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Abstract

We present a catalog of 8440 candidate very metal-poor (VMP; [Fe/H] �−2.0) main-sequence turn-off (MSTO)
and red giant stars in the Milky Way, identified from low-resolution spectra in LAMOST DR10. More than 7000
of these candidates are brighter than G ∼ 16, making them excellent targets for high-resolution spectroscopic
follow-up with 4–10 m class telescopes. Unlike most previous studies, we employed an empirical calibration to
estimate metallicities from the equivalent widths of the calcium triplet lines, taking advantage of the high signal-
to-noise ratio in the red arm of LAMOST spectra. We further refined this calibration to improve its reliability for
more distant stars. This method enables robust identification of VMP candidates with metallicities as low as
[Fe/H] =−4.0 among both MSTO and red giant stars. Comparisons with metal-poor samples from other
spectroscopic surveys and high-resolution follow-up observations confirm the accuracy of our estimates, showing
a typical median offset of ∼0.1 dex and a standard deviation of ∼0.2 dex.

Unified Astronomy Thesaurus concepts: Chemical abundances (224); Galaxy stellar content (621); Halo stars
(699); Population II stars (1284)
Materials only available in the online version of record: machine-readable table

1. Introduction

Very metal-poor (VMP; [Fe/H] �−2.0) stars serve as fossil
records of the early chemical enrichment and dynamical
assembly of the Milky Way. Their chemical compositions offer
valuable clues about the star formation history of the early
Universe, as well as the nature of the Big Bang, the initial mass
function, the nucleosynthetic yields of the first generations of
stars, and the role of early supernovae in shaping the interstellar
medium (T. C. Beers & N. Christlieb 2005; M. N. Ishigaki et al.
2018; R. S. Klessen & S. C. O. Glover 2023). In addition, the
dynamical properties of VMP stars provide key insights into the
formation of the Galactic halo and the major merger events that
occurred during the Galaxy’s early assembly history (e.g.,
D. Shank et al. 2022, 2023; J. Zepeda et al. 2023; J. Cabrera
Garcia et al. 2024, and references therein).

Due to their rarity and scientific significance, the search for
VMP stars has long been a challenging yet central pursuit in
Galactic archeology. Over the past decade, large-scale
spectroscopic and photometric surveys have enabled unprece-
dented opportunities for their discovery. Millions of VMP
candidates have been identified through data mining of
spectroscopic surveys such as RAVE (M. Steinmetz et al.
2006), LAMOST (X.-Q. Cui et al. 2012; G. Zhao et al. 2012),
SEGUE (B. Yanny et al. 2009; C. M. Rockosi et al. 2022),

APOGEE (S. R. Majewski et al. 2017), GALAH (G. M. De
Silva et al. 2015), and Gaia (Gaia Collaboration et al. 2023),
objective-prism surveys such as the HK survey (T. C. Beers
et al. 1985, 1992) and the Hamburg/ESO survey (N. Christlieb
et al. 2008), and photometric surveys like the Pristine survey
(E. Starkenburg et al. 2017), the SkyMapper survey (C. Wolf
et al. 2018; Y. Huang et al. 2019, 2022), J-PLUS (A. J. Cenarro
et al. 2019; Y. Huang et al. 2024), S-PLUS (C. Mendes de
Oliveira et al. 2019, Y. Huang et al. 2025, in preparation), and
SAGES (Z. Fan et al. 2023; Y. Huang et al. 2023). However,
many of these samples are based on survey pipelines or
machine learning methods, which generally struggle to
identify stars below [Fe/H] ∼−2.5 due to the intrinsic
weakness of metal lines at such low abundances. In the case
of the photometric surveys, the influence of strong molecular
carbon bands can lead to incorrect (high) metallicity estimates
(see, e.g., J. Hong et al. 2024).
Although high-resolution spectroscopic follow-up provides

