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Abstract

We employ matrix product states (MPS) and tensor networks to study topological prop-
erties of the space of ground states of gapped many-body systems. We focus on families
of states in one spatial dimension, where each state can be represented as an injec-
tive MPS of finite bond dimension. Such states are short-range entangled ground states
of gapped local Hamiltonians. To such parametrized families over X we associate a
gerbe, which generalizes the line bundle of ground states in zero-dimensional families
(i.e. in few-body quantum mechanics). The nontriviality of the gerbe is measured by a
class in H3(X ,Z), which is believed to classify one-dimensional parametrized systems.
We show that when the gerbe is nontrivial, there is an obstruction to representing the
family of ground states with an MPS tensor that is continuous everywhere on X . We
illustrate our construction with two examples of nontrivial parametrized systems over
X = S3 and X = RP2 × S1. Finally, we sketch using tensor network methods how the
construction extends to higher dimensional parametrized systems, with an example of a
two-dimensional parametrized system that gives rise to a nontrivial 2-gerbe over X = S4.
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1 Introduction and overview

1.1 Introduction

The space of gapped quantum many-body systems has a rich topological structure. For in-
stance, suppose we consider a space GH of gapped local Hamiltonians in some fixed spatial
dimension d.1 It is a familiar idea that distinct gapped phases of matter correspond to the con-
nected components of GH; each connected component is the (infinite-dimensional) parameter
space of a gapped phase. It is less familiar that the topology of the connected components
themselves can be non-trivial, as measured for instance via their homotopy groups πn. Such
non-trivial topology can put constraints on phase diagrams, and lead to interesting phenomena
in systems with one or more continuously tuneable parameters.

While our remarks so far emphasize Hamiltonians, we can just as well focus on ground
states instead. Let Q be the space of ground states of gapped local Hamiltonians in the same
spatial dimension. Clearly there is a mapGH→Q that sends a Hamiltonian to its ground state.
This map is believed to be a homotopy equivalence.2 Therefore, each connected component of
Q is the space of ground states associated to a phase, and all the homotopy-theoretic properties
of this space are the same as the phase’s parameter space (connected component of GH).

The foundational example of this physics lies in few-body quantum mechanics (d = 0),
and is simply a spin-1/2 particle in a Zeeman field [1,2]

H(B⃗) = B⃗ · σ⃗ = Bxσ
x + Byσ

y + Bzσ
z . (1)

1We also require that Hamiltonians in GH have a unique ground state in infinite spaceRd . This removes any locii
of first-order phase transitions from GH. It should be noted that this requirement does not remove topologically
ordered systems from GH; such systems only have a ground state degeneracy when space is periodic.

2This is explained in a talk of Kitaev [26] and Sec. 2.1.1 of Ref. [24].
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Figure 1: Illustration of approaches to probe the non-trivial topology of the space of
ground states in spatial dimension d = 0 (a) and d = 1 (b). This paper introduces
the ground state MPS gerbe and explains why a non-trivial Dixmier-Douady class is
an obstruction to finding a continuous MPS tensor defined globally over X .

We think of Equation (1) as defining a family of Hamiltonians continuously parametrized by
B⃗; clearly, the spectrum is gapped as long as B⃗ ̸= 0. For the discussion below, it is convenient to
fix the magnitude |B⃗| = B, which defines an S2 subspace of parameter space. It is convenient
to refer to this example as a system over S2, which means we have a family of Hamiltonians
(or ground states) with parameters lying in S2; this terminology is defined more generally and
precisely below in Sec. 1.2.

The topological non-triviality of the above family of Hamiltonians can be understood in
terms of the Berry curvature 2-form, which gives a non-zero quantized Chern number when
integrated over S2. Another approach focuses on the family of quantum ground states over
S2; mathematically, this defines a line bundle over S2 (we review some basics of line bundles
below). Line bundles over X are classified by their first Chern class, an element of the coho-
mology group H2(X ,Z), where here X = S2. Physically, a non-vanishing first Chern class is
an obstruction to making a continuous global choice of the phase of the ground state wave
function over S2. Moreover, the Chern number as obtained from Berry curvature can also be
viewed as an element of H2(S2,Z),3 so we have two ways to obtain the first Chern class, each
using distinct geometric objects, the Berry curvature on one hand, and the ground state line
bundle on the other, as illustrated in Figure 1(a).

There are many higher-dimensional analogues of the spin-1/2 particle in a magnetic field.
The most familiar of these is the Thouless charge pump [3] in d = 1, where a quantized amount
of conserved U(1) charge is pumped across the system upon adiabatically tuning a parameter
θ ∈ S1 through a cycle. The Thouless pump is a system over S1, and can be thought of as a
means to probe the topology of the infinite-dimensional spaces GH or Q for gapped systems in
d = 1 with a U(1) symmetry imposed. In particular, the non-triviality of the Thouless charge
pump implies that the appropriate connected component of these spaces has non-trivial π1.

Recent years have led to new examples beyond the Thouless charge pump, and a deeper
understanding thereof [4–18]. In particular, Kapustin and Spodyneiko generalized the Berry
curvature 2-form to a higher Berry curvature (d + 2)-form for gapped systems in d spatial
dimensions [4]. For a family of Hamiltonians whose parameters lie in a (d + 2)-dimensional
space X , integrating the higher Berry curvature over X gives an invariant that is believed to
be quantized and take values in (the free part of) Hd+2(X ,Z), generalizing the Chern number
to gapped systems in d ≥ 1.4

3Strictly speaking, the integrated Berry curvature gives the free part of the Chern class. However, the data of
both the free and torsion parts of the Chern class are contained in the Berry connection.

4The Higher Berry curvature invariant of gapped families over X can only be identified with Hd+2(X ,Z) for low
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These developments leave open the following questions that we address in this paper:

1. In dimension d = 0, the ground state line bundle characterizes the invertible phase over
X . In d ≥ 1, what geometric object plays an analogous role?

2. What feature of the description of the ground state over X is obstructed when the
Hd+2(X ,Z) class is non-trivial?

One might guess that in d ≥ 1 we should again construct a line bundle of ground states, but
this is not the right approach, making the problem more interesting. Perhaps most simply, the
first Chern class valued in H2(X ,Z) is the only characteristic class of a line bundle, but we
want a class in Hd+2(X ,Z). Moreover, the family of ground states of a spatially infinite system
does not even naturally assemble into a line bundle, because different ground states do not lie
in the same Hilbert space.5 Therefore, a different kind of mathematical object is needed.

Here we consider parametrized families of ground states in d = 1 that can be described
as matrix product states (MPS). Related work studying parametrized systems using MPS can
be found in Refs. [14, 16, 17]. While we assume that each ground state can be written as an
injective MPS, it turns out to be essential not to assume the bond dimension of the injective
MPS tensor is constant as parameters are varied. Given such a family parametrized over a space
X , we construct a mathematical object known as a gerbe over X . A gerbe is a generalization of
a line bundle associated with a class valued in H3(X ,Z) known as the Dixmier-Douady class.
In this context, a non-trivial Dixmier-Douady class is an obstruction to finding an MPS tensor
which is defined continuously over all of X . See Figure 1(b) for an illustration.

In addition, we consider higher dimensional generalizations, where MPS are replaced with
projected entangled pair states (PEPS). In d = 2 we argue that a parametrized family of PEPS
results in a 2-gerbe, a higher generalization of a gerbe, and give an explicit example. This
construction is based on the gerbe associated to a parametrized family of MPS, and suggests
an inductive construction of d-gerbes in d-dimensional parametrized families of PEPS.

1.2 Background: Parametrized systems

In the above discussion, we considered various parametrized families of Hamiltonians or
ground states. Such families are parametrized quantum systems, which we now define more
formally following Ref. [20]. See also Ref. [21] for a mathematically rigorous treatment. We
fix a spatial dimension d, a symmetry group G, and a choice of whether to consider bosonic or
fermionic systems. In this paper, we focus on bosonic systems with trivial symmetry G. Leav-
ing out some technical details, these choices specify a space of gapped local Hamiltonians GH

and a corresponding space of ground states Q.6 A parametrized quantum system, or a system
over X , is then a continuous map

ω : X →Q , (2)

where ω(x) is the ground state for x ∈ X , and where X is a topological space that we think
of as a space of tuneable parameters. Typically X is some nice, finite-dimensional space, and

dimensions. The map Hd+2(X ,Z)→ Ed+1(X ) to the true classification is neither injective nor surjective in general.
This is similar to the breakdown of the cohomology classification of SPT phases in higher dimensions.

5Condensed matter physics readers might find the statement that different ground states do not lie in the same
Hilbert space perplexing; it is an under-appreciated mathematical fact. In condensed matter physics we often work
with finite systems and take the limit of a large system; this is of course a very useful viewpoint but it does not
provide a mathematical definition of the Hilbert space in the limit. One might think it is possible to define the
infinite-system Hilbert space as an infinite tensor product, but this turns out not to be mathematically sensible.
Instead, it is possible to use the technology of C⋆-algebras to work directly with infinite systems, in which case the
Hilbert space is constructed from the ground state via the Gelfand-Naimark-Segal construction. See Ref. [19] for
an accessible treatment.

6Depending on the precise setup desired, supplying some of the technical details is an open problem. In partic-
ular, we are not aware of a mathematically rigorous construction of the space GH.
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is referred to as the parameter space; however, X should be distinguished from the infinite-
dimensional parameter space GH. For the spin-1/2 in a Zeeman field, X = S2, while for the
Thouless charge pump, X = S1. Alternatively, and essentially equivalently, we can define a
system over X as a continuous map H : X → GH. In this paper we use these two definitions
interchangeably but emphasize parametrized systems defined as families of ground states.

Parametrized quantum systems are of interest in part as a means to probe the topology of
the infinite-dimensional spaces Q and GH. This is closely related to the notion of parametrized
phases. Two systems ω0(x) and ω1(x) over X are said to be in the same phase over X if the
maps ω0 : X →Q and ω1 : X →Q are homotopic. That is, there exists a continuous function
ω(x , t) ∈ Q where x ∈ X and t ∈ [0,1], and such that ω(x , 0) =ω0(x) and ω(x , 1) =ω1(x).
Parametrized phases over X are thus nothing but homotopy classes of maps [X ,Q]; taking
X = Sn, these homotopy classes are simply elements of the homotopy groupsπn. For simplicity,
we have ignored the important role of stabilization by stacking with trivial systems (defined
below). We refer the reader to Refs. [20] and [21] for discussions from different points of view,
and for more details on parametrized phases. The latter reference describes a setup where
stacking stabilization is built into a construction of the space Q, and in this setup parametrized
phases really are homotopy classes of maps.

We define the trivial system over X to be one where the map ω is constant as a function of
x ∈ X and ω(x) is a product state over individual lattice sites. A system over X is said to be
nontrivial if it does not belong to the same phase as the trivial system over X .

Beyond probing the topology of Q and GH, parametrized systems are physically interesting
in their own right. We can think of a parametrized system as modeling a system with one
or more continuously tuneable parameters, and parametrized phases as capturing associated
universal phenomena. For example, in Ref. [20], some of the authors introduced a solvable
d = 1 spin system over S3, and analyzed the quantized pumping of Berry curvature across
the system. This system will play an important role in this paper, and following Ref. [20] we
refer to it as a Chern number pump.7 With open boundary conditions, each end of the d = 1
chain has a single gapless Weyl point as parameters are varied over S3. Such behavior is not
possible for a system in d = 0, and reflects an “anomaly in the space of coupling constants” as
in Ref. [22].

Finally, parametrized systems are also of interest in connection with Kitaev’s proposal that
spaces of d-dimensional gapped invertible systems form a loop spectrum [23, 25, 26]. This
implies that (non-parametrized) invertible phases in d dimensions are classified by a general-
ized cohomology theory Ed(pt), where pt is the single-point topological space. If instead we
evaluate the same cohomology theory on some more interesting space X , then Ed(X ) gives the
classification of invertible phases over X .

1.3 Summary of results

We now give a high-level overview of the constructions employed in this paper and their impli-
cations. It is instructive to present our results in analogy with the more familiar case of d = 0
systems, and we begin by reviewing this case. In particular, we describe the construction of
the ground state line bundle over X , which in turn completely characterizes the phase over X .

Let H be the d = 0 system’s finite-dimensional Hilbert space, and let {Ua} be a cover of X
by open sets. We suppose that for each open set there is a continuous function Ψa : Ua → H
whose value Ψa(x) is the ground state wave function of the Hamiltonian H(x). Now consider
a double overlap Uab = Ua ∩ Ub. For x ∈ Uab, we must have Ψa(x) = gab(x)Ψb(x), where
gab(x) is a non-zero complex number. This statement holds because physical states are rays in

7Ref. [20] more strictly reserved the term Chern number pump for a closely related system over S2 ×S1, but the
essential physics of both systems is the same, so here we use the term pumping somewhat more loosely.
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Hilbert space, so whileΨa(x) andΨb(x) need not be the same vector in Hilbert space, they both
represent the ground state of H(x) and must lie in the same ray. Therefore, for every double
overlap, we have a continuous map gab : Uab → C×, where C× is the multiplicative group
of non-zero complex numbers. This is illustrated in the left panel of Fig. 2. The transition
functions satisfy a compatibility condition on triple overlaps Uabc = Ua ∩ Ub ∩ Uc , namely
gac(x) = gab(x)gbc(x) for all x ∈ Uabc .

