input
training data and the output prediction data. The total sample
size of the first set of data, where we emphasize retaining as
large a sample as feasible, is 21,071,305, including 19,663,040
dwarfs and 1,408,265 giants. The total sample size of the
second set of data, emphasizing accuracy and precision of the
derived stellar parameters, is 2,191,452, including 2,037,528
dwarf stars and 153,924 giants.

2.2. Stellar Parameters from Spectroscopic Surveys

Spectroscopic observation is the most direct way to obtain
stellar parameters. Even relatively low-resolution spectra can
be used to estimate stellar parameters with higher accuracy and
precision than current photometric methods, in particular if
they are of a high signal-to-noise ratio. LAMOST (X.-Q. Cui
et al. 2012), as the largest spectroscopic survey project in the
Northern Hemisphere at present, can provide the three stellar
parameters required in this work: Tes, log g, and [Fe/H].
However, through DR10, LAMOST spectra were only low
resolution (R ~ 1800). The accuracy and precision of the stellar
parameters in DR10 is lower than that of the medium- or high-
resolution spectra, and the most metal-poor star reliably
estimated by most pipelines in DR10 is only be about
[Fe/H] ~ —2.5. In order to obtain training stars with lower
metal abundance, we considered using samples from multiple
spectral surveys. We employ samples from another three
spectroscopic sky surveys: (1) APOGEE DR17 (Abdurro’uf
et al. 2022), a high-resolution near-infrared survey with
wavelengths ranging from 1.51 to 1.70 yum and R ~ 22,500,
(2) RAVE DRS5 (A. Kunder et al. 2017), a spectroscopic survey
aiming to measure radial velocity with wavelengths centered on
the Cal triplet (8410-8795 A) and resolving power of R ~ 7500,
and (3) PASTEL (C. Soubiran et al. 2016), a catalog of
collected stellar parameters from the literature obtained by
various high-resolution spectroscopic observations. (4) A
number of additional papers have reported on results based on
high-resolution follow-up observations for very metal-poor
(VMP; [Fe/H]< —2.0) and extremely metal-poor (EMP;
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Figure 1. Distribution of the data used in this work in the Gaia color—absolute

magnitude diagram. The colors distinguish four different types of stars. The
data used in this work are the dwarf (yellow) and giant (red) stars.

Table 2
Adopted Constraints on the Data Sets for Training and Prediction

Parameter Training Cut Prediction Cut
Parallax over error 1 1
EB-V) 0.05 0.5
Tel’l’en‘ 200

10g gerr 0.3

[Fe/Hler 0.2
Uerr 0.1 0.2
Verr 0.1 0.2
Gerr 0.01 0.1
Bper 0.01 0.1
Rpere 0.01 0.1
Jerr 0.04 0.1
Herr 0.05 0.1
Ko 0.05 0.2
Wler 0.03 0.1
W2err 0.05 0.1
NUV¢, 0.1 0.2

[Fe/H] < —3.0) stars identified in previous surveys that are
not included in the PASTEL catalog. We collected a total of
15,628 stars from D. K. Lai et al. (2004), P. Bonifacio et al.
(2009), D. Yong et al. (2013), W. Aoki et al. (2013), J. Yoon
et al. (2016), P. Francois et al. (2018), H. Li et al. (2018),
R. Ezzeddine et al. (2020), and G. Limberg et al. (2021). These
stars have metallicities in the range [—0.1, —7.8]; 93.1% are
VMP stars and 9.8% are EMP stars.

2.3. Training Samples

To obtain stellar parameters from the SAGES photometric
data, it is necessary to crossmatch the stars in common between
both spectroscopic surveys and SAGES (constraints are as
shown in Table 2). During the training step, the apparent
magnitudes, reddening corrections, and other parameters are
used as input data; the stellar parameters provided by spectral
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Figure 2. Left two panels: number-density distribution of the training samples for Data Set 1 in the color—absolute magnitude diagram, and the histogram of [Fe/H]
from different spectral survey catalogs. Right two panels: same as the left two panels but from the test set.
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Figure 3. Similar to Figure 2, but using data for Data Set 2.

data are used to constrain output predictions. To ensure the
independence and the coverage of different parameters in the
parameter space, this work uses LAMOST data as the training
set and APOGEE data as the test set. To extend the parameter
range at low metallicity, data from PASTEL and RAVE are
utilized. Additionally, data from another nine papers are used to
test the result at low metallicity. Considering the systematic
differences in the parameters provided by different data sets, a
correction of 0.427 in [Fe/H] is applied to the data from those
nine papers to account for these systematic differences.
Figures 2 and 3 show the number-density distribution of these
two samples in the color—magnitude diagram and the number-
density distribution of metallicity in training data and
testing data.

