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Abstract. This paper presents StarV, a new tool for verifying deep
neural networks (DNNs) and learning-enabled Cyber-Physical Systems
(Le-CPS) using the well-known star reachability. Distinguished from ex-
isting star-based verification tools such as NNV and NNENUM and oth-
ers, StarV not only o!ers qualitative verification techniques using Star
and ImageStar reachability analysis but is also the first tool to propose
using ProbStar reachability for quantitative verification of DNNs with
piecewise linear activation functions and Le-CPS. Notably, it introduces
a novel ProbStar Temporal Logic formalism and associated algorithms,
enabling the quantitative verification of DNNs and Le-CPS’s temporal
behaviors. Additionally, StarV presents a novel SparseImageStar set rep-
resentation and associated reachability algorithm that allows users to
verify deep convolutional neural networks and semantic segmentation
networks with more memory e”ciency. StarV is evaluated in comparison
with state-of-the-art in many challenging benchmarks. The experiments
show that StarV outperforms existing tools in many aspects, such as
timing performance, scalability, and memory consumption.
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1 Introduction

Deep learning (DL) models have been adopted to tackle many real-world chal-
lenging problems such as image classification [1, 41, 91], natural language pro-
cessing [50], and robotics [63]. However, it is well-known that deep learning mod-
els are vulnerable to adversarial attacks where a slightly change in the inputs
may lead to unexpected output results [65]. Therefore, verification for learning-
enabled systems (LES) built on DL technology becomes crucial to enable the
use of DL models in safety-critical domains such as autonomous vehicles [48]
and cancer diagnosis [79]. Extensive research e!orts have been made in the last
few years to deep neural network verification challenge [30, 42] as well as neu-
ral network control system verification [76] in which qualitative verification, i.e.,
providing SAT or UNSAT or UNKNOWN results, is the primary focus. While
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qualitative verification is crucial, quantitative verification with probabilistic re-
sults provides more information about the system’s safety under probabilistic
uncertainties. For example, if a system is unsafe, then what is the probability of
safety violation? Additionally, physical uncertainties, such as those in sensing or
actuating, are more naturally modeled in a probabilistic manner.

To fulfill the need for both qualitative and quantitative verifica-

tion for LES, this paper introduces StarV, the first verification tool

for deep learning models and learning-enabled cyber-physical systems

(Le-CPS) that provides both qualitative and quantitative verification

methods. For qualitative verification, StarV reimplements and optimizes star-
based verification approaches [6, 12, 13, 34, 66, 68, 69, 74, 75]. Notably, StarV

introduces a new set representation called SparseImageStar, a substan-
tial improvement of ImageStar [66], and associated memory-e”cient reachability
algorithms to verify the robustness of very deep models like VGG networks [60]
under thousand pixels attacks. Thanks to the SparseImageStar approach, StarV
is currently the only tool that can verify the robustness of the VGG16 network
with up to 3000-pixel attacks on a local computer. For quantitative verifi-

cation, StarV introduces ProbStar set representation [11, 55, 72], a new
variant of star set [7, 14], that allows the probabilistic modeling of uncertain-
ties and the associated reachability algorithms for of deep neural networks with
piecewise linear activation functions, e.g., ReLU, LeakyReLU, and Satlin and
neural network control systems with linear plant dynamics. Notably, StarV

also introduces ProbStar Temporal Logic (ProbStarTL) [70], a set-

based formalism that enables the verification of LES’s temporal prop-

erties using reachability analysis. Thanks to ProbStarTL and associated
verification algorithms, StarV is currently the only tool that can verify quanti-
tatively the temporal properties of Le-CPS, such as a learning-based adaptive
cruise control and emergency braking systems [68].

In summary, this paper provides a comprehensive overview of StarV and new
features that users cannot find in individually published papers. It improves
usability via multiple examples, case studies, and tutorials (in the user manual).
This tool paper helps users quickly recognize all key features that can be used
for their applications. Compared to individual published papers, there are many
novelties and new technical contributions on 1) data structure, 2) reachability
algorithms, 3) new activation functions support, and 4) new neural network
architectures support. We also restructured the tool to make it more e”cient
and easier to use for future extensions. We highlight these novelties and new
technical contributions in the following.

