

1 **TITLE PAGE**

2 **A gated hydrophobic funnel within BAX binds long-chain alkenals to potentiate pro-
3 apoptotic function**

4 Jesse D. Gelles^{1,2,3}, Yiyang Chen^{1,2,3,4}, Mark P. A. Luna-Vargas^{1,2,3}, Ariele Viacava Follis⁵, Stella
5 G. Bayiokos^{1,2,3,4}, Jarvier N. Mohammed^{1,2,3}, Tara M. Sebastian^{1,2,3}, M. Abdullah Al Noman^{1,2,3},
6 Ngoc Dung Pham⁶, Yi Shi⁶, Richard W. Kriwacki^{5,7}, and Jerry E. Chipuk^{1,2,3,4,8,9*}

7 ¹ Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at
8 Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA

9 ² Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L.
10 Levy Place, New York, New York 10029, USA

11 ³ The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place,
12 New York, New York 10029, USA

13 ⁴ The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One
14 Gustave L. Levy Place, New York, New York 10029, USA

15 ⁵ Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas
16 Place, Memphis, Tennessee 38105, USA

17 ⁶ Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One
18 Gustave L. Levy Place, New York, New York 10029, USA

19 ⁷ Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health
20 Sciences Center, Memphis, Tennessee 38105, USA

21 ⁸ Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy
22 Place, New York, New York 10029, USA

23 ⁹ The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One
24 Gustave L. Levy Place, New York, New York 10029, USA

25 * Correspondence: jerry.chipuk@mssm.edu

26 **ABSTRACT**

27 Mitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g.,
28 BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological
29 forms of apoptosis. The sphingosine-1-phosphate metabolite 2-trans-hexadecenal
30 (2t-hexadecenal) is one such component described to support BAX activation, but molecular
31 mechanisms remain largely unknown. Here, we utilize complementary biochemical and
32 biophysical techniques to reveal that 2t-hexadecenal non-covalently interacts with BAX, and
33 cooperates with BIM to stimulate early-activation steps of monomeric BAX. Integrated structural
34 and computational approaches reveal 2t-hexadecenal binds an undefined region – a hydrophobic
35 cavity formed by core-facing residues of α 5, α 6, and gated by α 8 – we now term the "BAX
36 actuating funnel" (BAF). We define alkenal length and α 8 mobility as critical determinants for
37 2t-hexadecenal synergy with BIM and BAX, and demonstrate that proline 168 allosterically
38 regulates BAF function. Collectively, this work imparts detailed molecular insights advancing our
39 fundamental knowledge of BAX regulation and identifies a regulatory region with implications for
40 biological and therapeutic opportunities.

41 **KEYWORDS**

42 α,β -Unsaturated Alkenals
43 Apoptosis
44 BAX
45 BCL-2 Family
46 Cell Death
47 Hexadecenal
48 MOMP

49 **INTRODUCTION**

50 Developmental, homeostatic, and pharmacological pro-apoptotic signals converge by engaging
51 the BCL-2 family of proteins to induce BAX-dependent mitochondrial outer membrane
52 permeabilization (MOMP) and apoptosis.¹ Despite sequence and structural similarity with multiple
53 globular BCL-2 family proteins, BAX is unique in that it converts from an inactive cytosolic
54 monomer to pore-forming oligomer at the outer mitochondrial membrane (OMM). Upon transient
55 triggering with direct activator BH3-only proteins (e.g., BIM, BID), BAX undergoes a series of
56 intramolecular rearrangements and structural refoldings that ultimately result in translocation to
57 the OMM, oligomerization, and MOMP.²⁻⁷ An important structural event during this process is α 9
58 helix mobilization from its residence within the BAX BC groove, which simultaneously supports
59 OMM translocation, BAX:BAX interactions, and propagation of the activation process leading to
60 proteolipid pore formation. We refer to this series of structural rearrangements as the BAX
61 activation continuum, which may be separated into an activation phase (triggering) and
62 functionalization phase (pore formation).⁸

63 There are two general requirements for potent BAX activation: protein-protein interactions to
64 trigger the monomer, and protein-lipid interactions to initiate and stabilize refolding of BAX into
65 multimeric conformers. These requirements are proposed to occur in distinct phases of the
66 activation continuum, and most insights into protein-lipid interactions focus on how BAX interacts
67 within the OMM to form pore-like structures.⁹⁻¹² This has led to a modern conceptualization in
68 which mitochondrial membranes actively cooperate with the BCL-2 family to control cell death
69 commitment.¹³ Notably, mitochondrial endoplasmic reticulum contact sites (MERCS) maintain
70 lipid homeostasis between the organelles and supply lipids that are critical for MOMP.¹⁴ One
71 example, the terminal end-product of the sphingolipid pathway – 2-trans-hexadecenal
72 (2t-hexadecenal) – is required for BAX-mediated MOMP following triggering by BIM or BID.¹⁵
73 2t-hexadecenal is formed by the irreversible cleavage of sphingosine-1-phosphate (S1P) and is
74 metabolized to palmitoyl-CoA for fatty acid synthesis pathways.¹⁶ The resident enzymes
75 responsible for generating and catabolizing 2t-hexadecenal are enriched at MERCS, and
76 genetically modulating 2t-hexadecenal levels alters sensitivity to human BAX in yeast.¹⁷
77 Additionally, interactions between BAX and the OMM are governed by OMM curvature, which is
78 regulated by a combination of the mitochondrial dynamics machinery, intra-organellar membrane
79 contact sites, and mitochondria-specific lipids.^{18,19}

80 While the requirement for 2t-hexadecenal in the BAX activation continuum is described,
81 cooperation with BH3-only proteins and underlying mechanisms remain poorly understood. Here,
82 we utilize biochemical, biophysical, structural, and computational approaches to systematically
83 demonstrate that 2t-hexadecenal directly actuates BAX through non-covalent interactions at a
84 previously undefined region – a funnel-shaped hydrophobic cavity formed by core-facing residues
85 of α 5, α 6, and gated by α 8, which we term the BAX Actuating Funnel, or BAF. Our results suggest
86 that BIM-mediated BAX triggering mobilizes α 8, making the BAF accessible, and that binding of
87 2t-hexadecenal promotes BAX functionalization. Furthermore, we identify chemical and structural
88 determinants underlying the 2t-hexadecenal:BAX interaction and reveal that mutation of proline
89 168 in the loop between α 8 and α 9 allosterically deforms the BAF and subsequently disrupts the
90 function of 2t-hexadecenal. Collectively, this model advances our understanding of the BAX
91 structure-function relationship by characterizing the protein-lipid interactions responsible for
92 stimulating monomeric BAX activation and identifies a previously underappreciated regulatory
93 domain for both cell biology and therapeutic investigations.

94 **RESULTS**

95 **2t-hexadecenal directly activates BAX through non-covalent interactions**

96 Previous work demonstrated that hexadecenal was required for potent BAX-mediated MOMP and
97 that sphingolipid precursors are supplied to mitochondria via interactions with heterotypic
98 membranes.¹⁵ To assess whether ectopic hexadecenal exposure could engage BAX activation *in*
99 *cellulo*, we treated SV40-transformed mouse embryonic fibroblasts (MEFs) with increasing
100 concentrations of hexadecenal and measured the apoptotic response using our real-time multi-
101 visitation microscopy technique, SPARKL.²⁰ Supraphysiological concentrations of ectopic
102 hexadecenal ("2t-16") did not induce cell death at the lower concentrations tested (Figure 1A).
103 We reasoned that any pro-apoptotic signaling may have been mitigated by the repertoire of anti-
104 apoptotic BCL-2 family proteins, and indeed, co-treatment with the BH3-mimetic ABT-737
105 revealed an apoptotic phenotype in response to ectopic hexadecenal (Figure 1A). To determine
106 if the apoptotic response required triggering by direct activators, we utilized *Bim*^{-/-}*Bid*^{-/-} double
107 knockout (DKO) MEFs and observed a loss of apoptosis at lower concentrations of ectopic
108 hexadecenal co-treated with ABT-737, suggesting that BAX activation was part of the underlying
109 mechanism (Figure 1B). Finally, we replicated this experiment in *Bax*^{-/-}*Bak*^{-/-} DKO MEFs and
110 observed no cell death (Figure 1C). Collectively, these data support the conclusion that
111 hexadecenal induces apoptotic cell death by acting on effector BCL-2 family proteins.

112 There are reports that ectopic hexadecenal can form adducts with DNA and generate oxidative
113 stress resulting in apoptosis^{21,22}; therefore, we interrogated whether hexadecenal directly
114 promoted BAX-mediated pore formation by utilizing recombinant BAX protein and large
115 unilamellar vesicles (LUVs), which are biochemically-defined liposomes that mimic the major lipid
116 composition of the OMM, and assessed BAX activation by measuring LUV permeabilization.
117 While recent studies have incorporated hexadecenal directly into the formulation of LUVs²³, we
118 aimed to investigate hexadecenal-mediated BAX activation without altering the biochemistry of
119 the LUV membrane. BAX treated with supraphysiological concentrations of hexadecenal
120 demonstrated dose-dependent activation and LUV permeabilization (Figure 1D). Importantly,
121 ectopic hexadecenal alone did not disrupt or cause leakage of LUVs (Figure S1B). In the cell,
122 BAX activation is mediated primarily through BCL-2 family direct activators – predominantly, BIM²⁴
123 – and we had observed inhibited apoptosis in the *Bim*^{-/-}*Bid*^{-/-} MEFs; therefore we sought to
124 assess the cooperation of BIM and hexadecenal on BAX-mediated membrane permeabilization.
125 We treated BAX with an activating concentration of BIM-BH3 peptide and observed a dose-
126 dependent increase and acceleration in LUV permeabilization in response to hexadecenal
127 (Figures 1E, S1A). Furthermore, the synergy with hexadecenal was observed with mildly-
128 activating concentrations of BIM-BH3 as well (Figures 1F, S1C). Previous work indicated that the
129 saturated form of 2t-hexadecenal – hexadecanal ("16CHO") – did not induce BAX oligomers in
130 cross-linking studies¹⁵, and indeed, we did not observe BAX-mediated pore formation or synergy
131 with BIM in response to hexadecanal (Figures 1G–I, S1D). These data indicate that hexadecenal
132 promotes BAX pore formation and synergizes with BIM activation.

133 Despite treating BAX with hexadecenal directly, we could not entirely rule out the possibility that
134 increased permeabilization could have been due to the lipidic aldehyde interacting with LUVs and
135 resulting in a more permissive environment for BAX pore formation. Therefore, we utilized
136 microscale thermophoresis (MST) to determine whether hexadecenal directly bound to BAX and
137 observed a dose-dependent shift indicating changes to the molecular volume of BAX in response

138 to hexadecenal (Figure 2A). Interestingly, the saturated hexadecanal aldehyde did not induce a
139 similar change in BAX thermophoresis, suggesting that the α,β double bond is necessary for BAX
140 interaction and subsequent activation (Figures 2B, S2A).

141 Hexadecenal is an α,β -unsaturated aldehyde and is capable of modifying nucleophiles, (e.g.,
142 cysteine residues) through Michael addition, and the requirement for the double bond suggested
143 a chemical reaction mechanism.²⁵ In fact, recent publications have reported that hexadecenal
144 covalently modifies BAX, though the studies disagree on which cysteine residue is modified and
145 it is unclear whether the reaction is biologically specific to BAX.^{23,26} To determine whether the
146 mechanism of hexadecenal-mediated BAX activation was the result of covalent modification, we
147 incubated BAX with hexadecenal and subjected the sample to higher-energy collision-induced
148 dissociation (HCD) and tandem liquid chromatography-mass spectrometry (LC-MS). We detected
149 peptide fragments covering both cysteines (C62, C126) and observed no alkylation by
150 hexadecenal ($m+238.229$ Da); as a control, we were able to detect modification of the cysteines
151 by the alkylating agent iodoacetamide ($m+57.021$ Da) (Figure 2C). Additionally, we also observed
152 no shift by intact mass spectrometry (data not shown). To decisively conclude that the mechanism
153 was independent of cysteine modification, we replicated our LUV permeabilization studies using
154 a cysteine-replacement BAX mutant (BAX^{C62S,C126S}, "BAX^{2S}"), which exhibited no changes to
155 stability or melting temperature (Figure S2B). Compared to wild-type BAX ("BAX^{WT}"), BAX^{2S}
156 remained sensitive to hexadecenal-mediated changes in melting temperature, pore formation,
157 and synergy with BIM-BH3 peptide (Figures 1D–F, 2D–F, S2C–D). Additionally, BAX^{2S} remained
158 similarly unaffected by the saturated hexadecanal aldehyde (Figures 2G–I, S2E). Collectively,
159 these results indicate that hexadecenal promotes BAX pore formation through a direct, non-
160 covalent interaction mechanism.

161 **2t-hexadecenal synergizes with BIM and promotes early-activation steps of monomeric**
162 **BAX**

163 The BAX activation continuum can be divided into two distinct phases of activation and
164 functionalization: the cytosolic monomer gets activated and undergoes intramolecular
165 rearrangements and conformational changes that result in translocation to the OMM;
166 subsequently, active BAX proteins in the OMM undergo large-scale conformational changes,
167 oligomerize, and mature into pore-forming units. Our data thus far measured BAX
168 functionalization (i.e., pore formation) and demonstrated that hexadecenal cooperates with BIM
169 to promote membrane permeabilization. Previous studies demonstrating hexadecenal-mediated
170 BAX activation were mostly limited to model membranes with endogenous or incorporated
171 hexadecenal, often at supraphysiological concentrations.^{15,23} In contrast, we utilized a direct
172 treatment model of hexadecenal and BAX protein, indicating that the mechanism of action likely
173 occurs on BAX found in the cytosol and prior to integration within the OMM. To investigate the
174 effect of hexadecenal specifically on the activation phase of BAX, we utilized a technique we
175 developed called FLAMBE, which monitors activation-induced intramolecular rearrangements
176 within BAX (i.e., rearrangements that result in early-activation structural hallmarks such as
177 displacement of the $\alpha 1-\alpha 2$ loop and mobilization of the C-terminal $\alpha 9$ helix).^{4,8} FLAMBE observes
178 real-time early-activation of BAX by measuring changes in Polarization resulting from the kinetic
179 binding and dissociation of a TAMRA-labeled BAK-BH3 peptide (BAK^{TAMRA}); broadly, BAX
180 activation can be inferred by measuring a reduction of Polarization over time (Figure S3A). Kinetic
181 FLAMBE data can further be parameterized into time-of-maximum-Polarization (Tmax) and
182 endpoint Polarization (EP) for trend overviews and comparative analyses between treatment

183 conditions (Figures S3B). As an example, BAX treated with a range of BIM concentrations exhibits
184 a dose-dependent pattern of BAK^{TAMRA} dissociation (measured as a reduction in Polarization over
185 time) indicative of BAX activation (Figure S3C).

186 Using FLAMBE, we observed BAX^{WT} activation in the presence of hexadecenal as demonstrated
187 by a reduction in Polarization over time, indicating that high concentrations of hexadecenal could
188 induce a "direct-activator"-like effect on BAX monomers (Figure 3A). To confirm that this
189 phenotype was not due to covalent modification of cysteine residues, we replicated the FLAMBE
190 experiment with BAX^{2S} and observed the same activation profile (Figure 3B). By contrast, neither
191 BAX^{WT} nor BAX^{2S} activated in response to the saturated hexadecanal aldehyde, though we did
192 observe some destabilization of the BAX:BAK^{TAMRA} heterodimer at the higher concentrations
193 (Figure S3D–E). We hypothesized that hexadecenal cooperates with direct activators instead of
194 activating BAX *de novo* within the cell, and thus we investigated whether the synergy between
195 hexadecenal and BIM occurs during the early-activation phase. We treated BAX^{2S} with a non-
196 activating concentration of BIM-BH3 to generate a population of stable BIM:BAX:BAK^{TAMRA}
197 heterotrimers (Figure 3C, yellow data). The addition of a non-activating concentration of
198 hexadecenal resulted in activation of the primed BAX^{2S} population (Figure 3C, left panel);
199 moreover, activation of primed BAX^{2S} was observed with several non-activating concentrations of
200 hexadecenal (Figure 3C, right panel). When we induced a "triggered" BAX population (i.e., mildly
201 activated by BIM), we similarly observed increased activation by non-activating concentrations of
202 hexadecenal, as measured by increased kinetics of BAK^{TAMRA} dissociation, greater shifts in
203 parameterized metrics, and reduction in area under the curve (Figures 3D, S3F). Importantly, we
204 observed the same outcomes with BAX^{WT}, confirming that the mechanism was not due to the
205 endogenous cysteines or their mutation (Figure S3G). To eliminate the possibility that
206 hexadecenal was inducing BAK^{TAMRA} dissociation by competing for the BC groove, we treated
207 recombinant BCL-xL in the presence of BAK^{TAMRA} and observed no competition by hexadecenal
208 (Figure S3H).

209 The consequence of BAX activation is translocation to the OMM and oligomerization, and while it
210 is largely agreed that high-molecular weight oligomers are formed within the OMM, there is
211 evidence supporting that physiologically-activated BAX forms low-order multimers (e.g., dimers)
212 in solution prior to integrating with membranes.^{6,8,27} We investigated the consequence of
213 hexadecenal-mediated synergy with BIM-activated BAX by performing size exclusion
214 chromatography (SEC) and observed a substantial shift from monomeric to dimeric BAX when
215 co-treated with BIM-BH3 peptide and hexadecenal (Figure 3E). To confirm that the earlier peak
216 was BAX, we treated fluorescently-labeled BAX, subjected it to SEC, and screened the fractions
217 for fluorescence. The monomeric BAX peak (fractions 28–31) shifted slightly left upon addition of
218 hexadecenal or BIM-BH3 peptide (fractions 27–30), likely due to binding-dependent changes in
219 molecular volume, and dimeric species were observed in the BIM-treated sample (fractions 23–
220 26); the co-treatment of hexadecenal and BIM-BH3 resulted in an increased shift and intensity
221 indicating a greater percent of the BAX population formed multimeric species (fractions 22–26)
222 (Figure 3F). By contrast, no such shift in the monomeric peak or BIM-induced dimer peak was
223 observed with hexadecanal (Figure 3G). Of note, BAX activated in solution does not readily form
224 high-molecular weight species without the stabilizing and concentrating influence of a
225 hydrophobic environment (e.g., a membrane or micellar detergent)^{8,28}, though as a reference we
226 were able to observe BAX oligomers generated with a detergent (BAX_O).²⁹ These data collectively
227 demonstrate that hexadecenal promotes monomeric BAX activation downstream of BCL-2 protein
228 interactions and following activation by direct activators.

229 **An alpha 8 helix-gated funnel-shaped hydrophobic cavity in the BAX core interacts with**
230 **2t-hexadecenal**

231 Hexadecenal synergized with BIM-mediated BAX activation and we observed no evidence of
232 competition with the BAK^{TAMRA} peptide in our FLAMBE assays, suggesting that hexadecenal was
233 binding to a site distinct from either the trigger site or BC groove, the two BH3-interacting sites
234 respectively.^{30,31} Despite having a relatively smooth surface and no obvious "binding pocket,"
235 studies have identified small molecules that bind to BAX, either at BH3-interacting sites or
236 allosterically.³²⁻³⁴ To identify putative interaction sites, we performed 2D ¹H-¹⁵N heteronuclear
237 single quantum coherence (HSQC) nuclear magnetic resonance (NMR) of ¹⁵N-labeled BAX^{WT}
238 treated with hexadecenal and measured a multitude of peak shifts (Figures S4A-B). Several
239 residues exhibited significant chemical shift perturbations (CSPs) in response to hexadecenal,
240 some of which were within unstructured regions (such as the N-terminus) or highly exposed areas
241 (such as α 4 and α 9), but notably the two cysteine residues (C62 and C126) did not reach
242 significance (Figure 4A). Interestingly, several shifts were observed in core-facing residues of α 2,
243 α 5, α 6, and α 8, as well as bulky residues proximal to α 8 within the α 4-5 loop and α 7. To determine
244 whether the shifted residues were specific to the activation mechanism, we compared this CSP
245 profile against CSPs calculated from ¹H-¹⁵N HSQC NMR of BAX^{WT} treated with the non-activating
246 saturated aldehyde. Residues exhibiting significant shifts in response to hexadecanal were more
247 localized to accessible regions of BAX along α 2, α 3, and α 9 (Figure S4C). Comparing the CSPs
248 of the two aldehydes highlighted that many of the hexadecenal-induced shifts were not observed
249 with the saturated aldehyde (Figure S4D). These core-facing residues are not believed to be
250 readily accessible and therefore were likely to be meaningful for hexadecenal interaction and
251 function.

252 Inspection of the BAX structure revealed a cavity formed by hydrophobic residues in the core of
253 the protein.⁶ The cavity shape resembles a funnel and is comprised of two topographies: a wide
254 and shallow "mouth" formed by residues in α 1, α 2, α 5, and α 8; a narrow "neck" extending into
255 the BAX core between α 1, α 5, and α 6 (Figure 4B). We hypothesized that this hydrophobic "funnel"
256 could be a desirable interaction site for hexadecenal – an inherently lipidic aldehyde – and
257 therefore we performed unbiased *in silico* docking simulations using the SwissDock web service
258 to model interactions with BAX. Binding modalities of hexadecenal were clustered into a few
259 distinct regions on BAX, but 59.4% of the poses were proximal to α 8, aligning with the CSPs
260 observed by NMR (Figure 4C).

261 Our functional interrogations indicated that hexadecenal synergizes with BIM-mediated BAX
262 activation, and we reasoned that BIM-induced intramolecular arrangements may induce flexibility
263 and/or mobility of α 8, making the funnel accessible to hexadecenal. SwissDock utilizes rigid
264 receptor docking, which results in the α 8 helix firmly blocking the funnel. To create a funnel-
265 accessible structure, we removed α 8 (BAX ^{$\Delta\alpha$ 8}) and docking against the BAX ^{$\Delta\alpha$ 8} structure revealed
266 a clear preference for the funnel with 97.3% of hexadecenal poses positioned within the funnel
267 (Figure 4D). Interestingly, when we examined the solution NMR structure of BAX bound to a
268 stapled BIM-BH3³⁰, we observed an enlargement of the hydrophobic funnel, most notably in the
269 neck of the funnel (Figure 4E). In the unbound BAX structure, the neck of the funnel is cinched
270 into discontinuous cavities by residues of α 5 and α 6; in contrast, the BIM-bound structure has a
271 connected cavity due to a shift in the residues lining the funnel, increasing both the depth and
272 width. Docking hexadecenal against the BAX:BIM structure with α 8 removed (BAX ^{$\Delta\alpha$ 8}:BIM)
273 revealed that the aldehyde was positioned in the funnel, frequently posed as being inserted into
274 the neck of the funnel (Figure 4F).

275 To substantiate our *in silico* conclusions, we engineered a structural mutant of BAX to restrict the
276 mobility of $\alpha 8$ and the subsequent access to the hydrophobic funnel. We introduced two cysteine
277 residues into BAX 2S (L59C, C62S, C126S, L162C; "BAX $^{\alpha 8}$ ") that could be oxidized to induce a
278 disulfide tether between $\alpha 2$ and $\alpha 8$ (Figure 4G). We characterized the consequence of the new
279 mutations by activating BAX $^{\alpha 8}$ with BIM-BH3 peptide and assessing LUV permeabilization.
280 Reduced BAX $^{\alpha 8}$ (i.e., "unlocked") remained functional and exhibited BIM-induced LUV
281 permeabilization (Figure S4E); in contrast, oxidized BAX $^{\alpha 8}$ (i.e., "locked") demonstrated no
282 permeabilization (Figure S4F). Several studies have characterized that BAX functionalization and
283 pore formation required large-scale conformational reorganization, which involves the separation
284 of $\alpha 8$ from core helices, and therefore it is not surprising that BAX $^{\alpha 8}$ was a "functionally dead"
285 structural mutant.^{5-7,35} However, we recently demonstrated that several historically "dead" BAX
286 mutants remain sensitive to BH3-induced activation and demonstrate early-activation structural
287 hallmarks despite not maturing into functional pore-forming conformations.⁸ SEC experiments
288 revealed that locked BAX $^{\alpha 8}$ exhibited a shift in response to BIM-BH3 but was unaffected by either
289 hexadecenal alone or coupled with BIM-mediated activation (Figure 4H). To further investigate
290 whether the immobilized $\alpha 8$ helix would disrupt sensitivity to hexadecenal, we studied BAX $^{\alpha 8}$
291 activation using our FLAMBE assay. Both the unlocked and locked forms of BAX $^{\alpha 8}$ demonstrated
292 activation by BIM-BH3, indicating that the mutant still exhibits activation-induced
293 intramolecular rearrangements (Figures S4G–H). Critically, locked BAX $^{\alpha 8}$ did not activate when
294 treated with hexadecenal (Figure S4I). Moreover, BIM-primed BAX $^{\alpha 8}$ displayed no activation or
295 synergy in the presence of hexadecenal (Figures 4I, S4J). These data substantiate the docking
296 simulations and the conclusion that hexadecenal-induced BAX activation is mediated through
297 non-covalent interactions with the hydrophobic funnel in the BAX core, which is exposed following
298 BIM triggering. Given that this hydrophobic cavity potentiates BAX activation, we termed this site
299 the "BAX Actuating Funnel", or BAF.

300 **Aldehyde length and BAF topography are determinants of BAX activation**

301 The saturated aldehyde hexadecanal did not activate BAX suggesting that the mechanism is
302 unique to 2t-hexadecenal. We next considered the relevance of aldehyde length on interactions
303 with the BAF by utilizing a panel of 2t-alkenals ranging from 5 to 13 carbon chains (henceforth,
304 "alkenals"). Experiments with a mid- or short-chain alkenal, nonenal ("2t-9") and pentenal ("2t-5"),
305 respectively, demonstrated CSP profiles that were similar to hexadecenal, but were also more
306 diffuse across BAX (Figure 5A). While there was some conservation of CSPs observed in
307 residues within and proximal to $\alpha 8$, the shorter alkenals exhibited a plethora of shifts within $\alpha 4$
308 and $\alpha 9$ as well as a general trend of interacting with solvent-exposed residues (Figure S5A).
309 These data may also indicate that shorter alkenals are more promiscuous, as nonenal and
310 especially pentenal interacted with several accessible regions of BAX, exhibited decreasing
311 specificity at higher concentrations, and displayed weaker CSPs (Figures S5B–C). Docking
312 simulations with alkenals ranging from 5 to 15 carbon chains supported this hypothesis by
313 demonstrating a length-dependent specificity for the $\alpha 8$ region (in the full-length structure, BAX)
314 or the BAF (in the BAX $^{\Delta \alpha 8}$ structure) (Figures 5B, S6A–B). When docked against the BAX $^{\Delta \alpha 8}$:BIM
315 structure, most alkenal species were predicted to interact with the larger BAF, though many were
316 not positioned in the depth of the funnel and short-chain aldehydes could not occupy both the
317 mouth and neck of the BAF in the same pose (Figure S6C). In the BIM-bound BAX structure,
318 mobilization of the $\alpha 1$ – $\alpha 2$ loop created a region that was predicted to be an interaction site, and
319 longer aldehyde structures were disproportionately positioned as a consequence; we believe this
320 was an artifact of rigid receptor docking and not a physiological phenomenon, and therefore we

321 did not quantify the percentage of binding poses localized to the BAF. The precursor of
322 2t-hexadecenal, sphingosine 1-phosphate (S1P), was previously identified as a requirement for
323 BAK-mediated MOMP but did not directly promote BAX-mediated MOMP.¹⁵ We docked the
324 structure of S1P against BAX models and observed a reduced preference for the BAF and the tail
325 could not occupy the neck of the BAF when modeled against BAX^{Δα8}:BIM structure, likely due to
326 the bulky and negatively charged phosphate group (Figures 5B, S6A–C). Collectively, NMR and
327 unbiased docking assessments supported our hypothesis that aldehyde length promotes
328 specificity for the BAF and BAX activation.

329 Next, we tested our hypothesis by investigating which, if any, alkenals could phenocopy
330 hexadecenal function and BAX activation. When subjected to MST, BAX^{WT} exhibited altered
331 thermophoresis with each of the alkenals; though the fit of the data demonstrated a trend in which
332 the slope increased with aldehyde length (Figures 5B, S7A). To interrogate the functional
333 consequence of alkenals interacting with BAX, we next subjected each alkenal to FLAMBE
334 analysis and observed a dependency on aldehyde length for BAX^{2S} activation (Figure 5D).
335 Interestingly, at the concentrations we tested, undecenal ("2t-11") and dodecenal ("2t-12")
336 displayed some disruption of BAX^{2S}:BAK^{TAMRA} interactions, similar to the results with hexadecanal,
337 but BAK^{TAMRA} was able to re-bind and did not exhibit an activation profile (Figures S3E, S7B).
338 When compared to hexadecenal, only tridecenal ("2t-13") exhibited a clear dose-dependent
339 activation trend, albeit less potently than hexadecenal (Figures 5D–E, S7B). To definitively
340 determine alkenal-induced BAX activation, we performed LUV permeabilization studies and
341 confirmed a length-dependent sensitivity for BAX^{2S}-mediated pore formation (Figures 5F, S7C).
342 Additionally, these results were conserved in experiments using BAX^{WT} (data not shown). Taken
343 together with our structural and modeling data, these results indicate that chain length is a
344 determinant of α,β-unsaturated alkenals to specifically target the BAF and activate.