precise measurements, the number of VMP stars confirmed
through such observations remains relatively small. A major
limitation lies in the low success rate of candidate selection
from low-resolution or photometric data—many turn out not to
be truly metal poor. This leads to a significant waste of
valuable high-resolution resources and hinders the construc-
tion of reliable VMP samples. These challenges underscore the
urgent need for a large and reliable sample of VMP candidates
that can efficiently guide follow-up efforts toward the most
promising targets.
LAMOST DR10 has released over 12 million low-

resolution stellar spectra across the Milky Way, offering a
rich data set for stellar parameter and chemical-abundance
analysis. With its wide wavelength coverage (3700–9100 Å)
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and sufficient spectral resolution (R ∼ 1800), LAMOST
enables the determination of multiple elemental abundances
and atmospheric parameters (G. Zhao et al. 2012). Most
existing pipelines, such as those described in A. L. Luo et al.
(2015) and H. Li et al. (2018), primarily focus on the blue arm
of the spectrum, where metal absorption lines are abundant.
However, for VMP stars, the blue spectral region often suffers
from low signal-to-noise ratios (SNR), making metallicity
measurements challenging due to the intrinsic weakness of
metal lines, and/or poor determination of the continuum. In
contrast, the red arm of LAMOST spectra typically exhibits
significantly higher SNR, which is crucial for detecting and
characterizing distant and faint VMP stars. Fully leveraging
this high-SNR red spectral range allows for the identification
of a larger number of reliable VMP candidates than previously
possible, and improves the precision of metallicity estimates
for already known ones.

Since the red arm of LAMOST spectra contains fewer
spectral features than the blue arm, we abandoned the synthetic
spectral-fitting methods commonly adopted by LAMOST
pipelines and employ an alternative approach. We focus on
the calcium triplet (CaT) lines (λ = 8500, 8544, 8664 Å),
which are among the most prominent features in the near-
infrared region of LAMOST spectra. R. Carrera et al. (2013)
demonstrated that the CaT lines serve as reliable metallicity
indicators for VMP red giant stars, and provided a simple
empirical calibration capable of measuring metallicities down
to [Fe/H] ∼−4.0 using their equivalent widths (EWs).
A. Viswanathan et al. (2024) further applied this method to
Gaia Radial Velocity Spectrometer (RVS) spectra, showing
excellent agreement with high-resolution spectroscopic mea-
surements, confirming its robustness.

Building on these studies, we adopt the empirical calibration
of R. Carrera et al. (2013) to estimate metallicities for red giant
stars in our sample. Calibrated on VMP red giants in globular
clusters with non–local thermodynamic equilibrium effects
considered, this method is well suited for red giants. We also
test its performance on other stellar types, and find that it
yields reliable metallicities for MSTO stars, though it is not
applicable to dwarf or blue giant stars. Applied to LAMOST
spectra, this method enables the identification of a large
number of candidate VMP MSTO and red giant stars with
robust metallicity estimates.

Using this method, we present a catalog of 8440 VMP
candidates selected from LAMOST DR10, along with their
estimated metallicities. Section 2 describes the data set used in
this study. Section 3 outlines the candidate selection and
metallicity-estimation procedures. In Section 4, we present the
metallicity results and evaluate their reliability through
comparisons with high-resolution spectroscopic samples, other
spectroscopic surveys, and machine learning–based estimates.
Section 5 summarizes our findings and discusses the potential
of this approach for future studies.

2. Data

In this study, we primarily utilize spectroscopic data from
LAMOST DR10 (X.-Q. Cui et al. 2012) and photometric and
astrometric data from Gaia DR3 (Gaia Collaboration et al.
2023). LAMOST currently has the world’s largest (ground-
based) stellar spectral database, and its latest public release,
DR10, provides over 12 million stellar spectra in the Milky
Way. With its wide wavelength coverage (3700–9100 Å),

LAMOST enables robust determination of stellar parameters
and elemental abundances.
To ensure data quality, we selected low-resolution

LAMOST spectra with SNR greater than 20 in the r band,
which ensures reliable measurements, particularly in the near-
infrared. For stars with multiple observations, we retained the
spectrum with the highest SNR. These were then crossmatched
with Gaia DR3 sources to incorporate magnitudes and
distances, adopting the geometric distance estimates from
C. A. L. Bailer-Jones et al. (2021).