– New data structures: we implement new memory-e”cient SparseStar and
SparseImageStar data structures compared to the well-known Star and Im-
ageStar.

– New reachability algorithms: we implemented new reachability algo-
rithms on SparseStar and SparseImageStar data structures. We also imple-
mented new quantitative reachability algorithms for massive linear systems
using Krylov subspace method and probstar.
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– New activation functions: For quantitative verification, we support new
activation functions such as LeakyReLU, Satlin, and Satlins.

– New network architectures: StarV supports LSTM and GRU verification
using new SparseStar reachability.

– Improve Usability: Installation instructions for local and Docker environ-
ments; Tutorials demonstrating key verification workflows; Example scripts
for each supported network type; API documentation for extending the
framework.

2 Related Work

Qualitative Verification of LES. Qualitative verification of learning-enabled
systems (LES) has attracted the great attention of many researchers in recent
years. In the area of open-loop LES (i.e., neural networks) verification, mul-
tiple approaches have been proposed, utilizing theories such as Satisfiability
Modulo Theory (SMT) [2, 37, 38, 86], optimization using mixed integer linear
programming encoding [43], star reachability [6, 74, 75], facet-vertex incidence
matrix [89, 90], symbolic interval [82], semidefinite programming [19], abstract
interpretation [54, 61, 93], input quantization [35], constraint-based [81], tree-
based decomposition for incremental verification [80], certificate reuse [21] and
relaxed convex programming [39], to name a few. There has also been significant
e!ort in the development of e”cient tools [6,15,20,22,38,46,78,87,89] (see [9] for
more details). Closed-loop LES verification focuses on the safety of closed-loop
neural network control systems under bounded input conditions, involving com-
plex interactions between the neural network controller and the physical plant
model [16,17,26–29,31,33,40,44,56,57,59,64,78,92]. Representative closed-loop
LES verification frameworks include VeriSig [33], ReachNN [29], Sherlock [16],
and NNV [67]. Recently, verification of perception-based control systems has
attracted significant attention [47] and has been proven to be significantly chal-
lenging and time-consuming due to their large input space [24,26,32,52,56,64,90].

StarV reimplements and optimizes star-based reachability and qualitative
verification algorithms for checking safety and robustness of a wide range of neu-
ral network architectures, such as feedforward neural networks (FFNNs) [74], re-
current neural networks (RNNs) [73], convolutional neural networks (CNNs) [66],
and semantic segmentation networks (SSNs) [75], as well as neural network con-
trol systems (NNCS) [68]. Importantly, StarV tackles the memory consumption
problem, a main bottleneck that reduces the scalability of reachability analysis
and verification of very deep neural networks such as VGG16. To do that, we
introduce SparseImageStar, a new set representation and associated reachabil-
ity algorithms that allow memory-e”cient verification of deep neural networks.
Using SparseImageStar method, we can verify the robustness of VGG16 with up
to 3000-pixel attack on a local computer where popular tools like CROWN [93],
Marabou [38], DeepPoly [61], and NNENUM [3] cannot.
Quantitative Verification of LES. Although important, quantitative verifi-
cation for LES has attracted less attention from the community. Some quanti-
tative verification methods verify binary neural networks with quantized finite
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discrete inputs space [8, 58, 94]. Some methods are proposed for the popular
ReLU DNNs [18,23,45,51,53,84,85] with continuous input space. The first e!ort
focuses on improving the sampling-based methods to certify neural networks’
robustness under probabilistic uncertain inputs [45, 53, 84, 85]. Although fast
and scalable, these approaches do not provide a guarantee of output estimation
for certification. The second e!ort focuses on probabilistic safety verification
of ReLU networks with formal guarantee [18, 23, 71]. In the work by Fazlyab
et al. [18], the authors investigate an ellipsoidal input space characterized by
Gaussian random variables. They develop a method for propagating a confi-
dence ellipsoid of the input through the neural network. By employing a”ne and
quadratic constraints to approximate the nonlinear ReLU activation functions,
they derive a confidence ellipsoid for the output. Furthermore, the safety of the
original network can be established by analyzing the abstracted network using
semidefinite programming techniques. In the work by Eric Goubault et al. [23],
the authors introduce a new probabilistic abstraction named Zonotopic Demp-
ster Shafer to construct tight overapproximation of the probabilistic outputs of
a ReLU network using Interval Dempster Shafer arithmetic and probabilistic
a”ne arithmetic. This approach can handle much more general classes of input
uncertainties and provide guaranteed results.