345 Having identified determinants of ligand specificity, we next sought to characterize the residues
346 of the BAF that regulate interactions with, and sensitivity to, hexadecenal. We performed
347 molecular docking of hexadecenal against the BAX:BIM structure using the GLIDE software with
348 a docking grid centered on the BAF. As we expected, the residues lining the BAF that interact
349 with hexadecenal were predominantly hydrophobic residues of α5 and α6 and all predicted poses
350 were positioned into the neck of the BAF (Figures 6A–B). We performed a virtual mutagenesis
351 screen using the BAX structure and identified that mutating V110, L113, or L144 to bulkier
352 residues was predicted to alter the BAF (Figure 6C). Indeed, performing molecular docking on
353 these mutant structures demonstrated worse binding scores and altered hexadecenal positioning
354 due to the disruption of BAF topography (Figure 6D–E). Of note, we ran clustering analysis on all
355 the docked poses for each mutant and found that the poses were sufficiently similar to be
356 clustered together with the exception of BAX^{L113M}, which still positioned one pose into the
357 shallower BAF; however, this pose had worse scoring compared to the top L113M hits.

358 To corroborate our *in silico* predictions, we generated recombinant protein for these BAF mutants
359 and tested them for BAX functionality. Several established BAX point mutants result in a deficient
360 or functionally dead protein, and so we first determined the melting temperature of our BAF
361 mutants. Compared to WT, each BAF mutant exhibited a lower melting temperature, suggesting
362 that these mutations would not be functionally deficient (Figure 6F). While the lower melting
363 temperature may also suggest reduced stability of the monomeric protein, we did not observe any
364 redistribution to oligomeric species during protein purification and storage (data not shown).
365 Furthermore, we confirmed that each BAF mutant responded to BIM activation with similar
366 kinetics and endpoint, noting only slight insensitivity of BAX^{L113M} at low BIM concentrations but

367 similar activation at high concentrations (Figures 6G, S8A). Critically, each BAF mutant
368 demonstrated complete insensitivity to hexadecenal and exhibited no synergy with BIM-primed
369 BAX (Figures 6H, S8B–C). Indeed, this result was conserved even with activating concentrations
370 of BIM (data not shown). It is worth noting that BAX^{L113M} did retain some synergy of BIM and
371 hexadecenal, albeit dramatically reduced, and we suggest that this may be a consequence of a
372 shallower, but relatively intact BAF in the BAX^{L113M} structure (Figure 6E). As an aside, we did
373 generate and screen candidate mutations altering the bulky BAF residues (i.e., F114 and F143),
374 but observed reduced stability, oligomerization during purification, and substantially increased
375 sensitivity to BIM, which obfuscated interpretations with hexadecenal (data not shown).
376 Interestingly, a prior study also noted that mutation of F114 is highly sensitizing,³⁶ and we posit
377 that substituting these bulky residues enlarges the BAF and subsequently destabilizes BAX (see
378 Discussion). Collectively, these investigations indicate that the activating mechanism of
379 hexadecenal is the ability of the aldehyde to reside in the depth of the BAF, and alteration to the
380 BAF shape or aldehyde size disrupts this fundamental interaction.

381 **Proline 168 allosterically controls the BAF and 2t-hexadecenal function**

382 Our modern understanding of the BAX structure-function relationship includes the concept of
383 allosteric, in which interactions on BAX can cause structural rearrangements in distal regions. This
384 concept is observed during BIM-mediated activation, which elicits mobilization of α 9 from the BC
385 groove³⁰, or binding of a sensitizing molecule to the hairpin pocket, which provokes exposure of
386 the α 1–2 loop³³ – both structural events are hallmarks of BAX activation.⁴ Recently, the structure
387 of BAX containing a mutation of proline 168 (BAX^{P168G}) was described and proposed to cause
388 rotation of bulky sidechains in the allosteric α 4–5 and α 7–8 loops.³⁷ Despite identification of P168
389 as critical for BAX activation, translocation, and pore-forming ability over 20 years ago,³⁸ and its
390 recent identification as an arising loss-of-function mutation conferring resistance to venetoclax
391 therapy in acute myeloid leukemia,³⁹ a mechanistic explanation for its requirement has remained
392 elusive. We hypothesized that the alternative rotamers in bulky α 8-proximal residues may
393 consequently alter the BAF and, indeed, the neck of the BAF was lost in the BAX^{P168G} structure
394 (Figure 7A). Furthermore, molecular docking against the BAX^{P168G} structure positioned the
395 aldehyde with the carbon chain now pivoting towards α 1 residues (Figures 7A–B). Directly
396 comparison between poses of hexadecenal docked to WT and P168G structures revealed distinct
397 interaction signatures favoring interactions with α 5 and α 6 or α 1 residues, respectively (Figure
398 7C).

399 We reasoned that disruption of the BAF in BAX^{P168G} would inhibit interactions with hexadecenal.
400 Using our FLAMBE assay, we demonstrated that BIM-primed BAX^{P168G} did not activate in
401 response to hexadecenal as compared to BAX^{WT} (Figures 7D, S9A). Furthermore, BAX^{P168G}
402 exhibited less shift in melting temperature due to hexadecenal (Figure 7E). As expected, BAX^{P168G}
403 was less sensitive to BIM activation and resulted in attenuated membrane permeabilization, but
404 notably was not entirely functionally dead (Figures 7F, S9B). In contrast, BAX^{P168G} demonstrated
405 no activation in response to hexadecenal and only minor synergy with BIM at activating
406 concentrations, suggesting that activation-induced molecular rearrangements are the limiting
407 factor for the synergistic function of hexadecenal (Figures 7G, S9C). As detailed by others,³⁷ we
408 also observed a significantly higher melting temperature in BAX^{P168G} compared to BAX^{WT},
409 suggesting a stabilization of the monomeric conformer (Figure 7E). Finally, we replicated our
410 apoptosis experiments in *Bax*^{-/-}*Bak*^{-/-} DKO MEFs transduced to stably express either BAX^{WT} or
411 BAX^{P168G} (Figure S9D). The DKO MEFs reconstituted with BAX^{WT} exhibited greater sensitivity to

412 ectopic hexadecenal compared to BAX^{P168G}-expressing MEFs (Figure 7H). Furthermore, this
413 discrepancy was maintained in MEFs co-treated with hexadecenal and ABT-737 (Figures 7H–I).
414 Taken together, these results reveal that BAX^{P168G} is insensitive to hexadecenal and synergy with
415 BIM due to dysfunction of the BAF. Furthermore, we posit that the increased flexibility in the α 8–9
416 loop (by substituting a rigid proline for glycine) may also alter the mobilization of α 8 and
417 subsequent BAF exposure following BIM triggering in addition to deforming the BAF structure
418 through allosteric sidechain reorganization.

419 **DISCUSSION**

420 **2t-hexadecenal non-covalently binds the BAX Actuating Funnel to potentiate BAX**
421 **activation**

422 Several decades have been devoted to characterizing the protein-protein interactions that govern
423 the BCL-2 family and mediate the onset of MOMP following pro-apoptotic signaling. More recently,
424 a growing focus on the mitochondrial contributions to potentiate MOMP have been identified,
425 including mitochondrial mass, shape or curvature, OMM-IMM junctions, mitochondrial-ER contact
426 sites, and the OMM lipid milieus and cardiolipin.⁴⁰ Additionally, the sphingolipid metabolites S1P
427 and 2t-hexadecenal were identified as the first *de facto* signaling lipid species to modulate the
428 BCL-2 effector proteins, BAK and BAX, respectively.¹⁵ Here, we have demonstrated that
429 2t-hexadecenal directly promotes BAX activation via non-covalent interactions (Figures 1–2), and
430 cooperates with direct activators to enhance early-activation steps of monomeric BAX prior to
431 membrane interactions or oligomerization (Figure 3). We determined that 2t-hexadecenal
432 interacts within a hydrophobic funnel-shaped cavity in the core of BAX, formed residues of α 1,
433 α 5, α 6, and capped by α 8, which we now term the “BAX Actuating Funnel” or BAF, and that this
434 region is exposed and enlarged following BIM triggering (Figure 4). We identified chemical and
435 structural determinants of the hexadecenal:BAF interaction, including aldehyde length (Figure 5)
436 and BAF residues (Figure 6), and further revealed that proline 168 allosterically regulates the BAF
437 and subsequent mutation reduces BAF topography and availability (Figure 7). We therefore
438 propose a cohesive model for successive BAX activation: BIM-mediated triggering induces α 9
439 mobilization as well as tandem α 8 movement, resulting in accessibility of the BAF, interactions
440 with 2t-hexadecenal, and promoting subsequent conformational changes and pore formation
441 (Figure 7J).

442 In contrast, two previous studies reported that 2t-hexadecenal covalently modifies BAX cysteine
443 residues through Michael addition. One study synthesized a clickable alkyene analogue of
444 2t-hexadecenal and observed modification of C62 in cell lysates and recombinant protein²⁶, while
445 another study observed alkylation at C126 using recombinant BAX²³. Both studies also
446 demonstrated that the saturated aldehyde hexadecanal was non-activating and did not modify
447 BAX. One possible explanation is the concentration of 2t-hexadecenal used, which often ranged
448 from high micromolar to millimolar ranges and liposome formulations upwards of 10%
449 2t-hexadecenal, which may have facilitated covalent modification; another is that cell lysate and
450 recombinant protein buffers contained NP-40 nonionic detergent, which directly engages
451 monomeric BAX activation.^{2,41} We also cannot rule out the possibility of additional differences in
452 solvents, buffer formulations, reagents, or pH that likely affect the reaction chemistry and may
453 explain the divergent results; however, we were unable to identify a set of conditions to induce
454 modification by 2t-hexadecenal as a positive control for LC-MS analysis. Another difference
455 between studies was the BAX protein, which was either tagged (HA-tagged for overexpression or
456 His-tagged for recombinant vectors)²⁶ or was determined to have a molecular weight slightly
457 greater than the calculated mass of BAX (21320 Da observed compared to 21184 Da predicted)²³.
458 Perhaps these minor modifications to the BAX protein altered cysteine exposure, the neighboring
459 residues, or otherwise favored the covalent reaction mechanism.

460 Critically, we do not dispute the findings of these prior studies nor the conclusion that cysteine
461 modification modulates BAX activity.⁴² There is substantial evidence that 2t-hexadecenal and α,β -
462 unsaturated aldehydes are inherently reactive molecular species that form adducts with a variety

463 of macromolecules.^{22,25} In fact, over 500 proteins were identified to be modified by the
464 2t-hexadecenal analogue probe²⁶, suggesting that cysteine modification of BAX is not a unique
465 or selective phenomenon, which further highlights the need to individually investigate each protein.
466 In a cell, 2t-hexadecenal is promptly metabolized by FALDH/ALDH3A2 to avoid accumulation of
467 reactive fatty aldehydes, lipid peroxides, and alkylated adducts^{16,43,44}; as such, cellular BAX is
468 unlikely to experience micro- or millimolar concentrations of 2t-hexadecenal and subsequent
469 modification under physiological conditions. We posit that the confluence of sphingolipid
470 metabolism, lipid transfer, and BAX apoptotic foci forming at MERCS serves to regulate the
471 availability of 2t-hexadecenal during BAX activation.⁴⁰ We also observed that short-chain alkenals
472 did not activate BAX, which aligns with a prior study that also demonstrated increased reactivity
473 with short-chain alkenals.²³ While not measured for 2t-hexadecenal or long-chain alkenals
474 specifically, it has been reported that 2t-alkenals exhibit reduced reactivity in a length-dependent
475 manner despite having similar electrophilic indices, possibly due to differences in steric
476 hindrance or relative solubility/hydrophobicity.^{45,46} Therefore, we propose that while
477 2t-hexadecenal can covalently modify BAX *in vitro* and cell lysates, this likely does not represent
478 the primary mechanism promoting BAX activation, which we suggest is via non-covalent
479 interactions within the BAF.

480 **2t-hexadecenal and the gatekeeper α 8 helix in BAX activation**

481 So how does 2t-hexadecenal binding to the BAF promote BAX activation? One possible
482 explanation is that residence of 2t-hexadecenal in the BAF occupies space that would otherwise
483 accommodate bulky aromatic residues of α 8. Activated BAX monomers can be "reset" by anti-
484 apoptotic BCL-2 protein (e.g., BCL-xL)^{47,48} and perhaps the steric interference of 2t-hexadecenal
485 prevents replacement of α 8 and α 9 into the BAF and BC groove, respectively. Another
486 explanation could be that binding of 2t-hexadecenal, particularly in the neck of the BAF, which
487 resides deep in the core of BAX, is inherently destabilizing to the packing of side chains and core
488 helices. Therefore, 2t-hexadecenal binding may aid separation of the core and latch domains and
489 facilitate forming multimeric conformers. Additionally, residence in the BAF may also aid BAX
490 activation by promoting exposure of the BAX BH3 residues, which are core-facing in the inactive
491 conformer, through steric interference with α 2.^{4,49,50}

492 Interestingly, the concept of a lipid-interacting funnel cavity capped by a gatekeeper helix is also
493 present in the only other protein known to non-covalently bind 2t-hexadecenal – FALDH. In
494 FALDH, the substrate site is a deep hydrophobic funnel capped with a short gatekeeping helix,
495 which is hypothesized to participate in substrate specificity.⁵¹ The gatekeeper helix has several
496 aromatic residues and is stabilized through interactions with the preceding helix, which has a
497 perpendicular orientation, and a lateral loop region, in a parallel orientation (similar to BAX α 7 and
498 α 4–5 loop). Like BAX, the FALDH gatekeeper helix is the penultimate helix, and is followed by a
499 short linker and a C-terminal helix that serves as a transmembrane domain, orienting the entrance
500 of the funnel towards the residential membrane. Of note, FALDH functions as a symmetrical
501 homodimer with the stabilizing helix, gatekeeping helix, and transmembrane helix folding on the
502 trans subunit, bearing a striking similarity to the domain-swapped BAX dimer structure.⁶ The
503 specificity of FALDH is attributed to the cooperation of the hydrophobic loop, the stabilizing helix,
504 and the gatekeeper helix that collectively surround the substrate funnel; and it is tempting to
505 speculate that the similar features in the BAX structure may likewise play a role in 2t-hexadecenal
506 recruitment and specificity.

507 **The BAF provides structure-function insights into monomeric BAX biology**

508 Monomeric BAX conformers must undergo substantial unfolding to adopt multimeric structures,
509 and therefore, from a structural perspective, "activating" BAX must sufficiently destabilize the
510 monomer to enable refolding into domain-swapped conformations. Interestingly, several features
511 of the BAX structure support this conceptualization of activation. For example, BAX has no
512 disulfide bonds and evolved to fold entirely through hydrophobic/hydrophilic and electrostatic
513 interactions, which decreases the energy "hill" to transition between stable conformers (e.g.,
514 monomer to domain-swapped dimer). Additionally, cavities or voids destabilize globular
515 proteins^{52,53}, and BAX studies mutating bulky core residues with smaller side chains have
516 observed increased sensitivity to activation³⁶, likely due to enlarging the BAF and reducing
517 stability^{54,55}. Indeed, we observed this phenomenon when we mutated F114 or F143 (data not
518 shown). Of note, the cavity has also been observed in the BID-BH3:BAX^{ΔC21} and
519 BAX-BH3:BAX^{ΔC21} domain-swapped dimer structures (PDBs 4BD2 and 4BD6, respectively)⁶, as
520 well as the BH3-in-groove:BAX^{ΔC26} complexes (PDBs 4ZIF and 4ZIG)⁵⁶; albeit the location is more
521 central to α 2, α 5, and α 8 (i.e., the "mouth" of the BAF), and may be expanded by the removal of
522 α 9 and adjacent residues. One interesting insight is that BAX^{ΔC28} exhibited a diminished cavity
523 due to a shift in the α 2 helix⁵⁶, suggesting that bulky residues within and proximal to α 8 (e.g.,
524 F165 and W170) may aid in maintaining the cavity through interactions with α 2. Additionally, we
525 explored the role of P168 in BAF shape and availability in this work. The presence of the cavity
526 in several solved apo and BH3-bound BAX structures strongly suggests its importance to the
527 structure-function relationship of BAX and supports the destabilization concept of BAX activation.

528 Our model suggests that activation-induced mobilization of α 9 also results in displacement of α 8,
529 which in turn exposes the BAF and hydrophobic core. Therefore, we propose that α 8 functions
530 as a gatekeeper helix – capping the cavity, limiting solvent exposure of hydrophobic residues,
531 and ultimately stabilizing the monomeric conformation of BAX through interactions within the
532 helical bundle. This model is supported by the fact that the P168G mutation, which increases
533 flexibility in the α 8–9 loop and we propose limits α 8 mobility, exhibits increased protein stability
534 as the inactive, globular monomer. Furthermore, several studies have demonstrated that
535 disruption of α 8 is deleterious to monomeric BAX stability: a proline substitution in α 8 (L161P)
536 caused oligomerization and cell death⁵⁷; removal of α 8 and α 9 (BAX^{ΔC35}) resulted in
537 oligomerization⁵⁸; C-terminal truncations (BAX^{ΔC21}, BAX^{ΔC25}, BAX^{ΔC28}) remained monomeric but
538 deletion of Y164 (BAX^{ΔC29}) caused oligomerization⁶. Furthermore, one of our BAX^{α8}-locked
539 mutagenesis strategies (BAX^{W107C,Y164C}) resulted in recombinant protein purifying primarily as
540 oligomeric species (data not shown). Notably, W107 and Y164 are predicted to exhibit pi-stacking
541 as are several aromatic residues localized to the α 4–5 loop and α 7/ α 8. Interestingly, these
542 segments of BAX are the BH1 and BH2 domains, suggesting that their conservation within
543 multidomain BCL-2 family proteins is due, at least in part, to their role in stabilizing the helical
544 bundle via the α 8 cap.

545 **Concluding thoughts**

546 Here, we describe a cohesive model of BAX activation, in which successive contributions of
547 protein-protein and protein-lipid interactions promote intramolecular maturation of BAX monomers
548 into functional oligomers. We propose that interactions between 2t-hexadecenal and the exposed
549 BAF can occur either in the cytosol, as we have modeled herein, or at the OMM, as modeled by
550 others²³. Lipids play a critical role in BAX activation, both in early-activation steps as well as pore

551 formation. Interestingly, while activated BAK structures bind and incorporate lipid moieties,
552 analogous studies have not identified a similar mechanism in BAX multimers suggesting that there
553 may be a divergent mechanism.^{59,60} BAX is unique in that much of its regulation occurs in solution
554 prior to membrane association and therefore the lipid contributions to BAX activation may function
555 primarily on monomeric activation instead of oligomerization. Finally, this work describes the
556 function and importance of the BAF, which had previously been identified but its significance was
557 never determined.^{6,56} The BAF represents a new regulatory region that is critical for understanding
558 monomeric BAX structure-function biology as well as providing a new space for pharmacologically
559 targeting BAX. The BAF is exposed following BIM- or BID-induced BAX activation and thus we
560 suggest that BAF-targeting molecules would be particularly adept at modulating BAX in cellular
561 contexts that actively maintain direct activator BH3-only protein function (e.g., "primed" cells)
562 while being well tolerated in healthy tissues where the BAF is unexposed.

563 **ACKNOWLEDGEMENTS**

564 This work was supported by NIH grants F31AA024681 (J.D.G.), R01-GM083159 (R.W.K.), R01-
565 CA237264 (J.E.C.), R01-CA267696 (J.E.C.), and R01-CA271346 (J.E.C.); a Collaborative Pilot
566 Award from the Melanoma Research Alliance (J.E.C.); a Department of Defense –
567 Congressionally Directed Medical Research Programs – Melanoma Research Program: Mid-
568 Career Accelerator Award (ME210246; J.E.C.); an award from the National Science Foundation
569 (2217138); a Translational Award Program from the V Foundation (T2023-010); and the Tisch
570 Cancer Institute Cancer Center Support Grant (P30-CA196521). The authors would like to
571 acknowledge the TCI Shared Resources and the Department of Oncological Sciences for
572 research support, and thank Drs. Douglas Green (St. Jude Children's Research Hospital) and
573 Evripidis Gavathiotis (Albert Einstein College of Medicine) for generously providing *Bid*^{-/-}*Bim*^{-/-}
574 and BAX-reconstituted *Bax*^{-/-}*Bak*^{-/-} cell lines, respectively.

575 **AUTHOR CONTRIBUTIONS**

576 Conceptualization: J.D.G. and J.E.C.; methodology: J.D.G., Y.C., A.V.F., and J.N.M.; validation:
577 J.D.G., Y.C., J.N.M., and T.M.S.; investigation: J.D.G., Y.C., M.P.A.L.-V., A.V.F., S.G.B., J.N.M.,
578 T.M.S., and N.D.P.; resources: Y.C., M.P.A.L.-V., and M.A.N.; writing: J.D.G. and J.E.C.;
579 visualization: J.D.G.; supervision: Y.S., R.W.K., and J.E.C.; funding acquisition: J.D.G., R.W.K.,
580 and J.E.C.

581 **COMPETING INTERESTS**

582 The authors declare no competing interests.

583 **FIGURE LEGENDS**

584 **Figure 1: 2t-hexadecenal induces apoptosis and membrane permeabilization by**
585 **cooperating with BAX**

586 **(A–C)** MEFs subjected to SPARKL analysis measuring real-time labeling with fluorescently-
587 tagged Annexin V (100 µg/ml) via imaging with an IncuCyte ZOOM. Left panels: kinetics of cell
588 labeling in response to increasing concentrations of 2t-hexadecenal (2t-16) with DMSO vehicle
589 or co-treated with ABT-737 (ABT); black line reports untreated control. Right panels: endpoint
590 data of replicates at 24 hours. Data shown are the mean of technical triplicates and error bars
591 report SEM.

592 **(A)** WT MEFs (matched to *Bax*^{-/-}*Bak*^{-/-} double knockout MEFs) were treated with 2t-16 (10, 20,
593 40 µM) and DMSO or ABT-737 (1 µM), imaged every 2 hours, and quantified for number of
594 Annexin V-positive objects.

595 **(B)** Same as in **A** with *Bim*^{-/-}*Bid*^{-/-} double knockout MEFs.

596 **(C)** Same as in **A** with *Bax*^{-/-}*Bak*^{-/-} double knockout MEFs.

597 **(D–I)** LUV permeabilization studies with recombinant BAX protein treated as indicated and
598 measured at regular intervals for changes in fluorescence as fluorophores are released from
599 liposomes. Grey data report LUVs solubilized with 1% CHAPS to measure maximal signal. Data
600 shown are the mean of technical replicates.

601 **(D)** BAX protein (120 nM) was combined with DMSO vehicle or 2t-16 (6.5–50 µM) followed by
602 addition of LUVs and measured by fluorescent spectroscopy.

603 **(E)** Same as in **D** with BIM-BH3 peptide (2.5 µM) added to BAX and 2t-16.

604 **(F)** Heatmap visualization of normalized endpoint LUV permeabilization data from LUVs
605 incubated with BAX (120 nM) treated with 2t-16 (6.5–50 µM) ± BIM-BH3 peptide (0.5, 2.5 µM).
606 Data summarized from Figures **S1C**.

607 **(G–H)** LUV permeabilization studies as in **D–E** with BAX (160 nM) and hexadecanal (6.5–50 µM)
608 ± BIM-BH3 peptide (2.5 µM).

609 **(I)** Heatmap visualization of normalized endpoint LUV permeabilization data as in **F** with BAX (160
610 nM) and 16CHO (6.5–50 µM). Data summarized from Figures **S1D**.

611 See also Figure S1.

612 **Figure 2: 2t-hexadecenal activation of BAX is mediated by non-covalent interactions**

613 **(A–B)** Alexa Fluor 647-labeled recombinant BAX^{WT} (1 nM) was incubated with CHAPS (0.002%)
614 to inhibit oligomerization, treated as indicated, and subjected to MST. Data shown are the mean
615 of replicate data and error bars report SD.

616 **(A)** Left: Timetrace thermal shift curves of BAX^{WT} titrated with 2t-16 (0.02–40 µM) and subjected
617 to MST. Right: Thermophoresis and temperature jump value for BAX^{WT} treated with a range of
618 2t-16 concentrations fitted to determine a K_D value.

619 **(B)** BAX^{WT} was treated with 2t-16 or 16CHO (0.04, 1.25, 40 µM) and MST timetrace thermal shift
620 curves were fitted using a one-step exponential function and compared using the decay (K)
621 constants normalized by the untreated BAX curve. Original data in Figure **S2C**.

622 **(C)** LC-MS of recombinant BAX^{WT} alone or incubated with 2t-16. Samples were then alkylated
623 with iodoacetamide to identify unmodified cysteine residues and trypsin digested for analysis.
624 Four cysteine-containing peptide fragments were detected. Values denote peptide abundance,
625 calculated as AUC for each peak.

626 **(D–I)** LUV permeabilization studies with recombinant BAX^{2S} protein treated as indicated and
627 measured at regular intervals for changes in fluorescence as fluorophores are released from

628 liposomes. Grey data report LUVs solubilized with 1% CHAPS to measure maximal signal. Data
629 shown are the mean of technical replicates.
630 **(D)** BAX^{2S} protein (100 nM) was combined with DMSO vehicle or 2t-16 (6.5–50 μ M) followed by
631 addition of LUVs and measured by fluorescent spectroscopy.
632 **(E)** Same as in **D** with BIM-BH3 peptide (2.5 μ M) added to BAX^{2S} and 2t-16.
633 **(F)** Heatmap visualization of normalized endpoint LUV permeabilization data from LUVs
634 incubated with BAX^{2S} (100 nM) treated with 2t-16 (6.5–50 μ M) \pm BIM-BH3 peptide (0.5, 2.5 μ M).
635 Data summarized from Figure **S2B**.
636 **(G–H)** LUV permeabilization studies as in **D–E** with BAX^{2S} (100 nM) and hexadecanal (6.5–50
637 μ M) \pm BIM-BH3 peptide (2.5 μ M).
638 **(I)** Heatmap visualization of normalized endpoint LUV permeabilization data from LUVs incubated
639 with BAX^{2S} (100 nM) treated with 16CHO (6.5–50 μ M) \pm BIM-BH3 peptide (0.5, 2.5 μ M). Data
640 summarized from Figure **S2C**.
641 See also Figure S2.

642 **Figure 3: 2t-hexadecenal synergizes with BIM to induce intramolecular rearrangements**
643 **and early-activation of monomeric BAX**

644 **(A–D)** BAX was treated as indicated, combined with a TAMRA-labeled BAK-BH3 peptide
645 (BAK^{TAMRA}), and immediately subjected to FLAMBE analysis in which the association and
646 activation-induced dissociation of BAK^{TAMRA} is monitored via changes in Polarization. Left panels:
647 kinetic Polarization data; right panels: two-dimensional plot of parameterized FLAMBE data
648 comparing Tmax and endpoint Polarization metrics normalized to BAK^{TAMRA} (grey data) and the
649 vehicle-treated BAX control (black data).
650 **(A)** BAX^{WT} (60 nM) was treated with 2t-16 (2–50 μ M), combined with BAK^{TAMRA} (50 nM), and
651 subjected to FLAMBE.
652 **(B)** Same as in **A** with BAX^{2S} (60 nM).
653 **(C)** Left: BAX^{2S} (60 nM) was combined with non-activating concentrations of BIM-BH3 peptide
654 (0.15 μ M) and 2t-16 (4.5 μ M), followed by BAK^{TAMRA} (50 nM), and subjected to FLAMBE. Right:
655 Parameterized FLAMBE data including three concentrations of 2t-16 (green: 4.5 μ M; orange: 6.5
656 μ M; red: 10 μ M) in the absence or presence of BIM-BH3 (circle and square datapoints,
657 respectively). Annotations report the magnitude of shift between data with and without BIM-BH3.
658 **(D)** Left: Same as in **C** with an activating concentration of BIM-BH3 and three concentrations of
659 2t-16 (green: 4.5 μ M; orange: 6.5 μ M; red: 10 μ M). Right: Parameterized FLAMBE data reporting
660 shift in samples with or without BIM-BH3. Conditions without BIM-BH3 provided in Figure **S3F**.
661 **(E)** BAX^{WT} (800 nM) was treated with BIM-BH3 (2.5, 10 μ M) and 2t-16 (50 μ M) for 1 hour,
662 subjected to size exclusion chromatography, and measured by 280 nm absorbance (A280) as
663 eluate flowed out of the column.
664 **(F)** Alexa Fluor 488-labeled BAX^{WT} (400 nM) was treated with 2t-16 (50 μ M) and/or BIM-BH3 (10
665 μ M) for 1 hour and subjected to size exclusion chromatography. Samples of fractions were
666 analyzed by fluorescence spectroscopy to track BAX. Oligomeric BAX (BAX_O) was generated via
667 overnight treatment with DDPC (1 mM).
668 **(G)** Same as in **F** with 16CHO (50 μ M).
669 See also Figure S3.