2.4. Method: Random Forest

After comparing the results of a simple three-layer fully
connected neural network under different loss functions,
polynomial fitting, and the random forest method, we find
out that the random forest algorithm not only achieved the
fastest speed but also the best performance, slightly out-
performing polynomial fitting and significantly outperforming
the simple fully connected neural network. Therefore, this work
chose to use the random forest algorithm (L. Breiman 2001) for
subsequent work. Random forest is an ensemble-learning
approach, assembled from multiple independent decision-tree
algorithms. Each decision tree divides the space through a

series of discriminants that seek to minimize the “entropy,”
defined as the Gini index. The decision trees are trained
through sets of partial training samples; the final result is
obtained by weighting the results of the multiple decision trees.
The random forest has the advantage that is can prevent
overfitting, and thus is more generally applicable to a variety of
input data.

Moreover, since each sample is drawn with replacement
from the data set to serve as the training set for each tree, the
samples that are not selected can be used as a validation set,
known as the out-of-bag error. Therefore, when using a random
forest, there is no need to establish an additional validation set
to perform real-time evaluation of the model’s performance.

Random forest, as a machine learning algorithm, has several
hyperparameters, and selecting an appropriate set of these
hyperparameters is crucial. In this work, two very important
hyperparameters were chosen: n_estimators and max_features.
n_estimators refers to the number of decision trees in the
random forest, while max_features is the number of features
considered in each decision tree. Ultimately, we selected
n_estimators = 300 and max_features = “None,” which means
all input features are used. After determining and fixing the
most important two parameters, another hyperparameter,
max_depth, which represents the maximum depth of each
individual decision tree, was tested. After testing different
depths, the final value for max_depth was determined to be 17.
Details of the above testing are shown in Figure 4.
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Figure 4. Left panel: The out-of-bag (OOB) scores for different combinations of hyperparameters are shown, with different colors representing different max_features
values, and the x-axis representing different n_estimators values. The y-axis represents | — OOB score, so a smaller value on the y-axis indicates better performance.
For the selected n_estimators = 300, the accuracy is only 0.1% lower than when n_estimators = 750, but the computational speed is 2.5 times faster. Right panel: For
n_estimators = 300 and max_features = “None,” the 1 — OOB score varies with the max_depth parameter. A smaller value on the y-axis indicates better performance.
By testing each max_depth three times and averaging the results to obtain the mean curve (represented by the black dashed line), it can be seen that the optimal

performance is achieved when max_depth = 17.
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Figure 5. Flow chart of this work.

2.5. Model Establishment

Since the prediction accuracy and precision of a single model
to simultaneously predict multiple parameters is generally less
than that obtained by individual models to predict single
parameters, we constructed multiple random forest models to
predict the [Fe/H], T, and log g for dwarf and giant stars,
respectively. Surface gravity is one of the primary criteria to
distinguish dwarf and giant stars; if we were to predict the log g
of dwarfs and giants stars separately, it would introduce some
misclassification error for the model. Therefore, we employ a
unified model to predict the log g of dwarf and giant stars
together. Five random forest models are trained for the two data
sets in this work, which are models for (1) [Fe/H] of dwarf
stars, (2) [Fe/H] of giant stars, (3) Tess of dwarf stars, (4) Tegr of
giant stars, and (5) log g for both dwarfs and giants. The flow
chart is shown in Figure 5.