A line bundle over X can be specified by giving an open cover {Ua} and a set of transition
functions satisfying the compatibility condition. Essentially equivalently, the same data speci-
fies a principalC×-bundle over X ; we will mainly work with principalC×-bundles in this paper.
Note that, above, the local ground state wave functions Ψa are only used as an intermediate
step to obtain the gab transition functions; the Ψa are not actually needed as part of the data
used to specify the ground state line bundle.

For concreteness, we examine the spin-1/2 particle in a Zeeman field (1). Cover X = S2

with two open sets UN = S2\(0, 0,−1) and US = S2\(0, 0,1). The overlap UN ∩US is homotopy
equivalent to the equatorial S1. On the two open sets, the ground state wave function can be
written as

|ψN (θ ,φ)〉= − sin
θ

2
e−iφ |↑〉+ cos

θ

2
|↓〉 ,

|ψS(θ ,φ)〉= − sin
θ

2
|↑〉+ cos

θ

2
eiφ |↓〉 .

(3)

Note that neither wave function can be extended continuously over all of S2. For instance,
|ψN (θ ,φ)〉 depends on φ as the south pole θ = π is approached, so there is no way to extend
|ψN (θ ,φ)〉 to a function continuous at the south pole. On the overlap UN ∩ US , the two wave

Figure 2: Schematic summary of the constructions of line bundles, gerbes, and 2-
gerbes in terms of tensor networks in spatial dimensions d = 0,1, 2, respectively.
Within each open set Ua, we continuously choose a few-body wavefunction (a d = 0
tensor network), an MPS, or a PEPS, representing the states of a parametrized family.
In d-dimensions, within double overlaps Uab = Ua ∩Ub, the object which relates the
representations from the two open sets is essentially the same object that was defined
on open sets in (d −1)-dimensions, leading to a hierarchical structure. For example,
in d = 1 we have a MPS tensor of bond dimension Da in each open set Ua, from
which we obtain a matrix V ∈ CDa ⊗(CDb)∗ on double overlaps relating the two MPS.
(More precisely, this holds when one of the MPS is injective on Uab.) This matrix
can be thought of as a vector in CDa Db , the same kind of object that appears within
each open set for the d = 0 family, thus relating the middle and left panels. The right
and middle panels are similarly related. In d = 2, we have a PEPS tensor on each
open set Ua, and a matrix product operator (MPO) V relating the two PEPS on each
double overlap. The MPO can be viewed in the standard fashion as an MPS tensor,
as appears within the open sets for d = 1.
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functions differ by the transition function

g : UN ∩ US → U(1) ⊂ C× ,

(θ ,φ) 7→ eiφ ,
(4)

which has a nonzero winding number around the equatorial S1. The winding number of the
transition function encodes the non-triviality of the ground state line bundle over S2, and
indicates a fundamental obstruction to making a continuous choice of phase for the ground
state over all of S2. Here there is only a single double overlap and no triple overlaps, so the
compatibility condition on transition functions is superfluous.

In this paper, we describe how nontrivial families of one-dimensional states can be un-
derstood in a “higher” analogue of the above picture, illustrated schematically in Fig. 2. To
do so we make use of the formalism of matrix product states (MPS) [27], which also play a
fundamental role in the classification of one-dimensional phases of matter [28–30]. An MPS
provides a description of a d = 1 ground state in terms of a three-index tensor A, as we de-
scribe in more detail in Sec. 2. We show how the formalism of MPS allows us to naturally
uncover the structure of a gerbe, which is the appropriate generalization of a line bundle to
d = 1 parameterized systems.

To derive the gerbe structure, we begin with an open cover {Ua} of X . We assume that
on each Ua there exists a continuous MPS tensor A(x), which represents the ground state as a
function of parameters locally on X .8. On double overlaps Uab, two MPS tensors are related
not by a transition function, but by a transition line bundle (or principal C×-bundle). This
bundle arises from the gauge degree of freedom in representing a ground state with an MPS
tensor: for a given ground state, the choice of MPS tensor is not unique, as one can perform
matrix-valued gauge transformations on the tensor without changing the state it describes.
Under certain assumptions, this gauge transformation is unique up to a choice of a non-zero
complex number. Even though this number need not have unit modulus, i.e. it need not be
an element of U(1), we refer to it as a phase. Therefore, at every point in Uab, we have two
MPS tensors that are related by a gauge transformation which is unique up to a phase choice.
This structure is drawn in the middle panel of Fig. 2. The resulting phase degree of freedom
at each point in Uab suggests the structure of a line bundle. In order to capture all types of
non-trivial d = 1 parametrized phases, we will find it is necessary to go beyond the familiar
case where gauge transformations are unique up to C×, which introduces several technical
challenges, but the same intuition holds nonetheless.

The transition line bundles on double overlaps encode, in part, the topological informa-
tion of a gerbe, together with some additional data (certain bundle isomorphisms on triple
overlaps) and a compatibility condition on quadruple overlaps, as reviewed in Sec. 5.1. A
gerbe is characterized by an element of H3(X ,Z) known as its Dixmier-Douady class, and a
gerbe is trivial (by definition) when this class vanishes. If it is possible to choose a continuous
MPS tensor A(x) globally over X , then we obtain a trivial gerbe. Therefore, a non-trivial gerbe
indicates an obstruction to a continuous global choice of MPS tensor over X . In other words,
for non-trivial d = 1 systems over X , even when the ground state can be exactly described as
an MPS tensor A(x) for all x ∈ X , it is nevertheless impossible to choose A(x) continuously
everywhere.

An important feature of our construction is that it captures both torsion and non-torsion
(i.e. free) classes in H3(X ,Z). This is different from other constructions that have appeared.
The structure of the space of MPS has been previously studied in Ref. [32], where the authors
described a PGL(χ)-bundle structure under the assumption that the injective MPS bond di-
mension (i.e. the bond dimension when the tensor is injective) is constant with value χ over

8What we call a “continuous MPS tensor” is not to be confused with cMPS, a generalization of MPS used to
describe field theories [31]
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X . Our construction shows that such a bundle structure restricts the types of classes that can
be realized to be torsion only, and that this restriction is removed by allowing the injective
bond dimension to vary over X .

As a key example that captures a non-torsion class, we illustrate the construction of a gerbe
for the d = 1 Chern number pump over X = S3 introduced in Ref. [20]. We cover S3 with
two open sets UN and US whose overlap UN ∩ US includes and is homotopy equivalent to the
equatorial S2, and we define continuous MPS tensors on each open set. On the overlap, the
transition line bundle is given by the non-trivial line bundle describing the ground state of
the spin-1/2 particle in a Zeeman field as described above. In this case there are no triple or
quadruple overlaps, and the non-triviality of the line bundle signals the non-triviality of the
gerbe. Crucially, the injective bond dimension of the tensors differs between the two open
sets, such that there is no PGL(χ)-bundle structure, and the corresponding Dixmier-Douady
class is non-torsion.

As an example that captures a torsion class, we also construct a gerbe associated to a
nontrivial d = 1 system over X = RP2 × S1, which we introduce. The system over X is
constructed using the suspension construction of Ref. [20] and can be interpreted as a pump
of the nontrivial d = 0 system over RP2. Like in the example over S3, we can cover RP2 × S1

with open sets U0 and U1 and define continuous MPS tensors on each set. The overlap U0∩U1
is homotopy equivalent to RP2 × S0, and the transition line bundle relating the MPS tensors
on U0 and U1 is given by the ground state line bundle of a nontrivial 0d system over RP2. In
this case, the injective bond dimension is constant across X with χ = 2, so there is a PGL(2)-
bundle structure. The Dixmier-Douady class is torsion, but it is non-zero and this signifies an
obstruction to lifting the PGL(2)-bundle to a GL(2)-bundle.

The ideas sketched above apply to higher dimensional systems as well. The higher-
dimensional analogue of MPS is given by projected entangled pair states (PEPS) which, in
two-dimensions, represent the ground state in terms of a five-index tensor [27]. Similar to
MPS, different PEPS tensors can describe the same state. In this case, under certain technical
and physical assumptions, the object relating two PEPS tensors describing the same state can
be roughly viewed as a d = 1 state that can be exactly described as an MPS. Therefore, if we
repeat the above construction by defining continuous PEPS tensors on an open cover of X ,
then on each double overlap Uab we effectively have a family of d = 1 states representable
as MPS, which we just argued defines a gerbe. This is illustrated in the right panel of Fig. 2.
The geometrical object built from gerbes on double overlaps is called a 2-gerbe, and equiva-
lence classes of 2-gerbes are indeed described by elements of H4(X ,Z) [33], which matches
the “within-cohomology” part of the conjectured classification of d = 2 invertible parameter-
ized systems. Since PEPS representations are much less well understood than for MPS, we
do not give a rigorous derivation of this 2-gerbe in general, but we are able to show that the
non-trivial d = 2 parameterized system over S4 given in Ref. [20] indeed realizes a non-trivial
2-gerbe. Finally, we discuss how this perspective suggests a natural construction of d-gerbes
associated to parameterized systems of d-dimensional PEPS.

The structure of the paper is as follows. In Sec. 2 we provide a primer on the formalism
of matrix product states. Sec. 3 reviews the expectation for the classification of parametrized
systems from the perspective of homotopy theory, and explains why we must go beyond in-
jective MPS of fixed bond dimension to recover the full classification. We analyze the Chern
number pump in Sec. 4 and provide an MPS representation for the family of states. The gen-
eral procedure for constructing a gerbe given an MPS family is then given in Sec. 5. We then
analyze our construction in the special case of families where the injective bond dimension χ
is constant over X , and show that it gives rise to a PGL(χ)-bundle as expected. We provide
a non-trivial such example – a system over RP2 × S1 – in Sec. 6. Finally, in Sec. 7, we sketch
how the construction extends to higher dimensions using PEPS, and illustrate the ideas using
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a d = 2 parametrized system over S4 which also appeared in Ref. [20]. We conclude with a
discussion in Sec. 8.

2 Matrix product state generalities

In this paper we will consider families of states which admit translationally invariant MPS rep-
resentations. While in this paper we are mainly interested in infinite systems, it is convenient
for a moment to work on a periodic one dimensional lattice with N sites, where each on-site
Hilbert space is Cn. A state admits a translationally invariant MPS representation if it is of the
form

|ψN (A)〉=
∑

i1,...,iN

Tr
�

Ai1Ai2 . . . AiN
�

|i1, i2, . . . , iN 〉 , (5)

for some MPS tensor Ai
αβ

, i ∈ {0, . . . , n − 1}, and α,β ∈ {1, . . . , D}. For each i, Ai is a D × D

dimensional matrix acting on the so-called virtual space CD; the constant D is known as the
bond dimension. If the tensor Ai is injective (see below), it defines a pure state of an infinite
system that we denote by ωA [34,35]. Somewhat heuristically, the state ωA can be thought of
as the N →∞ limit of the states |ψN (A)〉.9 We say that the injective MPS tensor Ai represents
or specifies the state ωA.

It will be useful throughout this paper to use the graphical notation of tensor networks. To
this end, we represent the tensor A in the following way,

Ai
αβ =

A

i

α β
. (6)

The coefficients of the wavefunction in Eq. (5) are then expressed graphically as

Tr
�

Ai1Ai2 . . . AiN
�

=
i1 ...i2 iN

A A A

, (7)

where contracted indices are summed over, and the curved lines at the end connect to each
other, representing periodic boundaries.

An MPS tensor Ai can be viewed as a linear map A : MD(C)→ Cn from linear operators on
the virtual space CD to the physical space Cn, given by M 7→

∑

i Tr (Ai M T )|i〉. The MPS tensor
Ai is said to be injective if this associated map is injective [27]. Injective MPS tensors satisfy
many nice properties, such as having a finite correlation length and being the unique ground
state of their (canonical) parent Hamiltonian. A more general class of tensors is given by
normal tensors, for which the map M 7→

∑

i1,...,iL
Tr (Ai . . . AiL M T )|i1, . . . , iL〉 becomes injective

for some L. Given a normal tensor, the minimum such L is known as the injectivity length and
is bounded above by a function that depends only on the bond dimension. [36] It follows that
normal tensors become injective upon “blocking” sites together into new sites comprised of L
original sites; that is, the tensor Ãi1···iL ≡ Ai1 · · ·AiL is injective. Because this can be done, in
this paper we generally do not work with tensors that are normal but not injective.10

For a state ω with a translationally invariant MPS representation, the tensor Ai used to
represent the state is not unique. It is clear from (5) that if the injective tensor Ai represents

9Formally, a state ω of an infinite system is a positive linear functional on the operator algebra of observables.
If O is a local operator, thenω(O) is interpreted as the expectation value of O. The stateωA obtained from an MPS
tensor belongs to a family of states known as finitely correlated states [34].