670 **Figure 4: 2t-hexadecenal interacts with an alpha 8 helix-gated hydrophobic cavity in the**
671 **core of BAX**

672 **(A)** ^{15}N -labeled BAX^{WT} (40 μM) was treated with vehicle or 2t-16 (50, 150 μM) and subjected to
673 ^1H - ^{15}N HSQC NMR. Chemical shift perturbations (CSPs) are plotted as a function of BAX residues.
674 Residues exhibiting a shift greater than 1 or 2 standard deviations above the average (dotted
675 lines) are colored light and dark purple, respectively, and indicated on the BAX structure (PDB:
676 1F16). The absence of a bar indicates no chemical shift difference, the presence of a proline, or
677 the residue could not be definitively assigned.
678 **(B)** Cartoon visualization of BAX (PDB: 1F16) and the hydrophobic cavity in the BAX core formed
679 by helices α 1, α 5, α 6, and α 7. The cavity proximal to α 8 is highlighted; a distinct cavity deeper in
680 the core between α 5 and α 6 is outlined. Cavity determination and visualization was performed
681 with PyMOL using a cavity radius of 3 and a cavity cutoff of -5.5.
682 **(C)** Unbiased *in silico* rigid docking of 2t-16 against the unmodified BAX structure (PDB: 1F16)
683 using the SwissDock web service. Results position the majority of 2t-16 poses at the α 8 helix.
684 **(D)** *In silico* docking was performed as in **C** on a BAX structure with α 8 removed (PDB: 1F16,
685 Δ 157–163; “BAX $^{\Delta\alpha 8}$ ”). Inset displays cross-section of 2t-16 docking within the hydrophobic funnel.
686 **(E)** Unmodified structure of BAX bound to a BIM-BH3 peptide (PDB: 2K7W; “BAX:BIM”) with the
687 enlarged, connected cavity visualized as in **B**.
688 **(F)** Results of 2t-16 docking on the structure of BAX:BIM with α 8 removed (PDB: 2K7W, Δ 157–
689 163; “BAX $^{\Delta\alpha 8}$:BIM”) as in **C**. Inset displays cross-section of ligand docking within the hydrophobic
690 funnel.
691 **(G)** Cartoon visualization of the BAX $^{\alpha 8}$ mutant (modified from PDB: 1F16). Residues L59 and
692 L162 were mutated to cysteine and oxidized to form a disulfide tether immobilizing α 8.
693 **(H)** Alexa Fluor 488-labeled BAX $^{\alpha 8}$ (400 nM) was treated with 2t-16 (50 μM) and/or BIM-BH3 (10
694 μM) for 1 hour and subjected to size exclusion chromatography. Samples of fractions were
695 analyzed by fluorescence spectroscopy to identify BAX-containing fractions.
696 **(I)** Left: BAX $^{\alpha 8}$ (225 nM) was combined with non-activating concentrations of BIM-BH3 peptide
697 (0.15 μM) and 2t-16 (4.5 μM), followed by BAK^{TAMRA} (50 nM), and subjected to FLAMBE analysis.
698 Right: Parameterized FLAMBE data including four concentrations of 2t-16 (blue: 3 μM ; green: 4.5
699 μM ; orange: 6.5 μM ; red: 10 μM) in the absence or presence of BIM-BH3 (circle and square
700 datapoints, respectively). Annotations report the magnitude of shift between data without and with
701 BIM-BH3. Kinetic data for all concentrations is provided in Figure **S4J**.
702 See also Figure S4.

703 **Figure 5: Aldehyde length controls BAF function and BAX activation**

704 **(A)** ^{15}N -labeled BAX^{WT} (40 μM) treated with 2t-16, nonenal (2t-9), or pentenal (2t-5) and subjected
705 to ^1H - ^{15}N HSQC NMR. Residues exhibiting significant CSPs averaged across concentrations for
706 each of the indicated 2t-alkenal are highlighted. Each row is color-coded to report residues
707 exhibiting shifts greater than 1 (light color) or 2 (dark color) standard deviations above the average
708 across measurable shifts. Data summarized from Figure **S5A**.
709 **(B)** Results of unbiased *in silico* rigid docking 2t-alkenals or S1P against the full-length BAX or
710 BAX $^{\Delta\alpha 8}$ structure using the SwissDock web service. Binding modalities were inspected for
711 positioning proximal (for BAX^{FL}) or within (BAX $^{\Delta\alpha 8}$) the BAF and reported as the percent of total
712 poses. Visualizations of docking results provided in Figure **S6A–B**.
713 **(C)** Summary of MST analyses with BAX^{WT} incubated with 2t-alkenals of differing carbon lengths
714 (5–13 carbons) at a range of concentrations (0.16–5 μM). The thermophoresis datapoints were
715 fit and the slope is provided for each alkenal. Original timetrace data provided in Figure **S7A**.

716 **(D)** Parameterized data from FLAMBE studies with BAX^{2S} (60 nM) treated with 2t-alkenals of
717 differing carbon lengths (5–13, 16 carbons) at several concentrations (3–50 μ M). Black and grey
718 datapoints report vehicle-treated BAX^{2S} and BAK^{TAMRA}, respectively. Original data provided in
719 Figure S7B.
720 **(E)** FLAMBE data trends for each of the 2t-alkenal titration from **D**.
721 **(F)** Heatmap visualization of endpoint permeabilization data from LUVs incubated with BAX^{2S}
722 (100 nM) treated with 2t-alkenals of differing carbon lengths (5–13, 16 carbons) at several
723 concentrations (6.5–50 μ M). Each experiment was normalized to the matching vehicle-treated
724 BAX^{2S} condition to control for variability. Original data provided in Figure S7C.
725 See also Figures S5–7.

726 **Figure 6: Proximal BAF mutations disrupt 2t-hexadecenal synergy with BAX and BIM**

727 **(A)** Molecular docking and modeling of BAX ^{$\Delta\alpha$ 8}:BIM (PDB: 2K7W, Δ 157–163) with 2t-16 using
728 Schrödinger Glide with a binding region localized to the BAF. The interaction diagram identified
729 several hydrophobic residues lining the BAF.
730 **(B)** The highest scoring pose from **A** is shown and is representative of all generated poses.
731 Surface of exposed BAF shown in grey wireframe and clipped to aid in visualization.
732 **(C)** Cartoon visualization of full-length BAX (PDB: 1F16) with BAF residues identified in **A**
733 highlighted in yellow. A virtual mutagenesis screen was performed with PyMOL to identify BAF-
734 disrupting mutations. Right: candidate side chain replacements altering the BAF are shown in red
735 and compared to the WT BAF. Cavity determination and visualization was performed with PyMOL
736 using a cavity radius of 3 and a cavity cutoff of -5.5.
737 **(D)** Molecular docking as in **A** against structures containing the indicated mutations. Generated
738 poses of 2t-16 had reduced interaction scores against mutant structures compared to the wild
739 type structure resulting from the altered BAF.
740 **(E)** The highest scoring poses from **D** are shown and representative of generated poses.
741 **(F)** The melting temperature of each mutant was measured by thermal shift differential scanning
742 fluorimetry using SYPRO orange. Statistical significance was determined by two-way ANOVA; ***
743 denotes $P < 0.001$.
744 **(G)** Heatmap visualization of normalized endpoint LUV permeabilization data for WT and BAF
745 mutants activated with a range of BIM-BH3 concentrations (0.125–2 μ M). Data summarized from
746 Figure S8A.
747 **(H)** Heatmap visualization of normalized endpoint LUV permeabilization data from LUVs
748 incubated with the BAF mutants treated with 2t-16 (6.5–50 μ M) \pm BIM-BH3 peptide (0.15 μ M).
749 Data summarized from Figure S8B–C.
750 See also Figure S8.

751 **Figure 7: Mutation of proline 168 allosterically disrupts the BAF and 2t-hexadecenal
752 function**

753 **(A–C)** Molecular docking and modeling of BAX^{P168G $\Delta\alpha$ 8} (PDB: 5W60, Δ 157–163) with 2t-16 using
754 Schrödinger Glide with a binding region localized to the BAF.
755 **(A)** The BAX^{P168G} structure includes divergent rotamers of bulky core residues that removes the
756 neck of the BAF. The highest scoring pose is shown and is representative of generated poses.
757 Surface of exposed BAF shown in green wireframe and clipped to aid in visualization. The BAF
758 surface from WT BAX is overlaid in grey for comparison.
759 **(B)** The interaction diagram from **A** reveals that 2t-16 interacts with distinct residues, including
760 sidechains of α 1.

761 **(C)** Residues interacting with 2t-16 were compared between WT and P168G BAX and colored
762 green or red, respectively, according to the number of poses and specificity for one of the isoforms.
763 Structure of BAX^{Δα8}:BIM included for visualization as well as top scoring 2t-16 poses.
764 **(D)** Left: BAX^{P168G} (65 nM) was combined with non-activating concentrations of BIM-BH3 peptide
765 (0.15 μM) and 2t-16 (3 μM), followed by BAK^{TAMRA} (50 nM), and subjected to FLAMBE. Right:
766 Parameterized FLAMBE data including four concentrations of 2t-16 (blue: 3 μM; green: 4.5 μM;
767 orange: 6.5 μM; red: 10 μM) in the absence or presence of BIM-BH3 (circle and square datapoints,
768 respectively). Annotations report the magnitude of shift between data with and without BIM-BH3.
769 Empty symbols denote parameterized data for BAX^{WT} shown in Figure **S9A** and is included for
770 comparison.
771 **(E)** The melting temperature of BAX^{WT} and BAX^{P168G} ± 2t-16 (6.5–50 μM) was measured by
772 thermal shift assay using SYPRO orange and compared. Statistical significance was determined
773 by two-way ANOVA; *** denotes $P < 0.001$.
774 **(F)** Heatmap visualization of normalized endpoint LUV permeabilization data for BAX^{WT} and
775 BAX^{P168G} mutants activated with a range of BIM-BH3 concentrations (0.125–2 μM). Data
776 summarized from Figure **S9B**.
777 **(G)** Heatmap visualization of normalized endpoint LUV permeabilization data from LUVs
778 incubated with the BAF mutants treated with 2t-16 (6.5–50 μM) ± BIM-BH3 peptide (0.15 μM).
779 Data summarized from Figure **S9C**.
780 **(H–I)** *Bax*^{−/−}*Bak*^{−/−} double knockout MEFs reconstituted to express BAX^{WT} or BAX^{P168G} were
781 subjected to SPARKL analysis measuring real-time labeling with fluorescently-tagged Annexin V
782 (100 μg/ml) via imaging with a Cytabion 7. Data are reported as positive events per image.
783 **(H)** Kinetics of cell death for reconstituted MEFs treated with 2t-16 (10–30 μM) and co-treated
784 with DMSO vehicle or ABT-737 (1 μM); black lines report vehicle control. Data are the mean of
785 replicates and error bars are omitted for visualization.
786 **(I)** Comparison of Annexin V labeling at 18 hours for parental *Bax*^{−/−}*Bak*^{−/−} MEFs and BAX^{WT} or
787 BAX^{P168G} reconstituted MEFs. Data shown are the mean of technical replicates and error bars
788 report SEM.
789 **(J)** A cohesive model of protein and lipid contributions to BAX activation. A cross section of BAX
790 is illustrated to visualize changes to the hydrophobic funnel shape and accessibility (highlighted
791 in pink).
792 See also Figure S9.

793 **METHODS**

794 **Experimental Models**

795 *Bacterial cell lines*

796 For recombinant protein generation, One Shot™ BL21 (DE3) Chemically Competent *E. coli* were
797 purchased from Invitrogen/Thermo Fisher Scientific (Cat. No. C600003). Cells were grown in BD
798 Difco™ Terrific Broth (Cat. No. BD243820, Thermo Fisher Scientific) media supplemented with
799 1% glycerol at 37°C with shaking at 220 rpm.

800 *Cell lines*

801 *Bax*^{+/+}*Bak*^{+/+} and *Bax*^{-/-}*Bak*^{-/-} SV40-transformed MEFs were obtained from ATCC (Manassas, VA,
802 USA); *Bim*^{-/-}*Bid*^{-/-} SV40-transformed MEFs were provided by Dr. Douglas Green (St. Jude
803 Children's Research Hospital); *Bax*^{-/-}*Bak*^{-/-} double knockout MEFs reconstituted to express wild
804 type or P168G BAX were provided by Dr. Evripidis Gavathiotis (Albert Einstein College of
805 Medicine) and BAX expression was confirmed by western blot and GFP positivity from the pBabe
806 IRES-GFP vector backbone. Cells were cultured in high-glucose DMEM (Cat. No. 10-017-CV,
807 Corning, Manassas, VA, USA) containing 10% FBS (Cat. No. 10438-026, Life Technologies,
808 Carlsbad, CA, USA), 2 mM L-glutamine (Cat. No. 25030-081, Life Technologies, Carlsbad, CA,
809 USA), and 1× Penicillin/Streptomycin (Cat. No. 10378-016, Life Technologies, Carlsbad, CA,
810 USA), and grown in humidified incubators at 37°C with 5% CO₂. All cell cultures were maintained
811 in mycoplasma-free conditions as verified by the HEK-Blue Detection Kit (Cat. No. hb-det2,
812 Invivogen, San Diego, CA, USA).

813 **Recombinant protein and peptides**

814 *Expression vectors and site-directed mutagenesis*

815 Recombinant human BAX was expressed and purified using an intein-chitin binding domain
816 (CBD) tag from a pTYB1 vector (BAX cDNA inserted into Nde/SapI cloning site, with a C-terminal
817 tag).⁴⁹ BAX mutants (e.g., C62S and C126S double mutant, BAX^{2S}; L59C, C62S, C126S, and
818 L162C quadruple mutant, BAX^{q8}) were generated by site-directed mutagenesis of the WT
819 construct using oligos provided in the Key Resource Table. Amplification of the *de novo* plasmids
820 was accomplished using CloneAmp HiFi PCR Premix (Cat. No. 639298, Takara Bio, Mountain
821 View, CA, USA) and thermo-cycled as follows: 1× [98°C for 2 minutes]; 30× [98°C for 10 seconds,
822 55°C for 30 seconds, 72°C for 8 minutes]; and 1× [72°C for 10 minutes]. Parental plasmids were
823 digested by 1 µl DpnI enzyme (Cat. No. R0176, New England Biolabs, Ipswich, MA, USA) at 37°C
824 for 15 minutes, followed by purification using the QIAquick PCR Purification Kit (Cat. No. 28104,
825 Qiagen, Hilden, Germany). Sequences were verified by Genewiz Sanger sequencing using the
826 Universal T7 primer (5'-TAATACGACTCACTATAGGG-3').

827 *Recombinant BAX expression and purification*

828 One Shot™ BL21 (DE3) chemically competent *E. coli* (Cat. No. C601003, Thermo Fisher
829 Scientific) were transformed with the pTYB1-BAX construct in LB broth and grown on agar plates
830 supplemented with 100 µg/mL carbenicillin at 37°C. Starter cultures were grown in Terrific Broth
831 (TB) supplemented with 0.4% glycerol and 100 µg/mL carbenicillin at 30°C for 14–16 hours to an
832 optical density at 600 nm (OD₆₀₀) of approximately 1.5; then diluted with 4× volume of TB broth
833 and expanded at 37°C for 3–4 hours until the culture achieves a target OD₆₀₀ of 2–3. Recombinant
834 BAX expression was induced with 1 mM IPTG at 30°C for 6 hours. Bacteria were pelleted,
835 resuspended in lysis buffer (50 mM K₂PO₄, 50 mM NaH₂PO₄, 500 mM NaCl, 1 mM EDTA, 0.1

836 mM AEBSF) supplemented with a Pierce protease inhibitor tablet (Cat. No. A32965, Thermo
837 Fisher Scientific), and lysed with a probe sonicator (e.g., Dismembrator 505, Thermo Fisher
838 Scientific) for 20 minutes. Lysates were centrifuged at 42,000 $\times g$ at 4°C for 1 hour to pellet debris
839 and recombinant intein-CBD-tagged BAX was captured from the supernatant by chitin affinity
840 chromatography at 4°C according to the manufacturer's instructions (Cat. No. S5551, New
841 England Biolabs, Ipswich, MA, USA). On-column intein cleavage of the CBD tag was achieved
842 by incubation with DTT (50 mM) at 4°C for at least 16 hours, followed by elution in Gel Filtration
843 Buffer (20 mM HEPES [pH 7.4], 150 mM NaCl). Recombinant BAX protein (now without a tag or
844 exogenous residues) was further purified by size-exclusion chromatography using Gel Filtration
845 Buffer on a HiLoad 16/600 or 26/600 Superdex 200 pg column (Cat. No. 28989335, Cytiva) using
846 an ÄKTA pure™ 25 L1 (Cat. No. 29018225, Cytiva) at 4°C according to the manufacturer's
847 instructions. Fractions containing BAX protein were combined and concentrated using Amicon
848 Ultra-4 centrifugal filter (Cat. No. UFC801024, Millipore Sigma) to a stock concentration of ~30
849 μ M, prior to snap freezing with liquid nitrogen, and storage at -80°C. A detailed version of this
850 protocol has been published.⁶¹

851 *Oxidizing disulfide tether BAX mutants*

852 For the BAX^{α8} mutant, the nascent protein was purified as the reduced form due to incubation
853 with DTT during on-column intein cleavage; to generate a disulfide tether ("locked BAX^{α8}"), BAX
854 protein was oxidized in 1 mM Dichloro(1,10-Phenanthroline) Copper (II) (Cat. No. 362204,
855 Millipore Sigma-Aldrich) at 4°C for 15 minutes, purified by Superdex 75 Increase 10/300 GL
856 column (Cat. No. 29148721, Cytiva), and only monomeric species were pooled and concentrated
857 to make protein stocks.

858 *Other reagents*

859 Additional recombinant proteins and peptides were purchased from commercial sources: 5-
860 TAMRA labeled BAK-BH3 (Cat. No. AS-64590, AnaSpec); recombinant Bcl-xL^{ΔC}, aa 2-212 (Cat.
861 No. 894-BX, R&D Systems); BIM-BH3, Peptide IV (Cat. No. AS-62279, AnaSpec).

862 **Lipid aldehyde preparation**

863 2-trans-hexadecenal (2t-hexadecenal) was purchased in powder form (Cat. No. 857459P, Avanti
864 Polar Lipids) and reconstituted in pre-warmed (37°C) anhydrous DMSO (Cat. No. D12345,
865 Thermo Fisher Scientific) to a concentration of 50 mM using a Hamilton syringe. The reconstituted
866 2t-hexadecenal was aliquoted into single-use glass aliquots and stored at -80°C. To avoid
867 precipitation/coagulation of 2t-hexadecenal, stocks were serially diluted first in pre-warmed
868 DMSO, then diluted into pre-warmed aqueous assay buffer to use as a stock for the experiment.
869 This was typically accomplished as follows: 2.5 μ l of 50 mM 2t-hexadecenal stocks were two-fold
870 diluted four times in DMSO (to 40 μ l of 3.13 mM), then diluted twice in the selected assay buffer
871 (first with 40 μ l, then with 45 μ l) to achieve a working stock of 125 μ l of 1 mM 2t-hexadecenal in
872 32% DMSO/buffer. Working stocks of 1 mM 2t-hexadecenal were placed in a water bath sonicator
873 for 15 minutes to aid in solubilization and then further diluted to the desired concentration and
874 acceptable DMSO background for experiments. For cell death experiments, 2t-hexadecenal was
875 prepared in 0% FBS media to prevent binding to serum proteins.

876 Hexadecanal (16:0 aldehyde) was purchased as 1 mg/ml (4.16 mM) in methylene chloride
877 solution (Cat. No. 857458M, Avanti Polar Lipids), aliquoted into 25 μ l, and stored at -80°C. Prior
878 to use, hexadecanal was first diluted with pre-warmed DMSO to a concentration of 3 mM, then
879 diluted to 1 mM with pre-warmed assay buffer of choice, sonicated for 15 minutes, and then further

880 diluted for experiments. The remaining alkenals was purchased in liquid form (see Key Resource
881 Table), and their molar concentrations were calculated based on their density, purity, and
882 molecular weight. Short-chain alkenals (2t-5 – 2t-10) were diluted with DMSO to a stock
883 concentration of 1 M, aliquoted, and stored at -80°C. Prior to use, stocks were further diluted with
884 DMSO to 320 mM and then in assay buffer to a final concentration of 1 mM with 32% DMSO (v/v).
885 Long-chain alkenals (2t-11 – 2t-13) were more likely to coagulate and thus were prepared
886 following the exact same procedure as the 2t-hexadecenal preparation.

887 **Real-time live-cell detection of apoptosis (SPARKL)**

888 *Cell culture and treatments*

889 MEFs were seeded at $2-4 \times 10^3$ cells per well in 96-well tissue culture treated plates and left to
890 adhere for 18–24 hours. Prior to live-cell imaging, growth media was replaced with phenol red-
891 free DMEM as follows: first, 50 μ l (50% total volume) of 0% FBS DMEM containing
892 2t-hexadecenal treatments was added to wells for 15–30 minutes; next, 50 μ l of 10% FBS DMEM
893 containing additional treatments and fluorescently-labelled Annexin V (50 nM or \sim 1.8 ng/ μ l) was
894 added to wells. Recombinant Annexin V was generated in-house as previously described.^{20,62,63}
895 Immediately following treatments, plates were subjected to real-time fluorescence microscopy,
896 automated data collection, and analysis.

897 *Data acquisition and event detection with an IncuCyte ZOOM*

898 SPARKL experiments performed using an IncuCyte ZOOM (Model 4459, Sartorius, Göttingen,
899 Germany) were housed in a humidified tissue culture incubator maintained at 37°C with 5% CO₂.
900 Images were collected every 2 hours for 24 hours using a 10 \times objective, and a single field of view
901 was collected per well. Bright field and green channels (Ex: 440/80 nm; Em: 504/44 nm;
902 acquisition time: 400 ms) were collected at 1392×1040 pixels at 1.22 μ m/pixel. Automated event
903 detection was accomplished using the ZOOM software (v2018A) and user-defined processing
904 definition using images collected using the relevant cell lines and fluorescent reporters.
905 Processing definition settings were as follows: Parameter, Top-Hat; Radius (μ m), 25; Threshold
906 (RFU), 3; Edge Sensitivity, -30; Area (μ m²), >100. Kinetic data are graphed as the calculated
907 events per well metric provided by the ZOOM software. The y-axis scale was determined for each
908 experiment using parallel internal control treatments to assess maximal apoptotic death. Data are
909 the mean of replicates and are representative of at least three repeated and reproduced assays.
910 A detailed explanation of this method²⁰ and protocol⁶⁴ have been published.

911 *Data acquisition and event detection with a Cytaion 7*

912 SPARKL experiments performed using a Cytaion 7 equipped with an inverted imager (Model
913 CYT7UW-SN, BioTek/Agilent, Santa Clara, CA, USA) tethered to a BioSpa 8 automated incubator
914 (Model BIOSPAG-SN, BioTek/Agilent, Santa Clara, CA, USA), where cells were maintained in a
915 humidified environment at 37°C with 5% CO₂. Bright field and red channel images were collected
916 every 2 hours for at least 24 hours using a 10 \times objective with a 75% wide field of view crop (1045
917 μ m \times 1045 μ m), and a single field of view was collected per well using a laser autofocus (Part No.
918 1225010). Bright field images were acquired with the following settings: LED intensity, 7;
919 Integration Time, 100 msec; Camera Gain, 19. Red channel images (Ex: 586/18 nm; Em: 647/57,
920 Part No. 1225102) were acquired with the following settings: LED intensity, 8; Integration Time,
921 20 msec; Camera Gain, 19. Automated red event detection was accomplished using the Gen5
922 software (v3.12) and a cellular analysis data reduction profile with the following settings:
923 Threshold, 5000 RIU; Background, Dark; Split Touching Objects, yes; Fill holes, yes; Background
924 Flattening Size, auto (270 μ m); Image Smoothing Strength, 0; Background Percentage, 5%;

925 Minimum Object Size: 5 μ m; Maximum Object Size: 90 μ m. Kinetic data are graphed as events
926 per image. The y-axis scale was determined for each experiment using parallel internal control
927 treatments to assess maximal apoptotic death. Data are the mean of replicates and are
928 representative of at least three repeated and reproduced assays.

929 **Large unilamellar vesicle (LUV) permeabilization assays**

930 *LUV composition and preparation*

931 LUVs and permeabilization assays were prepared as similarly described.^{9,65} Briefly, chicken egg
932 phosphatidylcholine (Cat. No. 840051C, Avanti Polar Lipids), chicken egg
933 phosphatidylethanolamine (Cat. No. 840021C, Avanti Polar Lipids), porcine brain
934 phosphatidylserine (Cat. No. 840032C, Avanti Polar Lipids), bovine liver phosphatidylinositol (Cat.
935 No. 840042C, Avanti Polar Lipids), and cardiolipin (18:1) (Cat. No. 710335C, Avanti Polar Lipids)
936 were combined at a ratio of 48:28:10:10:4 (5 mg total), dried under N₂ gas, and resuspended in
937 500 μ l LUV buffer (10 mM HEPES [pH 7], 200 mM KCl, 5 mM MgCl₂, 0.2 mM EDTA) containing
938 a polyanionic dye (12.5 mM ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic
939 quencher (45 mM DPX: p-xylene-bis-pyridinium bromide) using a water bath sonicator.
940 Unilamellar vesicles were formed by 31 extrusions of the suspension through 1.0 μ m
941 polycarbonate membranes (Cat. No. 610010, Avanti Polar Lipids, Alabaster, AL, USA). The
942 unincorporated DPX and ANTS were removed by using a 10 ml Sepharose S-500 gravity flow
943 column. LUVs were used within 2 weeks of preparation to avoid significant liposome degradation.

944 *LUV assays*

945 Working stocks of recombinant proteins, peptides, and lipids were prepared in LUV buffer at 4 \times
946 their intended final concentrations. LUVs from the preparation stock (20 \times) were diluted five-fold
947 in LUV buffer to generate a working stock (4 \times) for assays (equivalent to each sample receiving 5
948 μ l undiluted LUVs). In a black opaque 96-well plate, lipids or peptide titrations were generated via
949 in-well serial dilutions and buffer was added to any control wells requiring volume compensation.
950 Samples were assayed in 100 μ l total volume with 25 μ l of each component sequentially added
951 to achieve desired 1 \times concentrations. A typical assay was prepared as follows: 25 μ l of titrant is
952 prepared in the well; then 25 μ l of peptide, reagent, or buffer is added; then 25 μ l of recombinant
953 BAX; and finally, 25 μ l of diluted LUVs. Plates were immediately subjected to fluorescence
954 analyses for 90 minutes using either a Synergy H1 or Cytation 5 multi-mode microplate reader
955 (BioTek/Agilent, Santa Clara, CA, USA) using parameters listed in the table below. Kinetic data
956 represents the mean of triplicate samples and are representative of at least three repeated and
957 reproduced assays using separate protein aliquots and LUV preparations. Every assay included
958 a 1% CHAPS positive control to determine maximum signal. Normalized endpoint data (%
959 permeabilization) were calculated in Prism (Graphpad) using the minimum value of the buffer
960 control (as 0%) and the mean value of LUVs solubilized in 1% CHAPS (as 100%) measured
961 during the entire assay (see Equation 1). Appropriate concentrations of BAX were determined by
962 extensive protein titrations for each preparation of recombinant protein and LUVs; typically the
963 highest BAX concentration exhibiting minimal permeabilization was selected for subsequent
964 assays to ensure adequate signal and dynamic range for activation studies.