StarV introduces ProbStar, a new set representation and associated quanti-
tative reachability and verification algorithms for networks [71] with piecewise
activation functions and neural network control systems (NNCS) with linear
plant dynamics. It precisely estimates the safety violation probability of an LES
under truncated Gaussian inputs distribution.

Verification of LES’s Temporal Properties. The state-of-the-art techniques
focus on safety, robustness, and fairness properties. There is a shortage of quanti-
tative verification methods for complex temporal properties of Learning-enabled
Systems (LES), specifically those that involve timing information. The neu-
rosymbolic approach [25] is the first method developed to verify closed-loop
LES with Signal Temporal Logic (STL) properties. This approach introduces
a novel transformation technique, making the verification of temporal proper-
ties in closed-loop LES equivalent to performing reachability analysis of large
feedforward neural networks.

StarV implements a method that is similar to the neurosymbolic approach
[25] in that it also focuses on verifying temporal properties. However, we di!eren-
tiate ourselves by introducing a new logic framework called ProbStarTL [70]. The
semantics of this framework involve satisfying constraints on random variables,
enabling us to precisely compute the probability of satisfaction. Additionally,
our approach is more direct, as it does not require the transformation from STL
to neural networks. This allows us to bypass the need for reachability analysis of
large networks altogether. We highlight that neuroSymbolic approach uses the
well-known signal temporal logic quantitative semantics to compute the robust-
ness value of satisfaction (which can be any real number), while our ProbStarTL
has its own quantitative semantics defined based on reachable set signals to com-
pute the probability of satisfaction (which is between 0 and 1).



StarV 5

3 Conceptual Overview and Core Features

Fig. 1: A conceptual overview of StarV and core features (Features in blue color
are under development).

3.1 Conceptual Overview

StarV is an object-oriented toolbox developed in Python. Its conceptual overview
and major features are depicted in Figure 1. StarV aims to integrate popular
and scalable verification approaches such as reachability-based [78], abstract
interpretation [61, 93], and mixed integer linear programming [43] so that users
can choose appropriate techniques for their particular applications. It also aims
to facilitate the adoption of formal methods in real robotic applications built on
Robotic Operating Systems (ROS) [11,55].

Conceptually, StarV contains five modules, including a user interface, parser,
specification and engine, and a ROS interface (under development). The user in-
terface allows users to import a network model, write specifications, define a
model, collect simulation traces, choose verification methods, and visualize and
interpret verification results. The parser module currently supports automatic
parsing of Pytorch and ONNX [49] models. StarV will construct corresponding
internal models from these models for verification purposes. Users can also define
their (StarV) models for verification using all supported layers or plant objects
in StarV. The specification module allows users to specify the requirement for a
LES. We fully support safety, robustness, and temporal properties (using Prob-
StarTL). The fairness and Star temporal logic (StarTL) for deterministic input
sets are under development. The modeling module supports users to construct a
neural network control system at design time or runtime. At design time, users
can construct an NNCS with a neural network controller and a physical plant
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model (ODEs or Hybrid Automaton). We are working on supporting the model-
ing of a complex learning-enabled CPS with multiple neural network components
interacting with each other and with the physical world. At runtime, we plan to
support perception-based runtime modeling in which the linear physical plant
motion dynamics, e.g., human motion [55] or vehicle [11] will be obtained using
only perception data in ROS, i.e., LiDAR and Camera Point-Cloud data. These
works have been done but have not yet been fully integrated into StarV. The
ROS interface will be developed in the future to support automatic generation of
verifier, runtime modeling, and monitoring ROS nodes for robotic applications.
The engine module is the core of StarV, which contains di!erent set representa-
tions and multiple verification and reachability algorithms.