10Given our emphasis on injective tensors, we state results from the MPS literature in terms of injective tensors
even when the same result holds for the weaker condition of normality.
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ω, then so does λMAi M−1 for any invertible matrix M ∈ GL(D)≡ GL(D,C) and any nonzero
complex number λ ∈ C×, i.e. ωA = ωλMAM−1 . In fact, the fundamental theorem of injective
MPS states that a pair of injective tensors A and B represent the same state if and only if
Bi = λMAi M−1 for some M and λ [27]. The transformation Ai 7→ λMAi M−1 is called a
gauge transformation of the tensor A. In particular, this means Ai and Bi have the same bond
dimension, so given a stateω with an injective MPS representation, the bond dimension of an
injective MPS tensor representingω is a well-defined quantity – we refer to this as the injective
bond dimension of ω and denote it by χω. Moreover, given Ai and Bi , λ is uniquely specified,
and M is unique up to a nonzero scalar multiple, M 7→ zM with z ∈ C×. This means that,
while M ∈ GL(D) is not uniquely specified given Ai and Bi , the corresponding element of the
projective general linear group PGL(D) = PGL(D,C) = GL(D)/C× is uniquely specified. To
summarize, Ai and Bi are related by a unique element of C× × PGL(D).

In this paper we will also need to discuss MPS tensors which are not injective.11 Given a
state ω represented by an injective tensor Ai , and a not necessarily injective tensor Bi , we say
that Bi represents the state ω if

|ψN (B)〉= λN |ψN (A)〉 , (8)

for some λ ∈ C× for all N . While one can imagine weaker definitions of what it means for Bi

to represent ω, working with this class of tensors allows us to take advantage of an important
technical tool known as a reduction [37]. In Ref. [37], it is shown that if Eq. (8) holds, then
there exist matrices V and W such that VW = 1 and

V Bi1 . . . Bik W = λnAi1 . . . Aik , (9)

for the same λ appearing in (8), and any string i1 . . . ik. The pair V , W is called a reduction
from Bi to Ai . We discuss this further in Sections 4 and 5.

We conclude this section with a brief introduction to some diagrammatic notations which
will facilitate many of our computations. For the purposes of this discussion we will restrict to
the case where the on-site Hilbert space is C2, though of course this is easily generalized. The
key concept is the correspondence between operators and states. A single-qubit operator can
be turned into an entangled state by “bending” the legs of the tensor:

O =⇒ O . (10)

The meaning of this entangled state becomes clear when considering the special case where
O is the identity. In this case we have the correspondence

=⇒ = |Φ+〉 , (11)

which relates the identity operator with the Bell state |Φ+〉 = |↑↑〉+ |↓↓〉. Therefore the state
corresponding to the single-qubit operator O in (10) is simply (O⊗1)|Φ+〉. The state |Φ+〉 also
satisfies the useful property (O ⊗ 1)|Φ+〉= (1⊗OT )|Φ+〉, which allows us to push an operator
through a Bell state,

O = OT . (12)

For notational convenience, we will also sometimes write the operator acting on the Bell state
in the middle of the tensor. We define this to mean that the operator acts on the first qubit of
the Bell state:

O

= O . (13)

11This does not mean we are considering states with symmetry breaking or long-range correlations, which are
necessarily non-injective. Instead, we will need to consider MPS representations that are not in canonical form.
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3 Topology of SRE states and MPS

Short range entangled phases in one spatial dimension are expected to be classified by the
Eilenberg-MacLane space K(Z, 3). This means that phases parametrized by X should be in
correspondence with homotopy classes of maps [X , K(Z, 3)] ∼= H3(X ,Z). Ref. [4] introduced
a curvature three-form which, when integrated over the parameter space X , detects the free
part of the class in H3(X ,Z).

LetMχ be the space of states of an infinite system which are representable by injective MPS
of bond dimension χ . Physically, such states have finite correlation length and are short-range
entangled. For finite systems, it was proven in Ref. [32] that the set of injective MPS tensors
Aχ of bond dimension χ forms a principalC××PGL(χ)-bundle over Mχ . We expect the same
result to hold for infinite systems but to our knowledge it has not been proved rigorously. The
intuition for this is given by the fundamental theorem of MPS (see Sec. 2): any two MPS
tensors representing the same state are related by a unique gauge transformation living in
the group C× × PGL(χ), so the action is free and transitive on the fibers. In Appendix B, we
prove that, if we allow the onsite dimension to go to infinity, Mχ is in fact equivalent to the
classifying space B(PGL(χ)×C×).

A family of states over X representable by injective MPS of bond dimension χ can be
thought of as a map

X →Mχ . (14)

Using this map we can pull back the canonical principal C× × PGL(χ)-bundle over Mχ to
obtain a principal C× × PGL(χ)-bundle over X . This is equivalent to two separate C× and
PGL(χ) principal bundles over X , and we discuss these in turn.

Principal C×-bundles are classified by the first Chern class H2(X ,Z). To identify a physical
interpretation of this Chern class, we consider the d = 1 system over X = S2 obtained by
placing a decoupled spin-1/2 particle in a Zeeman field (Equation (1)) on each lattice site.
Representing this system as an injective MPS with bond dimension χ = 1 and constructing
the corresponding C×-bundle, one obtains a class that generates H2(S2,Z) ∼= Z, and which
is simply the Chern class of a single spin-1/2 particle. We thus identify the H2(X ,Z) class
as a “Chern number per crystalline unit cell,” which is expected to be a well-defined phase
invariant for a system with translation symmetry. We will for the most part not be interested
in this H2(X ,Z) invariant. Indeed, to obtain a nice definition of d = 1 parametrized phases
without translation symmetry, we expect it is necessary to take a quotient by suitable decoupled
systems to eliminate the H2(X ,Z) invariant.

We now turn to the PGL(χ)-bundle. It is natural to ask whether nontrivial such bun-
dles correspond to nontrivial parametrized systems (ignoring the H2(X ,Z) invariant). We
argue that PGL(χ)-bundles cannot capture all parametrized phases; in particular, they
do not capture the known nontrivial phases over S3 [4, 20], expected to be classified by
[S3, K(Z, 3)] ∼= H3(S3,Z) ∼= Z. Principal G-bundles over S3 are classified, via the clutching
construction, by homotopy classes of maps [S2, G]. But π2(PGL(χ)) = 0, so no nontrivial
bundle exists.

This result strongly suggests that general nontrivial d = 1 parametrized phases cannot be
described using injective MPS with a fixed bond dimension. One option is to allow for families
of states where the injective bond dimension varies as a function of parameters. Indeed, we
will see in Sec. 4 that this is precisely what happens in our main example of the Chern number
pump over S3, where the injective bond dimension takes values χ = 1, 2 depending on x ∈ S3.
This system can thus be thought of as a map S3 →M1∪M2. It is an important point that this
union of M1 and M2 should not be disjoint; this follows from the construction of Sec. 4.12

12Formally, Mχ , and unions thereof for different values of χ , should be viewed as a subspace of the space of all
pure states given the weak-* topology.
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Because χ varies, there is no longer an obvious principal bundle structure over M1 ∪M2,
which in part leads us to our construction of a gerbe in Sec. 5.

Nevertheless, it is possible for some X to host nontrivial PGL(χ)-bundles. Moreover,
to such a principal PGL(χ)-bundle over X , one can also assign a gerbe over X called the
lifting gerbe; the lifting gerbe measures the obstruction to lifting the PGL(χ)-bundle to a
GL(χ)-bundle. It is known [38–40] that these lifting gerbes correspond to torsion elements
of H3(X ,Z). We give more details on the relationship between PGL(χ)-bundles and torsion
in H3(X ,Z) in Appendix C. This suggests that parametrized systems over spaces X with the
property that H3(X ,Z) contains torsion are related to families of injective MPS of constant
bond dimension χ , whose associated PGL(χ)-bundle are nontrivial, but do not lift to GL(χ)-
bundles. Conversely, parametrized systems whose associated class in H3(X ,Z) is non-torsion
necessarily cannot be represented by injective MPS of constant bond dimension. In Section 6,
starting from a nontrivial family of states obtained from the suspension construction, [20] we
construct a family of injective MPS over X = RP2 ×S1 of constant bond dimension χ = 2 with
a nontrivial PGL(2)-bundle.

Finally, let us comment on a possibility that we leave unaddressed in this work. It is possible
that the PGL(χ)-bundle over X associated to a family of states is nontrivial, but has a lift to
a nontrivial GL(χ)-bundle. In this case the associated H3(X ,Z) class is trivial, and we expect
the parametrized phase to be trivial, but the family of MPS is still topologically distinct from
the constant family of MPS. We comment on this possibility further in Appendix C, but leave
a detailed analysis to future work.

4 MPS representation of Chern number pump

In this section we review the model of the Chern number pump introduced in Ref. [20] and
construct an MPS representation for the family of ground states over S3. As noted above, the
ground states cannot be described globally by a normal MPS tensor of constant bond dimen-
sion. However, this turns out to be a feature rather than a bug; we will leverage the changing
bond dimension to describe the phase invariant of the system.

The model is a slight modification of the one given in Ref. [20]. We consider a one di-
mensional lattice with two qubits per site and take the parameter space to be X = S3. Sites
are labeled by i ∈ Z and Pauli operators for the two qubits on each site are denoted σx ,y,z

i,a

and σx ,y,z
i,b . We parametrize elements x ∈ X as x = (w⃗, w4) ∈ S3 ⊂ R4, where w⃗ is a three-

component vector such that |w⃗|2 + w2
4 = 1. The Hamiltonian takes the form

H(w⃗, w4) =
∑

i∈Z

�

HB
i (w⃗) + H+i (w4) + H−

i (w4)
�

. (15)

The first term is an on-site field which takes opposite values on the A and B sublattices,

HB
i (w⃗) = w⃗ · σ⃗i,a − w⃗ · σ⃗i,b . (16)

The second and third terms are inter-site and intra-site couplings, with

H+i (w4) = g+(w4) σ⃗i,b · σ⃗i+1,a ,

H−
i (w4) = g−(w4) σ⃗i,a · σ⃗i,b .

(17)

The functions g±(w4) are chosen to be

g+(w4) =

¨q

w2
4 − 1/4 , w4 ≥ 1

2 ,

0 , w4 ≤ 1
2 ,

(18)
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and

g−(w4) =

¨

0 , w4 ≥ −1
2 ,

q

w2
4 − 1/4 , w4 ≤ −1

2 .
(19)

Note that, for any value of w4, at most one of H+(w4) or H−(w4) is nonzero. As a result,
H(w⃗, w4) is always a sum of decoupled two-qubit dimer Hamiltonians, each of which is exactly
solvable. It follows that the ground state is a product state of dimers, where the dimerization
pattern depends on the value of w4, and consists of inter-site dimers for w4 ≥ 0 and intra-site
dimers for w4 ≤ 0 (see Fig. 3).

The spectrum of the full Hamiltonian is completely determined by the spectrum of the zero-
dimensional dimers, so it is easy to see that there is a unique gapped ground state everywhere
on S3. We cover S3 by two open sets

UN =
§

(w⃗, w4) ∈ S3
�

�

� w4 > −
1
2

ª

,

US =
§

(w⃗, w4) ∈ S3
�

�

� w4 <
1
2

ª

.
(20)

The overlap UNS = UN ∩US can be viewed as a thickened version of the equatorial S2 defined
by w4 = 0. Indeed, UNS is homotopy equivalent to S2. The ground state of each dimer can be
written in the following form:

|ψ〉N/S
dimer =

�

U(w⃗)⊗ U(w⃗)
��

ΛN/S(w⃗)⊗ 1
�

|Φ+〉

=
�

U(w⃗)ΛN/SU(w⃗)T ⊗ 1
�

|Φ+〉

= Λ̃N/S .

(21)

This state |ψ〉N
dimer is defined on UN and lives on inter-site dimers, while |ψ〉S

dimer lives on
intra-site dimers and is defined on US (see Fig. 3). Here, |Φ+〉 = 1p

2
(|↑↑〉 + |↓↓〉) is the Bell

state as in (11). The U(w⃗) are single-site rotation matrices

U(θ ,φ) =

�

cos θ2 − sin θ2 e−iφ

sin θ2 eiφ cos θ2

�

, (22)

which rotate eigenstates of σz to eigenstates of ŵ · σ⃗. Here, θ and φ are the usual spherical
polar coordinates for the unit vector ŵ = w⃗/|w⃗|. Note that U is not globally well-defined on

Figure 3: Dimerization pattern for different regions of w4. Unit cells are shown in
red, with blue and white sites denoting the A and B sublattices respectively. The
dimerization is inter-site for w4 ≥ 1/2 and intra-site for w4 ≤ −1/2. The middle
region −1/2 ≤ w4 ≤ w4 is completely factorized.
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S2. ΛN (w⃗) and ΛS(w⃗) are single-site (non-unitary) operators given by

ΛN (w⃗) =







































0 −
r

1
2 − |w⃗|p

3
r

1
2 +

|w⃗|p
3

0



 , w4 ≥ 1
2 ,

�

0 0

1 0

�

, −1
2 < w4 ≤ 1

2 ,

(23)

and

ΛS(w⃗) =







































0
r

1
2 +

|w⃗|p
3

−
r

1
2 − |w⃗|p

3
0



 , w4 ≤ −1
2 ,

�

0 1

0 0

�

, −1
2 ≤ w4 <

1
2 .

(24)

Note that ΛN/S(w⃗) are continuous at |w4|= 1/2 since |w⃗|=
p

3/2. The operators ΛN/S(w⃗)⊗1
send |Φ+〉 to the ground state of the dimer Hamiltonian when w⃗ is along the ẑ axis. Finally we
have defined Λ̃N/S to be UΛN/SU T . It can be checked that Λ̃N/S(w⃗) indeed give well-defined
continuous functions on UN/S .