965 Table 1: Parameters for LUV permeabilization assays

Reader	BioTek Synergy H1 or Cytation 5 multi-mode plate reader
Read interval	55 seconds
Total read time	90 minutes

Protocol	37°C; 2 second linear shake; read
Excitation	355/20 nm
Emission	520/20 nm
Gain (voltage)	100
Optics position	Top
Read height	5.5 mm
Assay plate	black polystyrene 96-well (Corning #3915)
LUV buffer	10 mM HEPES (pH 7), 200 mM KCl, 5 mM MgCl ₂ , 0.2 mM EDTA

966 Equation 1: LUV data normalization

967
$$\% \text{ permeabilization} = \left(\frac{F - F_{100}}{F_{100} - F_0} \right) \times 100$$

968 **Microscale thermophoresis**

969 MST experiments were carried out on a NT.115 (NanoTemper GmbH, Munich, Germany)
970 instrument and performed in MST buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 10 mM MgCl₂,
971 0.05% Tween-20). K_D values were calculated using the NanoTemper software. The recombinant
972 human BAX protein was labeled with Alexa Fluor-647 NHS ester by incubating 60 μM of the
973 fluorescent dye with a 20 μM of BAX protein for 30 minutes in the dark. The labeling mixture was
974 subsequently applied to a G-25 gravity flow column (GE Healthcare) that had been equilibrated
975 with MST buffer. After elution from the G-25 column, the concentration of the labeled protein was
976 quantified spectrophotometrically, snap frozen in liquid nitrogen, and stored as single use aliquots
977 at -80°C. Labeled BAX protein was treated with 0.002% CHAPS to prevent activation-induced
978 BAX aggregation upon ligand binding. Curve fitting was conducted using Prism (Graphpad) and
979 only applied to X values from 5–35 seconds using Equation 2, and the K constant was calculated
980 using Equation 3.

981 Equation 2: One-phase decay function for MST data fitting

982
$$Y = (Y_0 - Y_{\text{Plateau}})(e^{-kX}) + Y_{\text{Plateau}}$$

983 Equation 3: Decay constant function

984
$$K = \frac{-\ln\left(\frac{Y - Y_{\text{Plateau}}}{Y_0 - Y_{\text{Plateau}}}\right)}{X}$$

985 **Liquid chromatography-mass spectrometry (LC-MS)**

986 *Sample preparation and handling*

987 Working stock of recombinant BAX protein and 2t-hexadecenal were prepared in Gel Filtration
988 Buffer. 30 μl of 5 μM recombinant BAX (~3 μg) was treated as indicated and incubated at 37°C
989 for 2 hours. Samples were then reduced in 8 M urea buffer (with 50 mM NH₄HCO₃, 10 mM TCEP)
990 at 57°C for 1 hour, and alkylated in the dark with 30 mM iodoacetamide for 30 minutes at 25°C.
991 Samples were then digested using 1:100 (w/w) trypsin at 37°C for 4 hours, with an additional
992 round of 1:100 trypsin at 37°C for 16–18 hours. After proteolysis, the peptide mixtures were
993 desalting by self-packed stage-tips or Sep-Pak C18 columns (Waters) and analyzed with a

994 Vanquish Neo UHPLC System that is coupled online with a Orbitrap Exploris 480 mass
995 spectrometer (Thermo Fisher). Briefly, desalted Nb peptides were loaded onto an analytical
996 column (C18, 1.7 μ m particle size, 150 μ m \times 5 cm; IonOpticks) and eluted using a 20 minute
997 liquid chromatography gradient (3–10% B, 0–2 minutes; 10–40% B, 2–12 minutes; 40–80% B,
998 12–14 minutes; 3% B, 14–20 minutes). Mobile phase A consisted of 0.1% formic acid (FA), and
999 mobile phase B consisted of 0.1% FA in 80% acetonitrile (ACN). The flow rate was 1 μ l/minute.
1000 The Orbitrap Exploris 480 instrument was operated in the data-dependent mode, where the top
1001 20 most abundant ions (mass range 200–1800, charge state 2–6) were fragmented by high-
1002 energy collisional dissociation (HCD). The target resolution was 120,000 for MS and 15,000 for
1003 tandem MS (MS/MS) analyses. The maximum injection time for MS/MS was set at 100 ms.

1004 *Proteomic data analysis*

1005 Raw data collected by LC-MS was searched against the Uniprot reviewed Human protein
1006 sequences database retrieved on 01 March 2024 with decoys and common contaminants
1007 appended using FragPipe (v22.0). A labile search was performed in MSFragger⁶⁶ without
1008 diagnostic and Y ions specified. Mass offsets were set restricted to cysteines. The offset list was
1009 set at 0 (no modification) and 238.22967 (monoisotopic mass of 2t-hexadecenal) and replacing
1010 the fixed cysteine carbamidomethylation with a variable one. "Write calibrated MGF" was turned
1011 on for the PTM-Shepherd⁶⁷ diagnostic feature mining module, and "Diagnostic Feature Discovery"
1012 in PTM-Shepherd was enabled with default parameters. Peptide and protein levels were
1013 performed using label-free quantification (LFQ) algorithms in IonQuant⁶⁸. After MS search with
1014 MSFragger, raw files and identification files were imported into PDV⁶⁹
1015 (<https://github.com/wenbostar/PDV>) for MS spectra annotation.

1016 **Thermal Shift Differential Scanning Fluorimetry**

1017 Working stock of recombinant BAX proteins, SYPRO Orange dye (Cat. No. S6650, Thermo
1018 Fisher Scientific), and 2t-hexadecenal were prepared in gel filtration buffer. The assay was
1019 performed in 100 μ l 96-well PCR plates using a total assay volume of 50 μ l. 20 μ l of 2.5 \times
1020 2t-hexadecenal titrations were generated via in-well serial dilutions and buffer was added to any
1021 control wells requiring volume compensation. 20 μ l of 2.5 μ M BAX and 10 μ l of 20 \times SYPRO
1022 Orange were sequentially added to the wells, thoroughly mixed by pipetting, and the plate was
1023 centrifuged to recollect sample in the bottom of the well and remove any trapped bubbles. The
1024 PCR plate was then sealed with optically clear adhesive sheet and subjected to fluorescence
1025 spectroscopy using an Applied Biosystems ViiA7 real-time PCR instrument (Thermo Fisher
1026 Scientific). Temperature started at 25°C and increased to 95°C at a rate of 1% per minute. Data
1027 was collected as normalized fluorescence at each step of the thermal ramp and the melting
1028 temperature was determined as the maximum first derivative value. Data shown are the average
1029 of at least four replicates and error bars denote the SEM.

1030 **Fluorescence polarization ligand assay to monitor BAX early-activation (FLAMBE)**

1031 *Assay setup*

1032 Working stocks of recombinant BAX protein, peptides, and lipids were prepared in 0.5 \times PBS
1033 buffer at 4 \times their intended final concentrations. 5-TAMRA labeled BAK-BH3 peptide (Cat. No. AS-
1034 64590, AnaSpec) was diluted to a 200 nM working stock (4 \times). In a black opaque 96-well plate,
1035 lipids or peptide titrations were generated via in-well serial dilutions and buffer was added to any
1036 control wells requiring volume compensation. Samples were assayed in 100 μ l total volume with
1037 25 μ l of each component sequentially added to achieve desired 1 \times concentrations. A typical assay

1038 was prepared as follows: 25 μ l of titrant is prepared in the well; then 25 μ l of peptide, reagent, or
1039 buffer is added; then 25 μ l of recombinant BAX; and finally, 25 μ l of BAK^{TAMRA}. Plates were
1040 immediately subjected to spectrometry analyses for 60 minutes using a Synergy H1 multi-mode
1041 microplate reader equipped with a polarization filter (BioTek/Agilent, Santa Clara, CA, USA) using
1042 parameters listed in the table below. Polarization (expressed as milli-Polarization (mP) units) is
1043 derived from measured parallel and perpendicular emission intensities (I) and was calculated by
1044 the Gen5 software (BioTek/Agilent); Polarization can also be calculated manually using Equation
1045 2. Kinetic data represents the mean of triplicate samples and are representative of at least three
1046 repeated and reproduced assays using separate protein aliquots. Appropriate concentrations of
1047 BAX and peptides were determined by extensive protein titrations for each preparation of
1048 recombinant protein; typically, the highest BAX concentration exhibiting no BAK^{TAMRA} dissociation
1049 was selected for subsequent assays to ensure adequate signal and dynamic range for activation
1050 studies. Similarly, concentrations of direct activators were selected from extensive titration
1051 experiments to determine the appropriate concentration for each experimental setup.

1052 *Kinetic FP data parameterization*

1053 Parameterized FLAMBE data was derived from the average of replicates to reduce data noise.
1054 For each condition, Tmax was identified as the timepoint with the highest Polarization and EP
1055 was the endpoint Polarization value recorded. Tmax of the BAK^{TAMRA} control or any sample
1056 exhibiting no binding kinetics during the assay was set to 0 to avoid misidentification due to noise.
1057 Each parameterized metric was normalized to metrics from the BAK^{TAMRA} and BAX control
1058 conditions, as 0 and 1 respectively. The shift magnitude of parameterized FLAMBE data was
1059 calculated using the distance between conditions without and with BIM-BH3 treatment (see
1060 Equation 3). Area under the curve (AUC) was calculated using Prism (Graphpad) and normalized
1061 to the controls. A detailed explanation of this method⁸ and protocol⁷⁰ have been published.

1062 *Competition FP assay*

1063 BCL-xL competitive binding FP assays were conducted similarly to FLAMBE assays with some
1064 modifications. BCL-xL, 2t-hexadecenal, and BAK^{TAMRA} were prepared as 4 \times working stocks in a
1065 modified FP assay buffer (20 mM sodium phosphate buffer [pH 7.4], 50 mM NaCl, 1 mM EDTA,
1066 0.05 % pluronic F-68).⁷¹ 2t-hexadecenal titrations were prepared in-well and diluted with 25 μ l
1067 buffer; separately, recombinant BCL-xL and BAK^{TAMRA} stocks are combined at a 1:1 volume ratio
1068 (resulting in a 2 \times stock) and 50 μ l is added to sample wells immediately followed by spectrometry.

1069 Table 2: Parameters for FP assays

Reader	BioTek Synergy H1 multi-mode plate reader
Filter Cube	red FP polarizer filter set (#8040562)
Read interval	30 seconds
Total read time	60 minutes
Protocol	25°C; 2 second double orbital shake; read
Excitation	530/25 nm
Emission	590/35 nm
Mirror	570 nm
Gain (voltage)	50
Optics position	Top
Read height	7.0 mm
Assay plate	black polystyrene 96-well (Corning #3915)

FLAMBE buffer	0.5× PBS
Anti-apoptotic FP buffer	20 mM phosphate buffer (pH 7.4), 50 mM NaCl, 1 mM EDTA, 0.05 % pluronic F-68

1070 Equation 2: Polarization calculation

1071
$$mP = \left(\frac{I_{\text{parallel}} - I_{\text{perpendicular}}}{I_{\text{parallel}} + I_{\text{perpendicular}}} \right) \times 1000$$

1072 Equation 3: Distance equation for parameterized FLAMBE data

1073
$$\Delta s = \sqrt{(\Delta T_{\text{max}})^2 + (\Delta EP)^2}$$

1074 **Fluorescent size-exclusion chromatography**

1075 Alexa Fluor™ 488 NHS ester (AF488)-labeled BAX was generated according to the
1076 manufacturer's instructions (Thermo Fisher Scientific, Cat. No. A20000) at a 20:1 dye:protein
1077 molar excess. Excess dye was removed by gel filtration with a Superdex 75 Increase 10/300 GL
1078 column (Cat. No. 29148721, Cytiva) equilibrated with Gel Filtration Buffer using an ÄKTA pure™
1079 25 L1 (Cat. No. 29018225, Cytiva) at 4°C according to the manufacturer's instructions. 0.5 ml
1080 fractions were collected and fractions containing monomeric AF488-labelled BAX were combined,
1081 quantified, aliquoted, and stored at -80°C. For experiments, 600 µl of 400 nM 488-labelled BAX
1082 was treated as indicated at 25°C for 1 hour and protected from light. Following treatment, BAX
1083 was subjected to size exclusion chromatography using the above parameters. For detection, 0.2
1084 ml of eluate from the indicated fractions was transferred to a black 96 well-plate and analyzed for
1085 fluorescence by a Cyvation 5 multi-mode plate reader (BioTek/Agilent, Santa Clara, CA, USA)
1086 using the following parameters: Excitation, 495/10 nm; Emission, 520/10 nm; Gain (voltage), 100.

1087 **2D HSQC NMR spectroscopy**

1088 ¹⁵N-labeled BAX protein was prepared at 40 µM in 15 mM sodium phosphate (pH 7.0), 50 mM
1089 NaCl. Data were acquired on Bruker 600-MHz spectrometer equipped with a cryoprobe. Two-
1090 dimensional ¹H-¹⁵N correlation spectra were acquired at 25°C using standard Bruker pulse
1091 sequences using 128 scans, 2,048 × 200 complex points and spectral windows of 14 p.p.m. × 35
1092 p.p.m. in the ¹H and ¹⁵N dimensions, respectively. Spectra were processed using TOPSpin
1093 (Bruker Biospin, MA, USA) and analyzed with CARA software⁷² (cara.nmr.ch). The weighted
1094 average chemical shift perturbation (CSP) difference ($\Delta\delta$) was calculated using Equation 1. The
1095 absence of a value indicates no CSP difference, the presence of a proline, or a residue that is
1096 overlapped or missing and therefore not used in the analysis. The significance threshold for CSPs
1097 was calculated based on the average chemical shift across all measurable residues plus 1 or 2
1098 standard deviations, in accordance with standard methods. Mapping of CSP data onto the BAX
1099 structure (PDB: 1F16) was performed with PyMOL (Schrödinger, LLC).

1100 Equation 4: CSP difference equation

1101
$$\Delta\delta = \sqrt{\frac{(\Delta^1H)^2 + 0.2 * (\Delta^{15}N)^2}{2}}$$

1102 ***In silico* docking and molecular modeling**

1103 *Unbiased docking simulations*

1104 The molecular interactions between the alkenals and BAX were modeled using the EADock DSS
1105 version of the SwissDock webserver (www.swissdock.ch).^{73,74} The structure PDB files and the
1106 alkenal mol2 files were obtained from the Protein Data Bank and the ZINC database, respectively
1107 (see Table 3). Output files were split into individual clusters and visualized using PyMOL
1108 (Schrödinger, LLC). Quantification of alkenal binding was accomplished by manual inspection of
1109 each cluster group and the total number of binding modality outputs for each job. Cavity
1110 determination and visualization was performed with PyMOL using a cavity radius of 3 and a cavity
1111 cutoff of -5.5; additional spaces were excluded to enhance visualization.

1112 *Virtual mutagenesis and molecular docking*

1113 Virtual mutagenesis of BAX structures was performed using the mutagenesis wizard in PyMOL
1114 (v3.1, Schrödinger, LLC) and selecting rotamers that did not conflict with surrounding sidechains;
1115 the resulting structures were utilized in downstream investigations. NMR-guided molecular
1116 docking of 2t-hexadecenal on BAX was performed using Glide (v2023-1 build 128, Schrödinger,
1117 LLC) with extra precision (XP) and a receptor grid generated in the center of the BAF (13 × 13 ×
1118 13 Å inner box, 10 Å outer box), with no additional constraints. Wild type and mutant structures
1119 had α8 residues (157–163) removed and were prepared using the Protein Prep Wizard, assigning
1120 partial charges with EPIK (Schrödinger, LLC), and aligned against the 1F16 structure to ensure
1121 consistency of BAF coordinates for grid generation. The 2t-hexadecenal structure was converted
1122 to 3D and prepared for docking using LIGPREP (v2023-1 build 128, Schrödinger, LLC). The
1123 lowest energy docking pose is visualized, was representative of all output poses, and various
1124 scoring metrics are reported. Interaction fingerprints were generated for residues exhibiting
1125 overall interaction with any of the output poses. WT and P168G BAX interaction comparisons
1126 were calculated as the fraction of total poses interacting with a residue, relative to the
1127 WT:2t-hexadecenal interaction, and color-coded for visualization in PyMOL (Schrödinger, LLC).
1128 Interaction diagrams were generated and exported from MAESTRO (Schrödinger, LLC) and then
1129 redrawn in Inkscape (www.inkscape.org) to aid in visualization.

1130 Table 3: List of resources for structural investigations

Structure	Identifier
BAX	PDB: 1F16 ⁴⁹
BAX:BIM-BH3	PDB: 2K7W ³⁰
BAX-P168G	PDB: 5W60 ³⁷
2t-hexadecenal	ZINC08217876
hexadecanal	ZINC08216082
2t-pentenal	ZINC02031161
2t-hexenal	ZINC01531148
2t-heptenal	ZINC02017189
2t-octenal	ZINC02013450
2t-nonenal	ZINC01571215
2t-decenal	ZINC01571216
2t-undecenal	ZINC01849946
2t-dodecenal	ZINC01589935
2t-tridecenal	ZINC01613339

1131 **SDS-PAGE and Western Blotting**

1132 *Bax^{-/-}Bak^{-/-}* MEFs, or MEFs reconstituted to express WT or P168G BAX, were harvested with
1133 0.25% Trypsin-EDTA and pelleted at 800× g for 5 minutes. Cells were lysed with 1× RIPA lysis
1134 buffer supplemented with protease inhibitors (HALT Tablet, Cat. No. 87786) and phosphatase
1135 inhibitors (ApexBio, Cat. No. k1015b) on ice for 20 minutes, pelleted at 21,000× g for 10 minutes
1136 at 4°C, and supernatant was collected for protein quantification by BCA assay (Cat. No. 23225,
1137 Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer's protocol. Sample
1138 concentrations were equilibrated in lysis buffer, combined with 4× Laemmli sample loading buffer
1139 supplemented with DTT, subjected to SDS-PAGE in a 12.5% polyacrylamide gel, and transferred
1140 to nitrocellulose by standard western blot conditions. Membranes were blocked in 5% milk in 1×
1141 TBS buffer supplemented with 0.1% Tween-20, incubated with primary antibodies (1:500-1000 in
1142 blocking buffer; incubated for 16–18 hours at 4°C) and secondary antibodies (1:4000 in blocking
1143 buffer; incubated for 1 hour at 25°C), followed by standard enhanced chemiluminescence
1144 detection (Cat. No. WBLUF0100, Sigma-Aldrich, St. Louis, MO, USA). Antibodies: BAX, 1:500
1145 dilution (Clone 2D2, Cat. No. sc-20067, Santa Cruz Biotechnology, Dallas, TX, USA); GAPDH,
1146 1:1000 dilution (Clone 1E6D9, Cat. No. 60004, Proteintech, Rosemont, IL, USA); m-IgGk BP-
1147 HRP secondary antibody (Cat. No. sc-516102, Santa Cruz Biotechnology, Dallas, TX, USA).

1148 **DATA AND RESOURCE AVAILABILITY**

1149 The data supporting the findings of this study are included in this published article (and its
1150 supplementary information files). Materials generated in this study are available from the
1151 corresponding author upon reasonable request. Structures corresponding to PDB 1F16, 2K7W,
1152 and GW60 were used in this study.

1153 **SUPPLEMENTARY INFORMATION**

1154 **Supplementary figure titles:**

1155 Supplementary Figure 1: 2t-hexadecenal promotes BAX functionalization (Related to Figure 1)

1156 Supplementary Figure 2: BAX activation by 2t-hexadecenal does not require cysteine residues
1157 (Related to Figure 2)

1158 Supplementary Figure 3: An assay for detecting BAX early-activation steps reveals that
1159 2t-hexadecenal cooperates with BIM-mediated triggering (Related to Figure 3)

1160 Supplementary Figure 4: Structural, biophysical, and functional approaches identify α 8
1161 mobilization as necessary for 2t-hexadecenal function (Related to Figure 4)

1162 Supplementary Figure 5: 1H-15N HSQC perturbations indicate that short-chain 2t-alkenals exhibit
1163 CSPs outside of the BAF region (Related to Figure 5)

1164 Supplementary Figure 6: In silico docking simulations suggest long-chain 2t-alkenals exhibit
1165 increased specificity for the BAF (Related to Figure 5)

1166 Supplementary Figure 7: Long-chain 2t-alkenals are capable of BAX activation (Related to Figure
1167 5)

1168 Supplementary Figure 8: BAF mutations ablate 2t-hexadecenal mediated membrane
1169 permeabilization (Related to Figure 6)

1170 Supplementary Figure 9: Mutating proline 168 disrupts 2t-hexadecenal synergy with BAX and
1171 BIM (Related to Figure 7)

1172 **Supplementary Figure Legends**

1173 **Supplementary Figure 1: 2t-hexadecenal promotes BAX functionalization (Related to**
1174 **Figure 1)**

1175 **(A–D)** LUV permeabilization studies with recombinant BAX protein treated as indicated and
1176 measured at regular intervals for changes in fluorescence as fluorophores are released from
1177 compromised liposomes. Left panels: kinetic fluorescence data; right panels: endpoint data
1178 normalized to LUV fluorescence and maximal signal generated by LUVs solubilized with CHAPS
1179 detergent (grey data). Data are shown as the mean of technical replicates and error bars report
1180 SEM.

1181 **(A)** BAX protein (100 nM) was activated by BIM-BH3 peptide (0.13–2 μ M) and added to LUVs.

1182 **(B)** LUVs treated with 2t-16 (16.5–50 μ M) in the absence of BAX to confirm no membrane
1183 destabilization by 2t-16.

1184 **(C)** Data summarized by Figure 1F. LUVs permeabilized by BAX (120 nM) treated with 2t-16 (6.5–
1185 50 μ M) \pm BIM-BH3 peptide (0.5, 2.5 μ M).

1186 **(D)** Data summarized by Figure 1I. LUVs permeabilized by BAX (160 nM) treated with 16CHO
1187 (6.5–50 μ M) \pm BIM-BH3 peptide (0.5, 2.5 μ M).

1188 **Supplementary Figure 2: BAX activation by 2t-hexadecenal does not require cysteine**
1189 **residues (Related to Figure 2)**

1190 **(A)** Alexa Fluor 647-labeled recombinant BAX^{WT} (1 nM) was incubated with CHAPS (0.002%) to
1191 inhibit oligomerization, treated as indicated, and subjected to MST. Timetrace thermal shift curves
1192 of BAX^{WT} titrated with 2t-16 or 16CHO (0.04, 1.25, 40 μ M) report the mean of replicate data.

1193 **(B–C)** The melting temperature of BAX^{WT} and BAX^{2S} \pm 2t-16 (6.5–50 μ M) was measured by
1194 thermal shift assay using SYPRO orange and compared. Statistical significance was determined
1195 by two-way ANOVA; ns, not significant ($P > 0.05$).

1196 **(D–E)** LUV permeabilization studies with recombinant BAX^{2S} protein treated as indicated and
1197 measured at regular intervals for changes in fluorescence as fluorophores are released from
1198 compromised liposomes. Left panels: kinetic fluorescence data; right panels: endpoint data
1199 normalized to LUV fluorescence and maximal signal generated by LUVs solubilized with CHAPS
1200 detergent (grey data). Data are shown as the mean of technical replicates and error bars report
1201 SEM.

1202 **(D)** Data summarized by Figure 2F. LUVs permeabilized by BAX^{2S} (100 nM) treated with 2t-16
1203 (6.5–50 μ M) \pm BIM-BH3 peptide (0.5, 2.5 μ M).

1204 **(E)** Data summarized by Figure 2I. LUVs permeabilized by BAX^{2S} (100 nM) treated with 16CHO
1205 (6.5–50 μ M) \pm BIM-BH3 peptide (0.5, 2.5 μ M).

1206 **Supplementary Figure 3: An assay for detecting BAX early-activation steps reveals that**
1207 **2t-hexadecenal cooperates with BIM-mediated triggering (Related to Figure 3)**

1208 **(A)** Illustration of BAX and BAK-BH3 interactions within FLAMBE. The reporter is a fluorescently-
1209 labeled BAK-BH3 peptide that exhibits changes in Polarization measurements as it is bound by
1210 BAX. Over time, the BAX population binds BAK-BH3 peptides resulting in increased Polarization,
1211 which eventually plateaus if the entire population forms heterodimers (dotted line). In conditions
1212 that activate BAX, activation-induced intramolecular rearrangements within BAX result in the
1213 dissociation of the BAK-BH3 peptide and a concomitant decrease in Polarization over time as the
1214 population of unbound BAK-BH3 peptide increases (solid line).

1215 **(B)** Illustration of FLAMBE data parameterization and analysis. Left: Kinetic Polarization data is
1216 collected for a treatment causing BAX activation and exhibiting accelerated kinetics of BAK^{TAMRA}
1217 dissociation (blue lines, depicted as a titration exhibiting dose-dependent BAX activation). Kinetic
1218 data is parameterized by extracting endpoint Polarization (EP) and time-to-maximum peak (Tmax)
1219 for each condition. Right: Parameterized data are normalized to BAK^{TAMRA} and BAX controls (grey
1220 and black, respectively) and titrations or separate conditions can be visualized as a two-
1221 dimensional plot. Generally, conditions exhibiting minimal or robust activation of the BAX
1222 population cluster in the upper-right or lower-left regions, respectively. Conditions plotted above
1223 BAX (i.e., EP > 1) form stable non-activating complexes with the BAX:BAK^{TAMRA} heterodimer (red
1224 region).

1225 **(C)** BAX^{WT} (60 nM) was treated with BIM-BH3 peptide (0.25–2 μ M) and subjected to FLAMBE to
1226 visualize dose-dependent activation-induced dissociation of BAK^{TAMRA}. BIM-BH3 at a low
1227 concentration (0.25 μ M, dark blue data) demonstrated a stable, non-activating interaction with the
1228 BAX:BAK^{TAMRA} complex and exhibited increased Polarization.

1229 **(D)** BAX^{WT} (60 nM) was treated with 16CHO (2–50 μ M), combined with BAK^{TAMRA} (50 nM), and
1230 subjected to FLAMBE.

1231 **(E)** Same as in **D** with BAX^{2S} (60 nM).

1232 **(F)** Left: BAX^{2S} (60 nM) was treated with three non-activating concentrations of 2t-16 (green: 4.5
1233 μ M; orange: 6.5 μ M; red: 10 μ M). Parameterization of this data is included in **Figure 3D**. Right:
1234 AUC calculated for each condition was normalized to the BAX and BAK^{TAMRA} controls and
1235 reported as a percent change from the vehicle-treated BAX condition.

1236 **(G)** Left: BAX^{WT} (60 nM) was combined with a non-activating concentrations of BIM-BH3 peptide
1237 (0.15 μ M) and 2t-16 (4.5 μ M), followed by BAK^{TAMRA} (50 nM), and subjected to FLAMBE. Middle:
1238 Parameterized FLAMBE data including three concentrations of 2t-16 (green: 4.5 μ M; orange: 6.5
1239 μ M; red: 10 μ M) in the absence or presence of BIM-BH3 (circle and square datapoints,
1240 respectively). Annotations report the magnitude of shift between data with and without BIM-BH3.
1241 Right: AUC calculated for each condition was normalized to the BAX and BAK^{TAMRA} controls and
1242 reported as a percent change from the vehicle-treated BAX condition.

1243 **(H)** Fluorescence polarization competition assay with recombinant BCL-xL^{ΔC} protein treated with
1244 2t-16 (2–50 μ M) and combined with BAK^{TAMRA}.

1245 **Supplementary Figure 4: Structural, biophysical, and functional approaches identify a8**
1246 **mobilization as necessary for 2t-hexadecenal function (Related to Figure 4)**

1247 **(A)** ^1H - ^{15}N HSQC NMR spectra of ^{15}N -labeled BAX^{WT} (40 μ M) and BAX^{WT} treated with vehicle or
1248 2t-16 (50, 150 μ M).

1249 **(B)** Plot of BAX residues exhibiting a significant shift in response to incubation with 2t-16.

1250 **(C)** Chemical shift perturbations (CSPs) observed in ^{15}N -labeled BAX^{WT} incubated with 16CHO
1251 (150 μ M). Residues exhibiting a shift greater than 1 or 2 standard deviations above the average
1252 (dotted lines) are highlighted and indicated on the BAX structure (PDB: 1F16). The absence of a
1253 bar indicates no chemical shift difference, the presence of a proline, or the residue that could not
1254 be definitively assigned.

1255 **(D)** Chemical shift perturbations (CSPs) observed in ^{15}N -labeled BAX incubated with 2t-16 (Figure
1256 **4A**) were subtracted by CSPs observed with 16CHO (Figure **S4C**) and plotted as a function of
1257 BAX residues. Residues exhibiting a shift greater than the 1 standard deviation above the average
1258 (dotted line) are colored yellow and indicated on the BAX structure (PDB: 1F16). Residues
1259 uniquely exhibiting significance in the 2t-16 treatment and not 16CHO are highlighted with a black
1260 outline. The absence of a bar indicates no chemical shift difference, the presence of a proline, or
1261 the residue that could not be definitively assigned.

