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Abstract

This study is the first comprehensive investigation into the extent of microplastic pollution in Frenchman Bay, ME,
which is a semi-sheltered coastal bay with some freshwater input making it an ideal location to study the land—sea con-
nection of microplastic pollution. Two sampling campaigns were coordinated for this study, and during the first one,
323 fibers were identified from water samples collected on a weekly basis from the Bay from July through October of
2022. The chemical compositions of a subset of these samples were determined by micro-Raman analysis, identifying
the types of microplastic fibers (MPFs) in the Bay. In total, an average of 1.8 fibers/L. were found among all sampling
locations, from which it was estimated that up to 400 billion MPFs may reside in the upper one meter of Frenchman
Bay. A complementary sampling campaign was organized to investigate potential land-based sources of MPF pollu-
tion. Grab samples were collected during six sampling events at a variety of rural and urban locations surrounding the
Bay. The highest microplastic concentration was from a culvert during a storm, releasing an average of 15.3 fibers/L
directly into Frenchman Bay. It is suspected that the MPFs enter Frenchman Bay from regional land-based sources, as
the size of the microplastics decreases as the sampling location becomes farther from land, and it appears the color
fades in relation to distance from land. This study is the first systematic microplastic sampling campaign of the Bay
and can set an example for similar studies in estuary systems that are investigating the land—sea connection.
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Introduction in various compositions, weathering stages, and shapes
(e.g., fragments, pellets, granules, fibers). Microplastic
fibers (MPFs), one of the most abundant types of micro-
plastics in marine environments (Barrows and Neumann,
2022; Salvador Cesa et al., 2017), have unique toxicologi-
cal pathways owing to their high aspect ratios (Cole,
2016) and they pose a great risk to marine species and
humans.

Rivers are one of the major pathways for microplastics to
enter the marine environment (Malli et al., 2022; Schmidt et al.,
2017). On average, rivers are estimated to carry 0.8-2.7 metric
megatons of plastic waste globally into the ocean every year
(Meijer et al., 2021), which is approximately 30% of the total
plastic influx into the ocean. When plastic waste ends up in riv-
ers, it is transported to the ocean through estuaries as they are
the transition zones (Dris et al., 2020). Estuaries are crucial for
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lastic production has been increasing since the start of

commercial manufacturing in the 1950s, resulting in an
estimated 4.8-12.7 metric megatons of plastic entering the
oceans annually (Barrows et al., 2017; Jambeck et al., 2015).
Discarded plastics are broken down in the aquatic environment
by a variety of physicochemical and biological processes and
form secondary microplastics, which are practically defined as
synthetic polymers that are <5 mm (Thompson et al., 2004).
Primary microplastics, on the other hand, are manufactured at
the size of a microplastic and contribute to microplastic pollu-
tion (Andrady, 2011; Barrows et al., 2018; Browne et al.,
2011). Regardless of their genesis, microplastics are found
ubiquitously in natural and built environments and are detected
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provide habitat for over 75% of commercial fish catch (NOAA,
2021), making them vital to the US economy. Estuaries are
also popular destinations for tourism, residential properties
(Willis et al., 2017), and ports (Preston-Whyte et al., 2021),
which plausibly intensify the microplastic influx.

Over the past two decades, research efforts have uncovered
various pathways through which microplastics infiltrate aquatic
ecosystems. These pathways include: (1) wastewater treatment
effluents, which carry fibers shed from laundry washing (Mag-
nusson and Norén, 2014; Murphy et al., 2016; Zalasiewicz
et al., 2016; Salvador Cesa et al., 2017b), (2) surface runoff,
transporting a mixture of litter and tire wear particles from
urban areas (Prata, 2018; Kole et al., 2017), plastic mulch from
agricultural fields (Zhang and Liu, 2018), microplastics accu-
mulating in biosolids applied to lands (Huang et al., 2023), and
residues from landfills (Dris et al., 2016), and (3) atmospheric
deposition where microplastics in storage locations (e.g., land-
fills, construction sites) are carried by wind and settle into water
bodies (Allen et al., 2019; Dris et al., 2016; Waldschléger et al.,
2020). In addition, specific to the study area, anthropogenic
activities along coasts have been identified as potential contrib-
utors to microplastic pollution in marine environments through
harbors, recreational activities, shipping, as well as fishing
(Driedger et al., 2015; Karbalaei et al., 2018). In Frenchman
Bay, the only relevant microplastic pollution study was con-
ducted by Lee et al. (2018) investigating cruise ships as sources,
however they were not able to conclude that pathway.

