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Abstract

The stellar atmospheric parameters and physical properties of stars in the Kepler Input Catalog (KIC) are of great
significance for the study of exoplanets, stellar activity, and asteroseismology. However, despite extensive effort
over the past decades, accurate spectroscopic estimates of these parameters are available for only about half of the
stars in the full KIC. In our work, by training relationships between photometric colors and spectroscopic stellar
parameters from Gaia DR3, the Kepler-INT Survey, Large Sky Area Multi-Object Fiber Spectroscopic Telescope
DR10, and Galactic Evolution Experiment at Apache Point Observatory DR17, we have obtained atmospheric
parameter estimates for over 195,000 stars, accounting for 97% of the total sample of KIC stars. We obtain 1σ
uncertainties of 0.1 dex on metallicity [Fe/H], 100 K on effective temperature Teff, and 0.2 dex on surface gravity
log g. In addition, based on these atmospheric parameters, we estimated the ages, masses, radii, and surface
gravities of these stars using the commonly adopted isochrone-fitting approach. External comparisons indicate that
the resulting precision for turnoff stars is 20% in age; for dwarf stars, it is 0.07 Me in mass, 0.05 Re in radius, and
0.12 dex in surface gravity; and for giant stars, it is 0.14 Me in mass, 0.73 Re in radius, and 0.11 dex in surface
gravity.

Unified Astronomy Thesaurus concepts: Metallicity (1031); Fundamental parameters of stars (555); Stellar ages
(1581); Sky surveys (1464)

1. Introduction

As the most powerful and successful exoplanet explorer to
date, the Kepler/K2 mission (W. J. Borucki et al. 2010;
S. B. Howell et al. 2014) has discovered more than 3300
exoplanets, over half of the currently confirmed exoplanets.
The extremely precise and short-cadence (~1 minute) light
curves obtained from Kepler/K2 have revolutionized the field
of asteroseismology. These data have facilitated the detection
of solar-like oscillations in over 500 main-sequence and
subgiant stars (W. J. Chaplin et al. 2014), as well as for more
than 20,000 red giants (e.g., D. Stello et al. 2013; J. Yu et al.
2016). This extensive data set has enabled accurate modeling of
the fundamental properties of these stars across nearly the
entire low-mass Hertzsprung–Russell (H-R) diagram (D. Huber
& K. Zwintz 2020). There are also 75 exoplanets confirmed
from Kepler's archival data, demonstrating the enduring impact
and vitality of this space mission.

During its first 4 yr of operations, Kepler made long-term
observations of the Kepler field, a 116 deg2 area of sky located
between the constellations Cygnus and Lyra. To guide these
observations, a catalog of some 200,000 stars, known as the
Kepler Input Catalog (KIC; T. M. Brown et al. 2011), was
determined in advance. Observations of this area accumulated a
large amount of photometric data over temporal baselines on
the order of years, which have not only greatly advanced the

field of exoplanet search and characterization but also provided
an important basis for research in many other fields, including
stellar activity, asteroseismology, and the study of star clusters
(R. L. Gilliland et al. 2010; T. Shibayama et al. 2013;
A. McQuillan et al. 2014; W. J. Borucki 2016).
The fundamental stellar parameters of stars play a important

role in refining our understanding of stellar theoretical models
and evolution. In order to construct the appropriate stellar
models to constrain their evolution, the physical properties of
stars, in particular the metallicity, are essential input parameters
(C. A. Tremonti et al. 2004; A. Bressan et al. 2012). The
situation is similar for the estimation of stellar ages and masses;
a precise metallicity estimate of a star is required. After
determining the stellar age, the age–rotation relation can be
analyzed to a high level of precision (V. Witzke et al. 2020;
K. Masuda 2022). The metallicity also deeply influences the
stellar atmosphere and structure, as well as the relationship
between stellar activity and metallicity (C. Karoff et al. 2018;
V. See et al. 2023; V. Loaiza-Tacuri et al. 2024).
The nature of the exoplanet(s) associated with a star is

expected to be related to the physical properties of the host.
Both the probability that a star hosts a planet and the type of the
planet are influenced by the elemental abundances of the
protoplanetary disk (G. Gonzalez 1997; J. A. Johnson et al.
2010; E. A. Petigura et al. 2018; K. M. Boley et al. 2024).
Furthermore, the radius gap, a region that shows a deficit of
planet occupation in the planet radius–mass map (at around 1.9
R⊕), is also thought to be influenced by the host star's
metallicity, mass, and age (E. D. Lopez & J. J. Fortney 2013;
J. E. Owen & Y. Wu 2017; K. K. Hardegree-Ullman et al.
2020; R. Burn et al. 2024; S. Yun et al. 2024).
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However, we still lack full information on the fundamental
stellar parameters of KIC stars, particularly metallicity,
which is crucial for accurately determining other parameters
as mentioned above. Attempts to obtain this information
continued throughout the Kepler mission, both before and
after. Prior to the launch of the Kepler satellite, the
atmospheric parameters of KIC stars were estimated through
the use of broadband photometry. For example, T. M. Brown
et al. (2011) provided estimates of the metallicity, effective
temperature, surface gravity, and extinction toward KIC stars
using a Bayesian posterior estimation method based on this
photometry. However, the stellar parameters predicted by this
method differ significantly from those obtained from both
low-resolution (e.g., S. Dong et al. 2014) and high-resolution
spectroscopic studies with the Keck telescope (e.g.,
J. A. Johnson et al. 2017).

The Kepler Stellar Properties Catalog (D. Huber et al.
2014) provided revised stellar parameters for 138,600
targets in Quarters 1–16 (Q1–Q16), using colors, proper
motions, spectroscopy, parallaxes, and Galactic population
synthesis models. However, only 7% of stars in this catalog
had spectroscopic information at that time. Applying
similar methods, S. Mathur et al. (2017) provided stellar
parameters for 197,096 targets in Quarters 1–17 (Q1–Q17).
Again, spectroscopic parameters were available for no more
than 10% of sample stars. Most recently, this group
(T. A. Berger 2020) provided a catalog for 186,301 Kepler
stars, with fundamental properties (including stellar ages)
homogeneously estimated from isochrone fitting using
broadband photometry, and Gaia Data Release 2 parallaxes,
as well as spectroscopic metallicities if available. Compared
to previous versions, the fraction of stars with spectroscopic
information has increased to approximately 35% (about
66,000 stars), less than half of the number of KIC stars.

Another major effort for obtaining stellar parameters for KIC
stars are large-scale spectroscopic surveys, including the Large
Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST)–Kepler Survey (P. De Cat et al. 2015; W. Zong
et al. 2018; J.-N. Fu et al. 2020; J. Fu et al. 2022), the Galactic
Evolution Experiment at Apache Point Observatory (APO-
GEE)–Kepler Survey (M. H. Pinsonneault et al. 2014; M. Pin-
sonneault et al. 2018), and the California-Kepler Survey (CKS;
J. A. Johnson et al. 2017; E. A. Petigura et al. 2017, 2018). As
shown in Table 1, these three surveys have obtained stellar
parameters for 78,141, 23,198, and 1716 stars by cross-
matching their data releases with the KIC. Despite these
extensive efforts, the total number of stars with spectro-
scopically measured atmospheric parameters is 85,986, still less
than 50% of the number of KIC stars.