The diagrammatic representation of the family of ground states of (15) is formed by ten-
soring together the diagrammatic representations of the dimers (21). The ground state on UN
is

|GS〉= Λ̃N Λ̃N Λ̃N , (25)

while the ground state on US is

|GS〉= Λ̃S Λ̃S Λ̃S . (26)

We have depicted the ground state for finite systems of six qubits with periodic boundary
conditions. We can then read off the MPS tensors from the diagram, grouping pairs of qubits
into sites as indicated by the dashed boxes. The MPS tensor on UN is

Ai j
N =

i j

Λ̃N (27)

= |i〉〈 j|U(w⃗)ΛN (w⃗)U(w⃗)T . (28)

The MPS tensor on US is found similarly as

Ai j
S =

i j

Λ̃S (29)

= 〈i|U(w⃗)ΛS(w⃗)U(w⃗)T | j〉 . (30)

We now make the following observation. The tensor Ai j
S has bond dimension D = 1 and is

injective everywhere it is defined (w4 < 1/2). On the other hand, the tensor Ai j
N has bond
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dimension D = 2 and is defined everywhere on UN (w4 > −1/2), but is only injective when
w4 > 1/2. As a result, on the overlapping region UNS , the ground state can be represented
both by the injective tensor Ai j

S and by the non-injective tensor Ai j
N . In UNS , ΛN = |↑〉〈↓| and

ΛS = |↓〉〈↑|, so the MPS tensors simplify as

Ai j
N = |i〉〈 j|U(w⃗)|↓〉〈↑|U(w⃗)T ,

Ai j
S = 〈i|U(w⃗)|↑〉〈↓|U(w⃗)T | j〉 .

(31)

As discussed in Sec. 2, these are related by a reduction from Ai j
N to Ai j

S . The reduction is given

by V = 〈↑|U(w⃗)T , W = U(w⃗)|↑〉, which satisfies

VAi j
N W = 〈↑|U(w⃗)T |i〉〈 j|U(w⃗)|↓〉〈↑|U(w⃗)T U(w⃗)|↑〉= 〈i|U(w⃗)|↑〉〈↓|U(w⃗)T | j〉= Ai j

S . (32)

Note, however, that W and V are not well-defined over all of the equatorial S2. The problem
occurs at θ = π, where the phase is not well-defined. This is essentially the same phase
ambiguity that occurs when trying to write down a ground state wavefunction for the spin-
1/2 particle in a Zeeman field. We see that there is a nonzero Chern number associated to
the reduction from Ai j

N to Ai j
S . This hints at the nontriviality of the family (15); we make this

observation more precise in the following section.

5 MPS gerbe

In this section we describe the construction of a gerbe from a family of MPS. We begin with a
definition of gerbes in Sec. 5.1. Sec. 5.2 is a review of the key technical idea of a reduction,
which we extend to the setting of continuous families of MPS. This gives, in some cases, a
C×-bundle on double overlaps Uα∩Uβ . This is in fact is sufficient to construct the gerbe of the
previous section, which we show in Sec. 5.3. In Sec. 5.4 we proceed to the general construction
of the gerbe. Finally, in Sec. 5.5 we apply our construction to the special case where the family
of MPS is injective everywhere.

5.1 Gerbes

Here we review the aspects of gerbes that are needed in this paper. Gerbes are generalizations
of line bundles, or, equivalently, of principal C×-bundles. Gerbes were introduced by Giraud
in Ref. [41] as an attempt to construct non-abelian cohomology in degree 2, whereas (isomor-
phism classes of) principal fiber bundles represent non-abelian cohomology in degree 1. In the
C×-valued case—and this is the only case we consider here—gerbes are classified by degree 3
cohomology with values in Z. There are several equivalent notions of such gerbes, and they
all give rise to degree 3 cohomology classes with coefficients in Z, called the Dixmier-Douady
classes. We review a formulation based on Ref. [42] which is most naturally suited to an MPS
formulation.

In the literature one often sees gerbes defined in terms of line bundles, rather than principal
C×-bundles as we use below. A natural equivalence between these two concepts is given by
assigning to each principal C×-bundle P the associated line bundle L = P ×C× C. As pointed
out before in Sec. 1.3, these bundles have the same C×-valued transition maps. Thus, gerbes
may equivalently be defined using line bundles or principal C×-bundles. We refer to Ref. [43]
for further information on gerbes.

Let X be a compact smooth manifold. A gerbe P consists of the following data: an
open cover {Ua}, a collection of principal C×-bundles Pab defined on the double intersections
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Uab = Ua ∩ Ub together with bundle isomorphisms

Pab
∼= P−1

ba , (33)

where P−1 denotes the inverse of the C×-bundle P (i.e. P with the inverse C×-action), and
additional bundle isomorphisms

θabc : Pab ⊗Pbc → Pac , (34)

defined on triple intersections Uabc = Ua ∩ Ub ∩ Uc . The isomorphisms θabc are required to
satisfy an associativity condition on quadruple overlaps, namely,

θacd(θabc ⊗ 1) = θabd(1⊗ θbcd) . (35)

Together with the isomorphisms of (33), the maps θabc give trivializations of theC×-bundle
Pab ⊗Pbc ⊗Pca. If {Ua} is a good cover, we can pick local sections sab on each double overlap
Uab. A choice of local sections defines a function gabc : Uabc → C× over triple intersections via

θabc ◦ (sab ⊗ sbc) = gabcsac . (36)

The associativity condition is equivalent to the condition that

gbcd gabd = gacd gabc ,

so that (gabc) is a Čech 2-cocycle. Making a different choice of local section s′ab = fabsab
defines a new function

g ′
abc = fab fbc fca gabc ,

so gabc changes by a coboundary. Therefore, it represents a class in Ȟ2(X ,C×). But the expo-
nential sequence

Z
2πi
−−→ C

exp
−→ C× ,

gives rise to a long exact sequence

→ Ȟk(X ,C)∼= 0 → Ȟk(X ,C×)→ Hk+1(X ,Z)→ 0 → ,

which leads to the isomorphism

Ȟ2(X ,C×)
∼=−→ H3(X ,Z) .

So a gerbe P = (Pab) defines a cohomology class

d(P) ∈ H3(X ,Z) .

This is the Dixmier-Douady class of the gerbe.
A C×-valued Čech 1-cocycle (gab) consists of continuous functions gab : Uab → C×

which satisfy g−1
ab = gba and the condition gac = gab gbc on Uabc . As discussed in Sec. 1.3,

this is nothing but the transition functions for a line bundle. The corresponding class in

Ȟ1(X ,C×)
∼=−→ H2(X ,Z) is the first Chern class of the line bundle. We thus see how the Dixmier-

Douady class is the generalization of the first Chern class of a line bundle.
Like in the d = 0 case where the integral of the Berry curvature 2-form recovers the first

Chern class of the line bundle of ground states, the Dixmier-Douady class we extract from a
family of MPS d = 1 is related to the phase invariant obtained by integrating the higher Berry
curvature 3-form [4].
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5.2 MPS reductions

The method we use to construct a gerbe from a family of MPS relies heavily on the notion of
a reduction [37], which we review here. We define a (χ , D)-reduction to be a pair of matrices
V : CD → Cχ , W : Cχ → CD such that VW = 1χ×χ ; let Rχ(D) denote the space of all (χ , D)-
reductions. Note that VW = 1χ×χ implies that χ ≤ D. The space Rχ(D) can be shown to
be homotopy equivalent to the space of χ-frames in CD, typically denoted by Vχ(CD). This is
explained in detail in Appendix A.

It was proven in Ref. [37] that given an MPS tensor A of bond dimension D and an injective
MPS tensor B of bond dimension χ ≤ D which represent the same state, there exists a (χ , D)-
reduction V , W such that

VAi1 . . . Aik W = λkBi1 . . . Bik , (37)

for all strings i1 . . . ik, with λ ∈ C× given by (8). The pair V , W satisfying (37) is called a
reduction from A to B. Let us review the construction of V and W . Since B is injective, the
corresponding map B : Mχ(C)→ Cn has a left inverse B−1 : Cn → Mχ(C):

B−1

B

= . (38)

While this left inverse is not unique, we can take B−1 to be the Moore–Penrose inverse,

B−1 := (B†B)−1B† . (39)

In the above equation B and B† are to be understood as maps B : Mχ(C) → Cn and
B† : Cn → Mχ(C). This gives a canonical choice for the left inverse of B.

Next, consider the tensor TAB = B−1A defined by

TAB = B−1A=
n

∑

i=1

�

B−1
�i ⊗ Ai . (40)

Since the MPS tensor components
�

B−1
�i

and Ai are operators on Cχ and CD, respectively,
TAB can be viewed as an operator on Cχ ⊗ CD. Hence we can apply the Jordan–Chevalley
decomposition

B−1

A

= S + N , (41)

where S is diagonalizable, N is nilpotent, and [S, N] = 0. This decomposition always exists
and is unique. It was shown in the proof of Prop. 20 of Ref. [37] that S has rank one. It follows
that S takes the form

S = λ W V , (42)

for V : CD → Cχ and W : Cχ → CD. Ref. [37] showed that V and W satisfy VW = 1χ×χ and
(37). Such a pair is thus a reduction from A to B.

It is important to note that, while S is determined uniquely from the decomposition of TAB,
the choice of V and W is uniquely determined only up to a complex scalar z ∈ C×, as we could
have replaced

V → z−1V, W → zW . (43)
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We will call S a projective reduction since it defines a reduction up to a complex scalar as in
(43). Let PRχ(D) denote the space of projective (χ , D)-reductions; this is the space Rχ(D)
quotiented by the action (43).

There is an obvious projection map Rχ(D)→ PRχ(D), sending a reduction to its equiva-
lence class under (43). The action is free and transitive on the fibers and the map is in fact a
principalC×-bundle. The bundle captures theC× ambiguity associated to choosing a reduction
V , W given S.

Now, we return to the case where we have a parametrized family of MPS. Suppose that for
each x ∈ Uab we have continuous MPS tensors A(x), B(x) representing the same state, with
bond dimensions DA and DB, respectively. Suppose that B(x) is injective for each x ∈ Uab.
Let D = DA and χ = DB. While it is clear that the construction outlined above can be applied
pointwise for x ∈ Uab, we argue that the procedure can in fact be done continuously.

It is obvious that the Moore-Penrose inverse B−1(x) = (B†B)−1B† and the tensor
TAB(x) = B−1A are continuous if A and B are. We argue that the Jordan-Chevalley decom-
position of TAB(x) = S(x) + N(x) is also continuous when S(x) is fixed to be rank one. It is
generally true that S and N can be written as polynomials of TAB; it is then sufficient to show
that the coefficients of the polynomial depend continuously on TAB.

Consider the direct sum decomposition of CχD =
⊕

i Vi into generalized eigenspaces of
TAB. By construction, S acts via scalar multiplication ci on each subspace. By assumption, S
is rank one, so only a single ci = c is nonzero, and its corresponding eigenspace Vi is one-
dimensional. This fixes the form of S to be

S =

�

c 0
0 0

�

,

in a basis which respects the eigenspace decomposition. Here 0 denotes a (χD−1)× (χD−1)
matrix of zeros. Nilpotency of N and [S, N] = 0 fix N to be

N =

�

0 0
0 J

�

,

where J is an upper triangular and nilpotent (χD−1)× (χD−1)matrix; JχD−1 = 0. It is clear
that SN = NS = 0. Evaluating T χD−1

AB gives

T χD−1
AB = (S + N)χD−1 = SχD−1 = cχD−2S ,

so S = (1/cχD−2)T χD−1
AB . Recall that c is the unique nonzero eigenvalue of TAB, which varies

continuously with TAB, so S is a continuous function of TAB.
As a result, given continuous A(x) and a continuous injective B(x), we can obtain a con-

tinuous family of projective reductions S(x). In other words, we obtain a map

SAB : Uab → PRχ(D) , (44)

into the space of projective reductions. Recall that the space of reductions Rχ(D) forms a C×-
bundle over the space of projective reductions PRχ(D). Pulling back this C×-bundle along
SAB gives a C×-bundle over Uab.

5.3 Gerbe from Chern number pump

We have now developed enough machinery to describe how to construct a gerbe from the
Chern number pump. This will make precise the observation made at the end of Sec. 4.

As discussed in Sec. 4, the Chern number pump is a d = 1 system over S3 with MPS
tensors Ai j

N (27) and Ai j
S (29) which represent the ground state and are defined on the open
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sets UN ⊂ S3 and US ⊂ S3, respectively. The tensor Ai j
S is injective everywhere, while Ai j

N is not
injective on UNS = UN ∩ US . We will construct a principal C×-bundle on UNS , which defines
a gerbe on S3 [42]. Since there are no triple overlaps, there are no extra data or conditions
needed to specify the gerbe. This is an instance of the clutching construction.