Despite the economic impact of estuaries and their poten-
tial vulnerability to microplastic pollution, the extent of their
microplastic pollution remains unexplored in certain loca-
tions. This is the first study that comprehensively reports the
abundance of MPFs in Frenchman Bay, ME. Frenchman
Bay is a semi-sheltered coastal bay with complex geomor-
phology and with some freshwater input owing to streams,
making it an ideal location to study the land—sea connection
of microplastic pollution. Several studies have been con-
ducted in US estuaries to determine the abundance of
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microplastics in sediments and in water (Lee et al., 2018;
Cheng et al., 2021; Sutton et al., 2016; Yonkos et al., 2014;
Gray et al., 2018). An average microplastic count of 116 *
21 ¢! of sediment was reported in the Great Bay Estuary,
NH (Cheng et al., 2021), which is located on the same coast
as Frenchman Bay. It was observed that the highest accumu-
lation occurs in regions with weaker hydrodynamic flows
and lower bed shear stress. In the surface waters of San Fran-
cisco Bay, CA, an average concentration of 700,000 particles/
km? was found, surpassing levels in other urban waterbodies in
North America. The study highlighted the substantial contribu-
tion of treated wastewater discharges from eight facilities,
which collectively introduced 0.086 particles/L into San Fran-
cisco Bay (Sutton et al., 2016). Microplastic pollution in the
Chesapeake Bay, across watersheds with varying land uses
were reported at concentrations from <1.0 to >560 g/km?, with
significant correlations to population density and urban intensity
within watersheds (Yonkos et al., 2014). Lastly, an average of
6.6 £ 1.3 particles/L in Charleston Harbor, SC was reported
with an abundance of black microplastics likely sourced from
tire rubber wear (Gray et al., 2018). Consequently, despite
microplastics becoming a focus of studies in US estuaries, no
extensive study has been conducted in Frenchman Bay until
now. This study was created with the overarching goal of ini-
tiating a dialogue about microplastic pollution in estuaries with
a particular focus on Frenchman Bay, in addition to providing a
pioneering example for future studies in similar systems. Two
research questions were addressed to achieve this overarching
goal: (1) What are the extent and characteristics of MPF pollu-
tion in Frenchman Bay? (2) Do the MPFs in the Bay primarily
originate from regional land-based sources?

Materials and Methods
Description of the study area

The study area is approximately 226 km? surrounding
Frenchman Bay, ME, adjacent to Mount Desert Island, a
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popular tourist destination and home to Acadia National
Park. The map and coordinates of the study area can be
found in Figure 1a and b. Frenchman Bay is a coastal loca-
tion with connected estuaries where pollution problems have
been observed and is explained in more detail in Alahmed
et al. (2022). General conditions during the sampling season
including wind speed, precipitation, and water level of the
area, are shown in Supplementary Figure S1, and freshwater
streamflow into the Bay is shown in Supplementary Figures
S1 and Figure S2 and Supplementary Table S1a-b.

Weekly sampling campaign

For the first part of the study, a periodic sampling campaign
was designed to collect MPF data around Frenchman Bay.
Samples were collected weekly for the majority of July through
October 2022. Samples were collected from the locations labeled
as “Bay 1,” “Bay 2,” “Jordan,” “Stave,” “Sullivan,” “Egypt,” “Kil-
kenny,” and “Union” in Figure 1c. The sampling locations “Bay
1” and “Bay 2” are in the middle of the Bay, “Jordan,” “Sullivan,”
and “Stave” are located in estuaries surrounding the Bay, and
“Egypt” and “Kilkenny” are located near the mouths of rivers
entering Frenchman Bay. “Union” is located near the mouth of
Union River, wich is hydrologically connected to Frenchman Bay
through Mount Desert Narrows. Sampling methods and quality
control will be elaborated upon in Section 2.6. Triplicate samples
were collected at one sampling location each week rotating
between the sampling locations for statistical robustness. In total,
129 water samples were taken over 17 weeks.