More recently, stellar atmospheric and other physical
parameters have been derived using narrow- or medium-band
photometric surveys, particularly those in the near-ultraviolet

bands (e.g., H. Yuan et al. 2015b; Y. Huang et al.
2019, 2022, 2023, 2024; A. Chiti et al. 2021). The precision
is comparable to that achieved from low- or medium-resolution
spectroscopy. In recent decades, the Kepler field has been
observed using near-ultraviolet bands, such as the Kepler-INT
Survey (KIS; S. Greiss et al. 2012a, 2012b), or through the use
of Gaia XP spectra. Parameter-sensitive narrow- or medium-
band photometric colors (e.g., the well-known Strömgren filter
system) can be readily integrated from the flux-calibrated low-
resolution spectra (LRS) of the latter survey. In this work, we
aim to determine stellar parameters for all KIC stars using
narrow- or medium-band photometric colors from these
surveys, with spectroscopic labels from the LAMOST serving
as training data. The paper is structured as follows: Section 2
describes the data. Section 3 presents the 3D extinction map
toward the Kepler field. Atmospheric parameters are deter-
mined in Section 4, while physical parameters are estimated in
Section 5. Finally, Sections 6 and 7 provide a discussion and a
summary.

2. Data

The Kepler field, a 116 deg2 region situated between Cygnus
and Lyra, is centered at celestial coordinates (α, δ) = (290o,
45o) and Galactic coordinates (l, b) = (76o, 14o) (T. M. Brown
et al. 2011) and has attracted a multitude of surveys. In this
work, we primarily employed data from Gaia Data Release 3,
KIS Data Release 2, Large Sky Area Multi-Object Fiber
Spectroscopic Telescope Data Release 10, and Apache Point
Observatory Galactic Evolution Experiment Data Release 17,
supplemented with distance estimates sourced from the catalog
by C. A. L. Bailer-Jones et al. (2021).

2.1. Gaia DR3

The Gaia third data release (DR3; Gaia Collaboration et al.
2023), derived from observations over a 35-month period, not
only includes low-resolution (R = λ/Δλ ~ 50) BP/RP (XP)
spectra for around 220 million sources, predominantly those
with magnitudes brighter than G < 17.65 (well calibrated both
internally and externally by J. M. Carrasco et al. 2021,
F. De Angeli et al. 2023, and P. Montegriffo 2023, respec-
tively), but also offers the most precise photometric data
(G, BP, RP) to date for approximately 1.8 billion stars (Gaia
Collaboration et al. 2021a, 2021b; M. Riello 2021). This
provides the high-quality photometric and slitless spectroscopic
data essential for conducting our study.
Based on the Gaia XP spectra, we further synthesized

Strömgren photometry for the vby bands using the generation
function provided by the Python package GaiaXPy
(D. Ruz-Mieres & zuzannakr 2022).

2.2. KIS DR2

The Kepler field is observed by the KIS (S. Greiss et al.
2012a, 2012b), which employs the Isaac Newton Telescope
(INT) to collect photometric data. The KIS second data release
(DR2) includes U-, g-, r-, i-, and Hα-band photometry for
14.5 million stars, spanning a 113 deg2 area of the Kepler field.
In particular, the near-violet U-band photometry in KIS DR2 is
crucial for the analysis presented in this work.

Table 1
KIC Stars in Large-scale/Dedicated Spectroscopic Surveys

Catalog/Survey Number

KIC 200,038
LAMOST DR10 79,015
APOGEE DR17 23,198
CKS DR1 and DR2 1716
KIC stars with spectroscopic parameters 86,482
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2.3. LAMOST DR10

LAMOST features a unique quasi-meridian reflecting
Schmidt design outfitted with 4000 optical fibers, covering a
20 deg2 field of view. Its 10th data release (DR10) provides an
extensive collection of tens of millions of low-resolution
(R ~ 1800) spectra across the optical spectrum from 3800 to
9000Å. For estimation of the primary stellar atmospheric
parameters (effective temperature Teff, surface gravity log g,
and metallicity [Fe/H]), the project relies on the LAMOST
Stellar Parameter Pipeline for AFGK stars (LASP; Y. Wu et al.
2011; Y. Wu et al. 2014) and LAMOST Stellar Parameter
Pipeline for M stars (LASPM; B. Du et al. 2021).

2.4. APOGEE DR17

APOGEE, as a part of the Sloan Digital Sky Survey (SDSS-
III) initiative, aimed to comprehensively address galaxy
formation by conducting an unprecedented large-scale survey
with detailed chemical and kinematic analysis. The APOGEE
Stellar Parameter and Chemical Abundances Pipeline (ASP-
CAP; A. E. Garcìa Pérez et al. 2016) delivers high-precision
estimates of stellar parameters, including effective Teff, surface
gravity log g, and metallicity [Fe/H]. APOGEE DR17
published stellar atmosphere parameters for about 0.73 million
stars, achieving measurement precision of typically 2%,
0.1 dex, and 0.05 dex for Teff, log g, and [Fe/H], respectively.

In this work, we utilized both photometric and spectroscopic
data to estimate the atmospheric parameters of KIC stars. To
achieve this, we crossmatched the KIC with data from the
aforementioned surveys. After crossmatching, we found
199,571 stars with Gaia DR3 ultra−wide-band photometry,
197,157 stars with Gaia DR3 XP spectra, and 190,604 stars
with KIS DR2 photometry. For spectroscopic data, we found
23,198 stars observed by APOGEE and 79,015 observed by
LAMOST, as summarized in Table 1. To incorporate extinction
values from the map derived in Section 3, we required distance
estimates for the KIC stars. Crossmatching with C. A. L. Baile-
r-Jones et al. (2021) provided distance information for 197,064
stars. All crossmatching processes were conducted using
TopCat (M. B. Taylor 2005), employing the best-matching
model and a 3″ matching radius.

3. Construction of a 3D Dust Map for the Kepler Field with
the “Star-pair” Method

In this study, the D. J. Schlegel et al. (1998) dust map E
(B − V ) is not utilized for reddening correction, due to its
inadequacies at low Galactic latitudes and the presence of
spatially dependent errors, as reported in recent work by Sun
et al. (2022). Instead, the 3D dust map for the Kepler field,
derived through the straightforward “star-pair” (SP) method
(H. B. Yuan et al. 2013; see their Section 5 for more details), is
employed.

The central idea behind the SP method is that stars with
similar atmospheric parameters—metallicity, effective temper-
ature, and surface gravity—exhibit analogous intrinsic colors.
The SP method typically involves defining the relationship
between the intrinsic colors and the physical quantities using a
sample of low-extinction stars, which is then applied to the
entire sample to obtain E(BP − RP).

A detailed description of the SP method with the Gaia DR3
photometry color BP − RP and LAMOST DR10 spectroscopic
stellar parameters is as follows.

1. We combine the Gaia DR3 photometric data with the
spectroscopic data from LAMOST DR10, as well as the
C. A. L. Bailer-Jones et al. (2021) distance catalog, with a
crossmatching radius of 3″. A reference sample, con-
stituting 1,037,145 stars, is selected with the following
constraints: (1) signal-to-noise ratio for the g band
(SNRg) of the LAMOST spectra greater than 20; (2)
Galactic latitude higher than 40o; (3) the 3D dust map
from G. M. Green et al. (2019), represented as
E(B − V )G19, is less than 0.01; and (4) C. A. L. Bailer-J-
ones et al. (2021) relative distance error less than 30%, in
order to avoid poorly constrained distance information.

2. To construct the Kepler field target sample, we combine
the Gaia DR3 photometric data with the spectroscopic
data from LAMOST DR10, as well as the C. A. L. Baile-
r-Jones et al. (2021) distance catalog, with a cross-
matching radius of 3″. The target sample includes
126,277 stars that meet the following constraints: (1)
SNRg of the LAMOST spectra more than 20, (2) located
in the sky area where R.A. ranges from 279o to 302o and
decl. ranges from 36o to 52o, and (3) C. A. L. Bailer-Jo-
nes et al. (2021) relative distance error less than 30%.