3. Methods

3.1. Method 1: The Absolute Magnitude Method

The absolute magnitude method (hereafter referred to as
Method 1) is based on the calibration provided by R. Carrera
et al. (2013), which requires CaT EWs and absolute
magnitudes as inputs, as expressed in Equation (1). We found
that R. Carrera et al. (2013) offered four sets of coefficients for
different photometric systems, and the results obtained using
these four coefficient sets all showed good consistency.
Therefore, we chose the coefficient set using Johnson–Cousins
V magnitudes as input. Some of the candidates did not have
precise V magnitudes, so we used the conversion provided
by M. Riello et al. (2021) to convert Gaia G magnitudes to
V magnitudes. The coefficients are shown in the left column

Table 1
Coefficients for the Calibrations Used in This Work

Coefficients Method 1 Method 2

a −3.45 ± 0.04 −3.68 ± 0.15
b 0.16 ± 0.01 −0.72 ± 0.12
c 0.41 ± 0.004 0.49 ± 0.01
d −0.53 ± 0.11 0.35 ± 0.02
e 0.019 ± 0.002 ⋯

Note. Coefficients in Method 1 are taken from R. Carrera et al. (2013).

Figure 1. Color–magnitude diagram of stars in LAMOST DR10. The black
rectangle indicates our empirical cut for MSTO and red giant stars, defined by
0.4 ∼ GBP − GRP ∼ 1.6 and −4.0 ∼ MG ∼ 6.5. The blue data points represent
the full stellar sample from LAMOST DR10, while the orange data points
represent the VMP stars identified by Method 1. These stars exhibit a good
agreement with the PARSEC isochrone for [Fe/H] = −2.0 and an age of
10 Gyr, shown as the red-dotted line.
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of Table 1.
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3.1.1. Candidate Selection

The calibration from R. Carrera et al. (2013) is intended for
red giant stars, but we also tested its performance on other

stellar types and compared the results with metal-poor samples
from high-resolution spectroscopy. We find that this calibra-
tion yields reliable metallicities for MSTO stars with absolute
magnitudes brighter than G ∼ 6.5, though it is not applicable
to dwarf or blue giant stars. Thus, we adopt an empirical cut
from Y. Huang et al. (2022) based on Gaia G magnitudes and
Gaia BP− RP color: 0.4 ∼ GBP − GRP ∼ 1.6 and
−4.0 ∼ MG ∼ 6.5, to select MSTO and red giant stars. The
cut is shown as the black rectangle on the color–magnitude
diagram in Figure 1. We then crossmatched the selected

Figure 3. Normalized spectra and fitted CaT lines for four example stars in this work. OBSID stands for LAMOST DR10 unique spectrum ID. These examples cover
the main range of metallicities and SNRs of our samples. The blue line represents the normalized spectra, and the orange line represents the fitted CaT lines.

Figure 2. Left: comparison of the sum of the EWs of three CaT lines,W8500 ∫W8544 ∫W8664, for the high-SNR VMP sample using the Gaussian-fitting method and
direct integration method. Right: comparison of two definitions of ΣCa: the sum of the three lines W8500 ∫ W8544 ∫ W8664, and 1.24 times the sum of the last two
lines 1.24 × (W8544 ∫ W8664). The number of samples (n), median offset (µ), and standard deviation (σ) are shown at the top. The orange line represents the 1:1 line.
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MSTO and red giant stars with the LAMOST stellar parameter
catalog, derived from LAMOST low-resolution spectra using
the LAMOST stellar parameter pipeline (LASP; A. L. Luo
et al. 2015). This catalog presents metallicities for stars in
LAMOST DR10 with a selection criterion of [Fe/H] >−2.5.
We further exclude stars with [Fe/H] >−1.5, as they are
unlikely to be VMP stars. The final sample comprises
approximately 200,000 MSTO and red giant stars with
[Fe/H] ∼−1.5.