1262 **(E)** LUVs permeabilized by reduced BAX $\alpha 8$ (220 nM) treated with BIM-BH3 peptide (0.2–6.5 μ M).
1263 Data are shown as the mean of technical replicates and error bars report SEM.
1264 **(F)** Same as in **E** with oxidized BAX $\alpha 8$ (220 nM) to induce a disulfide tether immobilizing $\alpha 8$.
1265 **(G–J)** BAX $\alpha 8$ was treated as indicated, combined with a TAMRA-labeled BAK-BH3 peptide
1266 (BAK^{TAMRA}), and immediately subjected to FLAMBE analysis. Left panels: kinetic Polarization
1267 data; right panels: two-dimensional plot of parameterized FLAMBE data comparing Tmax and
1268 endpoint Polarization metrics normalized to BAK^{TAMRA} (grey data) and the vehicle-treated BAX
1269 control (black data).
1270 **(G)** Reduced BAX $\alpha 8$ (75 nM) was treated with BIM-BH3 (0.06–1 μ M), combined with BAK^{TAMRA}
1271 (50 nM), and subjected to FLAMBE.
1272 **(H)** Same as in **G** with oxidized BAX $\alpha 8$ (250 nM) to immobilize $\alpha 8$.
1273 **(I)** Oxidized BAX $\alpha 8$ (250 nM) was treated with 2t-16 (3–50 μ M), combined with BAK^{TAMRA} (50 nM),
1274 and subjected to FLAMBE.
1275 **(J)** BAX $\alpha 8$ (225 nM) was treated with four non-activating concentrations of 2t-16 (blue: 3 μ M;
1276 green: 4.5 μ M; orange: 6.5 μ M; red: 10 μ M) in the absence or presence of BIM-BH3, followed by
1277 BAK^{TAMRA} (50 nM), and subjected to FLAMBE. Parameterization of this data is included in **Figure 4I**.
1278

1279 **Supplementary Figure 5: ^1H - ^{15}N HSQC perturbations indicate that short-chain 2t-alkenals
1280 exhibit CSPs outside of the BAF region (Related to Figure 5)**

1281 **(A)** Chemical shift perturbations (CSPs) observed in ^{15}N -labeled BAX incubated with either 2t-16
1282 (50, 150 μ M), 2t-9 (0.3, 0.9, 2.7 mM), or 2t-5 (0.3, 0.9, 2.7 mM) averaged across concentrations.
1283 Residues exhibiting a shift greater than 1 or 2 standard deviations above the average (dotted
1284 lines) are indicated in light and dark colors, respectively, and indicated on the BAX structure (PDB:
1285 1F16). The absence of a bar indicates no chemical shift difference, the presence of a proline, or
1286 the residue that could not be definitively assigned.
1287 **(C–D)** Residues exhibiting significant CSPs for each concentration (0.3, 0.9, 2.7 mM) of 2t-9 or
1288 2t-5. Highlighted residues exhibited shifts greater than 1 standard deviation above the average of
1289 measurable shifts.

1290 **Supplementary Figure 6: In silico docking simulations suggest long-chain 2t-alkenals
1291 exhibit increased specificity for the BAF (Related to Figure 5)**

1292 **(A–C)** Unbiased *in silico* rigid docking of 2t-alkenals or S1P against BAX using the SwissDock
1293 web service. Insets display cross-section of ligands docking within the hydrophobic funnel. Models
1294 visualized with PyMOL.
1295 **(A)** Visualization of results for each 2t-alkenal or S1P docking on an unmodified structure of BAX
1296 (PDB: 1F16, BAX^{FL}). Quantification of results summarized in **Figure 6C**.
1297 **(B)** As in **A** with ligands docking on a structure of BAX with alpha helix 8 removed (PDB: 1F16,
1298 Δ 157–163; BAX $\Delta\alpha 8$). Quantification of results summarized in **Figure 6C**.
1299 **(C)** As in **B** with ligands docking on a structure of BAX bound to a BIM-BH3 peptide with alpha
1300 helix 8 removed (PDB: 2K7W, Δ 157–163; BAX:BIM).

1301 **Supplementary Figure 7: Long-chain 2t-alkenals are capable of BAX activation (Related to
1302 Figure 5)**

1303 **(A)** Alexa Fluor 647-labeled recombinant BAX^{WT} (1 nM) was incubated with CHAPS (0.002%) to
1304 inhibit oligomerization, treated with the indicated 2t-alkenals (0.16–5 μ M), and subjected to MST.

1305 Timetrace data are shown as the mean of replicates. Thermophoresis metrics for each 2t-alkenal
1306 are summarized in Figure 5C.

1307 **(B)** BAX^{2S} (60 nM) was treated with the indicated 2t-alkenal (3–50 μ M), combined with BAK^{TAMRA}
1308 (50 nM), and subjected to FLAMBE. Data are shown as the mean of replicates. Parameterized
1309 data reporting EP and Tmax for each experiment are provided in Figures 5D–E.

1310 **(C)** LUVs permeabilized by BAX^{2S} (100 nM) treated with the indicated 2t-alkenal (6.5–50 μ M).
1311 Data are shown as the mean of replicates. Normalized endpoint permeabilization data
1312 summarized in Figure 5F.

1313 **Supplementary Figure 8: BAF mutations ablate 2t-hexadecenal mediated membrane**
1314 **permeabilization (Related to Figure 6)**

1315 **(A)** Data summarized by Figure 6G. LUVs permeabilized by WT or BAF mutant BAX activated by
1316 BIM-BH3 (0.125–2 μ M).

1317 **(B)** Data summarized by Figure 6H. LUVs permeabilized by WT or BAF mutant BAX activated by
1318 2t-16 (6.5–50 μ M).

1319 **(C)** Data summarized by Figure 6H. As in B with BAX primed with BIM-BH3 peptide (0.15 μ M).

1320 **Supplementary Figure 9: Mutating proline 168 disrupts 2t-hexadecenal synergy with BAX**
1321 **and BIM (Related to Figure 7)**

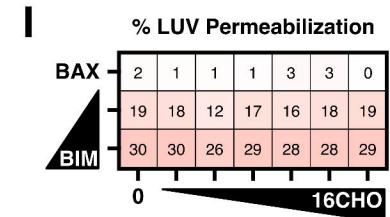
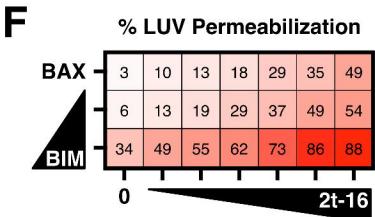
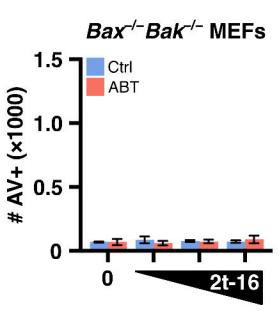
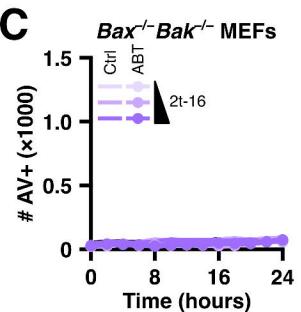
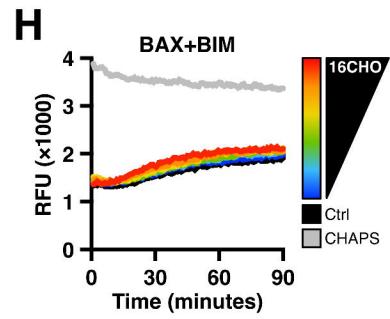
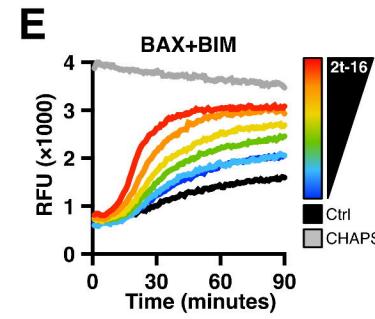
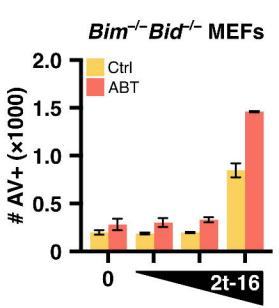
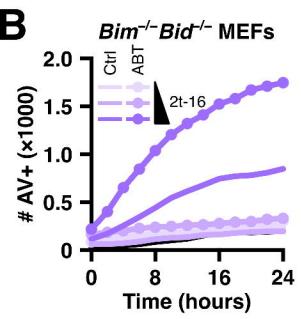
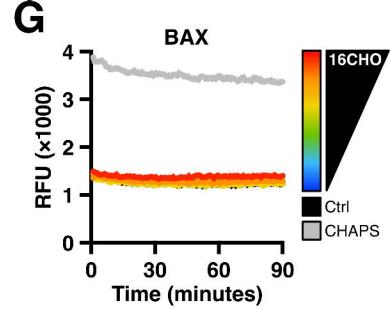
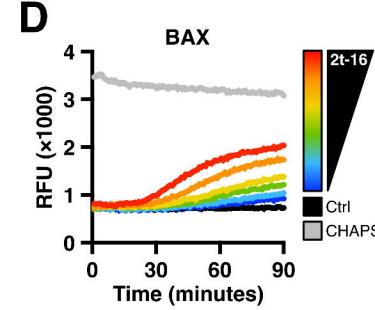
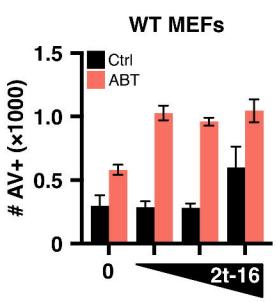
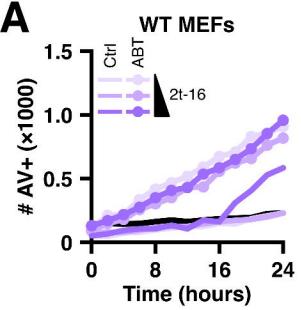
1322 **(A)** Left: BAX^{WT} (60 nM) was combined with a non-activating concentration of BIM-BH3 peptide
1323 (0.15 μ M) and 2t-16 (3 μ M), followed by BAK^{TAMRA} (50 nM), and subjected to FLAMBE. Right:
1324 Parameterized FLAMBE data in the absence or presence of BIM-BH3 (circle and square
1325 datapoints, respectively). Annotations report the magnitude of shift between data with and without
1326 BIM-BH3. The parameterized trendline for BAX^{WT} is included for comparison in Figure 7D.

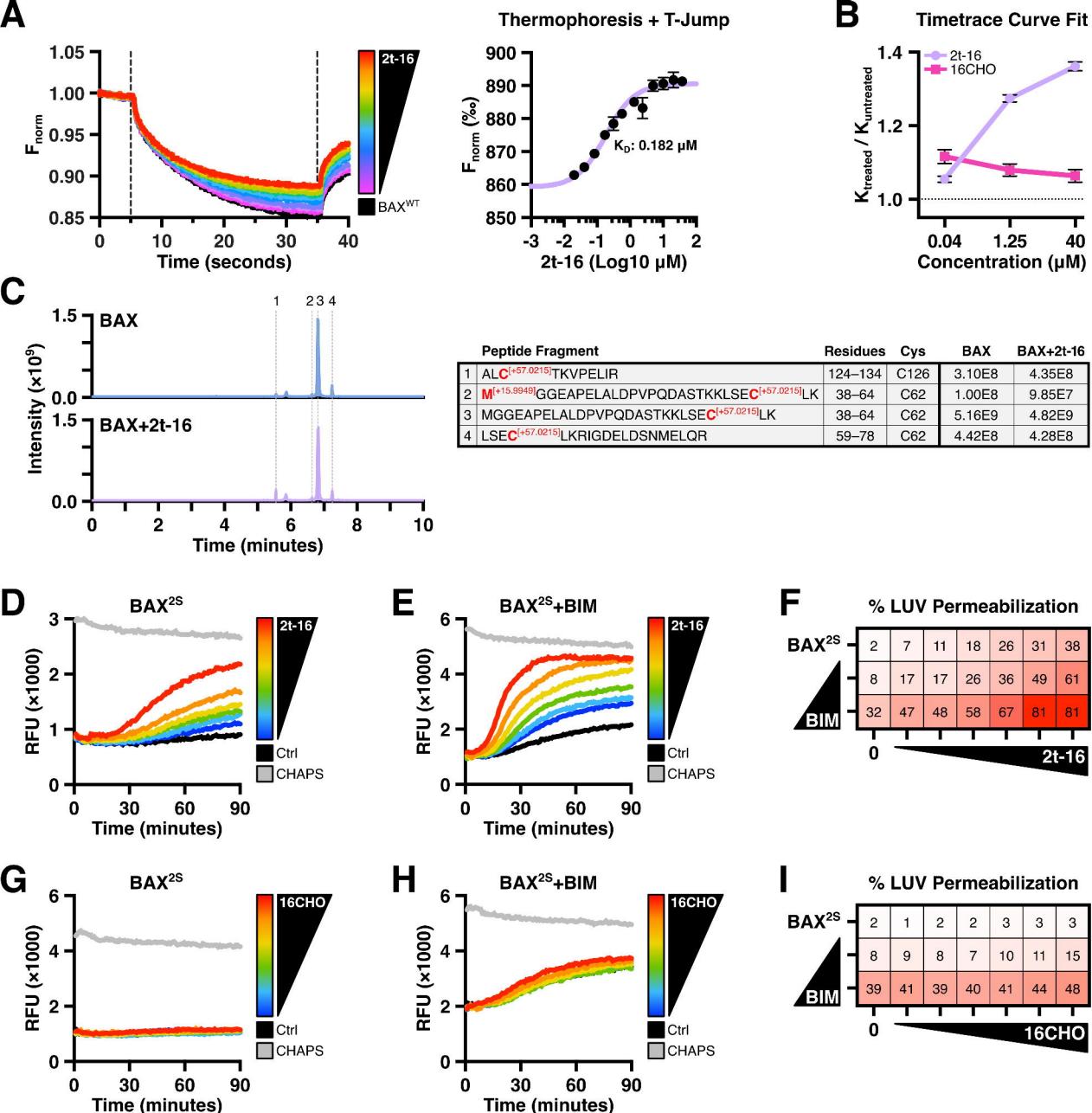
1327 **(B)** Data summarized by Figure 7F. LUVs permeabilized by WT or P168G BAX activated by
1328 BIM-BH3 (0.125–2 μ M).

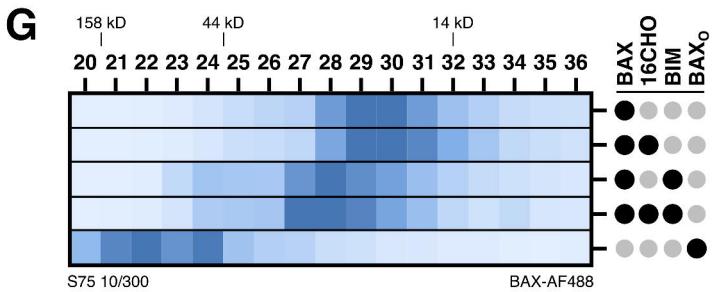
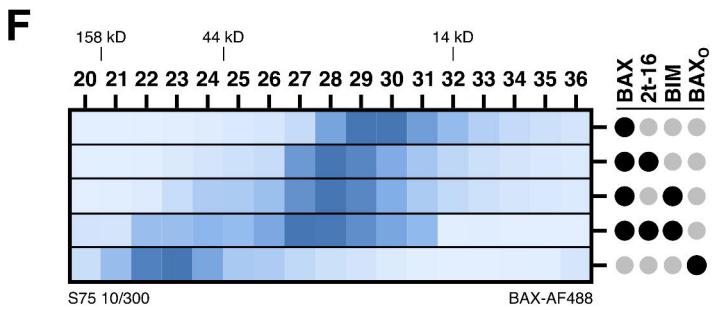
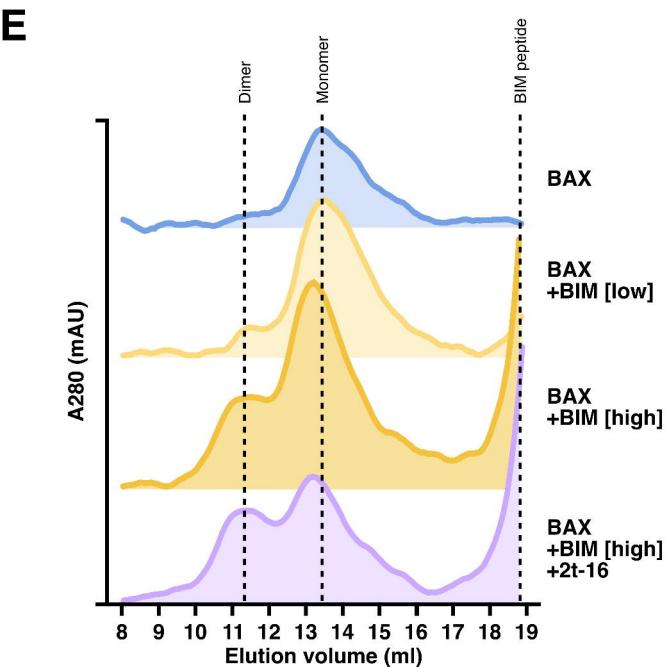
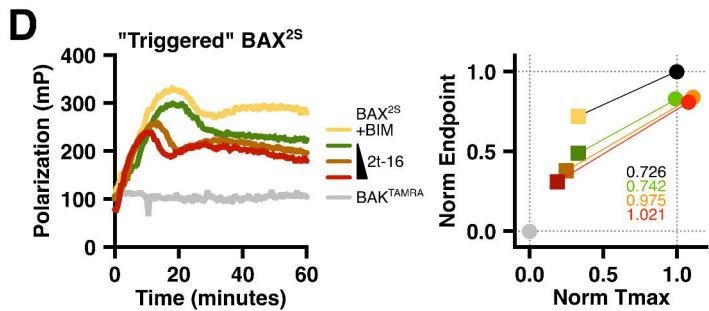
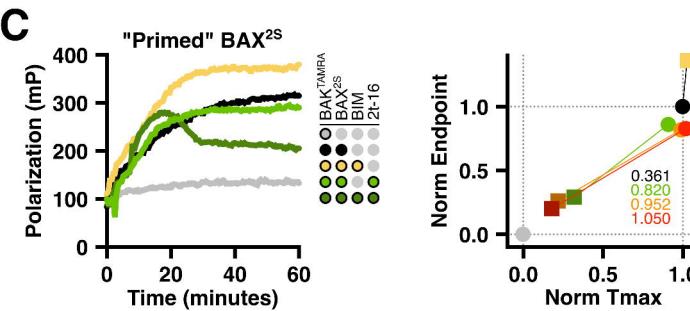
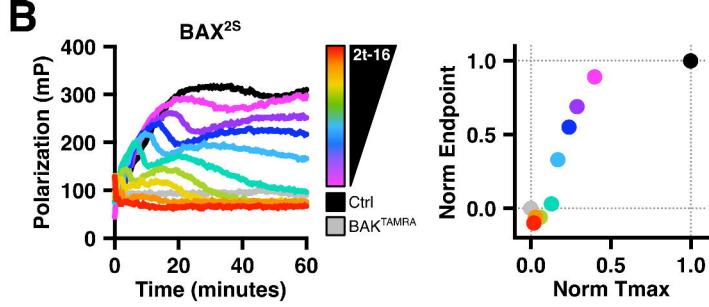
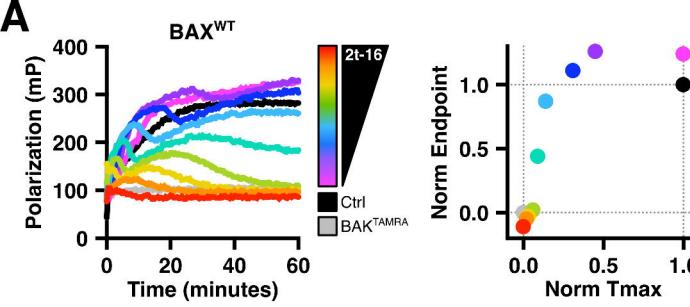
1329 **(C)** Data summarized by Figure 7G. LUVs permeabilized by BAX^{P168G} (100 nM) treated with 2t-16
1330 (6.5–50 μ M) \pm BIM-BH3 peptide (0.5, 2 μ M).

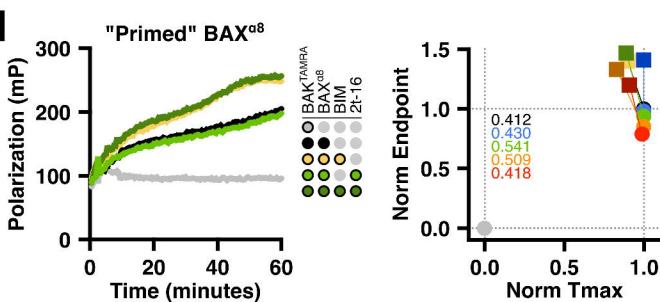
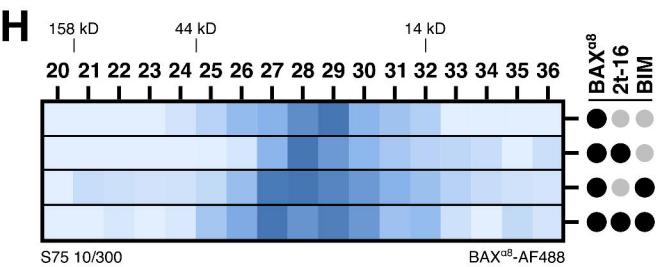
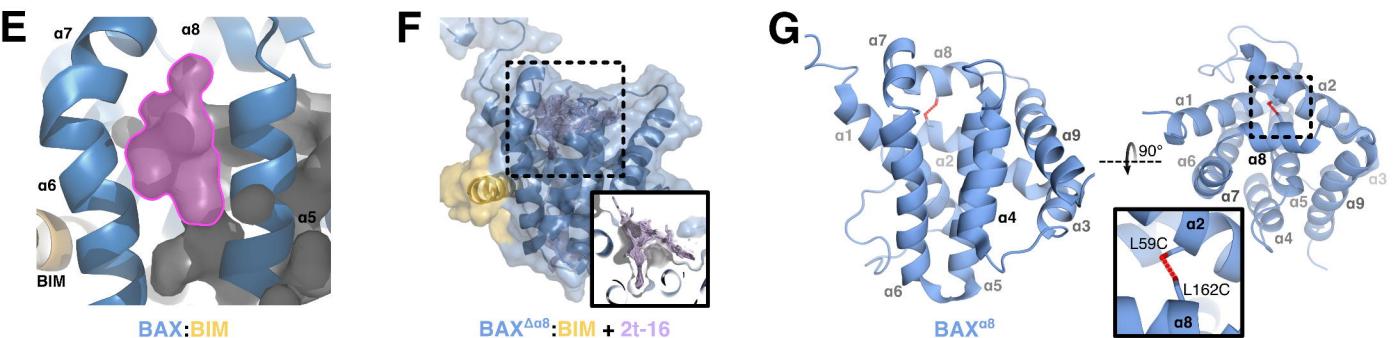
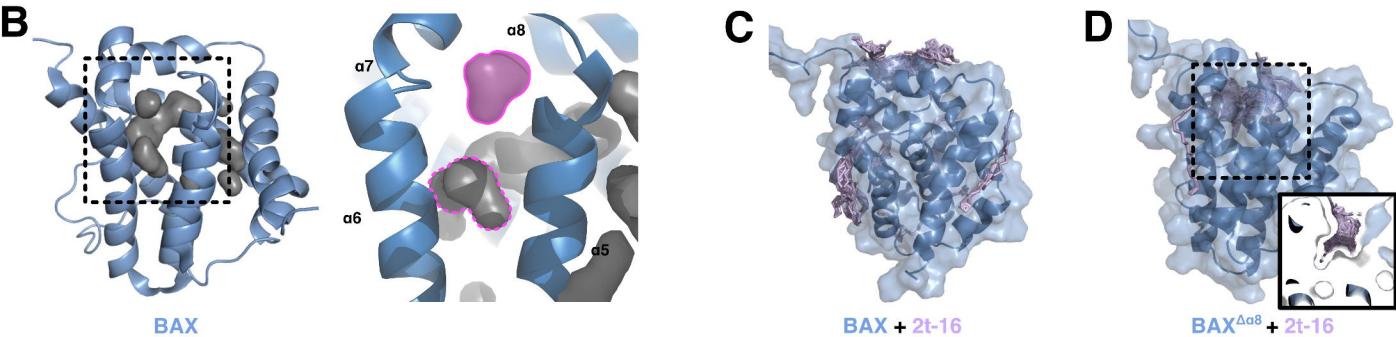
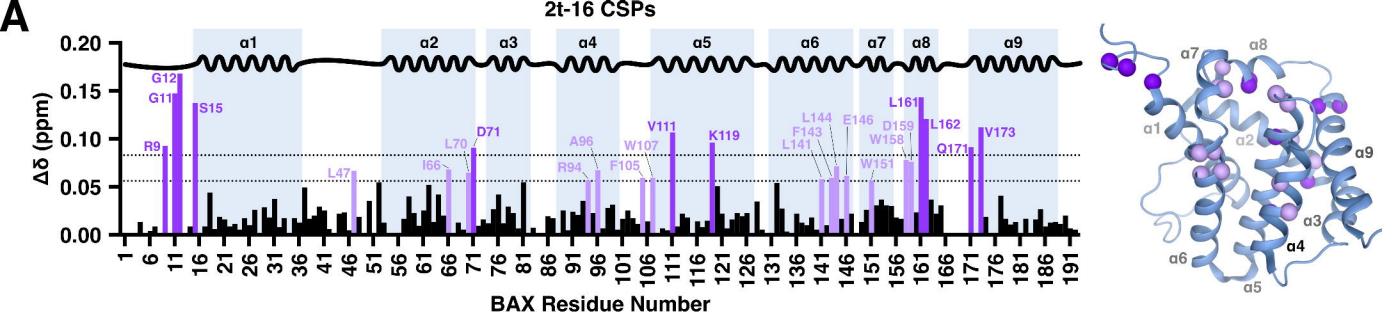
1331 **(D)** Western blot confirming expression of BAX protein in transduced *Bax*^{−/−}*Bak*^{−/−} MEFs.