Verification Workflow and StarV’s User Manual. The general verifi-
cation workflow for using StarV is as follows. Firstly, the users construct an LES
model object, whether a neural network using a generic neural network object
or an NNCS object in StarV. Secondly, the users then specify the property as a
safety, or robustness or temporal property using ProbStarTL. Thirdly, the users
specify the input conditions as an input set, e.g., Star, ImageStar, or ProbStar,
and provide verification parameters such as verification methods, the number of
cores used for verification, the linear programming solver, and the number of time
steps (for NNCS verification). Finally, the users execute the verification using
the methods in the StarV LES object. Users can interpret and visualize reach-
able sets and verification results using the supported plot functions in StarV.
The detailed workflows for di!erent LES can be found in StarV’s user

manual.

3.2 Core Features

Table 1 summarizes StarV’s core features, highlighting its novel features com-
pared to the state-of-the-art. As we mentioned above, StarV reimplements and
optimizes star-based verification approaches that have also been implemented in
NNV [44,77] and NNENUM [3]. Therefore, in this section, we only highlight core
features that are StarV’s novel contributions compared to the state-of-the-art,
specifically in addressing quantitative verification and memory and scalability
problems in verifying deep CNNs.
ProbStar Reachability [71]. StarV implements probstar reachability, which
is built on a new set representation named probabilistic star (or shortly Prob-
Star), a variant of the well-known star set used in DNNs [6,66,74,75], and linear
dynamical and hybrid systems verification [4,5,14]. A ProbStar is an a”ne map-
ping of a truncated multivariate Gaussian distribution that can be used to model
probabilistic inputs and e”ciently propagate them through the network to con-
struct the reachable output set. The reachable output set (a union of probstars)
is then used to verify a user-defined safety property in which the violation proba-
bility can be obtained e”ciently. StarV supports exact quantitative verification,
where the precise probability of safety violation is computed. It also supports ap-
proximate verification by filtering out reachable intermediate sets (in the layers)
with probabilities lower than a user-predefined threshold. The exact verifica-
tion algorithm is expensive as it explores all paths in reachability analysis. The
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Feature Supported

Neural Network Type FFNN, CNN, SSN, Vanilla RNN, LSTM, GRU

Layers MaxPool, Conv, BN, AvgPool, FC, TC, DC,

Activation functions ReLU, Satlin, Sigmoid, Tanh, Leaky ReLU, Satlins

Plant dynamics (NNCS) Linear ODE, Massive Linear ODE, Continuous & Discrete Time

Set Representation Star, ImageStar, SparseStar, SparseImageStar, ProbStar

Qualitative Reach methods exact, approx, relax, abs-dom

Quantitative Reach methods exact, approx

Reachable set visualization exact and over-approximation

Specification Safety, Robustness, ProbStarTL Temporal Properties

Miscellaneous Parallel computing, counterexample generation

Solver Gurobi, GLPK

Import Pytorch, ONNX

Table 1: Overview of core features available in StarV. BN refers to batch normal-
ization layers, FC to fully-connected layers, AvgPool to average pooling layers,
Conv to convolutional layers, MaxPool to max-pooling layers, TC to transpose
convolutional layers, and DC to dilated convolutional layers.

over-approximate verification algorithm focuses on exploring paths with large
probabilities, thus reducing the number of reachable sets involved and mem-
ory consumption in verification. Nevertheless, the over-approximate verification
algorithm must filter intermediate ProbStars, which may be costly.

ProbStar Temporal Logic Verification [70]. StarV implements Probstar
Temporal Logic (ProbStarTL), a formalism enabling quantitative verification of
temporal properties of LES using probstar reachability analysis. ProbStarTL is
defined on a (bounded-time) ProbStar signal (or ProbStar trace), a sequence
of discrete, timed probstar reachable sets. The interpretation of ProbStarTL
captures a symbolic representation of the set of LES traces that satisfy the
specification. ProbStarTL supports two basic temporal operators: always (↭)
and eventually (→). Since ProbStarTL is defined only over discrete-time and
bounded-time intervals, the until (U) operator is evaluated using the equivalent
formula composed of the always (↭) and eventually (→) operators. The Prob-
Star traces are constructed using exact or approximate ProbStar reachability
algorithms, focusing on NNCS reachability with a feedforward neural network
controlling a discrete linear plant model. In the future, we will extend the ap-
proach to verify temporal behaviors of networks handling time-series data, such
as recurrent neural networks [73]. The verification of LES’s temporal properties
is done in two steps. First, we transform the user-defined ProbStar specification
into a abstract disjunctive normal form (ADNF), which is realized on the con-
structed reachable set traces to construct computable disjunctive normal form
(CDNF). The exact verification algorithm, while computationally expensive, cal-
culates the exact satisfaction probability from the constructed CDNF. In con-
trast, the approximate verification algorithm, less expensive than the exact one,
estimates only the lower and upper bounds of satisfaction probability from the
CDNF.
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ProbStar Reachability and Verification for Massive Linear Systems.