Targeted source sampling campaign

To supplement the weekly sampling data and to gain insight
into the concentrations of MPFs coming from land-based sour-
ces that discharge into Frenchman Bay, samples were also col-
lected from various locations around Mount Desert Island, ME
(Fig. 1d). Samples were collected during six sampling events
between June and August 2023. Two of the sampling events
occurred during a storm event (July/10, 2023 and August/4,
2023) and the rest were taken in fair weather. The objective
was to collect samples in a variety of urban and rural locations.
The two culvert sampling locations could only be sampled dur-
ing storm events because of insufficient or no flowrate during
dry days. Samples were collected from the sampling locations
labeled as “Kilkenny,” “Crippens,” “Grant Park Culvert,”
“Cromwell (A-D),” “Kebo (A-B),” “WWTP,” and “Transfer
Station Culvert” as shown in Figure 1c,d. The locations “Crom-
well (A-D)” are four sampling locations along the same brook
(Cromwell Brook), and the locations “Kebo (A-B)” are two
sampling locations along the same brook (Kebo Brook).
“WWTP” is a wastewater treatment plant from which effluent
was sampled, and “Transfer Station Culvert” and “Grant Park
Culvert” are storm water culverts located by a solid waste trans-
fer station and a park in downtown Bar Harbor, respectively.
Stations “Crippens” and “Kilkenny” were located in Crippens
Brook and Kilkenny Stream, which are streams that enter estua-
ries adjacent to Frenchman Bay (Fig. 1¢). The “Kilkenny” sam-
ples collected during this campaign were collected slightly
upriver of the weekly sampling location. In this sampling cam-
paign, 105 samples were collected from six sampling events.
The same sampling methods were used as the weekly sampling
campaign, except samples were not taken from a watercraft.
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Sample processing and microscopy analysis

Samples were processed in the laboratory by vacuum filtra-
tion before MPFs were counted under an Olympus SZ Stereo
Microscope. A glass filtration apparatus was used, and 1.5 L of
each sample was filtered using Whatman Grade 41, cotton,
47 mm diameter filters with a 20-25 pm pore size. Some sam-
ples required several filter papers owing to their high turbidity.
Each filter paper was placed in an aluminum weighing dish and
completely sealed with aluminum foil for storage. The 129
samples from the weekly sampling campaign were filtered onto
206 filter papers and the 105 samples from the targeted source
sampling campaign were filtered onto a total of 282 filter
papers.

Next, the filtered samples were analyzed using the stereo
microscope at 40X magnification to identify and count the
number of suspected microplastic fibers (SMPFs; i.e., fibers
counted before chemical identification) in each sample. Sam-
ples were scanned methodically side to side to locate all
SMPFs. When a fiber was found, several criteria were used to
determine if it was an SMPF (Shaw Institute, 2019; Hidalgo-
Ruz et al., 2012): (1) Fibers prodded with metal tweezers and
did not break. (2) No cellular or organic structures were visible
on the SMPF. (3) The fiber was equal in thickness throughout
its length. (4) The fiber had a homogenous color throughout.
Once suspected to be plastic, each fiber was documented with
a photo and categorized by its color. Using ImageJ software,
the lengths of each fiber were measured.

Chemical identification of microplastic fibers

Using Google’s online random number generator, 5%
(17 fibers) of the total 323 fibers from the weekly sampling cam-
paign and 5% (9 fibers) of the total 180 fibers from the targeted
source sampling campaign were chosen to analyze the chemical
identity by Raman microspectroscopy (micro-Raman) (Barrows
et al., 2018; Blair et al., 2019). A Renishaw inVia Qontor confo-
cal Raman microscope equipped with a Leica DM2700 optical
microscope with brightfield microscopy capabilities was used to
analyze the samples on cotton filter papers (Whatman Grade 41,
47 mm diameter). High spatial resolution Raman spectra of the
samples were collected at a rate of 30 s/point using a 20X micro-
scope objective and a 532 nm excitation laser. A 1,300 lines/mm
grating was used, capturing a spectral window from 680 to 1,844
cm ', All data acquisition and processing, including baseline
subtraction, using an intelligent polynomial, was performed using
the Renishaw WIiRE software. Raman spectra were cross-
referenced to find potential matches using Open Specy, an open-
source database (Cowger et al., 2021).