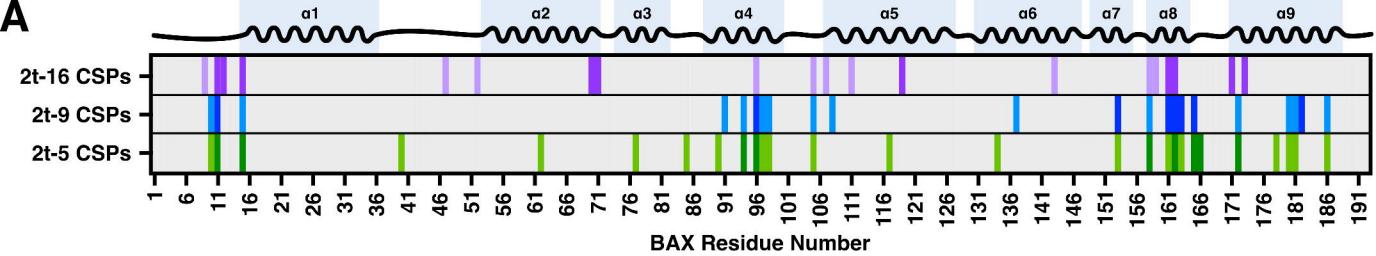
1332 **REFERENCES**

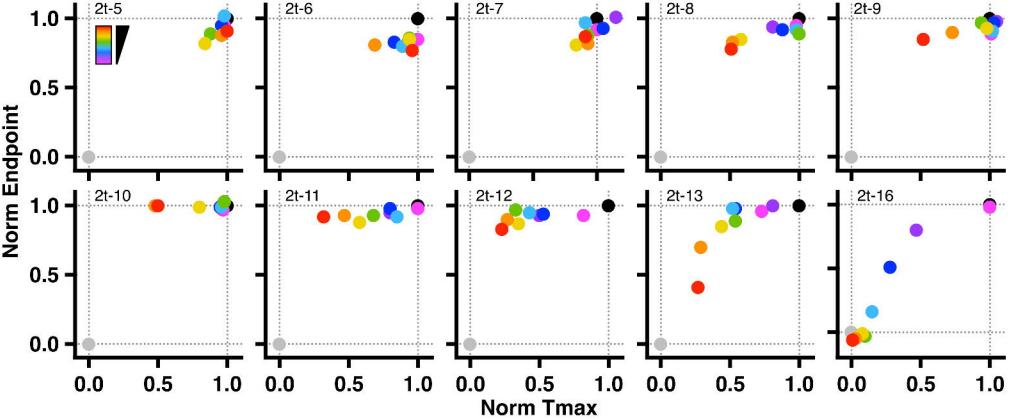












- 1333 1. Singh, R., Letai, A., and Sarosiek, K. (2019). Regulation of apoptosis in health and disease:
1334 the balancing act of BCL-2 family proteins. *Nat Rev Mol Cell Biol* *20*, 175-193.
1335 10.1038/s41580-018-0089-8.
- 1336 2. Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., and Martinou, J.C. (2000). Bax
1337 oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome
1338 c release from mitochondria. *Biochem J* *345 Pt 2*, 271-278.
- 1339 3. Kim, H., Tu, H.C., Ren, D., Takeuchi, O., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng,
1340 E.H. (2009). Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates
1341 mitochondrial apoptosis. *Mol Cell* *36*, 487-499. 10.1016/j.molcel.2009.09.030.
- 1342 4. Gavathiotis, E., Reyna, D.E., Davis, M.L., Bird, G.H., and Walensky, L.D. (2010). BH3-
1343 triggered structural reorganization drives the activation of proapoptotic BAX. *Mol Cell* *40*, 481-
1344 492. 10.1016/j.molcel.2010.10.019.
- 1345 5. Gahl, R.F., He, Y., Yu, S., and Tjandra, N. (2014). Conformational rearrangements in the pro-
1346 apoptotic protein, Bax, as it inserts into mitochondria: a cellular death switch. *J Biol Chem* *289*,
1347 32871-32882. 10.1074/jbc.M114.593897.
- 1348 6. Czabotar, P.E., Westphal, D., Dewson, G., Ma, S., Hockings, C., Fairlie, W.D., Lee, E.F., Yao,
1349 S., Robin, A.Y., Smith, B.J., et al. (2013). Bax crystal structures reveal how BH3 domains
1350 activate Bax and nucleate its oligomerization to induce apoptosis. *Cell* *152*, 519-531.
1351 10.1016/j.cell.2012.12.031.
- 1352 7. Bleicken, S., Jeschke, G., Stegmueller, C., Salvador-Gallego, R., Garcia-Saez, A.J., and
1353 Bordignon, E. (2014). Structural model of active Bax at the membrane. *Mol Cell* *56*, 496-505.
1354 10.1016/j.molcel.2014.09.022.
- 1355 8. Gelles, J.D., Mohammed, J.N., Chen, Y., Sebastian, T.M., and Chipuk, J.E. (2022). A kinetic
1356 fluorescence polarization ligand assay for monitoring BAX early activation. *Cell Rep Methods*
1357 *2*. 10.1016/j.crmeth.2022.100174.
- 1358 9. Kuwana, T., Mackey, M.R., Perkins, G., Ellisman, M.H., Latterich, M., Schneiter, R., Green,
1359 D.R., and Newmeyer, D.D. (2002). Bid, Bax, and lipids cooperate to form supramolecular
1360 openings in the outer mitochondrial membrane. *Cell* *111*, 331-342. 10.1016/s0092-
1361 8674(02)01036-x.
- 1362 10. Shamas-Din, A., Bindner, S., Chi, X., Leber, B., Andrews, D.W., and Fradin, C. (2015). Distinct
1363 lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax.
1364 *Biochem J* *467*, 495-505. 10.1042/BJ20141291.
- 1365 11. Vasquez-Montes, V., Rodnin, M.V., Kyrychenko, A., and Ladokhin, A.S. (2021). Lipids
1366 modulate the BH3-independent membrane targeting and activation of BAX and Bcl-xL. *Proc
1367 Natl Acad Sci U S A* *118*. 10.1073/pnas.2025834118.
- 1368 12. Dadsena, S., Cuevas Arenas, R., Vieira, G., Brodesser, S., Melo, M.N., and Garcia-Saez, A.J.
1369 (2024). Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. *Nat
1370 Commun* *15*, 4700. 10.1038/s41467-024-49067-6.
- 1371 13. Chipuk, J.E., Mohammed, J.N., Gelles, J.D., and Chen, Y. (2021). Mechanistic connections
1372 between mitochondrial biology and regulated cell death. *Dev Cell* *56*, 1221-1233.
1373 10.1016/j.devcel.2021.03.033.
- 1374 14. Tamura, Y., Kawano, S., and Endo, T. (2020). Lipid homeostasis in mitochondria. *Biol Chem*
1375 *401*, 821-833. 10.1515/hsz-2020-0121.
- 1376 15. Chipuk, J.E., McStay, G.P., Bharti, A., Kuwana, T., Clarke, C.J., Siskind, L.J., Obeid, L.M.,
1377 and Green, D.R. (2012). Sphingolipid metabolism cooperates with BAK and BAX to promote
1378 the mitochondrial pathway of apoptosis. *Cell* *148*, 988-1000. 10.1016/j.cell.2012.01.038.


- 1379 16. Nakahara, K., Ohkuni, A., Kitamura, T., Abe, K., Naganuma, T., Ohno, Y., Zoeller, R.A., and
1380 Kihara, A. (2012). The Sjogren-Larsson syndrome gene encodes a hexadecenal
1381 dehydrogenase of the sphingosine 1-phosphate degradation pathway. *Mol Cell* 46, 461-471.
1382 10.1016/j.molcel.2012.04.033.
- 1383 17. Manzanares-Estreder, S., Pascual-Ahuir, A., and Proft, M. (2017). Stress-Activated
1384 Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast. *Oxid
1385 Med Cell Longev* 2017, 2708345. 10.1155/2017/2708345.
- 1386 18. Renault, T.T., Floros, K.V., Elkholi, R., Corrigan, K.A., Kushnareva, Y., Wieder, S.Y., Lindtner,
1387 C., Serasinghe, M.N., Asciolla, J.J., Buettner, C., et al. (2015). Mitochondrial shape governs
1388 BAX-induced membrane permeabilization and apoptosis. *Mol Cell* 57, 69-82.
1389 10.1016/j.molcel.2014.10.028.
- 1390 19. Czabotar, P.E., and Garcia-Saez, A.J. (2023). Mechanisms of BCL-2 family proteins in
1391 mitochondrial apoptosis. *Nat Rev Mol Cell Biol* 24, 732-748. 10.1038/s41580-023-00629-4.
- 1392 20. Gelles, J.D., Mohammed, J.N., Santos, L.C., Legarda, D., Ting, A.T., and Chipuk, J.E. (2019).
1393 Single-Cell and Population-Level Analyses Using Real-Time Kinetic Labeling Couples
1394 Proliferation and Cell Death Mechanisms. *Dev Cell* 51, 277-291 e274.
1395 10.1016/j.devcel.2019.08.016.
- 1396 21. Kumar, A., Byun, H.S., Bittman, R., and Saba, J.D. (2011). The sphingolipid degradation
1397 product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-
1398 dependent manner. *Cell Signal* 23, 1144-1152. 10.1016/j.cellsig.2011.02.009.
- 1399 22. Upadhyaya, P., Kumar, A., Byun, H.S., Bittman, R., Saba, J.D., and Hecht, S.S. (2012). The
1400 sphingolipid degradation product trans-2-hexadecenal forms adducts with DNA. *Biochem
1401 Biophys Res Commun* 424, 18-21. 10.1016/j.bbrc.2012.06.012.
- 1402 23. Cohen, D.T., Wales, T.E., McHenry, M.W., Engen, J.R., and Walensky, L.D. (2020). Site-
1403 Dependent Cysteine Lipidation Potentiates the Activation of Proapoptotic BAX. *Cell Rep* 30,
1404 3229-3239 e3226. 10.1016/j.celrep.2020.02.057.
- 1405 24. Sarosiek, K.A., Chi, X., Bachman, J.A., Sims, J.J., Montero, J., Patel, L., Flanagan, A.,
1406 Andrews, D.W., Sorger, P., and Letai, A. (2013). BID preferentially activates BAK while BIM
1407 preferentially activates BAX, affecting chemotherapy response. *Mol Cell* 51, 751-765.
1408 10.1016/j.molcel.2013.08.048.
- 1409 25. Schumacher, F., Neuber, C., Finke, H., Nieschhalke, K., Baesler, J., Gulbins, E., and Kleuser,
1410 B. (2017). The sphingosine 1-phosphate breakdown product, (2E)-hexadecenal, forms protein
1411 adducts and glutathione conjugates in vitro. *J Lipid Res* 58, 1648-1660. 10.1194/jlr.M076562.
- 1412 26. Jarugumilli, G.K., Choi, J.R., Chan, P., Yu, M., Sun, Y., Chen, B., Niu, J., DeRan, M., Zheng,
1413 B., Zoeller, R., et al. (2018). Chemical Probe to Identify the Cellular Targets of the Reactive
1414 Lipid Metabolite 2- trans-Hexadecenal. *ACS Chem Biol* 13, 1130-1136.
1415 10.1021/acschembio.7b01063.
- 1416 27. Sung, T.C., Li, C.Y., Lai, Y.C., Hung, C.L., Shih, O., Yeh, Y.Q., Jeng, U.S., and Chiang, Y.W.
1417 (2015). Solution Structure of Apoptotic BAX Oligomer: Oligomerization Likely Precedes
1418 Membrane Insertion. *Structure* 23, 1878-1888. 10.1016/j.str.2015.07.013.
- 1419 28. Jhong, S.R., Li, C.Y., Sung, T.C., Lan, Y.J., Chang, K.J., and Chiang, Y.W. (2016). Evidence
1420 for an Induced-Fit Process Underlying the Activation of Apoptotic BAX by an Intrinsically
1421 Disordered BimBH3 Peptide. *J Phys Chem B* 120, 2751-2760. 10.1021/acs.jpcb.6b00909.
- 1422 29. Hauseman, Z.J., Harvey, E.P., Newman, C.E., Wales, T.E., Bucci, J.C., Mintseris, J.,
1423 Scheweppe, D.K., David, L., Fan, L., Cohen, D.T., et al. (2020). Homogeneous Oligomers of
1424 Pro-apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane
1425 Permeabilization. *Mol Cell* 79, 68-83 e67. 10.1016/j.molcel.2020.05.029.

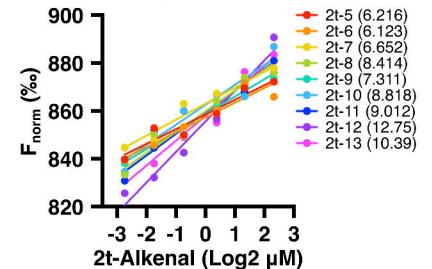







- 1426 30. Gavathiotis, E., Suzuki, M., Davis, M.L., Pitter, K., Bird, G.H., Katz, S.G., Tu, H.C., Kim, H.,
1427 Cheng, E.H., Tjandra, N., and Walensky, L.D. (2008). BAX activation is initiated at a novel
1428 interaction site. *Nature* **455**, 1076-1081. 10.1038/nature07396.
- 1429 31. Leshchiner, E.S., Braun, C.R., Bird, G.H., and Walensky, L.D. (2013). Direct activation of full-
1430 length proapoptotic BAK. *Proc Natl Acad Sci U S A* **110**, E986-995.
1431 10.1073/pnas.1214313110.
- 1432 32. Reyna, D.E., Garner, T.P., Lopez, A., Kopp, F., Choudhary, G.S., Sridharan, A., Narayananagari,
1433 S.R., Mitchell, K., Dong, B., Bartholdy, B.A., et al. (2017). Direct Activation of BAX by BTSA1
1434 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia. *Cancer Cell* **32**, 490-505 e410.
1435 10.1016/j.ccr.2017.09.001.
- 1436 33. Pritz, J.R., Wachter, F., Lee, S., Luccarelli, J., Wales, T.E., Cohen, D.T., Coote, P., Heffron,
1437 G.J., Engen, J.R., Massefski, W., and Walensky, L.D. (2017). Allosteric sensitization of
1438 proapoptotic BAX. *Nat Chem Biol* **13**, 961-967. 10.1038/nchembio.2433.
- 1439 34. Garner, T.P., Amgalan, D., Reyna, D.E., Li, S., Kitsis, R.N., and Gavathiotis, E. (2019). Small-
1440 molecule allosteric inhibitors of BAX. *Nat Chem Biol* **15**, 322-330. 10.1038/s41589-018-0223-
1441 0.
- 1442 35. Subburaj, Y., Cosentino, K., Axmann, M., Pedrueza-Villalmanzo, E., Hermann, E., Bleicken,
1443 S., Spatz, J., and Garcia-Saez, A.J. (2015). Bax monomers form dimer units in the membrane
1444 that further self-assemble into multiple oligomeric species. *Nat Commun* **6**, 8042.
1445 10.1038/ncomms9042.
- 1446 36. Bloch, N.B., Wales, T.E., Prew, M.S., Levy, H.R., Engen, J.R., and Walensky, L.D. (2021).
1447 The conformational stability of pro-apoptotic BAX is dictated by discrete residues of the protein
1448 core. *Nat Commun* **12**, 4932. 10.1038/s41467-021-25200-7.
- 1449 37. Robin, A.Y., Iyer, S., Birkinshaw, R.W., Sandow, J., Wardak, A., Luo, C.S., Shi, M., Webb,
1450 A.I., Czabotar, P.E., Kluck, R.M., and Colman, P.M. (2018). Ensemble Properties of Bax
1451 Determine Its Function. *Structure* **26**, 1346-1359 e1345. 10.1016/j.str.2018.07.006.
- 1452 38. Schinzel, A., Kaufmann, T., Schuler, M., Martinalbo, J., Grubb, D., and Borner, C. (2004).
1453 Conformational control of Bax localization and apoptotic activity by Pro168. *J Cell Biol* **164**,
1454 1021-1032. 10.1083/jcb.200309013.
- 1455 39. Moujalled, D.M., Brown, F.C., Chua, C.C., Dengler, M.A., Pomilio, G., Anstee, N.S., Litalien,
1456 V., Thompson, E., Morley, T., MacRaild, S., et al. (2023). Acquired mutations in BAX confer
1457 resistance to BH3-mimetic therapy in acute myeloid leukemia. *Blood* **141**, 634-644.
1458 10.1182/blood.2022016090.
- 1459 40. Khatun, J., Gelles, J.D., and Chipuk, J.E. (2024). Dynamic death decisions: How mitochondrial
1460 dynamics shape cellular commitment to apoptosis and ferroptosis. *Dev Cell* **59**, 2549-2565.
1461 10.1016/j.devcel.2024.09.004.
- 1462 41. Hsu, Y.T., and Youle, R.J. (1997). Nonionic detergents induce dimerization among members
1463 of the Bcl-2 family. *J Biol Chem* **272**, 13829-13834. 10.1074/jbc.272.21.13829.
- 1464 42. McHenry, M.W., Shi, P., Camara, C.M., Cohen, D.T., Rettenmaier, T.J., Adhikary, U., Gygi,
1465 M.A., Yang, K., Gygi, S.P., Wales, T.E., et al. (2024). Covalent inhibition of pro-apoptotic BAX.
1466 *Nat Chem Biol*. 10.1038/s41589-023-01537-6.
- 1467 43. Rizzo, W.B., S'Aulis, D., Dorwart, E., and Bailey, Z. (2022). Sjogren-Larsson syndrome: A
1468 biochemical rationale for using aldehyde-reactive therapeutic agents. *Mol Genet Metab Rep*
1469 **30**, 100839. 10.1016/j.ymgmr.2021.100839.
- 1470 44. Neuber, C., Schumacher, F., Gulbins, E., and Kleuser, B. (2014). Method to simultaneously
1471 determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty
1472 acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight
1473 mass spectrometry. *Anal Chem* **86**, 9065-9073. 10.1021/ac501677y.






- 1474 45. Chan, K., Poon, R., and O'Brien, P.J. (2008). Application of structure-activity relationships to
1475 investigate the molecular mechanisms of hepatocyte toxicity and electrophilic reactivity of
1476 alpha,beta-unsaturated aldehydes. *J Appl Toxicol* 28, 1027-1039. 10.1002/jat.1369.
- 1477 46. LoPachin, R.M., and Gavin, T. (2014). Molecular mechanisms of aldehyde toxicity: a chemical
1478 perspective. *Chem Res Toxicol* 27, 1081-1091. 10.1021/tx5001046.
- 1479 47. Edlich, F., Banerjee, S., Suzuki, M., Cleland, M.M., Arnoult, D., Wang, C., Neutzner, A.,
1480 Tjandra, N., and Youle, R.J. (2011). Bcl-x(L) retrotranslocates Bax from the mitochondria into
1481 the cytosol. *Cell* 145, 104-116. 10.1016/j.cell.2011.02.034.
- 1482 48. Todt, F., Cakir, Z., Reichenbach, F., Youle, R.J., and Edlich, F. (2013). The C-terminal helix
1483 of Bcl-x(L) mediates Bax retrotranslocation from the mitochondria. *Cell Death Differ* 20, 333-
1484 342. 10.1038/cdd.2012.131.
- 1485 49. Suzuki, M., Youle, R.J., and Tjandra, N. (2000). Structure of Bax: coregulation of dimer
1486 formation and intracellular localization. *Cell* 103, 645-654. 10.1016/s0092-8674(00)00167-7.
- 1487 50. Dewson, G., Ma, S., Frederick, P., Hockings, C., Tan, I., Kratina, T., and Kluck, R.M. (2012).
1488 Bax dimerizes via a symmetric BH3:groove interface during apoptosis. *Cell Death Differ* 19,
1489 661-670. 10.1038/cdd.2011.138.
- 1490 51. Keller, M.A., Zander, U., Fuchs, J.E., Kreutz, C., Watschinger, K., Mueller, T., Golderer, G.,
1491 Liedl, K.R., Ralser, M., Krautler, B., et al. (2014). A gatekeeper helix determines the substrate
1492 specificity of Sjogren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase. *Nat
1493 Commun* 5, 4439. 10.1038/ncomms5439.
- 1494 52. Eriksson, A.E., Baase, W.A., Zhang, X.J., Heinz, D.W., Blaber, M., Baldwin, E.P., and
1495 Matthews, B.W. (1992). Response of a protein structure to cavity-creating mutations and its
1496 relation to the hydrophobic effect. *Science* 255, 178-183. 10.1126/science.1553543.
- 1497 53. Xue, M., Wakamoto, T., Kejberg, C., Yoshimura, Y., Nielsen, T.A., Risør, M.W., Sanggaard,
1498 K.W., Kitahara, R., and Mulder, F.A.A. (2019). How internal cavities destabilize a protein. *Proc
1499 Natl Acad Sci U S A* 116, 21031-21036. 10.1073/pnas.1911181116.
- 1500 54. Adamek, D.H., Guerrero, L., Blaber, M., and Caspar, D.L. (2005). Structural and energetic
1501 consequences of mutations in a solvated hydrophobic cavity. *J Mol Biol* 346, 307-318.
1502 10.1016/j.jmb.2004.11.046.
- 1503 55. Saito, M., Kono, H., Morii, H., Uedaira, H., Tahirov, T.H., Ogata, K., and Sarai, A. (2000).
1504 Cavity-filling mutations enhance protein stability by lowering the free energy of native state. *J
1505 Phys Chem B* 104, 3705-3711. DOI 10.1021/jp991717f.
- 1506 56. Robin, A.Y., Krishna Kumar, K., Westphal, D., Wardak, A.Z., Thompson, G.V., Dewson, G.,
1507 Colman, P.M., and Czabotar, P.E. (2015). Crystal structure of Bax bound to the BH3 peptide
1508 of Bim identifies important contacts for interaction. *Cell Death Dis* 6, e1809.
1509 10.1038/cddis.2015.141.
- 1510 57. George, N.M., Evans, J.J., and Luo, X. (2007). A three-helix homo-oligomerization domain
1511 containing BH3 and BH1 is responsible for the apoptotic activity of Bax. *Genes Dev* 21, 1937-
1512 1948. 10.1101/gad.1553607.
- 1513 58. Liu, X., Dai, S., Zhu, Y., Marrack, P., and Kappler, J.W. (2003). The structure of a Bcl-xL/Bim
1514 fragment complex: implications for Bim function. *Immunity* 19, 341-352. 10.1016/s1074-
1515 7613(03)00234-6.
- 1516 59. Cowan, A.D., Smith, N.A., Sandow, J.J., Kapp, E.A., Rustam, Y.H., Murphy, J.M., Brouwer,
1517 J.M., Bernardini, J.P., Roy, M.J., Wardak, A.Z., et al. (2020). BAK core dimers bind lipids and
1518 can be bridged by them. *Nat Struct Mol Biol* 27, 1024-1031. 10.1038/s41594-020-0494-5.
- 1519 60. Miller, M.S., Cowan, A.D., Brouwer, J.M., Smyth, S.T., Peng, L., Wardak, A.Z., Uren, R.T.,
1520 Luo, C., Roy, M.J., Shah, S., et al. (2024). Sequence differences between BAX and BAK core
1521 domains manifest as differences in their interactions with lipids. *FEBS J* 291, 2335-2353.
1522 10.1111/febs.17031.

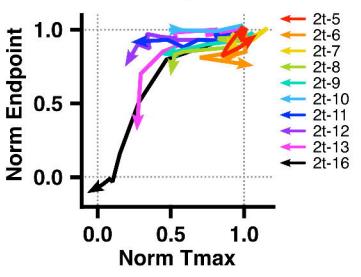

- 1523 61. Chen, Y., Gelles, J.D., Mohammed, J.N., and Chipuk, J.E. (2023). An optimized protocol for
1524 expression and purification of monomeric full-length BAX protein for functional interrogations.
1525 *Front Cell Dev Biol* 11, 1322816. 10.3389/fcell.2023.1322816.
- 1526 62. Logue, S.E., Elgendi, M., and Martin, S.J. (2009). Expression, purification and use of
1527 recombinant annexin V for the detection of apoptotic cells. *Nat Protoc* 4, 1383-1395.
1528 10.1038/nprot.2009.143.
- 1529 63. Gelles, J.D., and Chipuk, J.E. (2016). Robust high-throughput kinetic analysis of apoptosis
1530 with real-time high-content live-cell imaging. *Cell Death Dis* 7, e2493. 10.1038/cddis.2016.332.
- 1531 64. Gelles, J.D., and Chipuk, J.E. (2020). High-Throughput Cell Death Assays with Single-Cell
1532 and Population-Level Analyses Using Real-Time Kinetic Labeling (SPARKL). *STAR Protoc* 1.
1533 10.1016/j.xpro.2020.100034.
- 1534 65. Asciolla, J.J., Renault, T.T., and Chipuk, J.E. (2012). Examining BCL-2 family function with
1535 large unilamellar vesicles. *J Vis Exp*. 10.3791/4291.
- 1536 66. Kong, A.T., Leprevost, F.V., Avtonomov, D.M., Mellacheruvu, D., and Nesvizhskii, A.I. (2017).
1537 MSFagger: ultrafast and comprehensive peptide identification in mass spectrometry-based
1538 proteomics. *Nature methods* 14, 513-520.
- 1539 67. Geiszler, D.J., Kong, A.T., Avtonomov, D.M., Yu, F., da Veiga Leprevost, F., and Nesvizhskii,
1540 A.I. (2021). PTM-Shepherd: analysis and summarization of post-translational and chemical
1541 modifications from open search results. *Molecular & Cellular Proteomics* 20.
- 1542 68. Yu, F., Haynes, S.E., and Nesvizhskii, A.I. (2021). IonQuant enables accurate and sensitive
1543 label-free quantification with FDR-controlled match-between-runs. *Molecular & Cellular
1544 Proteomics* 20.
- 1545 69. Li, K., Vaudel, M., Zhang, B., Ren, Y., and Wen, B. (2019). PDV: an integrative proteomics
1546 data viewer. *Bioinformatics* 35, 1249-1251. 10.1093/bioinformatics/bty770.
- 1547 70. Mohammed, J.N., Gelles, J.D., and Chipuk, J.E. (2022). FLAMBE: A kinetic fluorescence
1548 polarization assay to study activation of monomeric BAX. *STAR Protoc* 3, 101252.
1549 10.1016/j.xpro.2022.101252.
- 1550 71. Zhang, H., Nimmer, P., Rosenberg, S.H., Ng, S.C., and Joseph, M. (2002). Development of a
1551 high-throughput fluorescence polarization assay for Bcl-x(L). *Anal Biochem* 307, 70-75.
1552 10.1016/s0003-2697(02)00028-3.
- 1553 72. Masse, J.E., and Keller, R. (2005). AutoLink: automated sequential resonance assignment of
1554 biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. *J
1555 Magn Reson* 174, 133-151. 10.1016/j.jmr.2005.01.017.
- 1556 73. Grosdidier, A., Zoete, V., and Michelin, O. (2011). Fast docking using the CHARMM force
1557 field with EADock DSS. *J Comput Chem* 32, 2149-2159. 10.1002/jcc.21797.
- 1558 74. Grosdidier, A., Zoete, V., and Michelin, O. (2011). SwissDock, a protein-small molecule
1559 docking web service based on EADock DSS. *Nucleic Acids Res* 39, W270-277.
1560 10.1093/nar/gkr366.



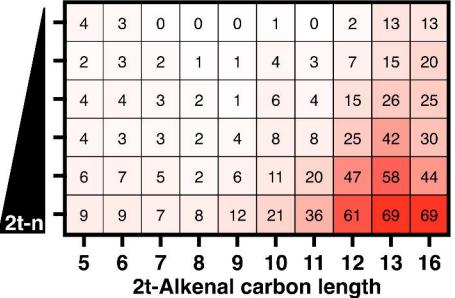
B % of poses in funnel

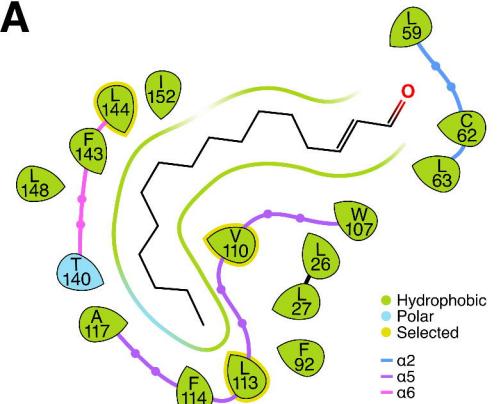
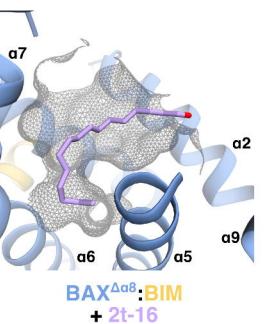
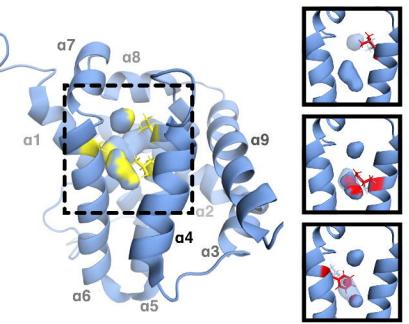

	BAX	$BAX^{\Delta\alpha}$
2t-5	18.8	59.4
2t-6	28.1	73.0
2t-7	19.5	73.8
2t-8	31.3	84.4
2t-9	42.9	90.0
2t-10	31.3	97.7
2t-11	40.2	93.0
2t-12	46.5	96.9
2t-13	50.0	91.4
2t-14	50.0	96.9
2t-15	56.3	96.9
2t-16	59.4	97.3
S1P	31.3	75.0

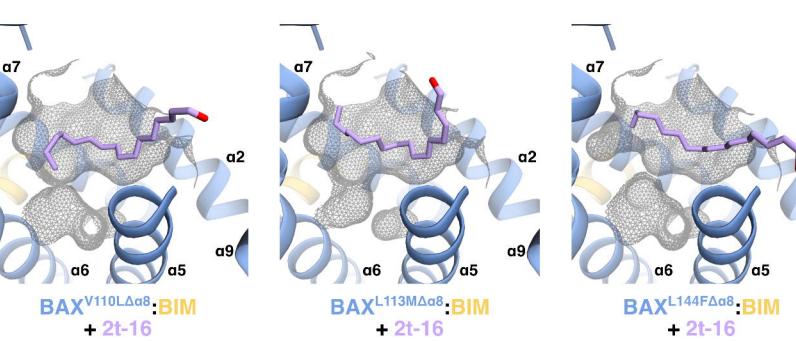
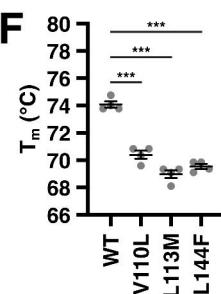
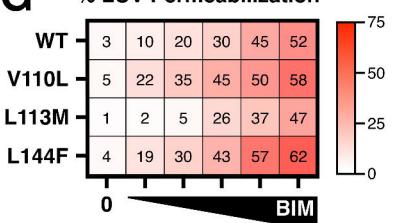
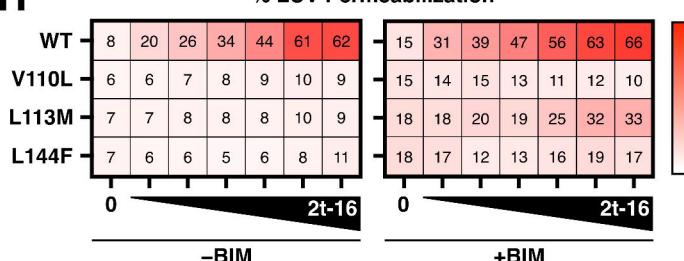
D