3.1.2. Spectral Metallicity Estimate Pipeline

First, we shifted all LAMOST spectra to the rest frame using
radial velocities derived from LASP, then manually inspected
for anomalous spectra and corrected their radial velocities
using an empirical template spectrum. Next, we trimmed the
spectra to the range 8450–8700 Å to focus on the CaT lines,
and masked the major absorption features following the
approach in A. Viswanathan et al. (2024). We then fitted a

cubic polynomial model to the unmasked regions of the
spectra, using the curvefit function from the SciPy
module in Python.
After continuum normalization, we modeled the CaT lines

separately using Gaussian profiles. We performed the fitting
using the LevMarLSQFitter function from the Astropy
module in Python. Constraints were applied to each line to
ensure that the fitting parameters were reasonable. We selected
1164 VMP stars with high SNR to validate this fitting method.
The left panel of Figure 2 shows that the EWs derived using
Gaussian fitting agree well with direct integration results,
while Figure 3 demonstrates that the fitted CaT lines match
well with the normalized spectra for the example stars. In cases
where the SNR was too low for Gaussian fitting, we directly
integrated the spectra within ±10, ±15, and ±12.5 Å around
the line cores of the CaT lines to estimate their EWs.
We defined the CaT index (ΣCa) as the unweighted sum of the

three lines W8500 ∫ W8544 ∫ W8664. When the weakest CaT line
W8500 was buried in the noise, we defined the CaT index as 1.24
times the sum of the other two lines, 1.24× (W8544 ∫W8664). We
classified the CaT indices using two distinct flags: the CaT
indices measured with all three CaT lines were assigned
flag=0, while those measured with the two redder lines
received flag=1. The right panel of Figure 2 demonstrates that
these two definitions are consistent for VMP stars. The CaT
indices were then converted to metallicities using Equation (1).

3.2. Method 2: The Color and Surface Gravity Method

Since Method 1 requires absolute magnitudes as input, it
heavily relies on accurate distances. However, the geometric
distances from C. A. L. Bailer-Jones et al. (2021) have
significant systematic errors for stars beyond 6 kpc. In order to
discover more distant VMP stars, we adopted a new method
(hereafter referred to as Method 2), using the Gaia BP− RP
color and surface gravity log g instead of absolute magnitude
to measure metallicity. In Figure 4, we adopted a sample with
surface gravity values estimated by LASP and metallicities
estimated by Method 1 to show that metallicity has a good
relationship with the CaT index, color, and surface gravity.
We refined the calibration from R. Carrera et al. (2013) by

replacing the three terms involving magnitudes with one term
for color and another term for surface gravity, as shown in
Equation (2). The coefficients in this equation are shown in the

Figure 4. The correlation between metallicity and the CaT index, Gaia BP − RP color (left), and surface gravity (right). The metallicities are estimated by Method 1,
while the surface gravity values are estimated by LASP. This color map shows that metallicity has a strong relationship with the CaT index, Gaia BP − RP color, and
surface gravity.

Figure 5. The MCMC result for the coefficients in Equation (2). The values at
the top of the columns represent the median offset and 1σ standard deviation
of the coefficients. This figure shows good fitting results, indicating that the
coefficients are reliable.
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right column of Table 1.
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The coefficients in Equation (2) were determined using a
Markov Chain Monte Carlo (MCMC) procedure based on a
metal-poor sample with metallicities estimated by Method 1
and surface gravity values estimated by LASP. This sample
allows us to minimize the systematic errors between the two
methods. Figure 5 exhibits good MCMC-fitting results,
indicating that the coefficients are reliable.

Since we no longer have accurate distances for distant stars,
we replaced the absolute magnitude cut with a surface gravity
cut of log g ∼ 3.8, while retaining the color cut of
0.4 ∼ GBP − GRP ∼ 1.6 to select MSTO and red giant stars.
We use the two-dimensional dust map from E. F. Schlafly &
D. P. Finkbeiner (2011) for dereddening the Gaia BP− RP
color. This dust map is generally consistent with the dust
map from G. M. Green et al. (2019). We removed stars with
[Fe/H] >−1.5 from the LAMOST stellar parameter catalog,
as they are unlikely to be VMP stars. The final sample
comprises approximately 20,000 MSTO and red giant stars
with [Fe/H] ∼−1.5, other than those in the the sample from
Method 1. We used the same procedure as Method 1 for radial
velocity correction, continuum normalization, spectral fitting,
and CaT index measurements.