3. The BP − RP is adopted from the Gaia BP and RP bands;
the intrinsic color (BP − RP)0 can be estimated from
(BP − RP)0 = BP − RP − E(BP − RP). To obtain the
reddening value, E(BP − RP), a transformation is
performed as shown in the following equation:

( ) ( ) ( ) ( )- = - -E R R E B VBP RP , 1BP RP G19

where RBP/RP is the reddening coefficient with respect to
E(B − V )G19 for the BP and RP bands, respectively,
which can be calculated with

( ) ( )// /=R R A A , 2V VBP RP BP RP

where RV represents the total-to-selective extinction ratio,
defined as

( )
º

-
RV

A

E B V
V . Here, instead of fixing it at 3.1,

we use the actual measurements from R. Zhang et al.
(2023) for each target. The ABP/RP and AV are the
reddening values in the BP/RP and V bands, respectively.
The reddening ratio of ABP/RP/AV is taken from S. Wang
& X. Chen (2019).

For each target star, the reference stars are selected
from the reference sample as those having values of Teff,
log g, and [Fe/H] that differ from those of the target by
less than 130 K, 0.06 dex, and 0.06 dex, respectively. The
box sizes for selecting reference stars are empirically
determined to ensure both a sufficient number of stars and
a clear relationship between intrinsic color and atmo-
spheric parameters within the box range. The extinction
values for the target stars E(BP − RP) are measured from
the difference between the observed color BP − RP and
intrinsic color (BP − RP)0. The latter is derived both
assuming that the intrinsic colors of the target and its
control stars vary linearly with Teff, glog , and [Fe/H] and
based on the random forest machine learning fitting
technique (L. Breiman 2001). From comparison with the
results of the above two techniques, the outcome of the
random forest approach has been selected as the final
result.

3
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4. To construct a continuous 3D extinction map applicable
to all KIC stars, it is required to interpolate the discrete
reddening values we have obtained. We subdivided the
Kepler field into a grid of ´¢ ¢10 10 squares, assuming
that the stars within each grid share the same line of sight.
For the stars in each grid square, we employed two
interpolation techniques: cubic function fitting and
Gaussian error function fitting. We then derived con-
tinuous color-excess values. Among these two interpola-
tion strategies, the method demonstrating superior
goodness of fit, as measured by the coefficient of
determination, was adopted as the final choice.

Finally, we constructed a 3D extinction map with an angular
resolution of 10′ and a distance resolution of 20 pc in the Kepler
field, as shown in Figure 1. As a first check, the extinction values
E(BP− RP) yielded by the SP method are directly compared with
those from E(B − V )G19 (see Figure A1). Generally, they are very
consistent with each other, with a negligible offset and a moderate
scatter of 0.037 mag. We further assess the accuracy of reddening
derived from the SP technique using member stars of open
clusters, where extinction values are assumed to be constant. In
the Kepler field, there are four open clusters: NGC 6811, NGC
6819, NGC 6866, and NGC 6791. Using positions, distances, and
proper motions from Gaia DR3 (following the methods in
Y. Huang et al. 2019; X.-Y. Li et al. 2023), we selected member
stars of these four open clusters according to their mean positions,
distances, and proper motions reported in C. A. L. Bailer-Jones
et al. (2021), and E. L. Hunt & S. Reffert (2023). The extinction
distributions E(B − V ) for the member stars, derived both from
our SP technique and from G. M. Green et al. (2019), are shown
in Figure A2. It is evident that the SP technique produces
narrower distributions for all four clusters, indicating that the
internal precision of the SP method is significantly higher than
that of G. M. Green et al. (2019). Typically, the scatter in the
extinction distributions obtained using the SP technique is
significantly smaller than 0.01 mag, whereas the scatter from
G. M. Green et al. (2019) exceeds 0.025 mag. The median
extinction values for the member stars of all four clusters are
consistent with those reported in the literature (see Table A1;
K. Janes et al. 2013; B. J. Anthony-Twarog et al. 2014; D. Bossini
et al. 2019).

4. Stellar Atmospheric Parameter Estimation

Multiband photometric data, particularly if narrowband filters
are involved, provide an extremely efficient means to estimate

stellar atmospheric parameters, as has been recognized for over
half a century. For example, B. Strömgren (1963) first elucidated
the relationship between narrow/medium-band photometric
colors and stellar metallicity. As of today, the large-sample
spectroscopic surveys, such as SDSS/SEGUE (B. Yanny et al.
2009; C. M. Rockosi et al. 2022), LAMOST, and APOGEE,
provide excellent calibration labels for this method. H. Yuan et al.
(2015a) obtained the typical relation between the width of stellar
loci and the range of metallicity by analyzing spectroscopic stellar
parameters and SDSS DR9 (C. P. Ahn et al. 2012) photometric
data of Stripe 82. Following this, H. Yuan et al. (2015b)
developed a method, based on fitting relationships between
metallicity and photometric colors, and used this relationship to
predict metallicity for stars with photometric colors but lacking
spectroscopy. By adopting a similar method, Y. Huang et al.
(2022) obtained atmospheric parameter estimates for over 20
million stars using SMSS DR2 photometric data and LAMOST
DR9 and APOGEE DR17 spectroscopic data. Y. Huang et al.
(2023) obtained stellar parameters for more than 20 million
additional stars in the northern sky from the SAGES survey
(Z. Fan et al. 2023). We here will adopt the same technique to
derive metallicity, effective temperature, and surface gravity for
KIC stars from the KIS and synthesized Strömgren photometry
from Gaia XP spectra.

4.1. Metallicity

To derive photometric metallicity, we use stars in common with
the LAMOST-KIC data set as our training set. In total, there are
over 77,000 KIC stars observed by LAMOST with g-band
SNR� 20. Using these training stars, we aim to establish
relationships between spectroscopic metallicity and stellar colors
taken from either the KIS or Strömgren photometry synthesized
from Gaia XP spectra. Generally, the relationships are trained
separately for dwarf and giant stars. To achieve better precision,
we here train the relationships across five luminosity classes,
including giants with (BP− RP)0< 1.8, main-sequence stars with
(BP − RP)0 < 1.8, binaries, turnoff stars, and blue stars with
(BP − RP)0 < 0.4, based on their positions in the color–absolute
magnitude diagram (see Figure 2). We note that the cuts to select
these classes are empirically determined.
To show the sensitivities of KIS U and Strömgren

m1 ≡ (v − b) − (b − y) on metallicity, two examples are
shown in Figure 3 for main-sequence and giant stars. The plots
clearly demonstrate sequences at different metallicities ranging
from around [Fe/H] = −2.0 to [Fe/H] = +0.5, as both colors

Figure 1. Depth (left panel) and median E(B − V ) (right panel) of the 3D reddening map toward Kepler field, coded by the color bars shown to the right of each panel.
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(U − BP)0 and [m1] ≡ (v − b)0 − (b − y)0 change with the BP
for typical FGK-type stars.5 Instead of using two-dimensional
polynomial functions, as employed by previous studies (e.g.,
H. Yuan et al. 2015b; Y. Huang et al. 2022), we adopt the

random forest machine learning method to model the relations
[Fe/H] = f ((U − BP)0, (BP − RP)0) and [Fe/H] =
f ([m1], (BP − RP)0) separately for the five luminosity classes.
After establishing the metallicity–color relations through

training, we applied them to the entire KIC stellar sample to
derive their photometric metallicities. In total, we derived
photometric metallicities for 179,413 KIC stars using the model

Figure 2. Color–absolute magnitude diagram of the training sample defined in Section 4.1, coded by LAMOST metallicity, as shown in color bar to the right. The
dashed lines represent the cuts to separate different types of stars, i.e., the main-sequence (MS) stars, binary stars, giant stars, turnoff stars, and blue stars with
(BP − RP)0 < 0.40.