StarV implements an e”cient simulation-based probstar reachability method for
massive linear systems based on the Krylov-subspace method proposed in [7].
However, with ProbStarTL [70], StarV allows users to quantitatively verify tem-
poral behaviors of massive linear systems, a novel feature compared to the state-
of-the-art, which supports only safety verification [4,5,7]. Our reachability analy-
sis leverages state-space projection techniques to enhance memory e”ciency and
employs the Krylov subspace method in numerical simulation to optimize com-
putation time at each discrete-time step. Additionally, our approach develops
a robust quantitative verification algorithm based on ProbStarTL, which e”-
ciently calculates the probability of satisfaction on a ProbStarTL specification,
providing a way to quantify the system’s temporal behaviors. We demonstrate
the scalability and e”ciency of our approach by successfully verifying nine large-
scale linear systems, each with up to 10,000 dimensions.
SparseImageStar Reachability for CNNs. Verification of large CNNs, such
as VGG16, with high-dimensional input like ImageNet presents significant chal-
lenges, particularly when computing resources are limited. To address these chal-
lenges, we develop SparseImageStar, a highly memory-e”cient representation
designed to handle pixel-level attacks involving up to 3000 pixels while ensuring
scalability. This is accomplished by transforming multiple 3D RGB images into
a column stack of flattened images in sparse matrix formats such as Coordi-
nate (COO) and Compressed Sparse Row (CSR). However, this transformation
disrupts the original spatial relationships. To mitigate this issue, we propose
the indices-shifting technique that restores these spatial relationships without
the need to revert the images to their original representation. Additionally, this
technique enables SparseImageStar to operate at the feature map level rather
than the pixel level. Leveraging this approach, we implement novel SpGEMM
convolution and average pooling operations that directly operate on SparseIm-
ageStar, eliminating the need for feature extraction from the input, all while
preserving both memory e”ciency and scalability.

4 Evaluation

4.1 Qualitative Verification of LES

LSTM and GRU Verification We evaluate MNIST LSTM, L15 and GRU,
G15 RNNs with SparseStar against infinity norm attack such that

∧
Tmax

t=1 ↑x→t
i
↓

xt

i
↑↑ ↔ ω, Tmax = 2. SparseStar minimizes memory consumption by eliminating

dependent basis vectors and storing linear constraints matrix in Compressed
Sparse Column (CSC) format. SparseStar has the unique feature of reducing
the number of predicates by their depth level, i.e., DR. We over-approximate
LSTM and GRU layers as the combined activation operations in a new 3D
geometric approach. In Figure 2, SparseStar with LP solver(‘LP’) proves the
most robust cases for both networks, whereas with ‘DR = 1’ predicate reduction
and ‘EST’ with estimate ranges, SparseStar proves the fewest cases due to the
convex relation in return for improved scalability and memory consumption. The
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experiment is conducted on a computer with Intel Core i7-10700 CPU, 63.7 GiB
Memory, 64-bit Ubuntu 18.04.6 LTS OS.

Fig. 2: L15 and G15 verification results.
‘LP’ proves the most robust cases. Au-
toLirpa [87] proves as many robust
cases as ‘LP,’ but it becomes more con-
servative as the epsilon becomes bigger.
For L15, ‘EST’ proves more than Au-
toLirap for ω = 0.025. POPQORN is
the most conservative approach.