4. Results and Validation

We have used the methods described above to estimate the
metallicities of ∼220,000 MSTO and red giant stars in
LAMOST DR10, including 8440 VMP stars. Among these
stars, 4500 metallicity estimates were obtained using Method
1, and 3940 estimates were obtained using Method 2. Figure 6
shows that this catalog covers a large area of the sky in
the Northern Hemisphere, with metallicities ranging from
[Fe/H] = −2.0 to −4.0, including 25 extremely metal-poor
(EMP; [Fe/H] �−3.0) stars. More than 7000 stars are brighter
than G ∼ 16, making them excellent targets for high-resolution
spectroscopic follow-up with 4–10 m class telescopes.

We have validated our metallicity estimates by comparing
them with the Gaia RVS metallicity catalog (A. Viswanathan
et al. 2024), spectroscopic surveys such as APOGEE DR17
(S. R. Majewski et al. 2017) and GALAH DR3 (G. M. De
Silva et al. 2015), high-resolution spectroscopic databases such
as PASTEL (C. Soubiran et al. 2016) and SAGA (T. Suda
et al. 2008), metal-poor samples from previous works such as

H. Li et al. (2022), and metallicity catalogs derived using the
data-driven Payne (DD-Payne) method (M. Xiang et al. 2019)
and a neural network method (C. Wang et al. 2022). We only
included samples with [Fe/H] ∼−1.5 for comparison because
the calibration used in this work is only suitable for VMP stars,
and our metallicity estimates have relatively large systematic
errors when compared to literature values for samples with
[Fe/H] >−1.5.

4.1. Comparison with Metal-poor Samples from Gaia RVS
Spectroscopy

Figure 7 shows the validation of the metallicities estimated
by Method 1. The metal-poor samples from Gaia RVS
spectroscopy (A. Viswanathan et al. 2024) used the same
calibration as in this work, providing an opportunity to validate
our spectral analysis pipeline without introducing systematic
errors from the calibration. In addition to comparing
metallicities, we also compared the CaT EWs measured in
both works.
From inspection of the top row of Figure 7, one can see that

the metallicity estimates exhibit a negligible median offset of
less than ∫0.01 dex, and a standard deviation of 0.13 dex,
while the CaT indices show a moderate median offset of
−0.11 dex, and a standard deviation of 0.25 dex. This
demonstrates the robustness of our spectral analysis pipeline.
Figure 8 shows the validation of the metallicities estimated

by Method 2. In the top-left panel we compared the
metallicities estimated by Method 1 and Method 2, while in
the top-right panel we compared the metallicities estimated by
Method 2 and Gaia RVS spectroscopy (A. Viswanathan et al.
2024). Both comparisons exhibit very small median offsets of
∫0.01 and −0.01 dex, and moderate standard deviations of
0.15 and 0.18 dex, indicating that the calibration based on
color and surface gravity is a good alternative to the calibration
provided by R. Carrera et al. (2013).

4.2. Comparison with Metal-poor Samples from Spectroscopic
Surveys

Next, we validated our metallicities by comparing them with
metal-poor samples from spectroscopic surveys such as
APOGEE DR17 (S. R. Majewski et al. 2017) and GALAH
DR3 (G. M. De Silva et al. 2015). We removed stars with
FE_H_FLAG≠0 from the APOGEE sample and stars with
flag_fe_h≠0 from the GALAH sample.
From inspection of the second row of Figure 7, one can see

that the metallicities estimated by Method 1 exhibit a tiny median

Figure 6. Left: distribution of the VMP sample in Galactic coordinates. The red-dashed line represents the celestial equator. This VMP sample covers a large area of
the sky in the Northern Hemisphere. Right: distribution of the magnitudes of the VMP sample. More than 7000 stars in this VMP catalog are brighter than G ∼ 16.
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offset of less than ∫0.01 dex, and a moderate standard deviation
of 0.13 dex when compared to the APOGEE sample, while
showing a slightly larger, but still very small, median offset of

−0.08 dex, and a moderate standard deviation of 0.18 dex when
compared to the GALAH sample. This indicates that our
metallicity estimates are reliable for VMP stars.