Figure 3. Distributions of the training-sample main-sequence stars (left panels) and giant stars (right panels) in the (U − BP)0 vs. (BP − RP)0 plane (top panels) and
the [m1] vs. (BP − RP)0 plane (bottom panels), coded by LAMOST metallicity ([Fe/H]), as shown by the color bars to the right of each panel. The dashed lines
represent equal-metallicity sequences ranging from + 0.5 (up) to −1.0 (bottom panel) for dwarf stars and + 0.5 (up) to −2.0 (bottom panel) for giant stars. These
sequences are obtained by fitting second-order polynomials to stars in the metallicity range |[Fe/H]−[Fe/H]i| < 0.1, where [Fe/H]i represents the marked metallicity
of these sequences. The numbers of stars in each panel are provided in the lower right corner of the panel.

5 Here the reddening coefficients of the U and Strömgren bands are all taken
from http://svo2.cab.inta-csic.es/theory/fps/.

5

The Astrophysical Journal Supplement Series, 277:6 (20pp), 2025 March Zhang et al.

http://svo2.cab.inta-csic.es/theory/fps/


trained with KIS photometry and for 189,727 stars using the
model trained on Gaia XP spectral-synthesis-generated photo-
metric data. Overall, this yields metallicity estimates for
191,551 stars, representing 95% of the total KIC stellar
sample. First, as an internal check, the metallicity estimated
from KIS is compared to that derived from the synthesized
Strömgren photometry in Figure 4. No offset is found between
the estimates from the two relations, with a minimal scatter of
only 0.12 dex. This suggests an intrinsic precision of 0.08 dex,
assuming equal contributions to the scatter from both relations.

To check the accuracy of the derived photometric metalli-
city, we crossmatched and compared KIC with results from
APOGEE DR17. Overall, the photometric metallicities esti-
mated from KIS and Strömgren colors exhibit excellent
agreement with those from APOGEE DR17, with negligible
offsets and a very small scatter of around 0.10 dex (see

Figures 5 and 6). However, we find that the photometric
metallicities are slightly higher than those from APOGEE
DR17, likely due to differences in the metallicity scales
between LAMOST and APOGEE (Y. Huang et al. 2024). This
consistency holds across all stellar types, except for blue stars,
where the limited number of KIC-APOGEE common stars
prevents a meaningful comparison (see Figures 5, 6, B1, and
B2). The precision for main-sequence, turnoff, giant, and
binary stars is 0.12, 0.10, 0.10, and 0.18 dex, respectively.
To further evaluate the accuracy of the photometric

metallicities, our sample is crossmatched with wide binaries
selected from Gaia DR2 (H.-J. Tian et al. 2020), which are
expected to have identical metallicities owing to their
identical birthplace and formation time. In total, 131 and
144 wide binaries are found to have photometric estimates of
metallicity measured from KIS and Strömgren colors,

Figure 4. Comparison of photometric metallicity estimates derived from KIS photometry with those having synthesized Strömgren from Gaia XP spectra. The red
dashed line is the one-to-one line. The color bar at right codes the number density of stars. The numbers of stars, mean offset, and dispersion are provided in the lower
right corner.

Figure 5. Top panels: comparison of photometric metallicity estimates from the KIS photometry with those from APOGEE DR17 for the full sample (left), main-
sequence stars (middle), and giant stars (right). The red dashed lines are the one-to-one lines. The numbers of stars, mean offset, and dispersion are provided in the
lower right corner of each panel. Bottom panels: residuals of the metallicity differences ([Fe/H]phot – [Fe/H]APOGEE), as a function of Gaia G magnitude. The red
dashed line is the zero level. The golden lines represent the 1σ scatter. The color bar at the right of each panel codes the number density of stars.

6

The Astrophysical Journal Supplement Series, 277:6 (20pp), 2025 March Zhang et al.



respectively. As shown in Figure 7, the offsets are within
0.02 dex, with a scatter of approximately 0.15 dex, demon-
strating the consistency of metallicities between stars in the
same binary system.

4.2. Effective Temperature

In the previous subsection, we discussed the methodology
for estimating the photometric metallicity for the great majority

Figure 6. Similar to Figure 5, but for photometric metallicity estimates from Strömgren photometry synthesized from the Gaia XP spectra.

Figure 7. Comparison of photometric [Fe/H] estimates between wide binary members. Left panel: comparison of our method based on synthetic photometric data
generated from Gaia XP spectra. Right panel: our method based on KIS photometric data. The red dashed lines are the one-to-one lines. The numbers of stars, mean
offset, and dispersion are provided in the upper left corner of each panel.

Figure 8. The relations between Teff and color for dwarf stars (including main-sequence stars, turnoff stars, and blue stars, shown in the left panel) and giants (right
panel). The Teff data are adopted from LAMOST DR10, and the [Fe/H] data are from our photometric estimates. The numbers of stars are shown in the upper right
corner of each panel. The color bar to the right of each panel codes the photometric metallicity estimates.
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of the KIC stars. These photometric metallicities will serve as
inputs to the training sets for subsequent steps in this work.
First, we consider the effective temperature, Teff.

Figure 8 shows the Teff versus (b − y) color plots for giants
and dwarfs (hereafter dwarfs represent main-sequence stars,
turnoff stars, and blue stars). In this case, the photometry is
synthetically generated from the Gaia XP spectra, the effective
temperatures are taken from the LAMOST DR10 spectroscopic
data, and the metallicities used to color code the legend are
those obtained from the photometric fits described in
Section 4.1. From inspection, similar to the color–color map,
the stars are on distinct loci and are stratified because of their
different metallicities. We obtain estimates of effective

temperature with the following relationship:

(( ) [ ]) ( )/= -T f b y , Fe H . 3ieff, 0

Again, a random forest regressor machine learning method is
adopted to train the Teff–color–[Fe/H] relation. For the training
set, the spectroscopic effective temperature is chosen from the
LAMOST DR10 LRS AFGK catalog, with SNRg > 20. The
total training set consists of 71,892 stars. In this section, we
use a different division of stars compared to Section 4.1 to train
the Teff–color–[Fe/H] relation separately. Here the stars are
divided into three types, dwarfs, binaries, and giants, rather
than the five types used in Section 4.1. After comparing the
accuracy of the metallicities derived in Section 4.1 with the

Figure 9. Comparison of Teff obtained by our method with that from CKS DR2 (left panels, for dwarf stars) and APOGEE DR17 (right panels, for giant stars). The red
dashed lines in the top panels are the one-to-one lines. The numbers of stars, mean offset, and dispersion are provided in the lower right corner of each panel in the top
row. The bottom panels show the residuals in the sense of -T Teff

phot
eff
APOGEE, as a function of G magnitude. The red dashed lines in the bottom panels represent the zero

level. The golden lines in the bottom panels represents the 1σ scatter. The color bar to the right of each panel codes the number density of stars in the figure.

Figure 10. The relations between log g−(U − BP)0 and photometric metallicity estimates for main-sequence stars (left panel) and giant stars (right panel). The log g
data are from LAMOST DR10, and the metallicities are obtained by our photometric estimates. The numbers of stars are provided in the lower right corner of each
panel. The color bar to the right of each panel codes the LAMOST DR10 estimate of log g.
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APOGEE DR17 data, we adopted the photometric metallicity
estimates from the method with higher accuracy for each type
of star. For stars classed as dwarfs, the photometric metallicity
estimates trained by KIS and Gaia photometry were adopted.
For stars classed as binary or giant, we employed the
photometric metallicities trained by synthetic photometry data
from the Gaia XP spectra.

We then applied the trained relations to all three types of
stars, resulting in effective temperature estimates for a total of
189,727 KIC stars. Figure 9 shows a comparison with the
spectroscopic effective temperatures from CKS DR2
(E. A. Petigura et al. 2017, 2018) and APOGEE DR17. For
the giant sample, there is a tiny offset of only +4 K and a
dispersion of 63 K when analyzing the difference of our
photometric Teff minus APOGEE DR17. For the binaries, the
offset is +110 K with a scatter of 247 K. For the dwarf sample,
we compared our photometric Teff estimates with those from
CKS DR2, rather than APOGEE DR17, as the latter's pipeline
is primarily designed for giant stars. The results show a small
offset of +17 K (this work minus CKS) with a scatter of 114 K.