The Moore-Penrose inverse of Ai j
S is given by

(Ai j
S )

−1 = 〈 j|U(w⃗)|↓〉〈↑|U†(w⃗)|i〉 , (45)

which can be computed directly from (39). Calculating the tensor TNS =
∑

i j(A
i j
S )

−1Ai j
N gives

TNS =
∑

i j

�

〈 j|U |↓〉〈↑|U†|i〉
��

|i〉〈 j|U |↓〉〈↑|U T
�

=
∑

i j

|i〉〈i|U |↑〉〈↓|U†| j〉〈 j|U |↓〉〈↑|U T

= U |↑〉〈↑|U T ,

(46)

which reproduces the choice of reduction V and W used in (32). As discussed in Sec. 5.2, this
defines a map

UNS → PR1(2)≃ Gr1(C2) = CP1 = S2 .

We show in Appendix A that the space PR1(2) ≃ Gr1(C2). The canonical C×-bundle over
Gr1(C2) is the Hopf bundle C2 \ 0 → S2 with Chern number 1. The pullback yields a bundle
over UNS with Chern number 1. The nontriviality of this bundle indicates that the gerbe over
S3 is nontrivial; moreover, because the Chern number is unity, the Dixmier-Douady class is a
generator of H3(S3,Z) [39].

The above calculation shows that the Chern number pump captures a non-torsion class
in H3(S3,Z). Physically, this means that stacking the system any number of times will never
lead to a trivial system. As argued in Sec. 3, a non-torsion class in H3(S3,Z) can never be
captured by a system of MPS where the injective bond dimension is the same everywhere.
This leads to the interesting conclusion that there is no way to continuously deform the family
of Hamiltonians in Eq. 15 while preserving the gap such that the injective bond dimension
takes the same value for all system parameters.

5.4 Gerbe from MPS family

We now generalize the construction to more generic families of MPS. We begin with a contin-
uous family of states ω : X → Q, where for each x ∈ X the state ω(x) can be represented by
an injective MPS tensor of bond dimension χω(x). Note that χω(x) is not generally a continu-
ous function of x . We take an open cover {Ua} of X and assume the existence of continuous
functions

A : Ua → CnD2
A ,

x 7→ A(x) ,
(47)

such that A(x) represents the state ω(x), where n is the dimension of the physical on-site
Hilbert space and DA is the bond dimension of the MPS representation on Ua. The MPS ten-
sor A(x) is not necessarily injective. Moreover, on each double overlap Uab = Ua ∩ Ub, the
restrictions of the above data give two functions A : Uab → CnD2

A and B : Uab → CnD2
B . In order

to compare them, we assume the existence of a continuous function K : Uab → Cnχ2
, so that

K(x) is injective of constant bond dimension χ and represents ω(x) for each x ∈ Uab.13 Note

13Although one might be tempted to think of this as a kind of local triviality condition on double intersections,
one should resist this urge because of what we explain in Sec. 5.5 below.
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that this means we assume the cover is chosen so that χω(x) is constant on double overlaps.
The existence of the function K is a property of the data {(Ua, A)}, but we do not consider K
itself as data; different choices of K are possible and the choice will not matter.

To define a gerbe we need to construct a C×-bundle on each double overlap of the cover.
On Uab, there are two tensors A(x) and B(x) as described above. Let us first consider the
simplifying case where one of the tensors, say B, is injective with constant bond dimension
χ = DB on Uab. Then, using the method described in Section 5.2, we obtain a continuous map

SAB : Uab → PRχ(DA) ,

x 7→ SAB(x) ,
(48)

describing the reduction of A(x) to B(x) up to a complex scalar. Pulling back the C×-bundle
Rχ(DA) → PRχ(DA) along SAB yields a C×-bundle PAB over Uab. The C×-bundle PAB keeps
track of the C× phase of the reduction (V, W ).

To proceed in the case where neither A nor B are injective, we first introduce the idea of a
reduction step between two reductions. To do this we leave the setting of parametrized families
for a moment and consider fixed (i.e. non-parametrized) MPS tensors A, B and K all repre-
senting the same state, with K injective. Let RA = (VA, WA) and RB = (VB, WB) be reductions
from A to K and B to K respectively. We’d like to consider all such pairs (RA, RB), but they
depend on the auxillary injective tensor K . We would like to get rid of this dependence. To do
this, note that, given another injective tensor K ′ representing the same state, the fundamental
theorem of MPS says K ′ = λM−1KM for some invertible M ∈ GL(χ) and λ as in (8). From
(37) it follows that changing the reference injective tensor K 7→ K ′ = λM−1KM modifies the
pair (RA, RB) as

VA → M−1VA , WA → WAM ,

VB → M−1VB , WB → WB M .
(49)

To compare A and B when neither A nor B is assumed to be injective, we quotient out by this
dependence. We define an equivalence relation as follows: pairs (RA, RB) and (R′

A, R′
B) are

equivalent if
V ′

A = M−1VA , W ′
A =WAM ,

V ′
B = M−1VB , W ′

B =WB M ,
(50)

for an M ∈ GL(χ). A reduction step from A to B is an equivalence class of such pairs. We denote
the equivalence class by [RA, RB].

This motivates the definition of a space of reduction steps. Let χ ≤ D, D′. Consider the
product

Rχ(D)×Rχ(D′) . (51)

The space of (χ , D, D′)-reduction steps, denoted Rχ(D, D′), is then the quotient of
Rχ(D) × Rχ(D′) by the diagonal right action (R, R′) 7→ (RM , R′M) for M ∈ GL(χ), given
explicitly by

((V, W ), (V ′, W ′)) 7→ ((M−1V, W M), (M−1V ′, W ′M)) . (52)

Compare with (49). We will denote elements of Rχ(D, D′) by a pair [R, R′], with the square
bracket denoting quotient by the action (52).

There is a C× action on Rχ(D, D′) which is given by

[R, R′]→ [zR, R′] , (53)

where R → zR acts as in (43). This is the descendant of the C× action on the left factor of
Rχ(D)×Rχ(D′); the diagonal C× action is a subgroup of the diagonal GL(χ) action which
was quotiented out in (50).
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Let PRχ(D, D′) be the quotient of Rχ(D, D′) by this C× action. This C× action is free and
transitive on the fibers of PRχ(D, D′). In fact, the quotient map Rχ(D, D′)→ PRχ(D, D′) is
a principal C×-bundle. We will denote elements of PRχ(D, D′) by a pair ⟦R, R′

⟧. The double
bracket denotes a quotient of [R, R′] by the C× action (53).

Observe that there is a continuous map

q : PRχ(D)× PRχ(D′)→ PRχ(D, D′) ,

(S, S′) 7→ ⟦R, R′
⟧ ,

(54)

where S (S′) is the projective reduction corresponding to the reduction R (R′). This is well-
defined since the C×-actions on both the right and left Rχ(D) factors in (51) have been quo-
tiented out. In particular, ⟦R, R′

⟧= ⟦zR, z′R′
⟧.

Now, we are ready to return to parametrized MPS. Again, suppose we have A(x) and B(x)
defined over Ua and Ub respectively, with K(x) injective defined on Uab. As described above,
we get continuous functions

SAK : Uab → PRχ(DA) ,

SBK : Uab → PRχ(DB) .
(55)

These combine to give continuous maps

Uab → PRχ(DA)× PRχ(DB) ,

x 7→ (SAK(x), SBK(x)) ,
(56)

which we can then compose with q in (54) to obtain a continuous map

gab : Uab → PRχ(DA, DB) ,

x 7→ ⟦RA, RB⟧ .
(57)

This is independent of our choice of the auxilary injective tensor K we used to define it. Indeed,
given another continuous injective K ′ giving rise to a map g ′

ab, for each x ∈ Uab there exists
M(x) ∈ GL(χ) and λ(x) ∈ C× with the property K ′(x) = λ(x)M(x)−1K(x)M(x). The maps
gab and g ′

ab are equal since

gab(x) = ⟦RA, RB⟧= ⟦RAM , RB M⟧= ⟦R′
A, R′

B⟧= g ′
ab(x) . (58)

This then defines a C×-bundle on Uab by the pullback of the C×-bundle

Rχ(DA, DB)→ PRχ(DA, DB) .

We denote the resulting bundle over Uab by PAB.
Let us make a comment on the interpretation of the bundle PAB. Recall that in the case

where B is injective, we obtain a reduction R= (V, W ) up to a phase (43). The role of the C×-
bundle PAB is that it keeps track of the phase of W . In the general case, we have a reduction
step [RA, RB] up to a phase (53). The role of PAB is to keep track of the phase of the matrix
WAVB. Note that the matrix WAVB is independent of the injective reference tensor K used to
define it. Under the C× action (53), the matrix transforms as WAVB → zWAVB; compare with
the transformation of W in (43).

At this stage, it is useful to see how the resulting bundle reproduces the earlier construction
when one of the MPS tensors (say B) is injective. Picking for the moment an injective reference
tensor K , the construction gives a projective reduction step ⟦RA, RB⟧. Since B is injective, the
reduction RB from B to K is simply a gauge transformation VBBWB = K with WB = V−1

B .
Following (58), we can choose an alternative reference tensor K ′ = B = V−1

B KVB, which gives

⟦RA, RB⟧= ⟦RAVB, RBVB⟧= ⟦RAB, 1⟧ , (59)
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where RAB = RAVB = (V−1
B VA, WAVB). But RAB is precisely the reduction from A to B, since

(V−1
B VA)A(WAVB) = V−1

B KVB = B . (60)

The projective reduction step ⟦RAB, 1⟧ can therefore be identified with the projective reduction
SAB in the injective case. Similarly, the reduction step [RA, RB] can be identified with the
reduction (V, W ) from A to B.

Having defined a C×-bundle PAB on double overlaps Uab, the next piece of data required
to define a gerbe is the product, θabc : PAB ⊗ PBC → PAC over triple intersections Uabc .
Roughly, the product can be described as follows. Given [RA, RB] in Rχ(DA, DB) and [R′

B, R′
C]

in Rχ(DB, DC) which are in the same fiber so that R′
B = zRB for some z ∈ C×, we have

θabc([RA, RB], [R
′
B, R′

C]) = [zRA, R′
C] . (61)

More formally, for any injective K defined on Uab, there is a canonical isomorphism

PAK ⊗P−1
BK

∼=−→ PAB , (62)

where P−1
BK denotes the inverse C×-bundle. It is important to note that this expression only

makes sense on double intersections since K is not defined on elements of the cover itself.
Choose an injective tensor K on the triple intersection Uabc . Then (62) holds for the restrictions
of PAB, PBC and PAC on Uabc . The isomorphism θabc is the composite

PAB ⊗PBC

∼=−→ PAK ⊗P−1
BK ⊗PBK ⊗P−1

CK

∼=−→ PAK ⊗P−1
CK

∼=−→ PAC . (63)

Associativity is obvious from the definition of θabc .
This finishes the construction of the gerbe P associated to a family of MPS. It follows that

we get an associated cohomology class

d(P) ∈ H3(X ,Z) . (64)

A nontrivial Dixmier-Douady class for the MPS gerbe P implies that it is impossible to have
an MPS tensor representing the parametrized family of states which is continuous and defined
everywhere on X . Indeed, if such a global continuous MPS tensor exists, all of the transition
line bundles can be chosen to be trivial, and the resulting gerbe is trivial. This statement makes
no mention of whether the MPS tensor is injective everywhere. This shows, for instance, that
in the Chern number pump there is no way to extend the bond dimension D = 2 MPS tensor
valid on the northern hemisphere to one defined globally and continuously over S3. Thus,
even relaxing the condition of injectivity does not allow for a global continuous MPS tensor.

We have mostly been ignoring the H2(X ,Z) invariant discussed in Sec. 3; we now briefly
comment on how to recover it for the more general MPS families discussed in this section.
As explained in Sec. 3, in the case of MPS families where the injective bond dimension χ is
constant over X , one has a principal C× × PGL(χ)-bundle. From this one gets a C×-bundle,
of which the H2(X ,Z) invariant is the first Chern class.

In the present case, we can also construct transition functions on double overlaps
hab : Uab → C×, from the tensors A(x) and B(x) defined on Uab. In the case where B(x)
is injective, the projective reduction SAB determines a continuous λAB : Uab → C× by (37). We
take hab = λAB. In the more general case where neither A nor B is necessarily injective, we have
projective reductions SAK and SBK for a continuous injective tensor K defined on Uab, which
give continuous maps λAK : Uab → C× and λBK : Uab → C×, respectively. In this case we let
hab = λAKλ

−1
BK . These transition functions clearly satisfy the cocycle condition on triple over-

laps. Moreover, in the case of constant injective bond dimension, we recover the C×-bundle
discussed in Sec. 3.
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5.5 Injective MPS families

In this section, we explore what happens if for every element Ua of the cover, the MPS tensor

A : Ua → CnD2
a , (65)

is injective for all x ∈ Ua. Assuming that X is connected, it follows that Da = χ independent
of a, i.e. all the tensors have the same bond dimension χ . We will call such families of states
injective MPS families. As discussed in Sec. 3, injective MPS families give rise to a PGL(χ)-
bundle. We show that the lifting gerbe of this bundle reproduces the same invariant as our
construction of a MPS gerbe.