Quality assurance and quality control

It is important to integrate quality control measures in micro-
plastic analysis studies to mitigate miscounting of particles
owing to water type used for laboratory blank, particle adhesion
to the filtration apparatus, and subjective enumeration methods
(Kosuth et al., 2023). To assure control over potential sources
of error, this study implemented a range of published QA/QC
protocols from sample collection to analytical analysis stages,
specifically targeting the minimization of cross-contamination.
During field studies, the sampling of the streams was conducted
downstream to upstream of the person to avoid contamination
from clothing and footwear. Two-liter glass jars with metal lids,
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rinsed three times with water in the laboratory before field sam-
pling, were used for sample collection to prevent contamination
of the samples (Barrows et al., 2018, 2017). In the field, the jars
were rinsed again before samples were collected in the sam-
pling locations at least 5 cm below the water surface to mini-
mize contamination and avoid sampling the microlayer, i.e.,
uppermost 1 mm (Barrows et al., 2018, 2017; Song et al.,
2014). The jars were opened and closed below the water sur-
face to avoid potential contamination from air during rinsing
and sampling (Barrows et al., 2018, 2017) as atmospheric depo-
sition can be a source of MPFs to aquatic environments (Dris
et al., 2017, 2016). The watercraft consisted of blue, white, and
gray paint and a sample of the material was chemically ana-
lyzed to ensure MPFs did not originate from it. The chemical
bonds observed in the spectra (Supplementary Fig. S34) did not
resemble the sampled MPFs.

During sample processing, the lab bench was wiped down
before experiments to remove potential contamination. Cotton
lab coats and nitrile gloves were worn to prevent plastic con-
tamination from clothing. The glass filtration apparatus was
covered with aluminum foil when not in use to prevent micro-
plastic deposition from the laboratory environment. The room
in which the microscope was located was cleaned before the
start of microplastic identification, surfaces were wiped down
and the floor was swept to avoid potential contamination. An
air purifier was used to prevent air contamination and was
turned on at least 30 min before each use of the microscope
and remained on until work was completed for the day.

To capture and quantify any possible contamination, labora-
tory control samples were processed in the same fashion as the
actual samples. Specifically, three types of control samples
were used: (1) the “Filter Blank,” i.e., 1.5 L of deionized (DI)
water with resistivity >18.2 MQ-cm, which was filtered by vac-
uum filtration (Barrows et al., 2018); (2) the “Microscope
Blank” consisted of an open beaker of 140 mL of DI water left
open next to the microscope during the time it took to count the
number of SMPFs of one sample (Barrows et al., 2018); (3) the
“Air Blank” consisted of a piece of filter paper left open on the
lab bench while using vacuum filtration. Results of all labora-
tory controls are presented in Supplementary Table S2.

Statistical analysis

Statistical analyses were performed using OriginPro, Version
2023 b (OriginLab Corporation, Northampton, MA). The anal-
yses aimed to determine how SMPF concentration varied based
on sampling location (Supplementary Tables S21-S23) and sea-
son (Supplementary Tables S12-S20). Additional analyses
were conducted to examine how the measured lengths of the
SMPFs varied by sampling location and proximity to land
(Supplementary Tables S3-S11). Eight sampling locations were
divided into three groups: River locations (Union, Kilkenny,
and Egypt; n = 123), Estuary locations (Jordan, Sullivan, and
Stave; n = 68), and Bay locations (Bay 1 and Bay 2; n = 105).
Sampling seasons were classified as Summer (n = 56) and Fall
(n = 56), covering the periods from early July to mid-August
2022, and early September to late October 2022, respectively.
The length and concentration data were nonnormally distrib-
uted; thus, a nonparametric two-sample independent test (i.e.,
Mann-Whitney test) was performed. The exact probability p
value was reported to indicate significance at the 95%
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confidence level regarding the differences between the com-
pared groups.

Results and Discussion
Microplastic fiber counts in Frenchman Bay

The average concentration of SMPFs in the bay-river-
estuary system was determined as 1.80 + 2.23 fibers/L based
on the weekly sampling campaign. Examples of MPFs found
in Frenchman Bay, confirmed by Raman spectroscopy, and
their chemical compositions are shown in Figure 2. Using
the average SMPF concentration and the surface area of the
Bay, total SMPFs were estimated to be in the order of
~400 billion in the top one meter of the Frenchman Bay.
The computations and assumptions for this estimation are
presented in Supplementary Text S1. When comparing the
concentrations between the bay locations (i.e., Bay 1 and
Bay 2), the river locations (i.e., Egypt, Kilkenny, and
Union), and the estuary locations (i.e., Jordan, Stave, and
Sullivan), the Bay had the highest average concentrations
(2.40 £ 2.54 fibers/L), whereas the rivers had the next high-
est (2.18 £ 2.57 fibers/L) and the estuaries had the lowest
(1.06 = 1.30 fibers/L) (Fig. 3).