Robustness results (%) Verification time (sec)

Small Medium Large Small Medium Large

ω = 0.005 ω = 0.01 ω = 0.015 ω = 0.005 ω = 0.01 ω = 0.015 ω = 0.005 ω = 0.01 ω = 0.015 ω = 0.005 ω = 0.01 ω = 0.015 ω = 0.005 ω = 0.01 ω = 0.015 ω = 0.005 ω = 0.01 ω = 0.015

d
=

25
0

IM 87 87 87 99 99 99 99 99 99 0.135 0.195 0.195 0.143 0.220 0.345 0.190 0.284 0.395

SIM csr 87 87 87 99 99 99 99 99 99 0.143 0.177 0.206 0.236 0.297 0.362 0.534 0.628 0.727

SIM coo 87 87 87 99 99 99 99 99 99 0.166 0.194 0.216 0.274 0.375 0.454 0.693 0.865 1.032

NNV 87 87 87 99 99 99 99 99 99 0.207 0.327 0.469 0.433 1.210 2.179 0.546 1.208 2.178

d
=

24
5

IM 78 78 78 95 95 95 100 100 99 0.143 0.194 0.269 0.188 0.328 0.503 0.240 0.396 0.604

SIM csr 78 78 78 95 95 95 100 100 99 0.168 0.221 0.255 0.281 0.387 0.542 0.619 0.770 0.965

SIM coo 78 78 78 95 95 95 100 100 99 0.169 0.222 0.293 0.331 0.570 0.666 0.846 1.163 1.472

NNV 78 78 77 95 95 95 100 100 99 0.253 0.461 0.721 0.670 1.759 3.449 0.739 1.880 3.725

d
=

24
0

IM 73 73 73 90 90 88 99 99 99 0.149 0.242 0.372 0.236 0.424 0.863 0.288 0.496 0.784

SIM csr 73 73 73 90 90 88 99 99 99 0.211 0.271 0.361 0.292 0.459 0.639 0.691 0.893 1.182

SIM coo 73 73 73 90 90 88 99 99 99 0.222 0.248 0.322 0.370 0.602 0.963 1.008 1.353 1.842

NNV 73 72 71 90 89 88 99 99 99 0.335 0.642 0.989 0.906 2.653 5.400 0.942 2.333 5.445

Table 2: Verification results of the MNIST CNN [66]. SIMs are up to 3.07 ↗,
8.45 ↗, 4.60 ↗ faster than NNV in Small, Medium, Large networks, respectively.

StarV-ImageStar vs. NNV-ImageStar We evaluate SparseImageStar in
CSR (SIMCSR) and COO (SIMCOO) formats and ImageStar in StarV to com-
pare with NNV for verifying the robustness of MNIST CNNs under brightening
attacks. In Table 2, ImageStar in StarV is up to 2.66 ↗, 6.85 ↗, 6.94 ↗ faster than
NNV in Small, Medium, Large MNIST CNN networks, respectively. SIMCSR is
up to 2.82 ↗, 8.45 ↗, and 4.60 ↗ faster than NNV in Small, Medium, Large
networks, respectively, while SIMCOO is up to 3.07 ↗, 5.60 ↗, 2.95 ↗ faster than
NNV. The substantial improvement is achieved due to the indices-shifting tech-
nique that allows our SparseImageStar and ImageStar to operate at the feature
map level instead of the unscalable pixel level. The experiment is conducted on
a computer with Intel Core i7-6950X CPU, 125.7 GB Memory, RTX 3090 GPU,
and Ubuntu 20.04 LTS OS.

Robustness Verification of VGG16 We compare our SparseImageStar with
NNV [77], DeepPoly [62], NNENUM [3], ε,ϑ-Crown [83,87,88,93], Marabou [86]
by verifying the robustness of the VGG16 network from vnncomp2023 [10] under
infinity norm attack with randomly selected e ↘ [200, 3000] pixel attacks on the
corn image with ω = 0.001/255 perturbation. SIMCSR and SIMCOO are the only
two methods to verify all specifications without memory and scalability issues.
SIMCSR is the fastest method: 1.15 ↗, 1.24 ↗ faster than NNENUM for c0,
c2, respectively. For the spec 11 image, SIM methods require up to 38.91 MB,
which is 18↗ memory e”cient than ImageStar and NNV, which require up to
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0.59 GB. The experiment is conducted on a computer with Intel Core i7-6950X
CPU, 125.7 GB Memory, RTX 3090 GPU, and Ubuntu 20.04 LTS OS.