Let us first argue that, as an intermediate step in constructing the gerbe, we reproduce
the PGL(χ)-bundle structure. On double overlaps Uab, we construct projective reductions SAB
from A to B. The space of projective reductions is PRχ(χ) = PGL(χ). Since both A and B
are injective, the reduction is in fact a gauge transformation λW−1

AB AWAB = B, which by the
fundamental theorem of MPS is unique up to a scalar multiple of WAB. Uniqueness then implies
that on triple overlaps Uabc , the MPS tensors A, B, and C are related by

λ′W−1
BC λW−1

AB AWAB
︸ ︷︷ ︸

B

WBC = λλ
′W−1

AC AWAC = C , (66)

so [WAC] = [WABWBC], where the square bracket denotes quotient by an overall phase. This
is precisely the cocycle condition for the PGL(χ)-valued transition functions, so the injective
MPS family defines a PGL(χ)-bundle.

The construction of the gerbe proceeds by pulling back the bundle GL(χ)→ PGL(χ). We
then obtain line bundles PAB on double overlaps Uab. The product on the gerbe is given by
(61); let us unpack the definition for the injective MPS family. Elements of PAB are gauge
transformations (W−1

AB , WAB) from A to B; similarly elements of PBC are gauge transformations
(W−1

BC , WBC) from B to C . As reduction steps, the gauge transformations are

WAB → [RAB, 1] ,

WBC → [RBC , 1] = [1, RCB] .
(67)

Applying (61) gives

θabc([RAB, 1], [1, RCB]) = [RAB, RCB] = [RABWBC , 1]

= [(W−1
BC W−1

AB , WABWBC), 1]→ WABWBC .
(68)

In terms of the original gauge transformations, then, we have θabc(WAB, WBC) = WABWBC ,
which is just ordinary matrix multiplication.

We can understand the Dixmier-Douady class of this gerbe as follows. Suppose we started
with a good cover so that all double intersections Uab are contractible. Then we can choose
local sections WAB : Uab → GL(χ). Then the class gabc is given by

WABWBC = gabcWAC . (69)

If the class is trivial, then an appropriate choice of local sections WAB satisfies WABWBC =WAC ;
this defines a lift of the PGL(χ)-bundle to a GL(χ)-bundle. On the other hand, a nontrivial
class represents an obstruction to such a lifting. This kind of gerbe is often referred to as a
lifting gerbe. Note the similarity to the physics of d = 1 SPTs, where SPTs with G-symmetry are
classified by projective representations of G. The projective representation is a homomorphism
G → PGL(χ), and for nontrivial SPTs there is an obstruction to lifting to a homomorphism to
GL(χ). [29]

The Dixmier-Douady class of the lifting gerbe of a PGL(χ)-bundle is known to be torsion
in H3(X ,Z). Injective MPS families thus provide classes of parametrized systems which are
invisible to the invariant obtained by integrating the higher Berry curvature, which cannot
detect torsion elements of H3(X ,Z).
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6 Nontrivial family of injective MPS

In this section we use the suspension construction of Ref. [20] to construct a family of Hamilto-
nians whose ground states admit injective MPS representations with constant bond dimension
χ = 2. We determine that this family is nontrivial by studying the resulting PGL(2)-bundle,
which has a nonzero Dixmier Douady class.

Consider a d = 1 lattice with two qubits per site, using the same notation for sites and Pauli
operators as in Sec. 4. We choose the parameter space to be X = RP2×S1. We parameterize X
by pairs ([n̂], t), where [n̂] are equivalence classes of unit vectors inR3, with n̂ ∼ −n̂. The circle
S1 is parameterized by t which takes values in interval [−1,1] with endpoints identified. To
define the parametrized system, it will be useful to begin with a reference Hamiltonian H([n̂])
and a family of unitaries U([n̂], t). The family of Hamiltonians will be

H([n̂], t) = U([n̂], t)H([n̂])U†([n̂], t) . (70)

The reference Hamiltonian is

H([n̂]) =
∑

i∈Z
2(n̂ · σ⃗i,a)(n̂ · σ⃗i,b)− σ⃗i,a · σ⃗i,b , (71)

which is a sum of single-site terms and is easily seen to be gapped. Each single-site Hamiltonian
specifies a gapped d = 0 system over RP2, describing the m = 0 state of a spin-1 particle in a
Zeeman field along n̂, where the spin-1 Hilbert space is realized as a subspace of two qubits.
This d = 0 system was studied by Robbins and Berry [44], where they point out that the
family of states over RP2 is nontrivial. The nontriviality lies in the −1 Berry phase coming
from parallel transport along a noncontractible cycle in RP2.

Accordingly, the unique ground state of the reference Hamiltonian is a product state where
each site is in the S = 1 state of two spin-1/2 particles with m= 0 along the n̂ axis,

|Ψ[n̂](t = 0)〉=
⊗

i

�

U(n̂)⊗ U(n̂)
�

�

|↑↓〉+ |↓↑〉
p

2

�

=
⊗

i

U U

σx
=

⊗

i σ̃x
. (72)

Here U(n̂) is the rotation matrix given by (22). In the third equality we “pushed” U(n̂) from
the second qubit to the first and defined σ̃x = U(n̂)σx U T (n̂). It can be checked that σ̃x is
a well-defined function of n̂, but it is not a well-defined function of [n̂]. Rather, we have
σ̃x →−σ̃x when n̂ →−n̂. This is to be expected, since the fact that the wavefunction changes
sign upon n̂ → −n̂ indicates the nontriviality of the 0d system over RP2. Note that the state
of the d = 1 system remains unchanged under n̂ → −n̂, since at most this only changes the
overall phase of the wave function.

We now turn to the definition of U([n̂], t). The full unitary takes the form

U([n̂], t) =

¨

U+([n̂], t) , t ≥ 0 ,

U−([n̂], t) , t ≤ 0 .
(73)

We build the unitaries U+ and U− out of local gates Ui,i+1 defined by

Ui,i+1([n̂], t) = exp
�

i
π

2
t
�

1− (n̂ · σ⃗i,b)(n̂ · σ⃗i+1,a)
�

�

. (74)

The gate Ui,i+1 interpolates between the identity at t = 0 and (n̂ · σ⃗i,b)(n̂ · σ⃗i+1,a) at t = ±1.
The unitaries U+ and U− are products of Ui,i+1 acting on the even and odd bonds, respectively:

U+([n̂], t) =
∏

i even

Ui,i+1([n̂], t) ,

U−([n̂], t) =
∏

i odd

Ui,i+1([n̂], t) .
(75)
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Both the reference Hamiltonian and U([n̂], t) are invariant under n̂ →−n̂, and thus are well-
defined functions of [n̂]. Moreover, it can be checked that H([n̂], t = 1) = H([n̂], t = −1), so
the full Hamiltonian H([n̂], t) is well-defined over RP2 × S1. While H([n̂], t) can be explicitly
evaluated using (70), (73), (74), (75), its precise form is not very illuminating. The exception
is at t = ±1, where

H([n̂], t = ±1) =
∑

i∈Z
σ⃗i,a · σ⃗i,b , (76)

which is independent of n̂. The family of unitaries (75) is constructed so that H([n̂], t) inter-
polates between the reference Hamiltonian (71) and (76).

The ground state over RP2 × S1 is given in terms of the t = 0 ground state (72) by

|Ψ[n̂](t) = U([n̂], t)|Ψ[n̂](t = 0)〉 . (77)

Because both the state and the unitaries factorize as tensor products, we have

|Ψ[n̂](t)〉=
⊗

i even

Ui,i+1([n̂], t)|ψ[n̂]〉i|ψ[n̂]〉i+1 =
σ̃x σ̃x σ̃x σ̃x

U U , (78)

for t ≥ 0, and

|Ψ[n̂](t)〉=
⊗

i odd

Ui,i+1([n̂], t)|ψ[n̂]〉i|ψ[n̂]〉i+1 =
σ̃x σ̃x σ̃x σ̃x

UU U , (79)

for t ≤ 0. We have depicted the state diagrammatically with a system size of four unit cells
with periodic boundary conditions; in Eq. 79 the two U ’s at the edges represent two halves
of a single operator. Using Ui,i+1([n̂], t = ±1) = (n̂ · σ⃗i,b)(n̂ · σ⃗i+1,a), it can be shown that at
t = ±1 the state becomes

|Ψ[n̂](t = ±1)〉=
⊗

i

�

|↑↓〉 − |↓↑〉
p

2

�

i

=
⊗

i −iσ y
, (80)

so each site hosts a singlet state on two qubits. Note that both the Hamiltonian (76) and the
state (80) at t = ±1 are independent of [n̂] and therefore are continuous everywhere.

The description in terms of MPS follows from the diagrammatic representation of the
ground state. The Hamiltonian is translation invariant with four spins per unit cell, so the
MPS tensor must have four physical indices. For a particular choice of unit cell, we “cut” the
states (78) and (79) to obtain the MPS tensor,

A0 = U
σ̃x σ̃x

, (81)

for t ≥ 0 and

A0 = U
σ̃x σ̃x

, (82)

for t ≤ 0. Note that we have made a somewhat unusual choice of unit cell by cutting the state
in between the a and b sublattices of a site. This choice is made so that the MPS has bond
dimension χ = 2 everywhere and is injective.

The MPS tensor is well-defined and continuous away from t = ±1 but suffers a disconti-
nuity at t = ±1. In other words, it is well-defined on the open set U0 = RP2 × (S1 \ ±1). To
see this, consider approaching t → 1 from the positive side. After some algebra, A0 becomes

A0(t → 1) =
iσ y σ̃x

n̂ · σ⃗
. (83)
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Note that this expression depends on [n̂], while the state does not. On the other hand, as
t →−1 from the negative side, A0 becomes

A0(t →−1) =
−iσ y iσ y

, (84)

which is independent of [n̂]. These tensors are related by a gauge transformation

Ai jkl
0 (t →−1) = (n̂ · σ⃗)T Ai jkl

0 (t → 1)(n̂ · σ⃗)T . (85)

Note that (n̂ · σ⃗)T = [(n̂ · σ⃗)T ]−1, so this is a valid gauge transformation. Using this gauge
transformation, one can construct a MPS tensor A1 which is well-defined and continuous at
t = ±1. We define A1 on the region t > 0 to be

Ai jkl
1 = (n̂ · σ⃗)T Ai jkl

0 (n̂ · σ⃗)T , (86)

such that,

A1 =
(n̂ ·σ)T

U
σ̃x −iσ y

, (87)

while we set A1 = A0 when t < 0. By construction, A1 is well-defined and continuous every-
where away from t = 0; it is an MPS tensor on the open set U1 = RP2 × (S1 \ 0).

Let us now show that this defines a nontrivial PGL(2)-bundle over RP2 × S1 whose lifting
gerbe is nontrivial. The overlap U01 = U0∩U1 includes and is homotopy equivalent toRP2×S0,
i.e. two disjoint copies of RP2. In the region −1< t < 0, the transition function is trivial since
A1 = A0. In the region 0< t < 1, the transition function is given by the gauge transformation
used to define A1. Explicitly, we have

g01 : RP2 × (0, 1)→ PGL(2) ,

([n̂], t) 7→ [(n̂ · σ⃗)T ] ,
(88)

where the square bracket indicates that we should quotient by C× scalar multiples. This map
defines a nontrivialC×-bundle overRP2×(0, 1), which can be seen in the following way. Using
the operator-state corresondence (10), we can interpret g01 as a family of states

g01([n̂], t) =
�

(1⊗ n̂ · σ⃗)|Φ+〉
�

, (89)

where the square brackets again represent a quotient by the phase. We can apply the Robbins-
Berry argument [44] to this family of states to show that it is a nontrivial family over RP2. The
Berry curvature associated to this family of states vanishes, and the wavefunction (1⊗n̂·σ⃗)|Φ+〉
picks up a −1 phase from parallel transport along a nontrivial cycle in RP2 (i.e. a path from
n̂ to −n̂). This implies that the family of states over RP2 is nontrivial, which shows that the
map g01 gives a nontrivial C×-bundle. We therefore obtain a nontrivial gerbe over X . Since
H3(RP2 ×S1,Z)∼= Z2, we have constructed the gerbe with unique nontrivial Dixmier-Douady
class.

7 Higher-dimensional generalizations

It is natural to ask whether the MPS gerbe for d = 1 systems can be generalized to parametrized
systems in higher dimensions. Focusing on the expected Hd+2(X ,Z) invariant of such systems,
we would like to identify a geometrical object giving rise to a class in Hd+2(X ,Z). A natural
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option is a d-gerbe [33], which encompasses line bundles (0-gerbes) and gerbes (1-gerbes).
Here, we outline how higher-dimensional tensor networks should lead to a d-gerbe. Since
tensor networks in higher dimensions lack the same rigid structure of MPS, our analysis will
be less rigorous than above. Rather, we will give a heuristic description of the general idea
along with an explicit example for d = 2.