The input data for these models include the magnitude after
extinction correction, the colors after reddening correction, the

parallax, the G-band absolute magnitude, and E(B — V). The
magnitudes and E(B — V) can provide the model with
extinction, reddening, and effective temperature, and the
G-band absolute magnitude and colors can provide the model
with information similar to the color-magnitude diagram,
which not only constrain the model T.¢ and stellar-classifica-
tion information, but also provides constraints on the derived
log g. The u- and v-band photometry and related colors mainly
provide information for the models to constrain the estimated
[Fe/H]. Because the metallic absorption lines cover both the
visible, ultraviolet, and near-infrared spectra, visible photo-
metry from Gaia (S. Xu et al. 2022), ultraviolet photometry
from GALEX (X. Lu et al. 2024), and infrared photometry
from Wide-field Infrared Survey Explorer (WISE) and 2MASS
(K. C. Schlaufman & A. R. Casey 2014) can also provide
information on the metallicity of stars. During the training, we
used parameters from LAMOST as the training set and
APOGEE as the test set. Additionally, we supplemented the
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Figure 7. Similar to Figure 6, but using the test set from Data Set 2.

training set with metallicity data from PASTEL and RAVE for
metal-poor stars, and we used the metallicity data from the nine
papers to supplement the metal-poor stars in the test set. Due to
the systematic difference between the nine papers and
LAMOST, this work applied a systematic correction of 0.427
to the metallicity values from the nine papers.

3. Results

We now compare the results for the two sets of training
samples. The first data set includes the photometric information
provided by SAGES DR1 and Gaia EDR3, and the second data
set uses information from SAGES DR1, Gaia EDR3, WISE,
2MASS, and GALEX.

3.1. Data Set 1: Photometry from SAGES DRI and Gaia DR3

The training data for this input data contains 579,185 dwarf
stars and 67,031 giant stars. Figure 6 shows the accuracy and
precision of the five models on the test set; each panel
represents the training result for one model. The upper part of
each panel compares the known stellar parameters derived from
spectroscopy (x-axis) with the parameters predicted by the
model (y-axis). The left portion of the lower part in each panel
represents the Gaussian fitting results for the residuals. The
right portion of the lower part in each panel shows the residual
distribution of the predicted values minus the spectroscopic

values, as a function of the spectroscopic values. The fitting
parameters are shown in the legend in the upper part of each
panel.

3.2. Data Set 2: Addition of Two Infrared Photometric Surveys

After crossmatching with 2MASS J, H, and K bands, WISE
W1 and W2 bands, as well as the GALEX near-UV band, a
second set of training sample is assembled containing 178,542
dwarf stars and 11,559 giant stars. Figure 7 illustrates the
accuracy and precision of the five models on this test set, with
each subplot representing the training result of one model.
When contrasting Figure 7 with Figure 6, it is clear that the
statistical accuracy and precision of the [Fe/H] and log g for
the dwarf stars has been improved somewhat after adding the
infrared photometric data. However, in subsequent studies, we
believe that the higher precision observed here may be an
artifact due to differences in sample distribution.

3.3. Final Accuracy and Precision

Figure 8 illustrates the performance of the mean and standard
deviation for the five models, with the three columns of panels
representing the [Fe/H], T, and log g, respectively. The two
rows display the variations of the standard deviation (first row)
and mean (second row) with respect to the known stellar
parameters. In the figure, different colors represent distinct
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training sets, while the various shapes represent different types

of stars.

[Fe/H] basically has no systematic error, and the deviation is
within 0.1 dex, but the dispersion is large at the metal-poor end.
When [Fe/H] < —2.0, it is about 0.2-0.3 dex, and when
[Fe/H] > —0.5, it can achieve accuracy better than 0.1 dex.
The systematic error in T is approximately 20 K for giant
stars and around 50 K for dwarf stars. Outliers are primarily
due to the larger intrinsic dispersion caused by small sample
sizes and the lower luminosity of cooler stars. For giant stars
with temperatures below 5250 K, the temperature dispersion is

better than 50K. For most dwarf stars, the temperature
dispersion is around 100 K. The systematic error of log g is
also relatively small as a whole and at about 0.1 dex. For most
stars, the log g accuracy can be better than 0.15dex. The
dispersion of this parameter becomes larger with decreasing
log g.

In Figure 8, red-dashed lines represent the systematic error
and standard deviation of the corresponding parameters in the
test set of Data Set 2. When comparing the results of the first
data set (blue-dashed line), it can be seen that the second data
set exhibits similar precision and accuracy across various
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parameters. However, the second data set, which includes
several different survey data with different limiting magnitudes
and a wide range of wavelength, suffers from significant
selection effects for both low effective temperature and high
effective temperature stars. Additionally, the sample size of the
second data set is only one-tenth that of the first data set
therefore has a smaller coverage range of stellar parameters. In
consequence, subsequent tests will utilize only the first data set.