The concentration gradient between sampling locations
can be attributed to a combination of differences in tidal cur-
rent flow patterns as well as the water chemistries. Specifi-
cally, the low SMPF concentrations in the estuaries
compared to the rivers (p < 0.05; Supplementary Tables
S12-S14) can be attributed to the greater ionic strength of
the estuary (see salt concentrations in Supplementary Fig.
S3), which leads to electric double layer compression of par-
ticulate matter and causes them to aggregate and settle down
upon collision with other particulate matter. However, the
high SMPF concentrations in the bay locations cannot be
explained by this mechanism because the salinity is highest
at those sampling sites. This led us to believe that tidal cur-
rents interacting with complex coastline patterns may be
causing circulation structures that lead to the entrapment and
concentration of microplastics despite the high salinity
(Alahmed et al., 2022). Bay 1 and Bay 2, located in the mid-
dle of the Bay, are farthest from the effects of rainfall-
induced surface runoff and streamflow, which are potential
input pathways of MPFs to the region. Higher SMPF counts
at Bay 1 and Bay 2 might therefore indicate that MPFs accu-
mulate at the center of the bay owing to circulation patterns.
The tidal currents in the estuaries surrounding Frenchman
Bay are stronger than at Bay 1 and Bay 2 owing to the rela-
tively narrow and convergent shape of the channels
(Alahmed et al., 2021). As the estuaries open up into French-
man Bay, the currents weaken which could lead to accumu-
lation of MPFs (due to slower “flushing” of surface waters)
near Bay 1 and Bay 2. This hypothesis is supported by obser-
vations of algal bloom cells by Bailey et al. (2024) (under
review), which are suspended in surface waters and were
found to accumulate in the middle of the Bay, owing to eddy
circulation patterns formed by flow interactions with the
Bay’s geomorphology. However, further research is needed
to confirm the accumulation of microplastics, and should
consider also potential accumulation of MPFs in the sedi-
ment of the estuary system and other entrapment mecha-
nisms in the Bay.
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FIG. 2. Example images of confirmed microplastic fibers (a~h), and an example micro-Raman spectra (j) of a fiber,
matching polyethylene terephthalate, shown at different levels of magnification in images (d) and (i). All micro-Raman

data is presented in Supplementary Figures S7-S32.

The abundance (or lack) of MPFs as a function of tidal
currents and aquatic chemistry is important but does not nec-
essarily explain the land-sea connection. The land-sea con-
nection predominantly takes place in rivers through surface
runoff, which is a significant source of microplastic pollution,
and can even be greater than point sources such as waste-
water treatment plants (Cho et al., 2023; Imbulana et al.,
2024; Yano et al., 2021). Microplastic concentrations
increase in rivers and estuaries after rain events (Glindogdu
et al., 2018; Hitchcock, 2020; Veerasingam et al., 2016);

therefore, precipitation and streamflow data were analyzed to
determine if hydrographic conditions could explain the high
concentration at the mouth of Egypt stream (Fig. 3). Stream-
flow from a real-time gauge in Kilkenny Stream (WPES,
2023) was used to compare to the fiber abundance measured
at the Egypt site. Although the streamflow data in Kilkenny
Stream is not the same as the streamflow in Egypt Stream, it
is assumed that the peaks in streamflow would be consistent
owing to the streams’ proximity. Both areas received similar
rainfall (Supplementary Figs. S4-S5) and both locations have
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similar estimated monthly streamflow (Supplementary Table
Sla). In Supplementary Figure S6a,b, there is a peak in stream-
flow at the beginning of July that corresponds with a high SMPF
concentration, whereas there is another streamflow peak at the
end of July that does not result in a high SMPF concentration.
This caused the “Summer” to have significantly higher SMPF
concentration than the “Fall” (p < 0.05; Supplementary Tables
S21-S23). The number of tourists increased in July, as Acadia
National Park reports recreational visits of 603,023 in June and
791,358 in July of 2022, with July being the highest number of
visits all year (NPS, 2022). It is possible that the peak in SMPF
concentration at the beginning of July is owing to the increasing
touristic activity around the 4™ of July, but this should be verified
in future studies. In line with the results of this study, multiple
research efforts have highlighted the role of intensive human
activities, including tourism and global pandemics, in exacerbat-
ing microplastic pollution in marine ecosystems. Similar studies
have noted a significant rise in microplastic levels after peak tour-
ism seasons (Gul et al., 2023; Wu et al., 2021; Franco et al.,
2023; Retama et al., 2016), as well as a correlation between
higher microplastic concentrations and recreational activities
such as fishing and coastal tourism (Dowarah and Devipriya,
2019). Furthermore, several studies have shed light on how the
COVID-19 pandemic and associated lockdown measures dis-
rupted waste management and recycling practices globally, pre-
senting a unique extraordinary example of how human activities
can impact the environment. This disruption resulted in the
improper disposal of plastic personal protective equipment (e.g.,
single-use gloves, face masks, face shields, and suits), contribut-
ing to pollution in coastal areas, beaches, inland waters, terrestrial
environments, and urban areas (De-la-Torre et al., 2022; Han
et al., 2024; Li et al., 2022; Rakib et al., 2021; Reethu et al.,
2023). The findings underscore the multifaceted nature of human
impact on microplastic pollution across diverse ecosystems.