Figure 7. Top row: comparison of metallicities (left) and CaT EWs (right) estimated by Method 1 with results from Gaia RVS spectroscopy. Second row:
comparison with spectroscopic surveys such as APOGEE DR17 (left) and GALAH DR3 (right). Third row: comparison with metal-poor samples from high-
resolution spectroscopy such as PASTEL and SAGA (left) and H. Li et al. (2022) (right). Bottom row: comparison with metallicity catalogs from M. Xiang et al.
(2019) (left) and C. Wang et al. (2022) (right). The number of matches (n), median offset (µ), and standard deviation (σ) of [Fe/H] and ΣCa are shown at the top of
each panel. The orange lines represent the 1:1 line.
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The second row of Figure 8 shows that the metallicities
estimated by Method 2 exhibit a tiny median offset of less than
∫0.01 dex, and a moderate standard deviation of 0.16 dex

when compared to the APOGEE sample, while showing a
larger median offset of −0.14 dex, and a moderate standard
deviation of 0.18 dex when compared to the GALAH sample.

Figure 8. Top row: comparison between metallicities estimated by Method 1 and Method 2 (left) and comparison between metal-poor samples from Method 2 and
Gaia RVS spectroscopy (right). Second row: comparison with spectroscopic surveys such as APOGEE DR17 (left) and GALAH DR3 (right). Third row: comparison
with metal-poor samples from high-resolution spectroscopy such as PASTEL and SAGA (left) and H. Li et al. (2022) (right). Bottom row: comparison with
metallicity catalogs from M. Xiang et al. (2019) (left) and C. Wang et al. (2022) (right). The number of matches (n), median offset (µ), and standard deviation (σ) of
[Fe/H] are shown at the top of each panel. The orange lines represent the 1:1 line.
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Generally, the comparison of metallicities estimated by
Method 1 and Method 2 have similar trends, probably because
the coefficients of the calibration used in Method 2 were
derived with a sample from Method 1, and thus Method 2
inherited the systematic offsets from Method 1.

We also validated the calcium abundance for the metal-poor
stars in this work using [Ca/Fe] from APOGEE and GALAH.
The top row of Figure 9 demonstrates that the [Ca/Fe] of most
metal-poor stars are between 0.0 and ∫0.4, while the bottom
row of Figure 9 shows no significant correlation between the
[Ca/Fe] and [Fe/H] of these stars. Given this relatively narrow
spread and lack of strong correlation, we do not apply any
explicit correction for calcium abundance in our [Fe/H]
calibration based on CaT lines. However, we adopt a
conservative empirical uncertainty of 0.2 dex to account for
possible variations due to [Ca/Fe].

4.3. Comparison with Metal-poor Samples from High-
resolution Spectroscopy

To validate our metallicities in the EMP regime, we
compared them with metal-poor samples from high-resolution
spectroscopic databases such as PASTEL (C. Soubiran et al.
2016) and SAGA (T. Suda et al. 2008), as well as results from
previous works based on high-resolution spectroscopy, such as
H. Li et al. (2022).

Inspection of the third row of Figure 7 shows that the
metallicity estimates in this work exhibit moderate median
offsets of ∫0.21 and ∫0.20 dex, and standard deviations of
0.28 and 0.25 dex when compared to high-resolution results.