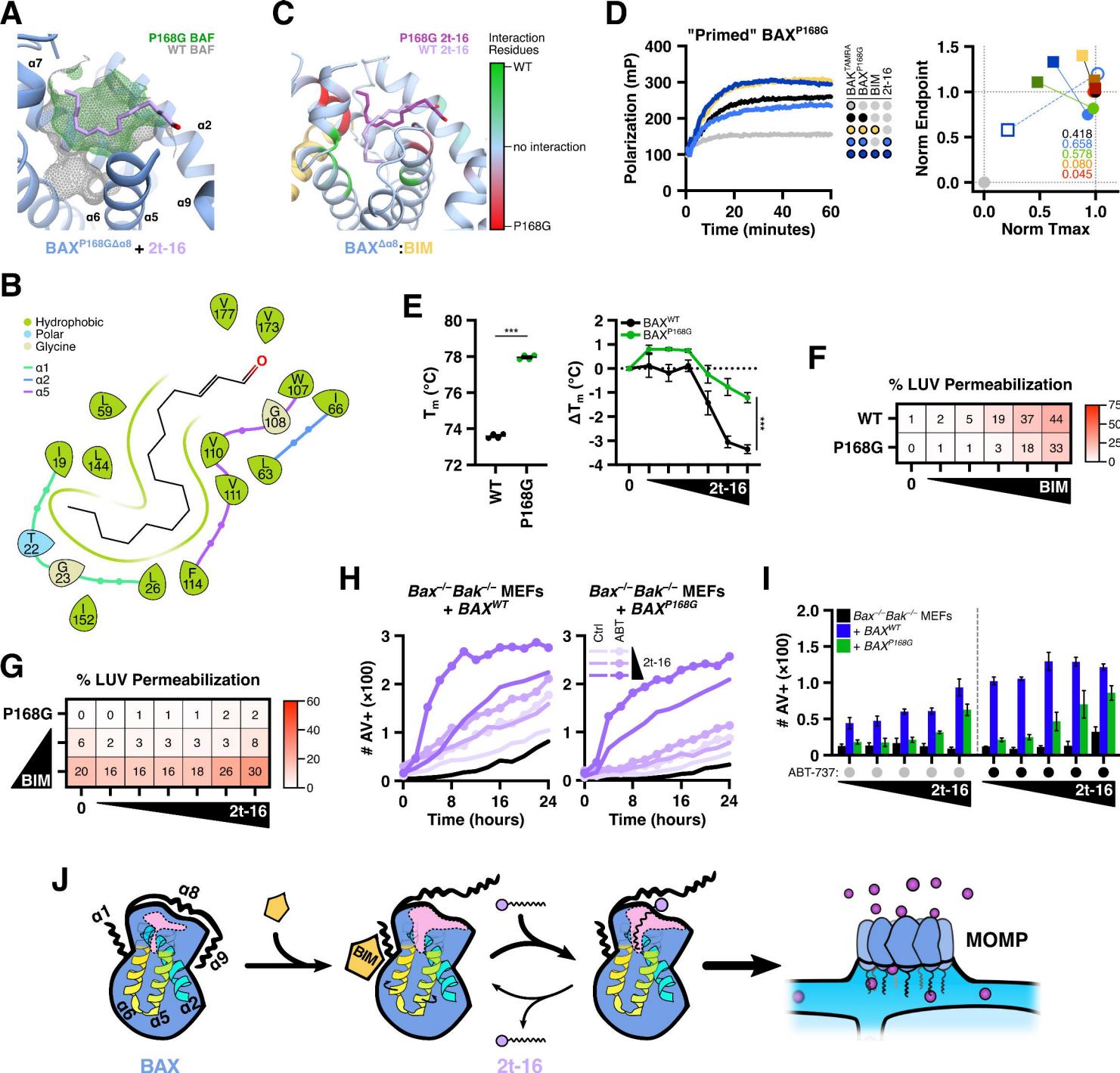

Parameterized FLAMBE analysis

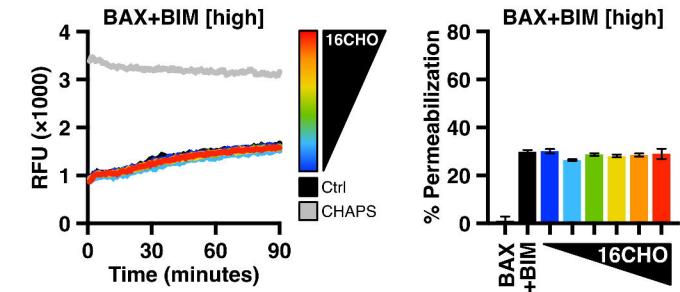
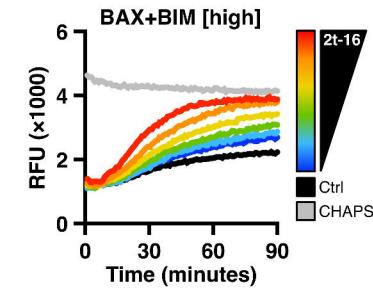
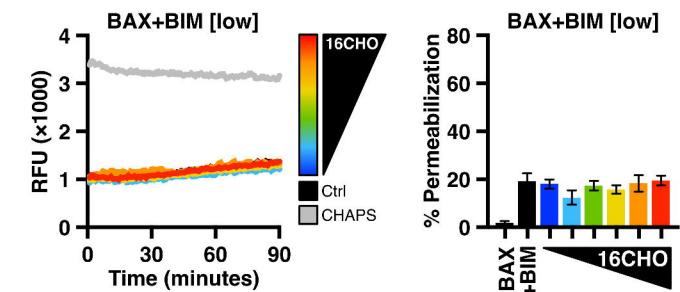
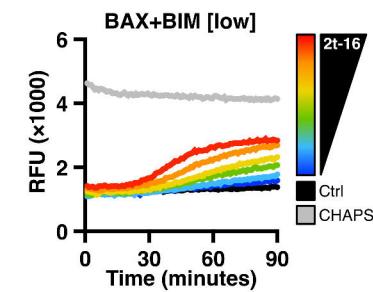
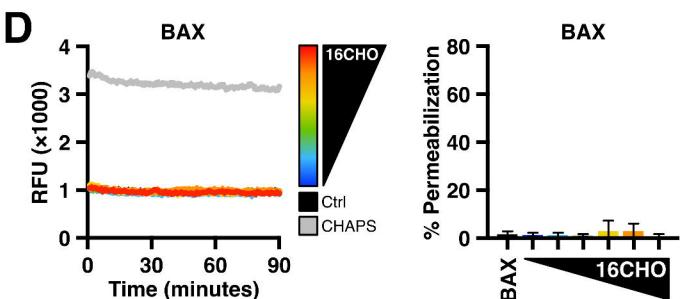
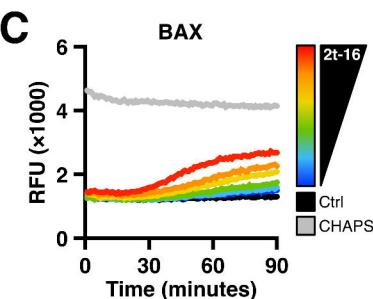
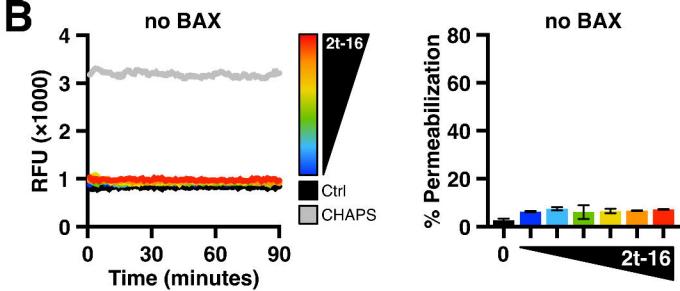
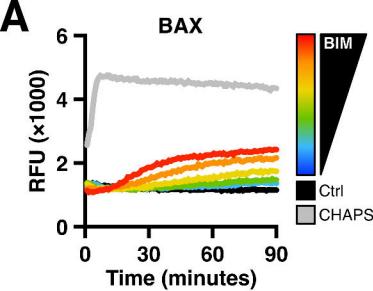
C Thermophoresis Slope

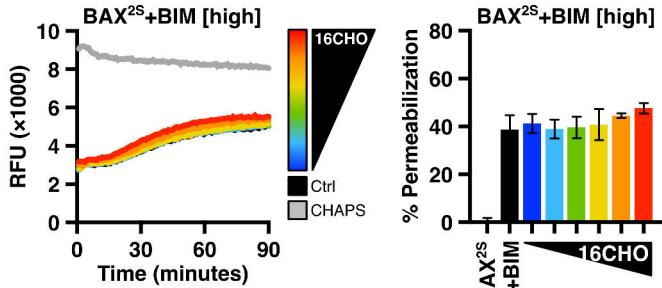
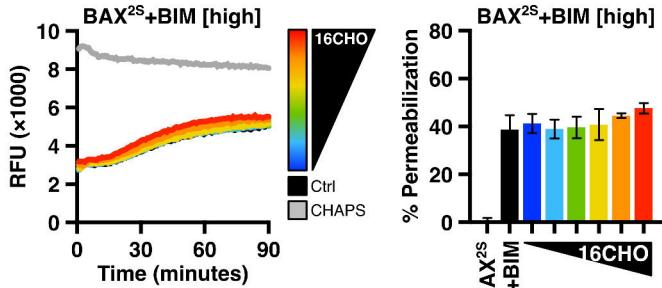
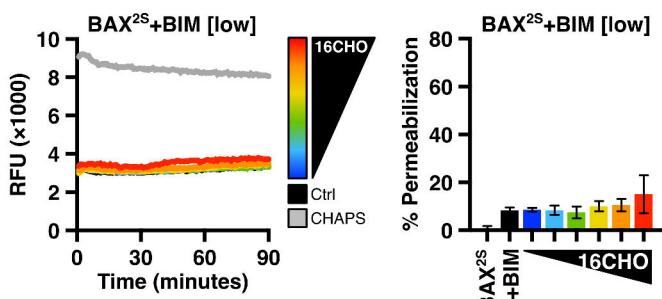
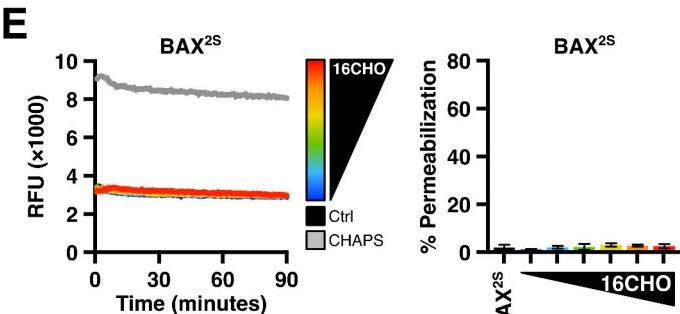
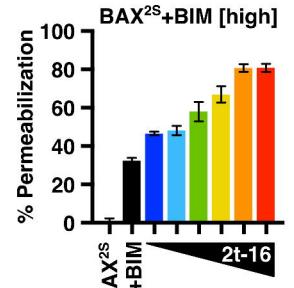
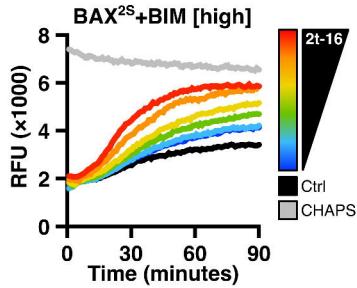
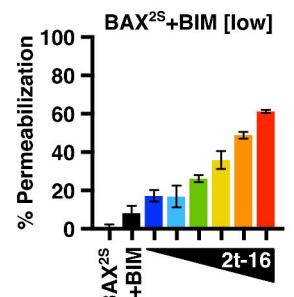
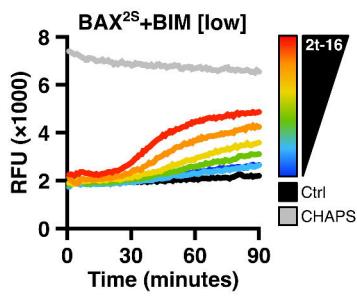
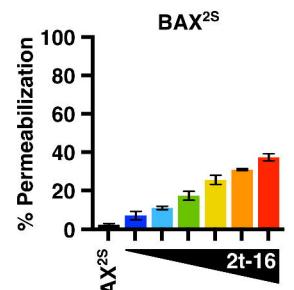
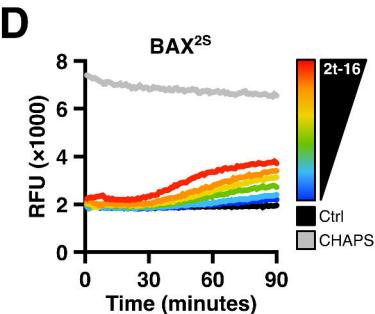
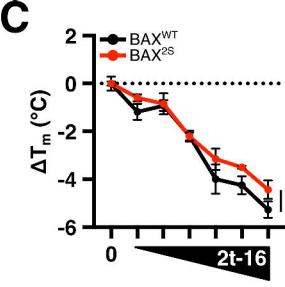
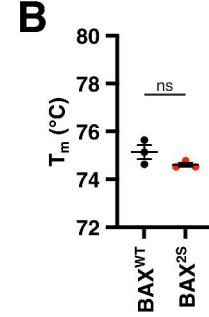
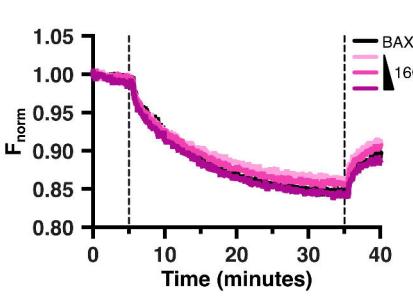
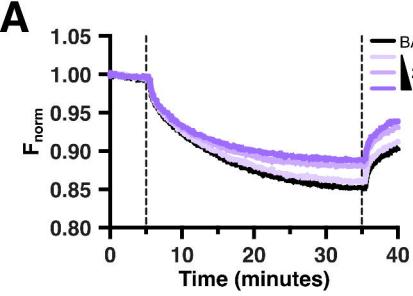


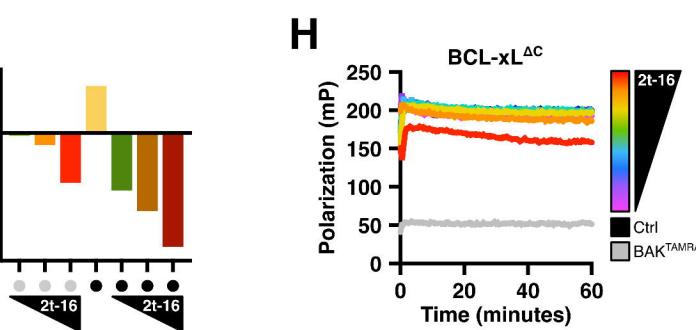
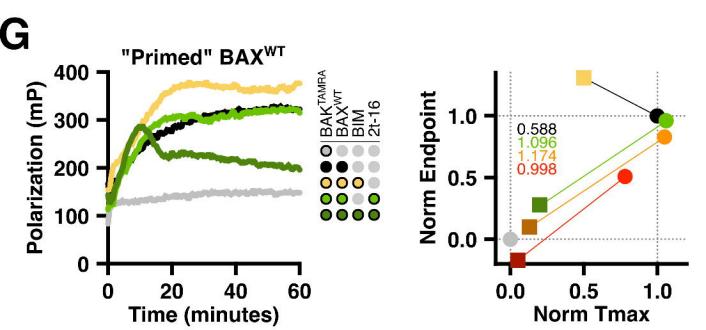
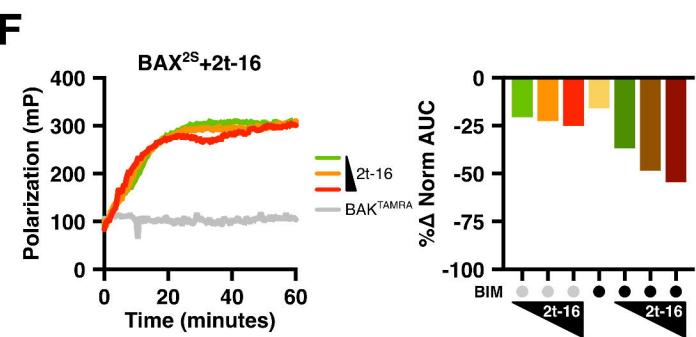
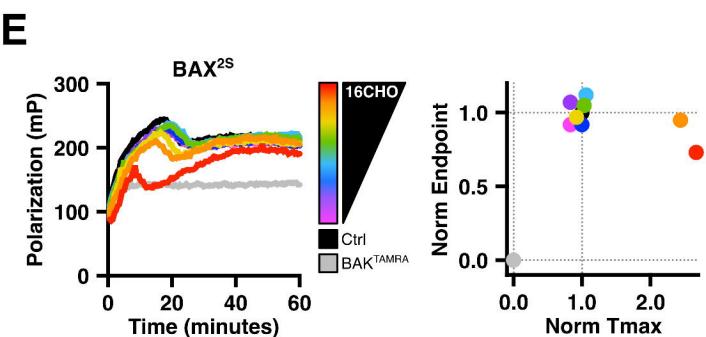
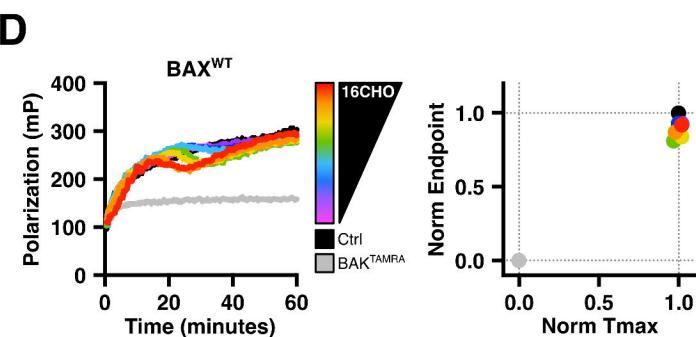
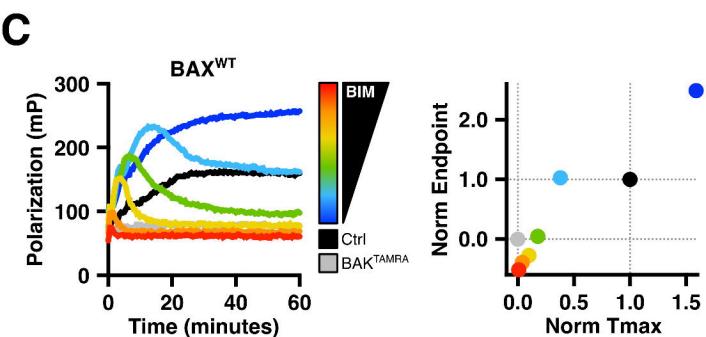
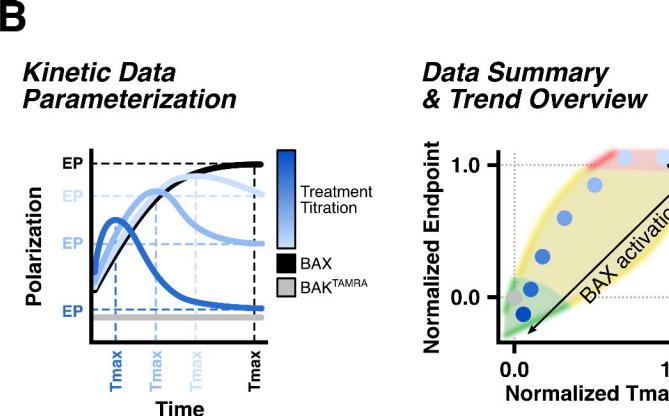
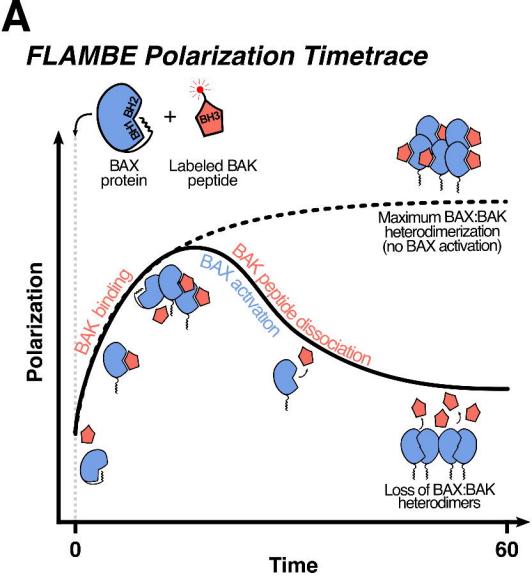



E FLAMBE Comparison

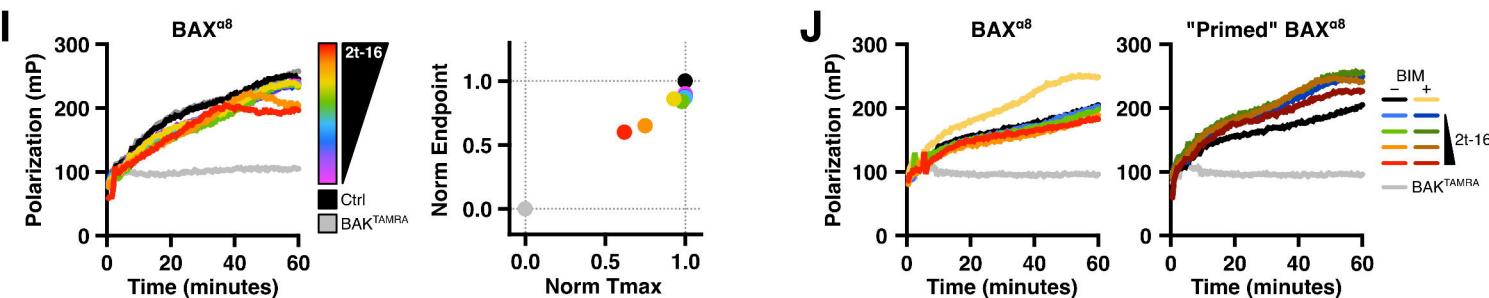
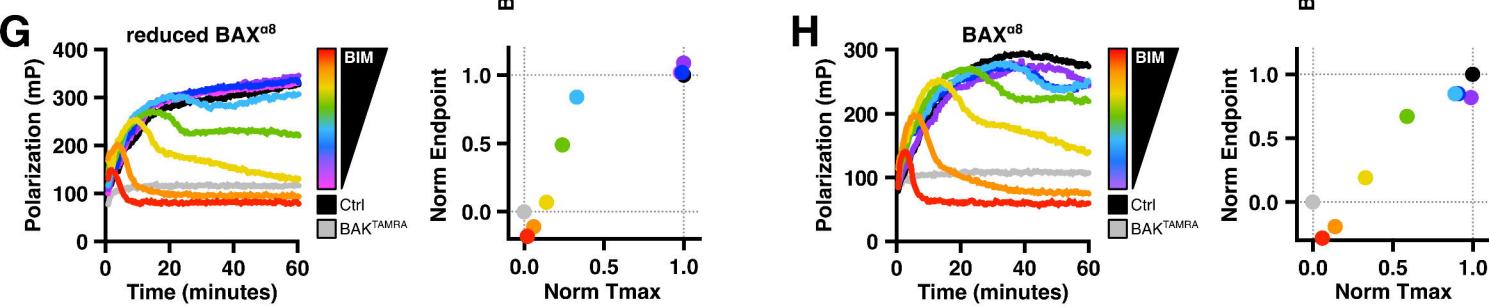
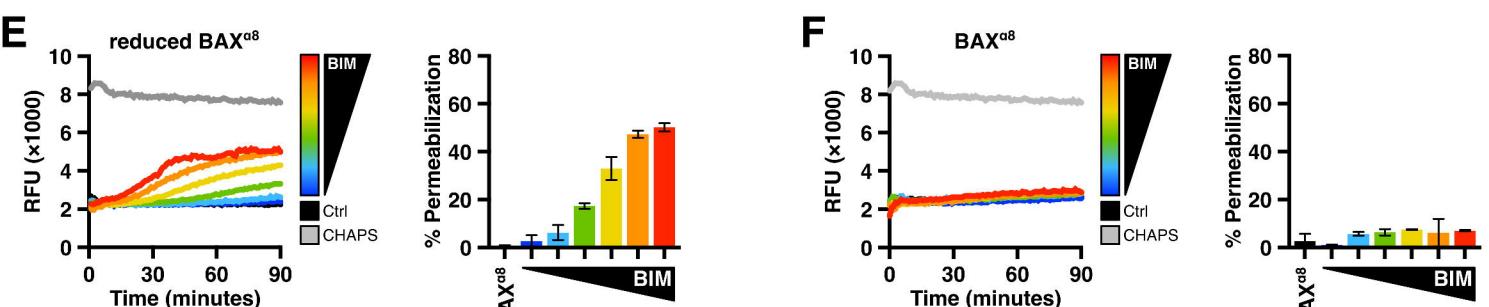
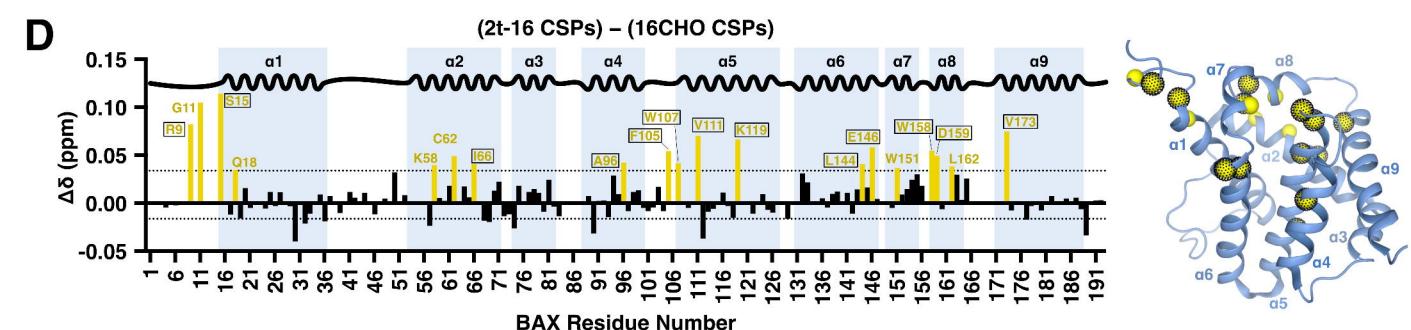
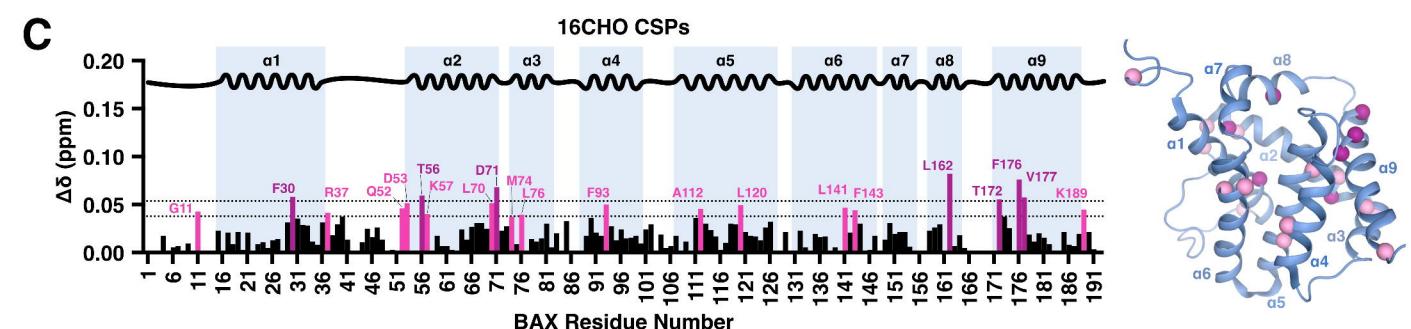
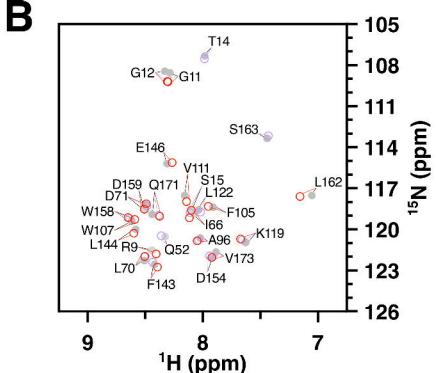
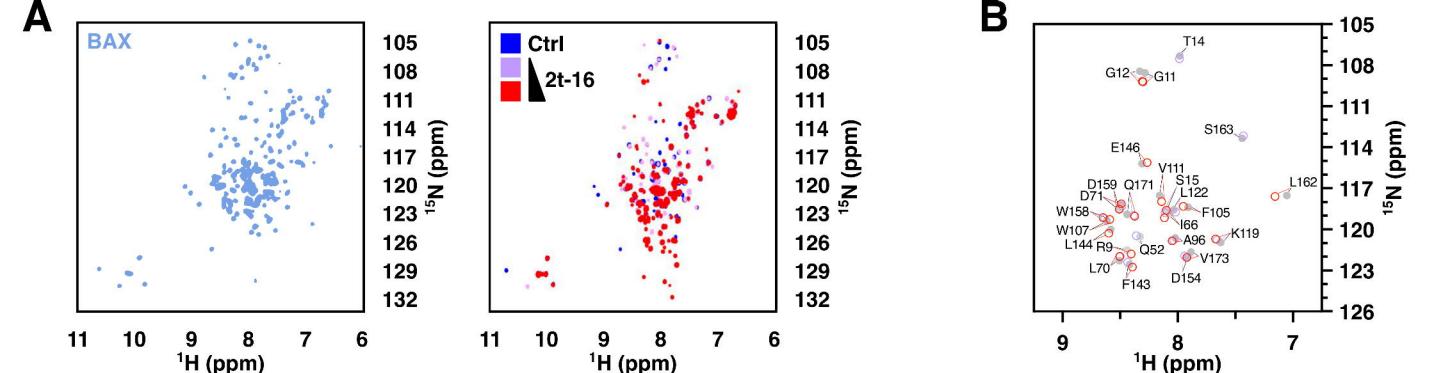