3.4. External Tests with Other Catalogs

In this study, a substantial portion of publicly available
spectroscopic survey data was collected for model training and
testing. To conduct external tests, we crossmatch the stellar
parameters obtained from the XP spectra provided by Gaia
DR3 (R. Andrae et al. 2023, hereafter A23) with those obtained
by previous studies utilizing SAGES (H23).



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 277:19 (11pp), 2025 March

Only SAGES u & v Bands

I Dwarf: 19663040

Gu et al.
SAGES u & v and IR Photometric Bands
I Dwarf: 2037528

10°% www Giant: 1408265

105 4

104 4

103 4

102 4

101 4

100 4

-3.0 -2.5-2.0-15-1.0-0.5 0.0 0.5

1054 0 Giant: 153924

104 4

103 4

102 4

101 4

100 4

[Fe/H]

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 12. Left panel: The photometric-metallicity distributions of dwarf (blue) and giant (yellow) stars in Data Set 1. The number of dwarf and giant stars in each bin
of metallicity are also given. Right panel: similar to the left panel, but using data from Data Set 2.

Table 3

Description of the Final Sample
Parameter Description Unit
R.A. R.A. from SAGES DRI1 (J2000) degrees
Decl. Decl. from SAGES DR1 (J2000) degrees
Tets Effective temperature (unreliable data are marked with —9999) kelvin
log g Logarithm surface gravity (unreliable data are marked with —9999) cgs
[Fe/H] Photometric metallicity (unreliable data are marked with —9999)
ebv_sfd Value of E (B — V) from the extinction map of SFD98
ufv Magnitude for the SAGES u/v bands from DR1 mag
u_err/v_err Uncertainty of magnitude for the SAGES u/v bands from DR1 mag
G/Bp/Rp Magnitudes for three Gaia bands from EDR3 mag
G_err/Bp_err/Rp_err Uncertainty of magnitudes for three Gaia bands from EDR3 mag
J/H/K Magnitudes for three 2MASS bands mag
J_err/H_err/K_err Uncertainty of magnitudes for three 2MASS bands mag
w1/W2 Magnitude for the WISE W1/W2 bands mag
W1_err/W2_err Uncertainty of magnitude for the WISE W1/W2 bands mag
NUV Magnitude for the GALEX NUV bands mag
NUV_err Uncertainty of magnitude for the GALEX NUV bands mag
parallax Parallax from Gaia EDR3 mas
err_parallax Uncertainty of parallax from Gaia EDR3 mas
pm/pmra/pmdec Proper motion in total/R.A./decl. from Gaia EDR3 mas yr !
err_pmra/err_pmdec Uncertainty of proper motion in R.A./decl. from Gaia EDR3 !

type

Flag to indicate classifications of stars, 1 means dwarf, 0 means giant

After crossmatching with the H23 catalog, we identified
13,455,865 sources in common in Data Set 1. The error
distribution of the three parameters provided by the five models
is depicted in Figure 9. Since the H23 catalog lacks log g
information, a direct performance comparison with this model
was not possible. The mean and standard deviation of the
models were determined by Gaussian fitting of the residual
values of stellar parameters measured by the two models
(values in our catalog minus values in H23 catalog). The mean

offsets for both models in metallicity is close to zero, and the
standard deviation is slightly higher than 0.1 dex, indicating
that, in terms of metallicity, the parameters generated by our
models are in agreement with the values given in the H23
paper. Assuming equal errors in H23 and our model, the errors
for both are approximately 0.1 dex.

However, in the effective temperature models, there is a
significant systematic difference of about 50 K between the
two. This substantial systematic difference may be attributed to
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the training set. Our training set used the parameters directly
provided by LAMOST DR10, while H23 wused stellar
parameters they calculated themselves from LAMOST spectra.
In both the giant- and dwarf-star temperatures, there are some
vertical structures, indicating that a group of stars with similar
temperatures in the H23 catalog are considered to have
different effective temperature in this work. Given that this
structure does not appear in comparisons with other studies, we
believe it may be caused by some systematic errors inherent in
the SAGES DRI. The polynomial fitting, due to its limited
number of parameters, is unable to correct the complex
systematic error in input data therefore cause large systematic
error in output data.