4.3. Surface Gravity

We now consider surface gravity estimates for the KIC stars
based on the photometric color and photometric metallicities.
Figure 10 shows the log g–(U − BP) color plots for giant and
dwarf stars. In this case, the photometry data are from KIS DR2
and Gaia DR3. The metallicities are from the result of
photometric estimates as described in Section 4.1, and the
surface gravities used for training are from the LAMOST DR10
spectroscopic data. The U-band photometry contains informa-
tion about both the Balmer jump (which correlates with surface
gravity) and metallicity. With the photometric metallicity fixed,

the color (U − BP)0 can be further used to constrain log g. As
seen in the plots, the stars are stratified owing to their different
values of log g. Once again, we employed a random forest
regressor machine learning method to train the log g–color–
[Fe/H] relations for different types of stars, following the same
technical treatments as used for effective temperature (see
Section 4.2). The total training set consists of 68,063 stars.
From Figure 10, we note that, among the dwarf stars, some
with low log g values, located at (U − BP)0 ∼ 0.5 and
[Fe/H] ∼ −0.6, do not conform to the overall log g gradient
changes in the (U − BP)0–(BP − RP)0 diagram. Upon further
examination, we found that these stars are located at the
boundary between turnoff stars and subgiant stars. Therefore,
the discrepancy for these stars is possibly due to their stellar
classification; they are better classified as giants than as dwarfs.
We then applied the trained relations to all types of stars,
obtaining surface gravity estimates for 189,727 KIC stars.
Figure 11 shows a comparison between our method and the
spectroscopic surface gravity estimates from CKS DR2 (for
dwarf stars) and APOGEE DR17 (for giants and binaries). The
result for dwarfs exhibits an offset of −0.01 dex (this work
minus CKS DR2) and a dispersion of 0.14 dex. As for the result
for giant stars compared with APOGEE DR17, the offset is
+0.17 dex (this work minus APOGEE DR17) and the
dispersion is 0.19 dex. For binaries, the offset is +0.03 dex
(this work minus APOGEE DR17) and the dispersion is
0.09 dex. The moderate offset in surface gravity for giant stars
is primarily due to the scale difference between LAMOST
(used as the training set) and APOGEE. By comparing over
10,000 common stars between LAMOST and APOGEE, we
detected a similar offset of approximately 0.14 dex in surface
gravity for giant stars.

Figure 11. Comparison of log g estimates obtained by our method with CKS DR2 (left panels, for dwarf stars) and APOGEE DR17 (right panels, for giant stars). The
red dashed lines in the top panels are the one-to-one lines. The numbers of stars, mean offset, and dispersion are provided in the lower right corner of each panel. The
bottom panels show the residuals in the sense of /-g glog logphot APOGEE CKS, as a function of G magnitude. The red dashed lines in the bottom panels represent the
zero level. The golden lines in the bottom panels represent the 1σ scatter. The color bar to the right of each panel codes the number density of stars in the panel.
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4.4. Uncertainty Analysis

Random forest machine learning methods generally do not
provide uncertainty estimates for the derived parameters of
individual stars. To address this, we estimate the uncertainty of
each parameter using the Monte Carlo (MC) method. The MC
simulation accounts for both the uncertainties in the input
quantities and the mapping relations defined by the random
forest regressor.

Using [Fe/H] as an example, we train the color–[Fe/H]
relations with the random forest algorithm 1000 times. In each
iteration, we sample the photometric errors from KIS/Gaia-
synthesized photometry and Gaia data, as well as the
uncertainties in extinction. All these errors are assumed to
follow a Gaussian distribution. We then apply each relation to
all KIC stars, again sampling their photometric and extinction
uncertainties under the assumption of Gaussian distributions.
For each star, this process yields a distribution of photometric
[Fe/H], with the dispersion serving as the uncertainty.
Figure 12 shows an example of the final distribution of 1000
simulated photometric [Fe/H] estimates and dispersion.
Following the same approach, we derive the uncertainties for
photometric Teff and log g.

To validate the reliability of the uncertainty estimates, we
compare our results with those from APOGEE DR17. First, we
divide the stars into magnitude bins within the specified
magnitude range. For each bin, we calculate the dispersion of
the differences between our derived [Fe/H] and those from
APOGEE DR17, treating this dispersion as the reference
uncertainty for that group. Then, we compare these reference
uncertainties with the mean uncertainties obtained from our
method. As shown in the right panel of Figure 12, the
uncertainties from the MC simulations are in excellent
agreement with those with APOGEE DR17 uncertainties, with
an offset of 0.01 dex and a dispersion of 0.04 dex, confirming
the robustness of the uncertainty calculations.

5. Stellar Age Estimation

5.1. Bayesian Estimate

In this section, we derive ages, masses, and radii of the KIC
stars from isochrone fitting based on a Bayesian approach. The
methods we apply are similar to those used by B. R. Jørgensen
& L. Lindegren (2005) and Y. Huang et al. (2022). Essentially,
we match the observed parameters with the theoretical results
given by stellar evolution models and obtain these estimates
from the models.
The observed parameters we employ are (1) the intrinsic

color (BP − RP)0 and G-band absolute magnitude of the KIC
stars, corrected by our 3D extinction map; and (2) the stellar
metallicities. For metallicity, we combined the spectroscopic
metallicities from APOGEE and LAMOST, where available,
along with the photometric metallicities obtained by our
methods. For metallicities from different sources, we used the
following criteria. For a given KIC star, if the APOGEE data
have a metallicity that is obtained from a spectrum with SNR
larger than 30, this metallicity is chosen. If this is not available
and there is an available metallicity obtained from a LAMOST
low-resolution spectrum whose g-band SNR is greater than 30,
we select that estimate. If neither of these is available, we select
the photometric metallicity using the same strategy employed
for selecting data for the training set for models used to fit the
Teff–color–[Fe/H] and log g–color–[Fe/H] relations, according
to the assigned object type of the star.
For the stellar evolution models, we used the PARSEC

isochrones (A. Bressan et al. 2012). For the ages and
metallicities of the models, we divided the grid over the age
ranging from 0.1 to 15.2 Gyr and [M/H] from −2.2 to +0.5.
The step of the age grid is 0.2 Gyr for models with ages
younger than 1.2 Gyr, and it is 0.5 Gyr for models whose ages
are older than 1.2 Gyr. The step in [M/H] is 0.02 dex. This
yields a grid of 1.38 × 106 stellar model points.

Figure 12. Left panel: an example of the distribution of final photometric estimates of [Fe/H] yielded by the MC simulations. The median value of this distribution is
marked by a green dashed line, and the estimate by LAMOST is marked by a red dashed line. Right panel: comparison of the mean uncertainties derived from our MC
method with those obtained from APOGEE DR17. The “STD” is estimated by calculating the dispersion of the metallicity difference between photometric method and
APOGEE DR17 across various magnitude bins. We use 100 bins, evenly spaced between magnitudes 10 and 16. The red dashed line is the one-to-one line.