F

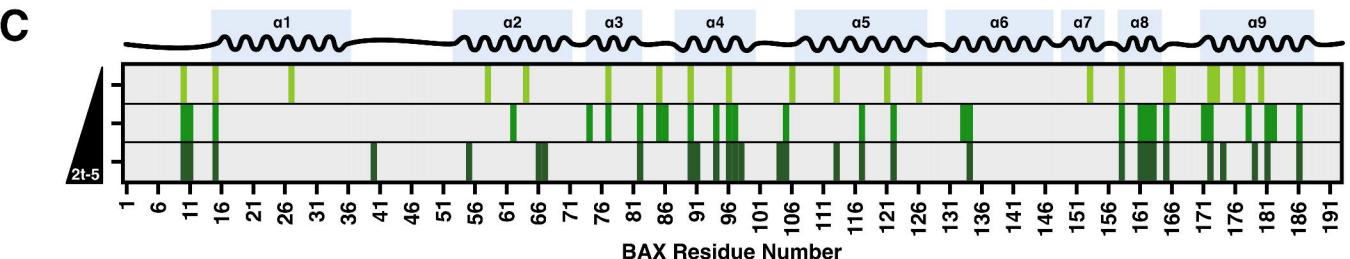
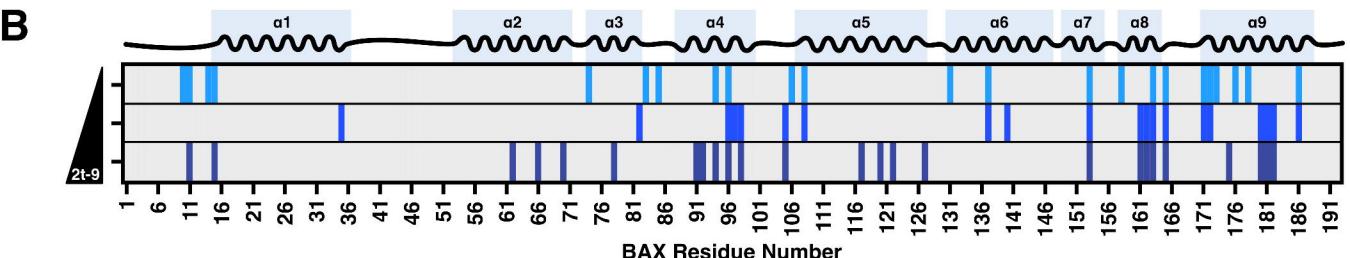
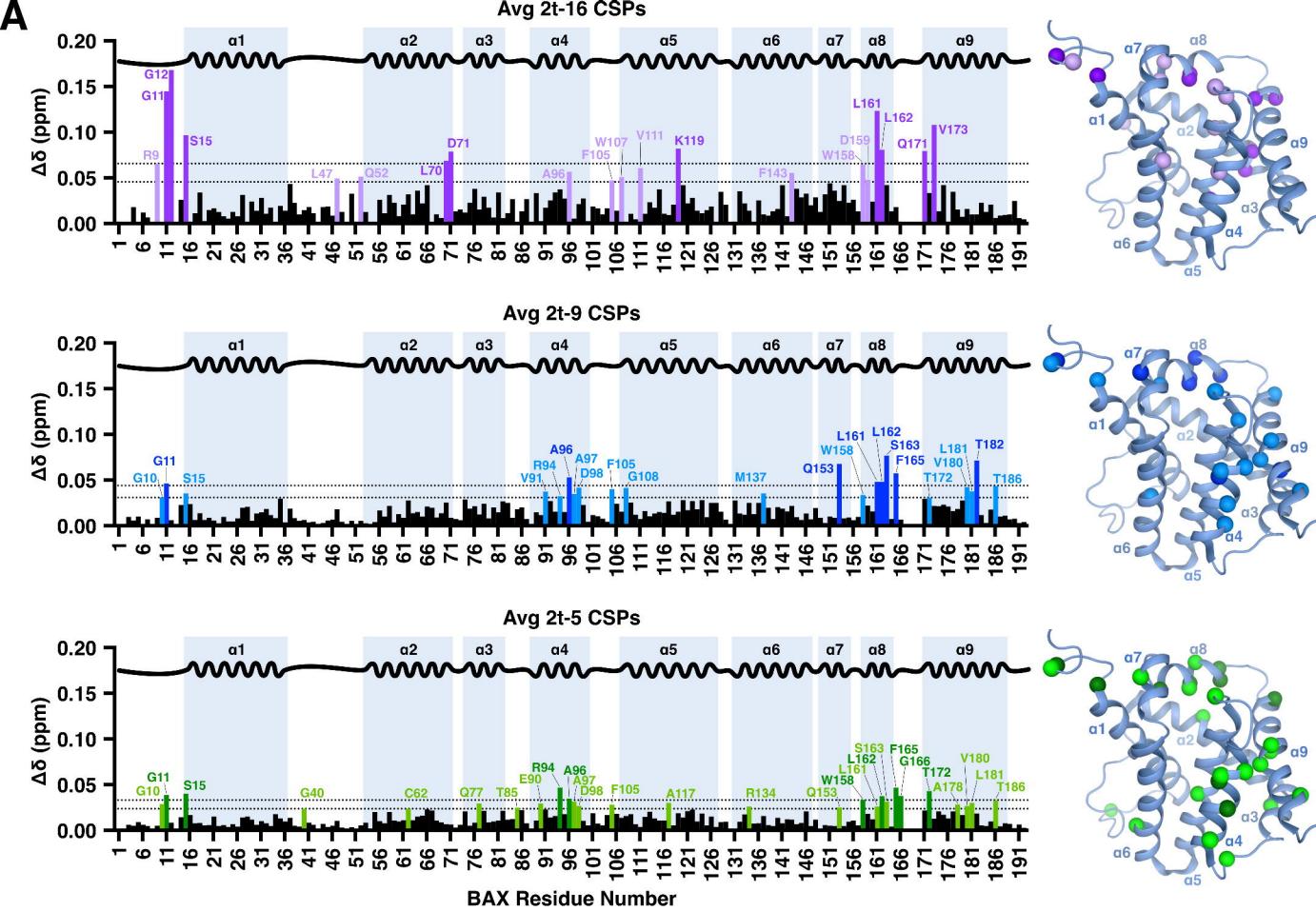

% LUV Permeabilization

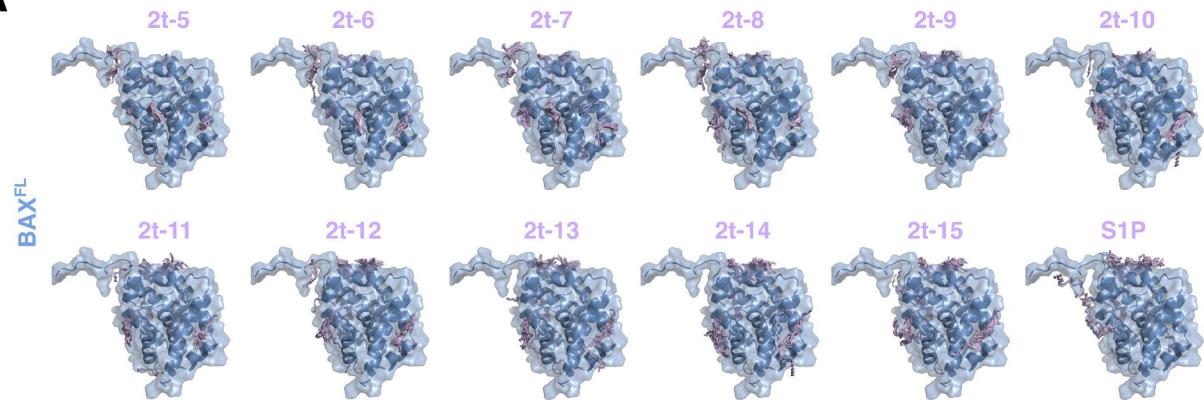
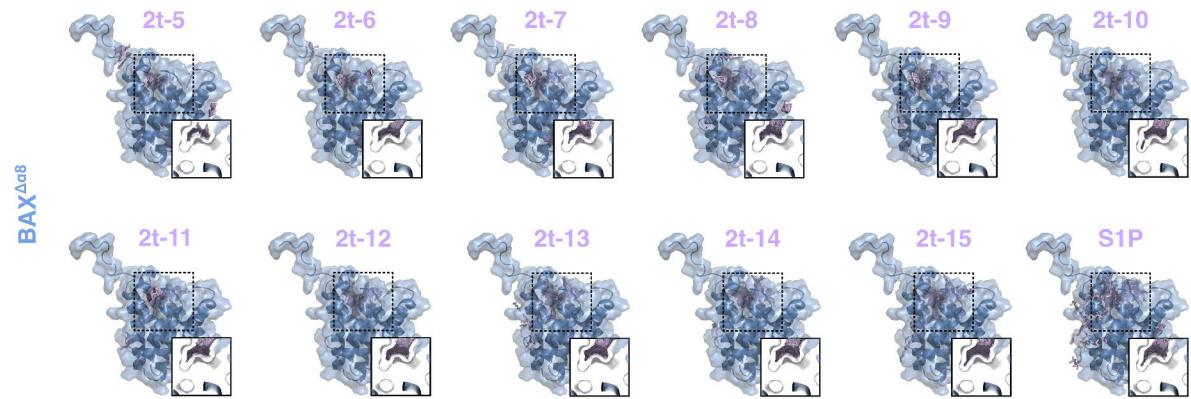
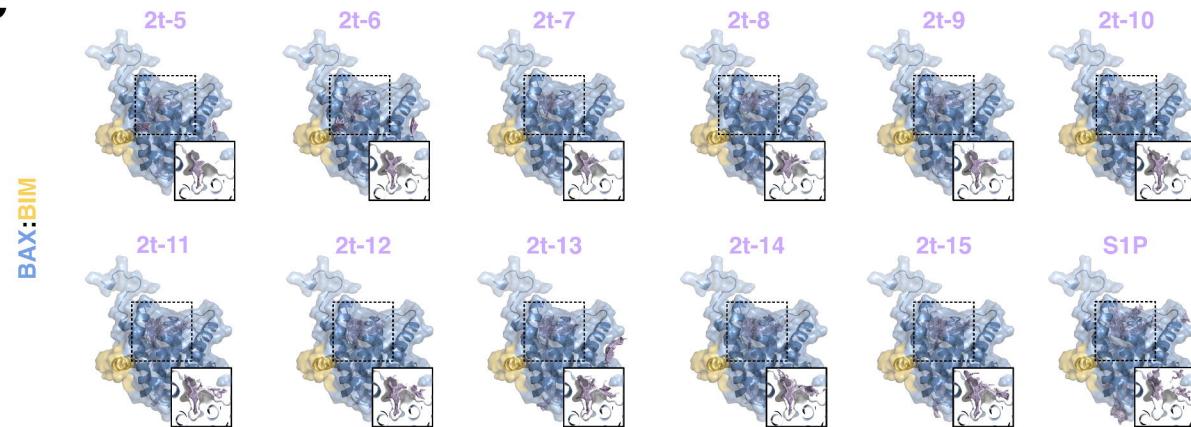









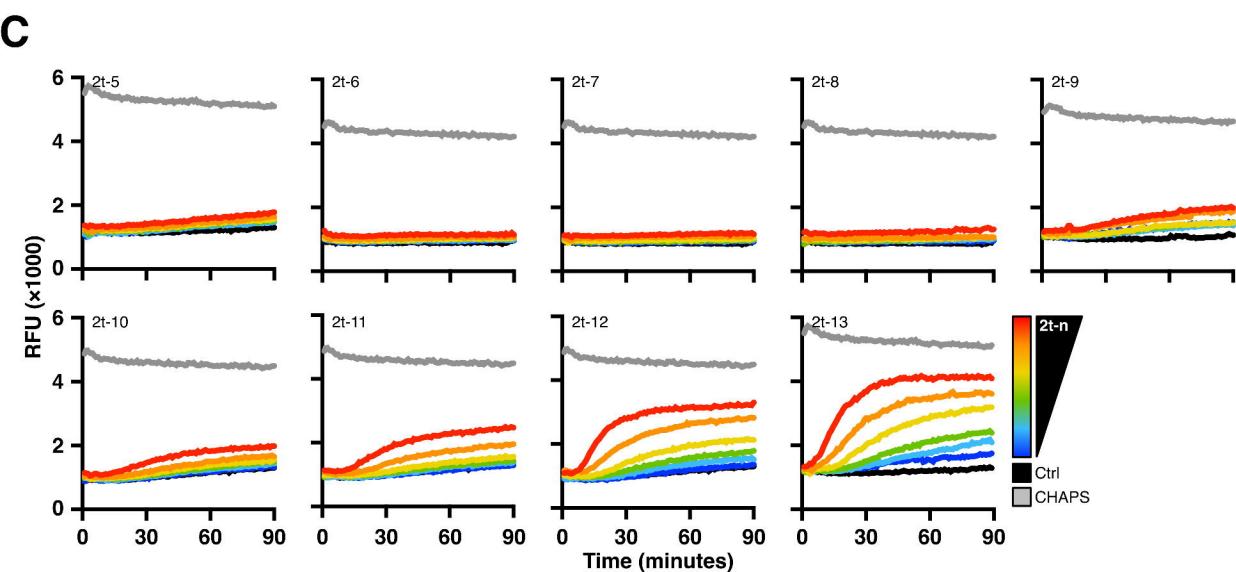
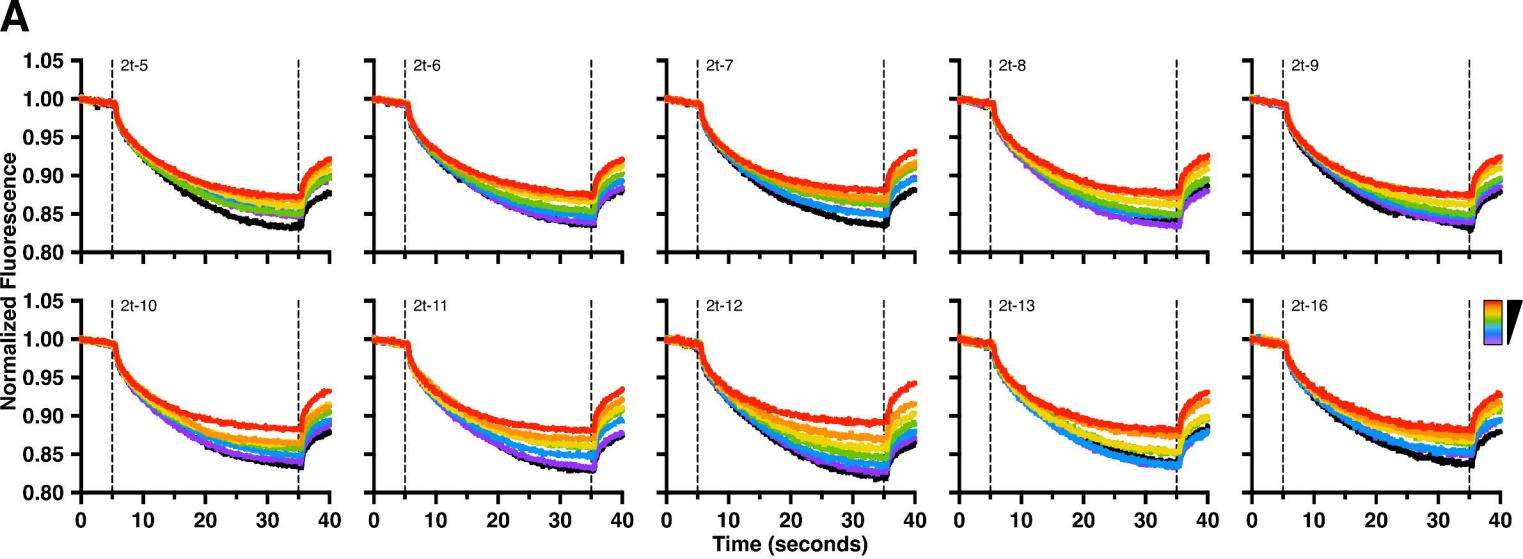














A**B****C****D**

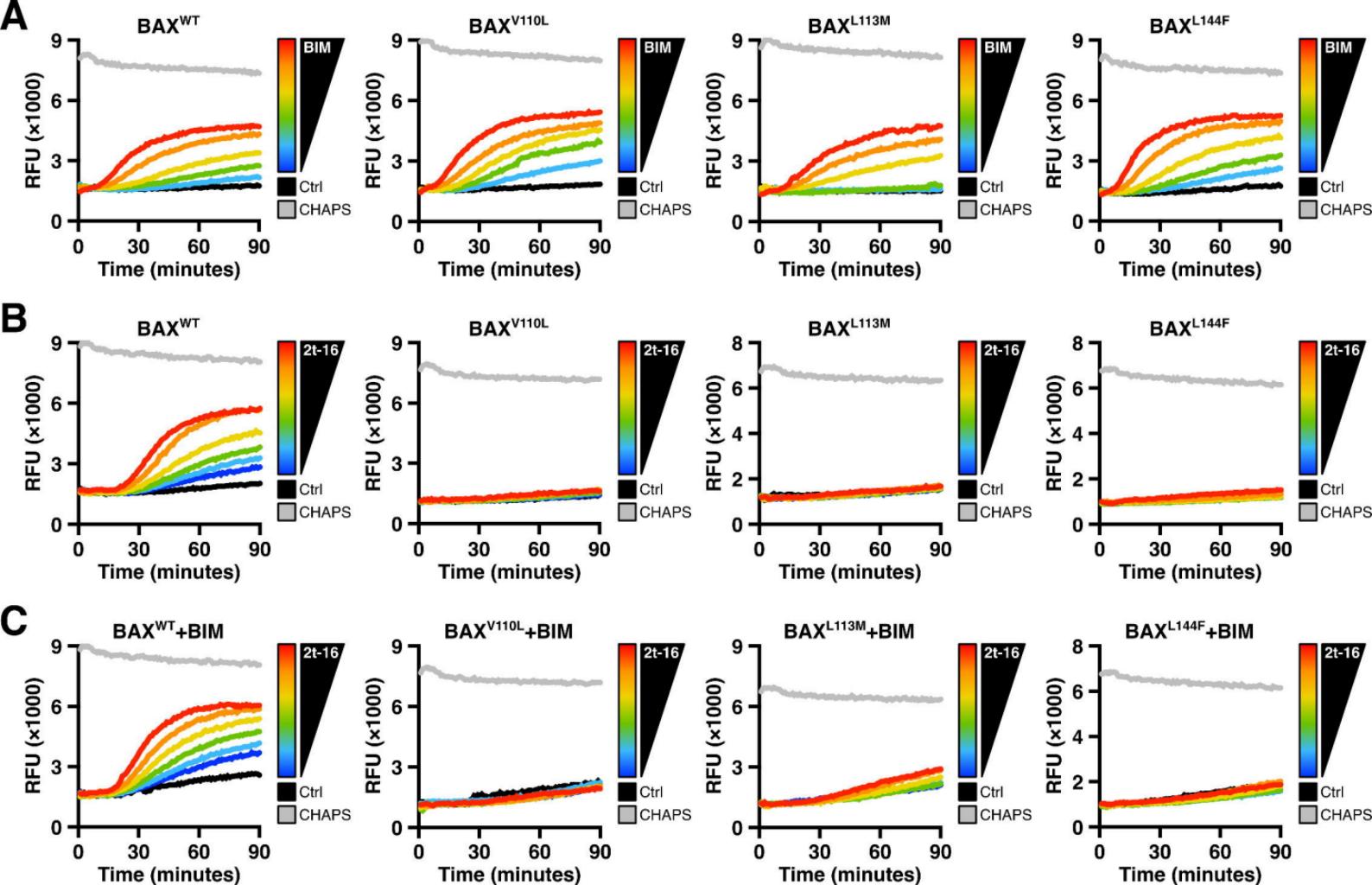








	WT	V110L	L113M	L144F
Number of poses	9	10	10	10
Top Glide score	-4.481	-3.407	-2.736	-3.256
Avg Glide score	-4.074	-2.777	-2.437	-2.570
Top Emodel score	-29.68	-25.52	-25.31	-24.92

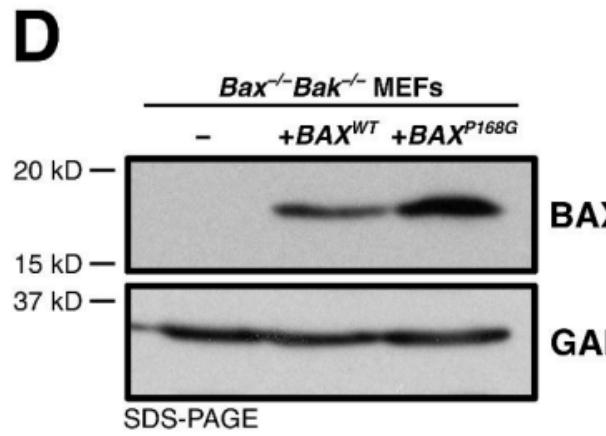
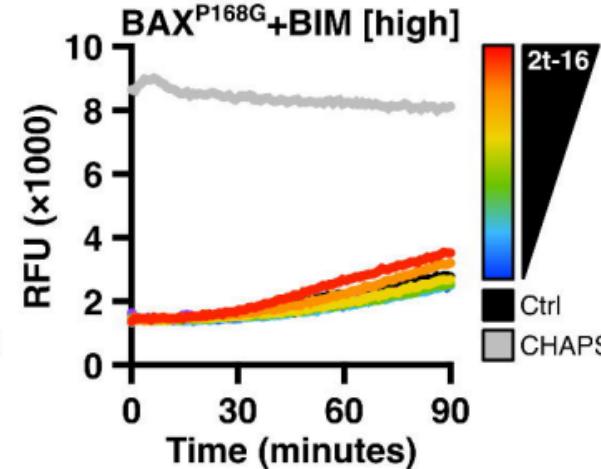
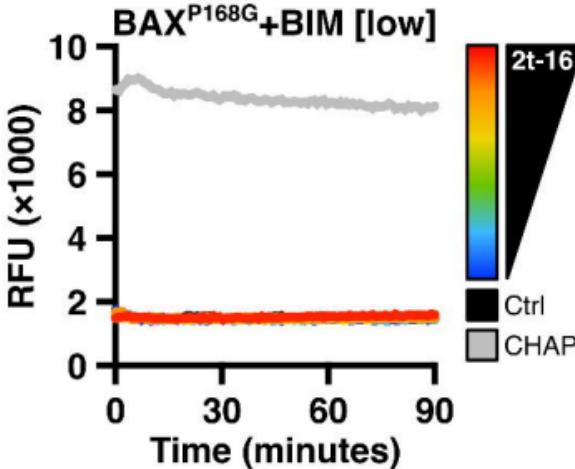
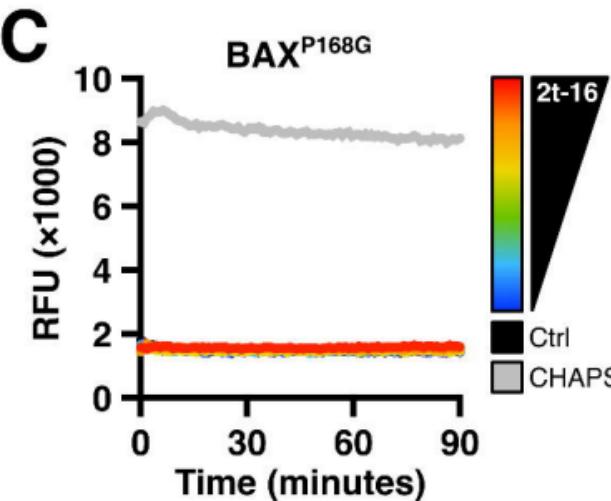
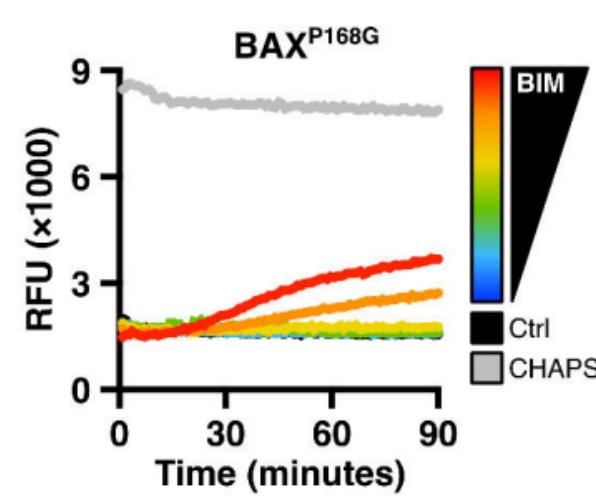
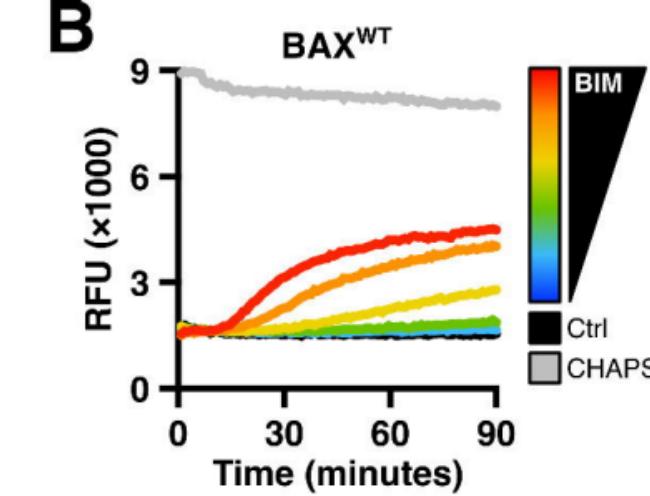
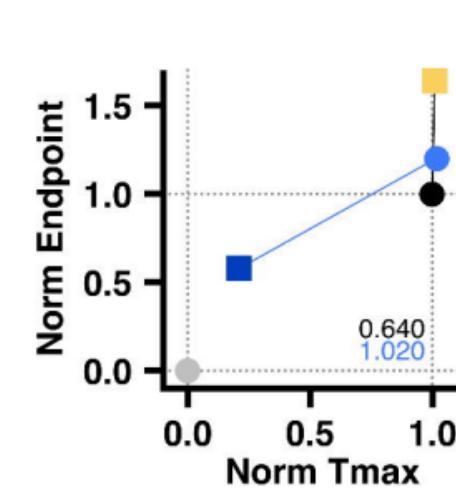
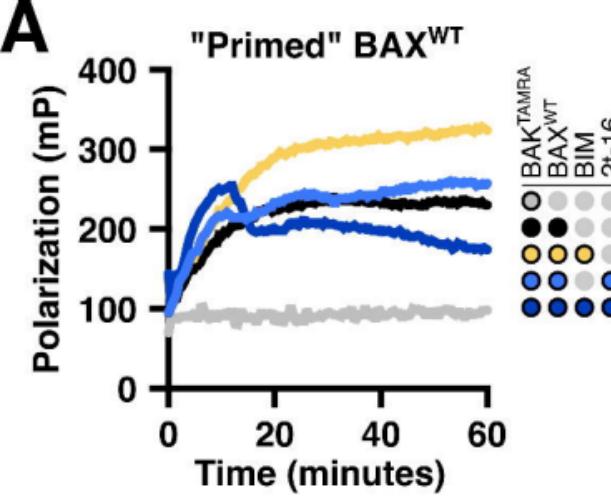







E**F****G % LUV Permeabilization****H % LUV Permeabilization**



A**B****C**