Analysis of microplastic fiber length regarding distance from
land

To further our understanding of MPF pollution, SMPF
length variations were analyzed with respect to distance

from land. The distribution of the lengths at each sampling
location is shown in Figure 4. It should be noted that one
fiber in this analysis was 6 mm, so by definition is not a
“microplastic,” but it is assumed to behave similarly, and
therefore was not removed from the dataset. Bay 1 and Bay
2 had more SMPFs in the smallest bin (<0.5 mm), suggesting
that fibers are generally shorter in the middle of the Bay
compared to the estuaries and streams closer to shore. For
statistical verification, locations were grouped and analyzed
based off their proximity to the middle of the Bay. The river
locations are farthest from the center of the Bay, the estuaries
are between the rivers and center of the Bay, and the loca-
tions Bay 1 and Bay 2 are located centrally in the Bay. First,
the samples from Union, Kilkenny, and Egypt (River loca-
tions) were paired together and compared with Jordan, Sulli-
van, and Stave (Estuary locations). On average, River
locations contained only slightly longer fibers than the Estu-
ary locations (p = 0.057, Supplementary Tables S3-S5).
Next, the River locations were paired against Bay 1 and Bay
2 (Bay locations), and it was observed that the rivers have
significantly larger fibers than the locations in the middle of
the Bay (p < 0.05, Supplementary Tables S6-S8). The third
comparison considered the Estuary locations compared to
Bay 1 and Bay 2. The results indicated that estuaries have
only 7% longer fibers than the samples in the middle of the
bay (Supplementary Tables S9—S11). From this analysis, it
appears that the length of the SMPFs decreases with distance
from the coastline toward the middle of Frenchman Bay. This
was attributed to the SMPFs breaking down owing to exposure
to physicochemical weathering processes (Rocha-Santos et al.,
2022). This result could also indicate that the fibers in the mid-
dle of the Bay have been in the marine environment for a lon-
ger amount of time than the fibers in the rivers, supporting the
finding that SMPFs are accumulating in the Bay.

Physical and chemical properties of microplastic fibers

The color of each SMPF, as well as the color distribution at
each sampling location around the Bay, is shown in Figure 5.
The most prominent color was blue (144 fibers) followed by
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FIG. 4. Distribution of suspected microplastic fiber lengths at each of the river, estuary, and bay sampling locations.

black (94 fibers), purple (50 fibers), clear (17 fibers), red
(13 fibers), green (4 fibers), and orange (1 fiber). The predomi-
nance of blue fibers is consistent with the findings of Barrows
et al. (2018). There is a higher amount of “clear” or white
fibers identified from the bay and estuary locations (14 fibers)
than the rivers (3 fibers), most prominently in Sullivan, Bay 1,
Bay 2, and Stave Island. Marti et al. (2020) found that the
white color of microplastics increased in smaller pieces and

with distance from coastal land-based sources. Further, the
color of microplastics fades during extended solar exposure
(Zhao et al., 2022). The higher instances of a “clear” or white
fiber in the middle of the Bay suggest these fibers have been
exposed to weathering by the sun for a longer period of time,
and therefore, support the previous speculation that fibers in
the middle of the Bay have been in the aquatic environment
longer than the fibers in the rivers. However, the sources of
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FIG. 5. Color distribution of suspected microplastic fibers found at each of the river, bay, and estuary locations. The

background map is obtained from Google Maps.

clear fibers are not necessarily limited to UV-exposed fibers;
they can also originate from fishing line, gear, or textile laun-
dry wastewater, as observed in earlier studies (Han et al.,
2020; Minor et al., 2020; Rasta et al., 2020). To begin under-
standing potential sources, the targeted source sampling cam-
paign was conducted.