7.1 2-gerbe in 2-dimensional systems via PEPS

The higher-dimensional generalization of MPS is given by projected entangled pair states
(PEPS). In two dimensions, a PEPS on a square lattice is defined by a 5-index tensor Ai

αβγδ

which is then contracted into an L × L lattice as shown below for L = 3,

|ψ(A)〉=

A

A

A

A

A

A

A

A

A

, (90)

where we take periodic boundaries, such that the open legs at the top and bottom (left and
right) are contracted as indicated by the bent legs. In this diagram, and throughout this sec-
tion, diagonally oriented legs will always correspond to physical degrees of freedom while
vertical/horizontally oriented legs will correspond to virtual (contracted) bonds of the ten-
sor network. By blocking the tensors of the PEPS into columns, we can get a quasi-1D MPS
description of the system in terms of the column tensor A(L) defined as,

A(L) =

A

A

A

. (91)

Similar to the case of MPS, there is redundancy in the PEPS description of a wavefunction.
However, in the case of PEPS, the form of this redundancy depends strongly on the assumptions
we make about the PEPS tensor itself, and a general understanding of the redundancy without
assuming any properties of the tensor is known to be unattainable [45]. Let us suppose that
our PEPS has the property that the column tensor A(L) is normal for all L. Then, given any
other column tensor B(L) representing the same state, Eq. 37 tells us that there are matrices
V (L) and W (L) and a non-zero complex number λ(L) such that λ(L)V (L)B(L)W (L) = A(L) and
V (L)W (L) = 1 for all L. Graphically,

A

A

A

= λ(L)
V (L) W (L)

B

B

B

. (92)

27

https://scipost.org
https://scipost.org/SciPostPhys.18.5.168


SciPost Phys. 18, 168 (2025)

The reductions V (L) and W (L) depend on L, and therefore their properties in the large-L limit
are not clear. However, in certain cases, which we describe shortly, the reductions can them-
selves be written as tensor networks,

V (L)
=

V

V

V

, (93)

and similarly for W (L), where the tensor V is independent of L. The bond dimension of V is in
general different from that of A or B, so we color it red. We call this a matrix product operator
(MPO) representation of the operator V (L). Note that any MPO can be considered an MPS
by simply flipping some of the legs of the tensor (see Eq. 10). We can define a normal MPO
tensor as one whose corresponding MPS tensor is normal. In the cases of interest, V (L) can be
represented by an normal MPO tensor. Therefore, as in the case of MPS, there is a redundancy
in the choice of normal tensors V which represent V (L).

Now, we can follow the logic used to derive the MPS gerbe in the previous sections. Sup-
pose we have an open cover {Ua} of X and a continuous family of PEPS tensors defined on
each open set. Then, at the double overlaps Uab = Ua ∩ Ub, there will be two PEPS tensors
A(x) and B(x). We further suppose the column tensor A(L)(x) is normal for every L. Then,
for every x ∈ Uab, we can relate the two associated column tensors A(L)(x) and B(L)(x) via
a reduction given by a pair of operators V (L)(x)and W (L)(x), which can be regarded as a in-
jective MPS. Therefore, we have a injective MPS defined at every point x ∈ Uab which, by the
results of the previous sections, means there is a gerbe defined at every double overlap. This is
the essential ingredient in the definition of a 2-gerbe [33], which also includes other data and
conditions involving higher overlaps. This strongly suggests that a family of PEPS, subject to
certain constraints on their structure which make Eqs. 92 and 93 valid, gives rise to a 2-gerbe.
Topologically inequivalent 2-gerbes are classified by cohomology classes in H4(X ,Z), which is
the desired invariant.

What remains is to understand the necessary constraints on the allowed PEPS tensors,
similar to how we restricted to MPS that represent the same states as injective MPS in the
previous sections. This is challenging, because, in contrast to MPS, we do not have a class of
PEPS that captures the kinds of systems we are interested in, while also admitting the necessary
structure theorems. Nevertheless, we can consider certain subclasses of PEPS for which the
desired properties of reductions can be proven rigorously, and which are suited to representing
short-range entangled states. One natural route is to consider injective PEPS, which are defined
similarly as injective MPS [46,47], for which Eqs. 92 and 93 do hold. However, in this case, the
reduction V (L) is a tensor product of local operators, i.e. an MPO of bond dimension 1. As bond
dimension 1 is not sufficient to support a non-trivial gerbe, we conclude that injective PEPS are
not sufficient to capture 2-gerbes. A larger class of PEPS is the semi-injective PEPS defined in
Ref. [37], for which Eqs. 92 and 93 also hold, and the corresponding MPOs V (L) can have bond
dimension greater than 1. Indeed, the example we discuss in the next section has an entangled
plaquette structure that is very reminiscent of semi-injective PEPS. The semi-injective PEPS are
also suited to describing invertible systems that are the unique, gapped ground states of certain
parent Hamiltonians with periodic boundary conditions [37]. Conversely, PEPS representing
simple non-invertible phases such as quantum double models fall into the framework of G-
injectivity [48], for which the relations between two PEPS generating the same state are more
complex than Eqs. 92 and 93. Therefore, the above observations do not apply to non-invertible
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systems, as expected. We leave a detailed investigation of the technical conditions needed to
rigorously derive the 2-gerbe structure of PEPS to future work.

7.2 Two-dimensional example over X = S4

We now give an explicit example of a d = 2 system over S4 which realizes a non-trivial 2-gerbe
as described above. The Hamiltonian describing this system was introduced in Ref. [20] and is
defined in close analogy to the 1D model over S3 defined above. We consider a two dimensional
square lattice and take the parameter space to be X = S4 which can be parameterized as
w= (w⃗, w4, w5) with |w⃗|2 + w2

4 + w2
5 = 1. The family of Hamiltonians is defined by

H2d(w⃗, w4, w5) =
∑

i∈2Z
H1d(w⃗, w4)+

∑

i∈2Z+1

H̄1d(w⃗, w4)+
∑

i∈2Z
H2,+

i (w5)+
∑

i∈2Z+1

H2,−
i (w5) , (94)

where H1d is the d = 1 Hamiltonian defined in Eq. 15, and H̄1d is obtained from H1d by
inverting the w⃗ magnetic field term on every site. It was shown in Ref. [20] that H1d and
H̄1d , viewed as systems over S3 by fixing |w⃗|2 + w2

4, are inverses in the sense that they carry
opposite H3(S3,Z) invariants. These d = 1 Hamiltonians are coupled by the remaining terms
depending on w5,

H2,+
i (w5) = g+(w5)

∑

j∈Z
σ⃗(i, j) · σ⃗(i+1, j) ,

H2,−
i (w5) = g−(w5)

∑

j∈Z
σ⃗(i−1, j) · σ⃗(i, j) .

(95)

The functions g±(w5) are chosen to be

g+(w5) =

¨q

w2
5 − 1/4 , w5 ≥ 1/2 ,

0 , w5 ≤ 1/2 ,
(96)

and

g−(w5) =

¨

0 , w5 ≥ −1/2 ,
q

w2
5 − 1/4 , w5 ≤ −1/2 .

(97)

As before, for any value of w5, at most one of H2,+
i (w5) or H2,−

i (w5) is nonzero. As a re-
sult, H2d(w⃗, w4, w5) is a sum of decoupled one-dimensional Hamiltonians acting on pairs of
columns of spins, which furthermore decompose into interacting 4-spin clusters, as described
in Ref. [20]. Using this, one can show that the ground state of H2d is gapped everywhere, and
can be expressed exactly as a PEPS of finite bond dimension. We note that H2d is isotropic in
the sense that it is invariant under 90◦ rotation followed by exchanging w4 and w5.

Let us block sites of the d = 2 lattice into cells consisting of pairs of columns. Then, similar
to the d = 1 case, the entanglement between columns is either within the unit cell or between
the unit cells, depending on the value of w5. Suppose we choose the unit cell such that the
columns within a unit cell are entangled for w5 < −1/2, and columns are entangled between
neighboring cells for w5 > 1/2. All columns are decoupled for −1/2 ≤ w5 ≤ 1/2. Then, we
can represent the system in the region US defined by w5 < 1/2 with the following column
tensor,

A(L)S =
w5≥− 1

2−−−−→ , (98)
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which has bond dimension 1 in the horizontal direction. Therein we have introduced three
new tensors. The four-legged pill-shaped tensor generates the entangled ground state of two
coupled columns in of spins in H2d . Its precise form for all values of w is not important to
us. What matters is that (a) it is a continuous function of w and (b) when w5 ≥ −1

2 , the two
halves of the column decouple, as depicted. The three-legged filled circle and empty circle
tensors generate the d = 1 states |ψ1d〉 and |ψ̄1d〉 which are the ground states of H1d and H̄1d ,
respectively. Because of (a), A(L)S is a continuous function over US .

For the region UN defined by w5 > −1/2, we can similarly use the following continuous
column tensor,

A(L)N =
w5≤

1
2−−−→ , (99)

which has bond dimension 2L in the horizontal direction. Note that we have turned some of
the physical (diagonally-directed) legs into virtual (horizontally-directed) legs in order to fa-
cilitate entanglement between unit cells, similar to Eq. 27. In the overlap region UN ∩ US (i.e.
−1

2 < w5 <
1
2), which is homotopy equivalent to S3, we can obtain a reduction between the col-

umn tensors defined in the two hemispheres. Namely, writing V (L) = 〈ψ1d | and W (L) = |ψ1d〉,
we have,

V (L)A(L)N W (L) = = =A(L)S , (100)

where the contracted columns of filled circles represent 〈ψ1d |ψ1d〉= 1. Therefore, the reduc-
tions between PEPS in UN ∩ US are exactly given by the ground states of the d = 1 Hamil-
tonian from Eq. 15 which we demonstrated realize a nontrivial gerbe over S3. This strongly
suggests that H2d realizes a non-trivial 2-gerbe. Indeed, the nontrivial H4(X ,Z) class of H2d
was demonstrated in Ref. [20] by other means.

7.3 Higher dimensions

The above discussion for d = 2 systems suggests an inductive construction of higher gerbes for
higher-dimensional systems. Suppose we have a d-dimensional system over X and an open
cover of X , where on each open set we have a continuous d-dimensional tensor network rep-
resentation of the ground state. Now assume that such a parametrized family gives rise to
a d-gerbe, as we have just argued is true for d = 2. Then going to d + 1 dimensions, under
suitable assumptions, the space of reductions between two (d+1)-dimensional tensor network
representations on double overlaps is a space of d-dimensional tensor networks, which by as-
sumption defines a d-gerbe, thus suggesting the structure of a (d+1)-gerbe [33]. Inequivalent
d-gerbes are classified by cohomology classes in Hd+2(X ,Z) [33], which indeed matches the
“within-cohomology” part of the expected classification of d-dimensional invertible systems.

As mentioned above, the space of reductions between higher dimensional tensor networks
is not well-understood for d > 1. Therefore, the above is only a heuristic indication of the
kinds of structures that should be present in higher-dimensional tensor networks.
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8 Discussion

In this paper we construct a gerbe, a generalization of a line bundle, associated to a family of
d = 1 quantum states over X which can be represented pointwise by an injective MPS tensor.
To the gerbe we can associate a class H3(X ,Z) known as the Dixmier-Douady class, which
is expected to classify nontrivial parametrized systems in d = 1. Our work shows that this
class also represents an obstruction to representing the family of states with a continuous MPS
tensor defined globally over X . This is a natural analogue and extension of the story in d = 0,
where the Chern class of the ground state line bundle classifies nontrivial parametrized phases
and represents an obstruction to making a global continuous choice of the wave function. We
also sketch the generalization to dimensions d ≥ 2 using tensor networks, where we expect
that d-gerbes will play a central role.

Given the results of this paper, it is interesting to ask if it is possible to construct a space
of MPS-representable states QM PS that is a K(Z, 3). Based in part on the classification of
symmetry protected topological phases in d = 1, it is believed that the space Q1d of gapped
ground states of d = 1 local bosonic Hamiltonians is a K(Z, 3) [25, 26]. Roughly speaking,
we might take QM PS ⊂ Q1d to consist of states that can be represented by a normal MPS
tensor of any finite bond dimension, i.e. QM PS = ∪χ∈NMχ . All the nontrivial d = 1 examples
of parametrized systems in this paper can be realized as maps into such a space, and we
conjecture that any d = 1 parametrized phase has such a representative system. We note that
stabilization by stacking with a fixed trivial system can be built into the construction of a space
of states within the approach of Ref. [21], so we expect it should be possible to define a stable
version of QM PS along these lines.

However, the H2(X ,Z) invariant capturing Chern number per crystalline unit cell presents
an issue. We expect this to be a phase invariant for translation-invariant systems, so one option
is simply to impose translation symmetry, in which case we conjecture that QM PS constructed
as outlined above is a K(Z, 2)×K(Z, 3). For systems without translation symmetry, we expect it
is necessary to quotient out by decoupled d = 0 systems to eliminate the H2(X ,Z) invariant,14

but at present it is not clear how to incorporate this into the construction of a space of states.
Our understanding of the relationship between gerbes and parametrized d = 1 systems is

by no means complete. As mentioned in Sec. 5, there are many different equivalent formula-
tions of gerbes — examples include PU(H)-bundles, bundle gerbes, and line bundles on loop
space. It would be interesting to understand whether different formulations of gerbes offer
different perspectives on parametrized phases in d = 1.

Another important direction for future work is to formulate the notion of a (higher) con-
nection on the MPS gerbe. One expects that the higher Berry curvature of Kapustin and Spo-
dyneiko should correspond to the curvature of the gerbe connection. The gerbe connection
would provide an appropriate notion of parallel transport and holonomy; it would be desirable
for the holonomy to be a “higher Berry phase” measurable by an interference experiment. This
would pave the way toward a better physical understanding of the higher Berry curvature.