Table 2
Polynomial-fitting Coefficients for the Relationship between [α/Fe] and [Fe/H]

a0 a1 a2 a3 a4 a5 a6

−0.0676 −0.3995 −0.6846 −0.1530 0.3205 −0.1469 0.0355

Note. [α/Fe] = a0 × b6 + a1 × b5 + a2 × b4 + a3 × b3 + a4 × b2 + a5 × b + a6 b = [Fe/H].
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There remains the problem that the theoretical metallicities
given by PARSEC are in the form of [M/H], but the observed
metallicities are in the form of [Fe/H]. We transformed the
metallicities measured by [Fe/H] to [M/H] using Equation (6)
from M. Salaris & S. Cassisi (2005):

[ ] [ ] ( ) ( )[ ]/ / /= + + +aM H Fe H log 0.694 10 0.306 . 4Fe

For [α/Fe] in this relation, we fitted the [α/Fe]–[Fe/H]
relation from the APOGEE [α/H] and [Fe/H]. The fitting
relation is a sixth-order polynomial; the parameters for this
polynomial are listed in Table 2.

For the Bayesian estimation method, there are three
parameters that decide stellar evolution: age τ, mass m, and
metallicity Z. Thus, the posterior probability distribution
function of the stellar parameters can be described as

( ) ( ) ( ) ( )t t tµ f M Z f M Z M Z, , , , , , , 50

where f0 is the prior distribution of the parameters. In this work,
we assumed that age and metallicity [M/H] follow a uniform
distribution. For the mass, we assumed that it follows a power-
law distribution given by E. E. Salpeter (1955):

( ) ( )µ -f M M . 60
2.35

The prior distributions are independent of each other.  is
the likelihood function of the parameters, which can be
described as
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where O represents observational parameters, including the G-
band absolute magnitude, intrinsic (BP − RP)0 color, and
metallicity [M/H]. T are the theoretical values of those
parameters given by the isochrone model under a specific set
of parameters for τ, M, and Z.
With this procedure we can obtain the posterior probability

distribution function (pdf), denoted as ( ∣ )t P M Z, , , for the
parameter of interest. The parameters to be determined include
stellar mass, age, surface gravity, and radius. For each
parameter, we then calculate the pdf for each star using our
Bayesian approach. The final estimate of each parameter for a
given star is taken as the median of the resulting posterior pdf,
with its uncertainty defined as half the difference between the
84th and 16th percentile values of the posterior pdf. The
estimated physical parameters are then compared with
independent measurements to assess their accuracy.

5.2. Comparison with APOGEE and LAMOST

The resulting log g values are compared with those from
APOGEE DR17 and LAMOST DR10. As shown in Figure 13,
the values from isochrone fitting are consistent with the
spectroscopic measurements. The mean offsets are only
−0.03 dex (isochrone fitting minus APOGEE) and −0.06 dex
(isochrone fitting minus LAMOST), with small scatters of 0.14
and 0.17 dex, respectively. These comparisons indicate that our
log g estimates from isochrone fitting are more accurate than
those derived from stellar colors, as described above.

5.3. Comparison with SD18

To validate our age and mass estimates, we crossmatched
our results with those from J. L. Sanders & P. Das (2018,
hereafter SD18), which provides a catalog of stellar ages and

Figure 13. Comparison of log g obtained by the isochrone-fitting method with APOGEE DR17 (left panels) and LAMOST DR10 (right panels). The red dashed lines
in the top panels are the one-to-one lines. The numbers of stars, mean offset, and dispersion are provided in the upper left corner of each panel in the top row. The
bottom panels show the residuals in the sense of /-g glog logisochrone fitting APOGEE LAMOST, as a function of G magnitude. The red dashed lines in the bottom panels
represent the zero level. The golden lines in the bottom panels represents the 1σ scatter. The color bar to the right of each panel codes the number density of stars in the
panel.
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masses for approximately 3 million stars, derived from
spectroscopic data from existing surveys combined with Gaia
parallax measurements.

First, the stellar masses are compared with those from SD18
in Figure 14. Overall, the consistency is very good, with a
mean offset of −0.06 Me (our values minus those of SD18)
and a scatter of 0.10 Me. Note that giant stars are excluded
from this comparison, as their mass estimates are highly

sensitive to the uncertain parameter of mass loss, for which we
adopted a constant value of ηReimers = 0.2, following the
recommendation in PARSEC. We will later assess the masses
of giant stars using asteroseismic estimates. Second, we
compare our stellar ages with those from SD18, as shown in
Figure 14. Only turnoff stars are included in this comparison,
as their ages can be reliably constrained through isochrone
fitting. The relative age ratio (τISO − τSD18)/(τISO) shows a

Figure 14. Comparisons of stellar mass (left panel) and age (right panel) estimates between this work and SD18 for, respectively, nearly 24,000 main-sequence stars
and 14,000 main-sequence turnoff stars in common. The red dashed ine in the left panel is the one-to-one line. In the right panel, the red dashed lines indicate
AgeISO = 1.3AgeSD18 and AgeISO = 0.7AgeSD18. The numbers of stars, mean offset, and dispersion are provided in the upper right corner of each panel. The color bar
to the right of each panel codes the density number of stars in the panel.

Figure 15. Age distributions for member stars of the four open clusters (NGC 6791, NGC 6811, NGC 6819, and NGC 6866) in the Kepler field. The blue lines
represent the ages derived in this work, while the orange lines indicate the ages from SD18. The mean and dispersion of these distributions are marked in the upper
right corner of each panel.

12

The Astrophysical Journal Supplement Series, 277:6 (20pp), 2025 March Zhang et al.



mean offset of +10%, with a dispersion around 19%. To
further evaluate the precision of isochrone-derived ages, we
selected members of open clusters using the method described
in Section 3. Figure 15 shows the age distributions for member
stars of four open clusters in the Kepler field. The median
values of these distributions are close to those reported by other
independent studies (L. N. Brewer et al. 2016; E. L. Sandquist
et al. 2016; D. Bossini et al. 2019; K. Brogaard et al. 2021; see
Table A1).

5.4. Comparison with CKS

As previously described, CKS is a high-resolution spectro-
scopic survey designed to determine the properties of
exoplanets and their host stars in the Kepler field. Observations
conducted with the Keck telescope have provided atmospheric
parameters and other characteristics for approximately 1700
exoplanet-host stars. Using the Keck spectra, E. A. Petigura
et al. (2017, 2018) derived the stellar atmospheric parameters
(effective temperature, surface gravity, and metallicity) for the
exoplanet-host stars. Based on these parameters, J. A. Johnson
et al. (2017) further determined the masses and radii of these
stars.

As shown in Figure 16, the isochrone-derived log g is in
excellent agreement with that of CKS, with no offset and a
minimal scatter of 0.12 dex. Both stellar mass and radius from
isochrone fitting are also in very close agreement with CKS
results. The offsets are negligible, with no offset for radius and
only −0.03 Me (our values minus those of CKS) for mass. The
scatter is just 0.07 Me for mass and 0.05 Re for radius.

5.5. Comparison with APOKASC

Asteroseismology is an important technique in the field of
stellar parameter measurement, as it enables precise estimates
of mass, radius, and surface gravity. Here we compare our
results with those from the Apache Point Observatory Galactic
Evolution Experiment and the Kepler Asteroseismic Science
Consortium (APOKASC; M. H. Pinsonneault et al.
2014, 2018). The APOKASC catalog provides stellar para-
meters derived by combining asteroseismic data (such as
frequency spacing Δμ and maximum oscillation frequency
mmax, from which mass and radius can be estimated) from the
Kepler Asteroseismic Science Consortium (KASC) with
spectroscopic data (such as Teff, [Fe/H]) from APOGEE.
We compared our isochrone-derived log g, mass, and radius

with those from APOKASC. As shown in Figure 17, all
parameters estimated from isochrone fitting exhibit good
agreement with APOKASC results. For log g, the mean offset
is only −0.01 dex (our result minus APOKASC), with a
dispersion of 0.11 dex. For stellar radius, there is an offset of
0.01 Re, and the scatter is only 0.73 Re. For stellar mass, a
slight offset of −0.05Me (our result minus APOKASC) is
observed, with a moderate scatter of 0.14 Me. This offset and
dispersion are at least partly due to uncertainties in the mass-
loss parameter for red giant stars.