In addition to color, the chemical compositions of the fibers
were analyzed via micro-Raman (Supplementary Figs. S7-S32).
The 17 fibers from the weekly sampling campaign were identi-
fied as polyacrylamide (4 MPFs), polyurethane (2 MPFs), poly-
propylene (1 MPF), polyester (1 MPF), polyethylene vinyl
acetate (1 MPF), cellulose (2 non-MPFs), and cotton (5 non-
MPFs). For the targeted sampling campaign, nine fibers ana-
lyzed by micro-Raman were identified as polyacrylamide
(4 MPFs), polyurethane (2 MPFs), polypropylene (1 MPF), cel-
Iulose (1 non-MPF), and cotton (1 non-MPF). Polyacrylamide
was identified as the most prominent polymer type. This is pos-
sibly due to its widespread use in various textile, paper, waste-
water treatment, agriculture, and mining applications. In textile
industries, polyacrylamide is used as a thickening agent, a
binder to enhance fabric durability and color yield, and to
enhance wrinkle resistance, and it is used as a flocculant in
wastewater treatment processes (Pikuda et al., 2022; Santini
et al., 2022; Zhao et al., 2024). These diverse applications con-
tribute to its prevalence in marine systems. The match quality

(MQ) of all Raman spectra ranged from 0.4 to 0.88, with an
average of 0.7. The lower MQ is to be expected with microfibers
found in the environment that have additives (e.g., dyes), have
undergone degradation (e.g., photooxidation), or are composed
of blended polymers (Araujo et al., 2018). These results align
well with Blair et al. (2019), who found that 63% of their fibers
were confirmed plastic by infrared spectroscopy. The chemical
composition was analyzed to determine the accuracy of visual
identification of MPFs; more samples and further studies are
needed to determine possible source materials leading to MPF
pollution in Frenchman Bay. To begin understanding potential
sources, the targeted source sampling campaign was conducted.

Microplastic fiber abundance on Mount Desert Island

The targeted source sampling campaign was conducted to
determine potential land-based sources of MPFs to further
speculate the land—sea connection of microplastic pollution.
Through this campaign, several point sources of MPFs were
located on Mount Desert Island, which borders Frenchman
Bay. Precipitation events and increases in population density
of an area are expected to enhance microplastic abundance.
For example, storm water drains are known to act as substan-
tial sources of microplastic pollution (Preston-Whyte et al.,
2021). The effluent from wastewater treatment plants is also
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known to be a primary source of microplastics, specifically
fibers, as they are shed from clothing during washing (Bar-
rows et al., 2018; Browne et al., 2011; Hoellein et al., 2017).
To understand how terrestrial anthropogenic activities might
impact microplastic abundance in rivers, the sample sites
were classified as “urban” and “rural” based on the predomi-
nant land usage. Locations “Kebo A-B” and “Cromwell A-D”
were classified as rural, and “Grant Park Culvert,” “WWTP,”
and “Transfer Station Culvert” were classified as urban. As
shown in Figure 6a, the highest source of SMPF concentration
found was from the “Grant Park Culvert,” which is a culvert
that releases stormwater directly into Frenchman Bay from
downtown Bar Harbor, with an average concentration of 15.33
fibers/L. Only one sample was collected from this location
owing to the lack of storm events, so this average concentration
is only based on one sample of triplicates, whereas the rest
were based on at least two samples. Following this, the next
highest concentrations were from “WWTP” with 3.56 + 0.63
fibers/LL and “Transfer Station Culvert” with 1.89 £ 1.41 fibers/
L (Fig. 6a), which were samples from the effluent of a waste-
water treatment plant and a culvert releasing stormwater from a
transfer station into Cromwell Brook, respectively. Only 3% of
the total samples (n = 180) had clear or white color identifica-
tion (where 53% of fibers were blue and 29% were black),
which indicates that they are less aged as they were collected
from the point sources. Also, these three sampling locations
were classified as “urban,” whereas the rest of the sampling
locations (Fig. 6b) were classified as “rural.” The three urban
locations have higher SMPF concentrations than both of the
rural sampling locations, as well as the average number of
fibers (i.e., 1.80 fibers/L) in Frenchman Bay, indicating urban
areas could be potential sources of MPFs to Frenchman Bay.
Complete SMPF counts during the targeted sampling campaign
can be found in Supplementary Figure S33.
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Conclusions, Limitations, and Future Research