The metallicities estimated by Method 1 are higher in the
EMP regime than in the VMP regime, because the calibration
used in Method 1 saturates in the EMP regime (R. Carrera
et al. 2013).
The third row of Figure 8 also exhibits moderate median

offsets of ∫0.11 and ∫0.25 dex, and standard deviations of
0.25 and 0.30 dex. This comparison lacks EMP stars because
we used surface gravity values estimated by LASP, which did
not assign stellar parameters to EMP stars. However, we will
be able to identify EMP stars using this method once we will
have access to additional sources of surface gravity data in the
future.

4.4. Comparison with Metallicities Estimated by DD-Payne
and Neural Network Methods

The bottom row of Figure 7 shows comparisons with metal-
poor samples from M. Xiang et al. (2019) using the DD-Payne
method, and metal-poor samples from C. Wang et al. (2022)
using a neural network method. The DD-Payne model was
trained with samples from GALAH DR2 (S. Buder et al. 2018)
and APOGEE DR14 (J. A. Holtzman et al. 2018), while the
neural network model was trained with samples from PASTEL
(C. Soubiran et al. 2016).
The bottom row of Figure 7 exhibits a very small median

offset of −0.07 dex and a standard deviation of 0.30 dex
compared to M. Xiang et al. (2019), and a moderate median
offset of ∫0.19 dex and a standard deviation of 0.36 dex
compared to C. Wang et al. (2022). The bottom row of
Figure 8 exhibits similar results, with a larger median offset of

Figure 9. Top row: the [Ca/Fe] distribution of metal-poor stars in this work using measurements from APOGEE (left) and GALAH (right). Bottom row: the
distribution of [Fe/H] measured in this work vs. the [Ca/Fe] measured by APOGEE (left) and GALAH (right).
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−0.23 dex and a standard deviation of 0.25 dex compared to
M. Xiang et al. (2019), and a smaller median offset of
+0.09 dex and a standard deviation of 0.39 dex compared to
C. Wang et al. (2022).

The bottom row of this figure shows greater dispersions than
the upper rows, probably due to the combined errors from both
our sample and the sample from M. Xiang et al. (2019) and
C. Wang et al. (2022). The systematic offset in the bottom-left
panel occurs because the DD-Payne model saturates at
[Fe H] <−2.5, while the offset in the bottom-right panel
arises from the difference between low-resolution spectra from
LAMOST and the high-resolution spectra from PASTEL.
Overall, the metallicities estimated in this work agree with the
results from M. Xiang et al. (2019) and C. Wang et al. (2022).

5. Summary

The search for VMP stars has long been a challenging yet
central pursuit in Galactic archeology. In the past decade, data
mining of photometric and spectroscopic surveys has led to
numerous successful discoveries of VMP stars in the Galaxy.
LAMOST DR10 has released over 12 million spectra for stars
in the Milky Way, providing a great opportunity for
discovering VMP stars. Unlike previous studies, we focus on
the red arm of LAMOST spectra because its high SNR enables
the analysis of a larger sample size and more accurate
metallicity estimates. We derived metallicities using the EWs
of the CaT lines in the near-infrared band of LAMOST low-
resolution spectra, applying an empirical calibration from
R. Carrera et al. (2013). Additionally, we refined this

Table 2
Description of the Columns in the Metallicity Catalog in this Work

Column Description Unit

obsid LAMOST DR10 unique spectrum ID �
gaiaid Gaia DR3 source ID �
ra Gaia DR3 R.A. in ICRS (J2016) format degrees
dec Gaia DR3 decl. in ICRS (J2016) format degrees
snr Signal-to-noise ratio at the r band of the LAMOST spectrum �
g_mag Gaia G magnitude mag
g_err Uncertainty of the Gaia G magnitude mag
bp_mag Gaia GBP magnitude mag
bp_err Uncertainty of the Gaia GBP magnitude mag
rp_mag Gaia GRP magnitude mag
rp_err Uncertainty of the Gaia GRP magnitude mag
teff_LASP Effective temperature estimated by A. L. Luo et al. (2015) K
teff_err_LASP Uncertainty of the effective temperature estimated by A. L. Luo et al. (2015) K
logg_LASP Surface gravity estimated by A. L. Luo et al. (2015) cgs
logg_err_LASP Uncertainty of the surface gravity estimated by A. L. Luo et al. (2015) cgs
feh_LASP Metallicity estimated by A. L. Luo et al. (2015) �
feh_err_LASP Uncertainty of the metallicity estimated by A. L. Luo et al. (2015) dex
pm Gaia DR3 proper motion mas yr−1