Finally, the use of tensor network methods in the study of parametrized systems in d ≥ 2
is likely to be quite fruitful. In higher dimensions, the possibility of parametrized families
of topologically ordered states arises. For example, there exist nontrivial families of toric
codes parametrized by S1, where the e and m anyons are exchanged upon cycling the periodic
parameter [11]. It would be interesting to understand these and related phenomena through

14Naively, one might think the H2(X ,Z) invariant simply disappears without translation symmetry, but the situ-
ation is more subtle. For instance, consider two d = 1 systems over S2, with Chern number 0 and 1 per unit cell,
respectively. For sufficiently large finite systems with N sites, the total Chern numbers will be 0 and N . There-
fore, for arbitrarily large but finite N , there is no way to deform one system into the other without closing a gap
somewhere on S2.
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the lens of tensor networks. Indeed, dualities such as the aforementioned e-m exchange are
very naturally described within the framework of PEPS [49].

Note added: While this manuscript was being finalized for posting, we became aware of
Ref. [50] that also studies the gerbe structure in matrix product states of one-dimensional
systems. After this work was posted to arXiv and while under review, additional follow-up work
discussing higher Berry connections [51,52] and generalizations to higher dimensions [53,54]
appeared.
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A The space of reductions

In this appendix we clarify some aspects of the space of reductions Rχ(D) and projective
reductions PRχ(D).

First recall that Vn(Cm) is the (non-compact) Stiefel manifold, the space of n-frames in Cm,
while Grn(Cm) is the Grassmanian manifold, the space of n-dimensional subspaces of Cm. The
map Vn(Cm)→ Grn(Cm) which sends a frame to its span is a principal GL(n)-bundle.

In order to describe this bundle more concretely, we let GL(n, m − n) be the subgroup of
GL(m) consisting of upper block triangular matrices

�

X Z
0 Y

�

, (A.1)

with X ∈ GL(n) and Y ∈ GL(m − n). Let GL(In, m − n) be the subgroup of GL(n, m − n)
consisting of those upper triangular matrices with X equal to the n× n identity matrix.

One can check that there is an isomorphism of principal GL(n)-bundles

GL(m)/GL(In, m− n)
∼= //

��

Vn(Cm)

��
GL(m)/GL(n, m− n)

∼= // Grn(Cm)

.

With this in mind, the space of (χ , D)-reductions, denoted by Rχ(D), can be described in
three equivalent ways:

1. As the space of pairs (V, W ) with V : CD → Cχ , W : Cχ → CD such that VW = 1χ×χ ,
topologized as a subspace of L(CD,Cχ)×L(Cχ ,CD) (where L denotes the space of linear
maps).
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2. As the space of pairs (w, T ) consisting of a χ-frame in CD and a subspace T of CD with
the property that Span(w)⊕T = CD, topologized as a subspace of Vχ(CD)×GrD−χ(CD).

3. As the coset space GL(D)/(Iχ × GL(D − χ)), for GL(D) endowed with its canonical
topology.

Let’s see why these are all the same. First, for 1. to 2., the action of W on the canonical
χ-frame of Cχ gives the χ-frame w, and the kernel of V gives the subspace T . Going the other
direction, given (w, T ) as in 2., let W to be the matrix which sends the canonical χ-frame
(e1, . . . ,eχ) of Cχ to w, and let V to be the matrix which sends the χ-frame w to the canonical
χ-frame of Cχ , and sends elements of T to zero. To see why 2. and 3. are equivalent, consider
the map which takes a matrix M in GL(D) with columns m1, . . . , mD to the pair

((m1, . . . , mχ), Span(mχ+1, . . . , mD)) .

From these descriptions, we see that the space of (χ , D)-reductions Rχ(D) is homotopy
equivalent to Vχ(CD); the equivalence is given by simply forgetting the subspace T , or by
letting Z go to zero in (A.1). We thus have an equivalence of principal GL(χ)-bundles

R(d, D) ≃ //

��

Vχ(CD)

��
GL(D)/GL(χ)× GL(D −χ) ≃ // Grχ(CD)

.

The (right) action of GL(χ) on R(d, D) is given in our three equivalent formulations, for
U ∈ GL(χ), by

1. (V, W ) 7→ (U−1V, W U);

2. (w, T ) 7→ (wU , T );

3. M 7→ M

�

U 0
0 ID−χ

�

mod Iχ × GL(D −χ).

We can restrict the GL(χ) action on Rχ(D) to the action of C× multiples of the iden-
tity. This endows the space of reductions Rχ(D) with a C× action R 7→ zR given by
(V, W ) 7→ (z−1V, zW ). Compare with (43). In the language of χ-frames, the action sends

(w1, . . . , wχ)→ (zw1, . . . , zwχ) . (A.2)

Recall that PRχ(D) the quotient of Rχ(D) by the C×-action (43). This quotient PRχ(D) is
the space of reductions up to multiplication by a complex scalar, i.e., the projective reductions.
It is homotopy equivalent to the projective Stiefel manifold PVχ(CD), which is Vχ(CD)modulo
the equivalence relation (A.2); the equivalence

PRχ(D)
≃
−→ PVχ(CD) , (A.3)

is again given by forgetting the subspace T . We then have a diagram of principal C×-bundles

Rχ(D) //

��

Vχ(CD)

��

// V1(C∞)

��
PRχ(D)

≃ // PVχ(CD) // PV1(C∞)
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where every commuting square is a pull-back. The bottom composite is the map

cχD : PRχ(D)→ PV1(C∞) , (A.4)

which sends a projective reduction [V, W ] ∈ PRχ(D) to the span of the first column of
W viewed as a vector in C∞ by adding zeros beyond its Dth coordinate. The C×-bundle
Rχ(D)→ PRχ(D) is the pull back of the bundle V1(C∞)→ PV1(C∞) along cχD.

We finish by commenting on what this means for our constructions of Section 5.4 of the
bundles

PAB : Uab →Rχ(DA, DB) , (A.5)

in the case when neither A nor B is injective. Recall that to construction PAB, we make use
of an injective tensor K : Uab → Cnχ2

. Since pull-backs behave well under composition, the
intermediate bundle PAK can be constructed via the pull-back

Uab → PV1(C∞) ,

x 7→ [wA
1(x)] ,

(A.6)

for [VA, WA] a projective reduction step from A to K and [wA
1] the line spanned by the first

column of
WA = [w

A
1, . . . , wA

χ] .

A similar formula holds for B.
Let V1(C∞) ⊗ V1(C∞) be the quotient of the space V1(C∞) × V1(C∞) by the relation

(zv, w) = (v, zw) for v, w ∈ C∞ and z ∈ C×. Then

V1(C∞)⊗ V1(C∞)→ PV1(C∞)× PV1(C∞) ,
v ⊗ w 7→ ([v], [w]) ,

(A.7)

is the universal tensor product of C×-bundles. The bundle PAB is the pull-back of this universal
tensor product bundle along

PAK ⊗P−1
BK : Uab → PV1(C∞)× PV1(C∞) ,

x 7→ ([wA
1(x)], [w

B
1 (x)]) ,

(A.8)

where wB
1 (x) is the complex conjugate of wB

1(x). So, in all the data carried by the reductions,
only the first columns of WA and WB are necessary to construct the line bundles PAB over Uab.
However, more was needed to describe the gerbe product, as we saw above.

B The space of injective MPS

We provide an elementary argument that the space of states Mχ representable by injective
MPS of bond dimension χ gives a model for the classifying space B(C×× PGL(χ)) in the limit
where the onsite Hilbert space dimension is allowed to be arbitrarily large.

A classifying space BG for a group G is the quotient of a weakly contractible space EG by
a proper free action of G. For a fixed G, all (CW) models of BG are canonically homotopy
equivalent to each other, so any method of obtaining BG is as good as any other.

Let us begin by considering the space of injective MPS, which we will show is weakly con-
tractible space with a proper free C×× PGL(χ) action. An injective MPS A of bond dimension
χ is an injective map Mχ(C)→ Cn given by

M 7→
∑

i

Tr (Ai M T )|i〉 ,
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where {|i〉} is a basis for the on-site Hilbert space Cn. Denote the space of all such injective
maps by Vχ×χ(Cn). We can embed Cn in Cn+1 by mapping |i〉 to itself, and this gives inclusions
Vχ×χ(Cn) ⊂ Vχ×χ(Cn+1) and, letting n →∞, we have

Vχ×χ(C∞) :=
⋃

n
Vχ×χ(Cn) . (B.1)

But for any onsite dimension n, identifying Mχ(C) with Cχ
2
, we get Vχ×χ(Cn)∼= Vχd (Cn), i.e.,

the space of χ2-frames in Cn, which is the non-compact Stiefel manifold. It is known that in
the limit n →∞, this space is weakly contractible.

The C× × PGL(χ) action of gauge transformations translates as follows to an action on
Vχ×χ(C∞). A pair (λ, N) in C× × PGL(χ) acts on an injective linear map φ via the formula

((λ, N)φ)(M) = λφ(N T M(N T )−1) .

One can check that this is a proper free action on Vχ×χ(C∞). Since the space Vχ×χ(C∞) is
weakly contractible, it qualifies as a E(C×× PGL(χ)). Quotienting by the C×× PGL(χ) action
yields the space B(C× × PGL(χ)), the classifying space of C× × PGL(χ). The fundamental
theorem of injective MPS then allows us to conclude that

Mχ = Vχ×χ(C∞)/(C× × PGL(χ))≃ B(C× × PGL(χ))≃ B(C×)× B(PGL(χ)) . (B.2)

C The Brauer group

Let X be a finite CW-complex. We will assume X is connected for simplicity of exposition, but
this is not necessary. Consider the map

H3(X ,Z)→ H3(X ,R) ,

coming from the inclusion of Z into R, which maps n to 2πn. The kernel of this map is the
torsion subgroup of H3(X ,Z), which we will denote by Tor(H3(X ,Z)). The image is isomorphic
to the quotient

Free(H3(X ,Z)) := H3(X ,Z)/Tor(H3(X ,Z)) .

This is the so-called “free part” of H3(X ,Z). We have a decomposition

H3(X ,Z)∼= Tor(H3(X ,Z))⊕ Free(H3(X ,Z)) , (C.1)

but we stress that this direct sum decomposition is not unique in general: Free(H3(X ,Z)) is
not a subgroup of H3(X ,Z) in a unique way, one has to make choices to write down (C.1).

In H3(X ,R), the image of Free(H3(X ,Z)) is the subgroup of cohomology classes which can
be represented by de Rham closed 3-forms with quantized integrals. Serre (see Theorem 1.6
of Ref. [38]) gives an identification of Tor(H3(X ,Z)) in terms that are relevant to the MPS
context. We describe this result here.

Let Alg(X ) be the set of isomorphism classes of matrix algebra bundles over X . That is,
these are locally trivial fiber bundles whose fibers are identified with Mχ(C) for some χ ≥ 1
and whose transition functions take values in the automorphisms group of Mχ(C), i.e., in
PGL(χ). The dimension χ of the fiber must be constant on connected components, and so a
matrix algebra bundle determines a principal PGL(χ)-bundle on each component, and vice-
versa. We have seen how to associate a class in H3(X ,Z) to a PGL(χ)-bundle, so we get a
function

d : Alg(X )→ H3(X ,Z) ,
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which associates to a matrix algebra bundle E its Dixmier-Douady class d(E). This is also
called the lifting gerbe.

There is a special class of matrix algebra bundles, those that come from vector bundles.
Given a non-zero vector bundle V , we can associate the matrix algebra bundle End(V ) whose
fibers are the endomorphisms of the fibers of V . Over a component of X , these correspond
precisely to those PGL(χ)-bundle that can be realized as GL(χ)-bundles. But, the Dixmier-
Douady class of these algebra bundles is zero, i.e., d(End(V )) = 0. So, from the perspective
of gerbes, elements of Alg(X ) of the form End(V ) are trivial, and the class d(E) corresponding
to the lifting gerbe is the obstruction to realizing the algebra bundle E as the endomorphism
bundle of a vector bundle V .

This motivates the following construction. Define an equivalence relation on Alg(X ) by
E ≈ F if there exists vector bundles V and W over X such that

E ⊗ End(V )∼= F ⊗ End(W ) . (C.2)

The Brauer group of X , denoted Br(X ), is defined to be the quotient Alg(X ) by the relation ≈.
The tensor product of matrix algebras gives Alg(X ) the structure of a commutative monoid.

After passing to the quotient by ≈, one can show that this operation gives the quotient Br(X )
the structure of an abelian group. The Dixmier-Douady class is a morphism of monoids,

d(E ⊗ F) = d(E) + d(F) .

Since d(End(V )) = 0, E ≈ F implies d(E) = d(F). That is, the Dixmier-Douady class induces
a group homomorphism from Br(X ) to H3(X ,Z).

Serre proves that, in fact, the homomorphism induced by d is an isomorphism of Br(X )
onto the torsion subgroup Tor(H3(X ,Z)). So, there is a decomposition

H3(X ,Z)∼= Br(X )⊕ Free(H3(X ,Z)) .

Again, the subgroup Br(X ) is uniquely defined, but Free(H3(X ,Z) depends on choices.
The relation (C.2) is very similar to stacking stabilization. Understanding precisely what

it means for an injective MPS to give rise to a GL(χ)-bundle, and thus an element End(V )
of Alg(X ), and what (C.2) means in terms of passage to phases will be an essential step for
understanding the precise relationship between MPS states parametrized by X and H3(X ,Z).
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