This study is the first extensive MPF study in Frenchman
Bay, ME. The concentration, sizes, compositions, and colors of
MPFs were analyzed in eight locations around Frenchman Bay.
These findings suggest that MPFs enter the rivers from land-
based sources and are transported through the estuaries into the
Bay. There, the weaker currents allow them to stay for longer
periods of time than in the estuaries. Samples were collected on
Mount Desert Island to better understand the land-based sources
of MPF pollution and investigate the MPF concentrations in riv-
ers. It was found that the concentrations of the urban sampling
locations were higher than the rural sampling locations. It was
estimated that around 400 billion SMPFs are present in the top
1 meter of Frenchman Bay. Frenchman Bay is important both
for marine life and economy owing to its location and rich eco-
system. Knowing there is MPF contamination in the Bay, it is
important for future studies to continue to investigate the pri-
mary sources of MPFs in the Bay, so that mitigation techniques
can be developed to decrease the MPFs entering the Bay and
causing potential harm to both marine life and humans.

Although the present study provides valuable insights into
microplastic pollution in Frenchman Bay, it is important to
acknowledge limitations that offer opportunities for further
research and enhancement. First, the study primarily focused
on water samples collected just below the surface. Future
investigations could benefit from including sediment sam-
ples alongside water samples to assess the interaction and
accumulation of MPFs within the water column and sedi-
ment interface (Fok & Cheung, 2015; Jiwarungrueangkul
et al., 2021). Incorporating depth-stratified sampling in
future studies would provide insights into the spatial distri-
bution of MPFs and aid in estimating their overall abundance
in the Bay (Vega-Moreno et al., 2021). Moreover, building
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FIG. 6. Concentration of suspected microplastic fibers/L at each sampling location during the targeted source sam-
pling campaign, averaged over all sampling dates. Concentration is indicated by both size (larger circles indicate higher
concentrations) and color. (a) All sampling locations on Mount Desert Island, (b) the same data with the three highest
sources removed to highlight the relationship between the remaining locations.
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upon our results indicating the accumulation of MPFs in
eddies at the center of the Bay (Bailey et al., 2024), future
studies should delve deeper into the relationship between
MPFs and tidal waves and how tides transport MPFs within
the Bay as these processes have been shown to be relevant in
other coastal systems (Malli et al., 2022; Oo et al., 2021).
Second, MPFs collected from the marine environment have
likely experienced diverse conditions, including UV-induced
photodegradation, thermal degradation, and biodegradation,
which alter their original polymer composition and hinder
chemical analysis (Ivleva, 2021; Phan et al., 2022). Moreover,
microbial colonization on MPF surfaces can cause biofilm for-
mation, interfering with spectral analysis and thereby requiring
oxidative pretreatment (Lee et al., 2023). These alterations
resulted in low spectral quality from Raman spectroscopy,
leading to relatively poor matching with reference library
information containing spectra for pristine polymers. This chal-
lenge has been widely recognized in microplastics research
(Lenz et al., 2015; Song et al., 2015; Song et al., 2021). Lastly,
due to the difficulty of using tweezers to pick up fibers from
the filter, chemical analysis was performed on only 5% of the
suspected fibers. Although this method is established (Barrows
et al., 2018; Blair et al., 2019), future studies should focus on
developing techniques that allow for particle analysis directly
on the filter paper. To improve polymer identification accu-
racy, future studies can incorporate high-recovery rate sample
pretreatment procedures and include spectra of weathered
polymers in reference libraries, thereby enhancing recognition
reliability in environmental samples.

Given the MPF contamination in the Bay, it is important to
identify potential mitigation strategies, especially considering
the importance of estuaries for the natural ecosystem. In addi-
tion, MPFs can enter the trophic food chain and can pose cas-
cading health impacts for humans (Blackburn and Green, 2022;
Santonicola et al., 2023; Watts et al., 2015). We recognize that
the pollution investigated in this study may have multiple sour-
ces in addition to those that we specifically examined. However,
in general, the best initial approach to preventing microplastics
from entering the marine environment is through source mitiga-
tion techniques such as: (1) cutting down on plastic use and
especially minimizing its avoidable use; (2) implementing regu-
lations on the use and discharge of primary microplastics;
(3) improving the production efficiency through life cycle
assessments; (4) commencing educational initiatives for public;
and (5) promoting better waste disposal practices e.g., reduce,
recycle, and reuse practices. However, for MPFs that have
already made their way into the environment, and considering
current treatment technologies may be insufficient to remove
them before they reach to people, other ingenuitive strategies are
needed. Thus, additional work should investigate treatment strat-
egies to eliminate or minimize microplastic exposure.
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