6. Final Sample and Notes for Their Use

Using the methods described above, we have obtained
physical parameter estimates for around 190,000 KIC stars.
However, around 10,000 KIC stars still lack these estimates.
An examination of the H-R diagram (see Figure 18) reveals that
most of the stars without parameter estimates are cool dwarfs

Figure 16. Comparisons of surface gravity (left panel), mass (middle panel), and radius (right panel) estimates between this work and CKS. The numbers of stars,
mean offset (this work minus CKS), and scatter are marked in the upper left corner of each panel. The red dashed lines are one-to-one lines. The color bar to the right
of each panel codes the number density of stars in the panel.

Figure 17. Similar to Figure 16, but for comparison with APOKASC.
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and giants with (BP − RP)0� 1.8, as well as hot subdwarfs and
white dwarfs. These stars were excluded from the training
process owing to the challenges in obtaining reliable parameter
estimates for them. Additionally, a small number of main-
sequence and turnoff stars lack parameter estimates because
they do not have Gaia XP spectra or KIS photometry
observations.

6.1. Parameters of M-type Stars

To obtain parameters for as many KIC stars as possible, we
trained the photometric parameter relations for M-type stars
using a method similar to that described in Section 4. Recently,
LAMOST DR10 released stellar atmospheric parameters for
both M dwarf and giant stars using the LASPM pipeline (B. Du
et al. 2021). We crossmatched our sample of cool stars with
(BP − RP)0� 1.8 against the LAMOST M dwarf and giant
catalog, finding over 1500 stars (582 dwarfs and 981 giants).
Using the same training methods described in Section 4, we
derived relationships between atmospheric parameters and
synthesized Strömgren photometry for both M dwarfs and
giants. These relationships were then applied to over 5200 cool
stars to estimate their missing atmospheric parameters. To
assess the precision of our estimates, we crossmatched these
stars with APOGEE DR17, finding around 100 M dwarfs and
1000 M giants in common. The comparisons indicate moderate
offsets across all atmospheric parameters, with typical values
around 0.10 dex for [M/H], 120 K for Teff, and 0.10 dex for log
g. The dispersions are 0.20 dex for both log g and [M/H] and
relatively low for Teff, at about 60 K. Due to the limited
accuracy of the parameters (large offsets and dispersion), we do
not proceed with isochrone-based estimates of physical
parameters derived from these stellar atmospheric parameters.

6.2. Data Access

In the final tables, we present data from two separate stellar
catalogs: one for AFGK stars and another for M-type stars. A
detailed description of the catalogs is provided in Table C1.
The updated KIC parameter catalogs are publicly available on
Zenodo at doi:10.5281/zenodo.14546166.

6.3. Notes for Using Data

If one wishes to use the data from these tables, please take
note of the following points:

1. Parameters of M-type Stars. Due to the relatively small
size of the training set and limited data available for
comparison and verification, the reliability of M-type star
parameters is lower compared to that of AFGK stars.
Caution is advised when using these values for further
analysis.

2. Stellar Classification. The classification of stellar types
on the H-R diagram in this paper is based on empirical
methods. Some mixtures may occur at the classification
boundaries, particularly between main-sequence stars and
binary stars.

3. Isochrone Fitting. While the isochrone-fitting method
provides reliable mass and age estimates for turnoff stars
and subgiant stars, there is greater uncertainty for other
stellar types. These uncertainties should be carefully
taken into account during analysis.

4. Surface Gravity. In this work, stellar surface gravity was
estimated using both stellar colors and isochrone fitting.
Based on various checks, the accuracy of the isochrone-
fitting method is significantly better than that derived
from stellar colors. Therefore, when surface gravity

Figure 18. Distribution of KIC stars (orange circles) without reliable parameter estimates on the color–G-band absolute magnitude diagram. The background gray
circles represent stars with well-determined atmospheric and physical parameters.

Table 3
Sample Content

Parameter Type Method Number of A, F, G, K Stars Number of M Stars Total

Photometric [Fe/H] KIS U-band photometry 179,133 L 179,133
Synthesized v, b, y photometry 189,727 5252 194,979
One of the above methods 190,226 5252 195,478

Photometric Teff Teff–[Fe/H]–color relation 189,727 5252 194,979
Photometric log g log g –[Fe/H]–color relation 179,133 4285 183,418
Age, mass, and radius Isochrone fitting 185,886 L 185,886
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estimates are available from both methods, we recom-
mend using the values obtained from isochrone fitting.

7. Summary

In this work, we have made three main improvements to the
KIC: (1) established a high-precision 3D extinction map of the
Kepler field, (2) obtained atmospheric parameter estimates for
97% of KIC stars using photometric data from KIS and Gaia
XP, and (3) derived stellar mass, radius, surface gravity, and
age estimates for these KIC stars based on their atmospheric
parameters and stellar evolution models. Details of these
improvements are outlined below.

1. First, we determined the extinction for stars in the Kepler
field using the SP method and constructed a 3D
extinction map for this region. By analyzing members
of four well-known open clusters within the Kepler field,
we found that this new 3D extinction map provides more
accurate reddening values than those from the commonly
used map by G. M. Green et al. (2019).

2. By training a relationship between the photometric colors
from KIS DR2, the ultra–wide-band photometric colors
from Gaia DR3, the photometric colors synthetically
generated from the Gaia XP spectra, and the spectral
stellar parameters from LAMOST DR10, we obtained
atmospheric parameter estimates for about 195,000 stars,
accounting for 97% of the total number of the KIC stars.
We achieved uncertainties of 0.12 dex on [Fe/H], 100 K
on Teff, and 0.2 dex on log g.

3. Using the PARSEC stellar evolution model, we estimated
the masses, radii, surface gravities, and ages of KIC stars
based on their atmospheric parameters and photometric
data. We then compared our mass and age estimates with
values from the literature, especially stars with mass,
radius, and surface gravity measurements from astero-
seismology data. These comparisons indicate that our
estimates achieve precisions of 0.07 Me in mass, 0.05 Re
in radius, and 0.12 dex in surface gravity for dwarf stars
and 0.14 Me in mass, 0.73 Re in radius, and 0.11 dex in
surface gravity for giant stars.

We summarize the methodology for each parameter estimate
in Table 3. These results are expected to be valuable for future
research on exoplanet-host stars, exoplanet habitability, and
asteroseismology studies.
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Appendix A
Extinction Map Comparison

Here we summarize the adopted parameters for the four open
clusters in the Kepler field (Table A1), compare the reddening
values obtained based on our 3D extinction map of the Kepler
field with the values of reddening adopted by G. M. Green et al.
(2019; see Figure A1), and compare the reddening values from
our 3D extinction map for member stars in the four open
clusters in the Kepler field with those adopted by G. M. Green
et al. (2019; see Figure A2).

Figure A1. Comparison of reddening values between those derived using the
SP method in this work and those from the 3D extinction map of G. M. Green
et al. (2019). ΔE(B − V ) represents the difference between the reddening
values obtained from the SP method and those from the 3D extinction map of
G. M. Green et al. (2019). The red dashed line represents the zero level. The
mean and scatter of this difference are indicated in the lower right corner.
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Appendix B
Supplementary Metallicity Comparison Test

Here we provide comparisons of the photometric metallicity
estimates from the KIS photometry for turnoff stars and binary

stars with those from APOGEE DR17 (Figure B1) and
comparisons of the photometric metallicity estimates from
Strömgren photometry synthesized from the Gaia XP spectra
for turnoff stars and binary stars with those from APOGEE
DR17 (Figure B2).