Original Network (seconds) Relufied Network (seconds)

Specs e Result m IM SIMCSR SIMCOO NNV DeepPoly Marabou IM NNV NNENUM ε,ϑ-CROWN ϑ-CROWN

c0 200 UNSAT 358 O/M 642.5 871.2 O/M O/M T/O O/M O/M 744.02 T/O 26782.3

c2 400 UNSAT 642 O/M 1089.4 1543.2 O/M O/M T/O O/M O/M 1354.75 T/O T/O

c4 1000 UNSAT 1613 O/M 2512.1 4076.5 O/M O/M T/O O/M O/M T/O T/O T/O

c6 3000 UNSAT 4871 O/M 7708.7 17362.4 O/M O/M T/O O/M O/M O/M T/O T/O

Table 3: SIMCSR and SIMCOO are the only methods that verify all specifications
without memory and scalability issues, with SIMCSR being the fastest for VGG16
verification. ‘O/M’ and ‘T/O’ denote out-of-memory and time-out (12 hours),
respectively; e is the number of attacked pixels, andm is the number of predicates
in the output reachable set (IM: StarV ImageStar; SIM: SparseImageStar).

Fig. 3: SIM methods require up to 38.91
MB, while ImageStar and NNV require
up to 0.59 GB. SIM methods are 18 ↗

more memory e!cient in verifying the
VGG16 with spec 11 image, which has
l↑ norm attack on 20 pixels.

4.2 Quantitative Verification of LES

Quantitative Verification for ACASXu Networks. In this experiment, we
assess our quantitative verification on unsafe ACASXu networks (properties P2,
P3, and P4) [6]) using 16 cores. Our approach computes violation bounds for 90
queries in roughly 24 hours (query times: 5s–2hrs). Partial results are shown in
Table 4, the approximate scheme (pf = 10↓5) can speed up verification by up to
10×, though its upper bounds are sometimes conservative. Our results are con-
sistent with NNV [78], Marabou [86], and NNenum [3]. While our method and
NNV perform exhaustive counterexample searches and are slower, Marabou and
NNenum stop after the first counterexample. Moreover, Monte Carlo sampling
requires many samples, potentially leading to memory issues for low violation
probabilities, highlighting the e”ciency of our ProbStar approach. The exper-
iment is conducted on a computer with Intel Core i7-6950X CPU, 125.7 GiB
Memory, 64-bit Ubuntu 20.04.6 LTS OS.

Quantitative Verification of Temporal Properties of Le-ACC. We eval-
uate our approach to the learning-based adaptive cruise control (Le-ACC) sys-
tem from the ARCH competition [36, 78] in comparison with the NeuroSym-
bolic [25] approach with the network controller N5↔20 for property ϖ3 in [25].
Our ProbStarTL framework achieves safety guarantees similar to those of the
NeuroSymbolic method but with substantially lower verification times. By de-
coupling reachability from property checking and computing satisfaction prob-
abilities directly, our approach is significantly faster on the Le-ACC system, as
shown in Table 5. The experiment is executed on an iMAC 3.8 GHz 8-Core Intell
Core i7 with 128GB memory with a virtual 64-bit Ubuntu 20.04.4 LTS system.
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Quantitative Verification Monte Carlo Qualitative Verification

Prop Net pf O US →O C US-Prob-LB US-Prob-UB US-Prob-Min US-Prob-Max I-Prob VT US-Prob VT NNV Marabou NNenum

2 1-6 0 376352 80621 80621 9.07123e-06 9.07123e-06 9.07123e-06 0.0134354 0.986574 1287.45 4e-07 223.223 13739.970 166.58 1.5938

2 1-6 1e-05 4874 2662 2662 3.88239e-06 0.0538327 3.88239e-06 0.067259 0.986574 228.114

3 1-7 0 500 500 500 0.986574 0.986574 0.986574 1 0.986574 7.52849 1 223.804 0.943 0.25 0.86683