pmra Gaia DR3 proper motion in R.A. mas yr−1

pmra_err Uncertainty of the Gaia DR3 proper motion in R.A. mas yr−1

pmdec Gaia DR3 proper motion in decl. mas yr−1

pmdec_err Uncertainty of the Gaia DR3 proper motion in decl. mas yr−1

rv Radial velocity offset from the rest frame km s−1

rv_err Uncertainty of the radial velocity offset from the rest frame km s−1

rgeo Geometric distance estimated by C. A. L. Bailer-Jones et al. (2021) pc
rgeo_err Uncertainty of the geometric distance estimated by C. A. L. Bailer-Jones et al. (2021) pc
ebv Interstellar reddening mag
g_corr Dereddened Gaia G magnitude mag
bp_corr Dereddened Gaia GBP magnitude mag
rp_corr Dereddened Gaia GRP magnitude mag
ew1 Equivalent width of the first calcium triplet line at 8500 Å Å
err1 Uncertainty of the equivalent width of the first calcium triplet line at 8500 Å Å
chi1 The χ2 of the spectra fitting of the first calcium triplet line at 8500 Å …
ew2 Equivalent width of the second calcium triplet line at 8544 Å Å
err2 Uncertainty of the equivalent width of the second calcium triplet line at 8544 Å Å
chi2 The χ2 of the spectra fitting of the second calcium triplet line at 8544 Å …
ew3 Equivalent width of the third calcium triplet line at 8664 Å Å
err3 Uncertainty of the equivalent width of the third calcium triplet line at 8664 Å Å
chi3 The χ2 of the spectra fitting of the third calcium triplet line at 8664 Å …
err The average noise of the continuum in the spectrum Å
flag Quality flag of the equivalent width of the first calcium triplet line at 8500 Å …
feh Spectroscopic metallicity derived in this work using LAMOST spectrum �
feh_err Uncertainty of the spectroscopic metallicity derived in this work dex
method Method used in deriving spectroscopic metallicity �

(This table is available in its entirety in machine-readable form in the online article.)
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calibration by replacing absolute magnitude with Gaia
BP− RP color and LAMOST surface gravity, facilitating the
discovery of distant VMP stars without the need for accurate
distance measurements.

In this work, we present a metallicity catalog of 8440 VMP
MSTO and red giant stars based on low-resolution spectra from
LAMOST DR10. The primary parameters of the catalog are
listed in Table 2. This catalog covers a large area of sky in the
Northern Hemisphere, with metallicities ranging from [Fe/
H]=−2.0 to −4.0. In addition to metallicities, we also provide
distances, proper motions, and radial velocities from which
complete six-dimensional dynamic data can be derived for the
sample stars. About 4000 stars are located farther than 6 kpc, and
more than 7000 stars are brighter than G ∼ 16. These bright
VMP stars are excellent targets for high-resolution spectroscopic
follow-up with 4–10m class telescopes. Validity checks through
comparisons with metal-poor samples from spectroscopic surveys
and high-resolution spectroscopy demonstrate that the metallicity
estimates in this work are robust and reliable, with an average
median offset of ∼0.1 dex and an average standard deviation of
∼0.2 dex.

The ongoing data releases from the Gaia project will
provide accurate parallaxes and proper motions for billions of
stars in the Milky Way, which are expected to significantly
improve the accuracy of stellar parameters, especially surface
gravity. Moreover, future data releases from spectroscopic
surveys such as LAMOST DR12 and DESI DR1 will provide
spectra for millions of stars in the Galaxy. The combination of
future surveys will result in an unprecedented multiparameter
catalog of Galactic stars, offering an enormous opportunity to
explore the nature of the early Milky Way.
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