Figure A2. Reddening values for member stars of four open clusters (NGC 6791, NGC 6811, NGC 6819, and NGC 6866) in the Kepler field. The blue lines represent
E(B − V ) given by our 3D extinction map, while the orange lines indicate the E(B − V ) from the map of G. M. Green et al. (2019). The mean and dispersion of these
distributions are marked in the upper right corner of each panel.

Table A1
Parameters of Open Clusters in the Kepler Field

NGC Number Distancea R.A.a Decl.a PMR.A.
a PMdecl.

a E(B − V ) Age
(kpc) (deg) (deg) (mas yr−1) (mas yr−1) (mag) (Gyr)

NGC 6791 4.2 290.22 37.77 −0.42 −2.28 0.10a/0.14b 8.30c/11.7b

NGC 6811 1.1 294.34 46.36 −3.35 −8.80 0.074d/0.072b 1.05e/1.21b

NGC 6819 2.5 295.32 40.19 −2.90 −3.87 0.16f/0.14b 2.38g/2.16b

NGC 6866 1.4 300.98 44.16 −1.37 −5.76 0.13h/0.13b 0.78h/0.90b

Notes.
a E. L. Hunt & S. Reffert (2023).
b This work.
c K. Brogaard et al. (2021).
d K. Janes et al. (2013).
e E. L. Sandquist et al. (2016).
f B. J. Anthony-Twarog et al. (2014).
g L. N. Brewer et al. (2016).
h D. Bossini et al. (2019).
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Appendix C
Catalog Description

In Table C1 we provide a detailed listing of the contents of our
final catalog, including the input quantities and their sources, as

well as the derived quantities and estimates of stellar atmospheric
parameters from LAMOST DR10 and APOGEE DR17. The
updated KIC parameter catalogs will be publicly available on
Zenodo at doi:10.5281/zenodo.14546166.

Figure B1. Comparisons of photometric metallicity estimates from the KIS photometry with those from the APOGEE DR17 for the turnoff stars (left panels) and
binary stars (right panels). The red dashed lines in the top panels are the one-to-one lines. The numbers of stars, mean offset, and scatter are provided in the lower right
corner of each panel. The bottom panels are the residuals of metallicity differences ([Fe/H]phot–[Fe/H]APOGEE) as a function of Gaia G magnitude. The red dashed
lines in the bottom panels represent the zero level. The gold lines in the bottom panels represent the 1σ scatter. The color bar to the right of each panel codes the
number density of stars in the panel.

Figure B2. Similar to Figure B1, but for photometric metallicity estimates from the Strömgren photometry synthesized from the Gaia XP spectra.
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Table C1
Catalog Description

Column Name Description

kepid ID of the KIC star
SourceID Source ID of Gaia DR3
degree_ra R.A. of KIC star
degree_dec Decl. of KIC star
G G-band photometry from Gaia DR3
G_err Uncertainty of G-band photometry from Gaia DR3
BP BP-band photometry from Gaia DR3
BP_err Uncertainty of BP-band photometry from Gaia DR3
RP RP-band photometry from Gaia DR3
RP_err Uncertainty of RP-band photometry from Gaia DR3
BP − RP BP − RP color from Gaia DR3
v v-band photometry synthesized from Gaia DR3 XP spectra
v_err Uncertainty of v-band photometry synthesized from Gaia DR3 XP spectra
b b-band photometry synthesized from Gaia DR3 XP spectra
b_err Uncertainty of b-band photometry synthesized from Gaia DR3 XP spectra
y y-band photometry synthesized from Gaia DR3 XP spectra
y_err Uncertainty of y-band photometry synthesized from Gaia DR3 XP spectra
U U-band photometry from KIS DR2
U_err Uncertainty of U-band photometry from KIS DR2
E(BP − RP) BP − RP excess from our 3D extinction map
FeH_KIS_PHOT/MH_KIS_PHOTa [Fe/H]/[M/H] from KIS colors
FeH_KIS_PHOT_err/MH_KIS_PHOT_erra Uncertainty of [Fe/H]/[M/H] from KIS colors
FeH_GaiaSyn_PHOT/MH_GaiaSyn_PHOTa [Fe/H]/[M/H] from Gaia-synthesized colors
FeH_GaiaSyn_PHOT_err/MH_GaiaSyn_PHOT_erra Uncertainty of [Fe/H]/[M/H] from Gaia-synthesized colors
Teff_PHOT Photometric effective temperature
Teff_PHOT_err Photometric uncertainty of effective temperature
log g_PHOT Photometric surface gravity
log g_PHOT_err Photometric uncertainty of surface gravity
Age_ISOb Age by isochrone-fitting method
Age_ISO_lowb 16th percentile of age posterior by isochrone-fitting method
Age_ISO_upb 84th percentile of age posterior by isochrone-fitting method
M_ISOb Mass by isochrone-fitting method
M_ISO_errb Uncertainty of mass fitted by isochrone-fitting method
log g_ISOb Surface gravity by isochrone-fitting method
log g_ISO_errb Uncertainty of surface gravity by isochrone-fitting method
Teff_ISO

b Effective temperature by isochrone-fitting method
Teff_ISO_err

b Uncertainty of effective temperature by isochrone-fitting method
log L_ISOb Luminosity by isochrone-fitting method
log L_ISO_errb Uncertainty of luminosity by isochrone-fitting method
R_ISOb Radius by isochrone-fitting method
R_ISO_errb Uncertainty of radius fitted by isochrone-fitting method
FeH_LAMOST/MH_LAMOSTc [Fe/H]/[M/H] from LAMOST DR10
FeH_LAMOST_err/MH_LAMOST_errc Uncertainty of [Fe/H]/[M/H] from LAMOST DR10
Teff_LAMOST Effective temperature from LAMOST DR10
Teff_LAMOST_err Uncertainty of effective temperature from LAMOST DR10
log g_LAMOST Surface gravity from LAMOST DR10
log g_LAMOST_err Uncertainty of surface gravity from LAMOST DR10
FeH_APOGEE [Fe/H] from APOGEE DR17
FeH_APOGEE_err Uncertainty of [Fe/H] from APOGEE DR17
Teff_APOGEE Effective temperature from APOGEE DR17
Teff_APOGEE_err Uncertainty of effective temperature from APOGEE DR17
log g_APOGEE Surface gravity from APOGEE DR17
log g_APOGEE_err Uncertainty of surface gravity from APOGEE DR17
MH_APOGEE [M/H] from APOGEE DR17
MH_APOGEE_err Uncertainty of [M/H] from APOGEE DR17
pmra Proper motion in R.A. direction from Gaia DR3
pmra_err Uncertainty of proper motion in R.A. direction from Gaia DR3
pmdec Proper motion in decl. direction from Gaia DR3
pmdec_err Uncertainty of proper motion in decl. direction from Gaia DR3
rgeo Geometric distance from C. A. L. Bailer-Jones et al. (2021)
rgeo_low 16th percentile of the geometric distance posterior from C. A. L. Bailer-Jones et al. (2021)
rgeo_up 84th percentile of the geometric distance posterior from C. A. L. Bailer-Jones et al. (2021)
rpgeo Photogeometric distance from C. A. L. Bailer-Jones et al. (2021)
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Table C1
(Continued)

Column Name Description

rpgeo_low 16th percentile of the photogeometric distance posterior from C. A. L. Bailer-Jones et al. (2021)
rpgeo_up 84th percentile of the photogeometric distance posterior from C. A. L. Bailer-Jones et al. (2021)
StarType Type of KIC star, including TO (turnoff), giant, (MS) main sequence, binary, HS (hot star), gM (M-type

giant), and dM (M-type dwarf)

Notes.
a [Fe/H] for A-, F-, G-, and K-type stars and [M/H] for M-type dwarfs.
b Only for A-, F-, G-, and K-type stars.
c [Fe/H] for A-, F-, G-, and K-type stars and [M/H] for M-type stars.
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