3 1-7 1e-05 190 190 190 0.984972 0.985307 0.984972 0.998733 0.986574 6.635

4 1-9 0 471 471 471 0.989244 0.989244 0.989244 1 0.989244 7.24032 1 209.705 1.176 0.31 0.86635

4 1-9 1e-05 142 142 142 0.989244 0.989244 0.989244 1 0.989244 5.38665

Table 4: Quantitative verification results for unsafe ACASXu networks compared
with MC sampling (107 samples) and qualitative tools. Notations: pf (filtering
probability), O (total output sets), US ↓O (unsafe output sets), C (counter in-
put sets), US-Prob-LB/US-Prob-UB (lower/upper bounds of violation probabil-
ity), US-Prob-Min/US-Prob-Max (min/max unsafe probability over the infinite
input space), I-Prob (input probability), and V T (verification time in seconds).

T = 10 T = 20 T = 30 T = 50

CtrlNet Method RS VT (sec) RS VT (sec) RS VT (sec) RS VT (sec)

N5→20
ProbStarTL [0.9512, 0.9512] 1.7683 [0.9512, 0.9512] 5.892 [0.9512, 0.9512] 9.141 [0.9512, 0.9512] 29.0227

NeuroSymbolic [26.9067, 48.2244] 13.4654 [26.9067, 48.2244] 76.0396 [26.9067, 48.2244] 137.227 [24.0621, 44.3187] 356.74

Table 5: Verification results (robustness intervals) of NeuroSymbolic [25] are
consistent with the proposed ProbStarTL verification results (probabilities of
satisfaction). The proposed ProbStarTL verification approach is significantly
faster than the NeuroSymbolic. RS is the verification result, V T is the verifica-
tion time (in seconds), and T is the number of time steps.

5 Conclusions

We present StarV, a new qualitative and quantitative verification tool for LES.
Our new tool reimplements and optimizes qualitative verification methods of
the state-of-the-art for a wide range of network architectures. Notably, StarV
includes a new set representation named SparseImageStar and SparseStar, as
well as reachability and verification algorithms to improve memory e”ciency
and enhance the scalability of qualitative verification methods. Additionally,
StarV introduces novel quantitative reachability and verification algorithms us-
ing ProbStar and ProbStarTL for neural networks with piecewise linear activa-
tion functions and NNCS. In the future, we will enhance StarV in the following
aspects. Firstly, we will build a graphical, user-friendly interface and ROS inter-
face for robotic applications. Secondly, we will develop Star Temporal Logic for
verifying the temporal behaviors of LES with deterministic input sets. Thirdly,
we will support fairness verification by developing hybrid and CEGAR reacha-
bility algorithms for LES. Fourthly, we will support the verification of complex
LES with multiple neural network components and Large Language Model Ver-
ification by developing a Star/ProbStar algebra foundation and generic graph-
based reachability algorithms. The key challenge in verifying complex LES with
multiple neural network components is the complicated information flow (under
uncertainties) inside the system. Therefore, tracking the dependencies of this
information (represented as reachable sets) in multiple network components in-
teracting with each other is crucial to constructing precise reachable sets for
verification. Additionally, scalability is also a main challenge for verifying com-
plex Le-CPS (even in design time). Addressing these challenges is the focus of
our future work. Finally, we will extend our integration to CROWN, DeepPoly,
and MILP approaches.
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47. Mitra, S., Păsăreanu, C., Prabhakar, P., Seshia, S.A., Mangal, R., Li, Y., Wat-
son, C., Gopinath, D., Yu, H.: Formal verification techniques for vision-based au-
tonomous systems–a survey. In: Principles of Verification: Cycling the Probabilistic
Landscape: Essays Dedicated to Joost-Pieter Katoen on the Occasion of His 60th
Birthday, Part III, pp. 89–108. Springer (2024)

48. Muhammad, K., Ullah, A., Lloret, J., Del Ser, J., de Albuquerque, V.H.C.: Deep
learning for safe autonomous driving: Current challenges and future directions.
IEEE Transactions on Intelligent Transportation Systems 22(7), 4316–4336 (2020)

49. (ONNX), O.N.N.E.: https://github.com/onnx/
50. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for

natural language processing. IEEE transactions on neural networks and learning
systems 32(2), 604–624 (2020)
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