Similarly, after crossmatching with the A23 parameter
catalog, there are 11,367,335 sources in common. The error
distribution of the three parameters provided by the five models
is illustrated in Figure 10. The generation method of the figure
is consistent with the previous discussion. It can be seen that
the overall correlation of the five models is quite good. An
unusual structure in the surface gravity and effective temper-
ature models is evident. This may be due to the different
training data sets used. In the crossmatched catalog between
LAMOST and APOGEE, the log g and T, also exhibit similar
anomalous structures. Because the temperature range of the
training set used by A23 only extends up to 7000 K, most stars
with temperatures greater than 7000 K are considered as stars
with temperatures of 6500 to 7000 K. Consequently, a larger
standard deviation is exhibited when comparing our model
to A23 for dwarf stars.

3.5. External Tests with Star Clusters

This section presents the results of the tests using star
clusters. We crossmatched our catalog with the proper motion
from Gaia DR3, and performed cuts in R.A. and decl. near the
centers of the clusters, restricting the proper-motion errors in
both directions to be less than 0.3 mas yr~ . We then selected a
stringent sample of cluster members by cutting the overdense
regions in the proper-motion space. By examining the color—
magnitude diagram of this sample, we confirmed that it is
virtually free of field-star contamination. Using this method for
member selection, we identified high-purity member stars for
two open clusters, NGC 2420 and NGC 2682, and two globular
clusters, NGC 6934 and NGC 7089. After applying a signal-to-
noise ratio > 20 criterion in the SAGES u and v bands, we
conducted metallicity precision tests on the selected member
stars.

Figure 11 shows the metallicity distributions of the four
clusters, fitted with Gaussian functions, and the resulting mean
and standard deviation. The standard deviations are consistent
with the metallicity dispersions presented in Section 3.3. By
comparing the metallicity measurements of the globular and
open clusters with those provided by W. E. Harris (2010;
hereafter H10) and T. Cantat-Gaudin et al. (2018; hereafter
C18) (indicated by the black dashed lines in Figure 11), it can
be seen that the systematic errors in metallicity at the metal-
poor end are also consistent with the results from the test set in
Section 3.3.

4. The Final Sample

Through the application of the trained models to all
photometric data, two sets of value-added catalogs are
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obtained. The first data set contains 21,071,305 stars, including
19,663,040 dwarf stars and 1,408,265 giant stars; the second
data set has 2,191,452 stars, including 2,037,528 dwarf stars
and 153,924 giant stars.

In view of the poor extrapolation ability of the random forest
algorithm, the results obtained from extrapolating T, were
unsatisfactory. To remove this low-temperature star sample,
we performed a polynomial fit to the temperature using
(Bp — Rp)y from the training data and excluded the three
atmospheric parameters of the low-temperature stars with
(Bp — Rp)p > 1.598. Figure 12 shows the distribution of metal
abundance predicted by the two models. For the first data set,
the fractions of stars with [Fe/H] <0, <—1, and <-2 are
81.11%, 4.88%, and 0.03%, respectively. For the second data
set, the fractions of stars with [Fe/H] <0, <—1, and <-2 are
77.59%, 2.18%, and 0.05%, respectively. The numbers of stars
in each interval of [Fe/H] and stellar types are shown in the
histogram. Table 3 lists the parameters provided in the final
data product.

5. Summary

In this work, we combine stellar-parameter estimates from
spectral surveys and high-resolution spectral data collected
from the literature with photometric data from SAGES DRI,
Gaia DR3, WISE, 2MASS, and GALEX. Using the random
forest algorithm, we derive high-precision stellar parameters for
a total of 21,071,305 stars, including 19,663,040 dwarf stars
and 1,408,265 giant stars. The overall precision is about
0.1dex in [Fe/H] and log g, and the T precision is better
than 100 K.

Currently, the log g of stars primarily relies on the input
parallax from Gaia DR3. Ongoing SAGES observations in the
DDOS51 band, which is sensitive to log g, will provide more
accurate log g parameter information once the observations are
completed. Subsequently, the large number of stars with
available stellar parameters can be used as the basis for a
variety of follow-up efforts, such as using metal-abundance
information provided by this catalog to identity and study
stellar streams with Gaia kinematic information, or to find
candidate targets for future spectroscopic observation. At
present, two catalogs of this work are available at
doi:10.12149/101557.
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