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Abstract

We present estimators for smooth Hilbert-valued parameters, where smoothness is characterized

by a pathwise differentiability condition. When the parameter space is a reproducing kernel Hilbert

space, we provide a means to obtain efficient, root-n rate estimators and corresponding confidence

sets. These estimators correspond to generalizations of cross-fitted one-step estimators based on

Hilbert-valued efficient influence functions. We give theoretical guarantees even when arbitrary

estimators of nuisance functions are used, including those based on machine learning techniques. We

show that these results naturally extend to Hilbert spaces that lack a reproducing kernel, as long as

the parameter has an efficient influence function. However, we also uncover the unfortunate fact that,

when there is no reproducing kernel, many interesting parameters fail to have an efficient influence

function, even though they are pathwise differentiable. To handle these cases, we propose a regularized

one-step estimator and associated confidence sets. We also show that pathwise differentiability, which

is a central requirement of our approach, holds in many cases. Specifically, we provide multiple

examples of pathwise differentiable parameters and develop corresponding estimators and confidence

sets. Among these examples, four are particularly relevant to ongoing research by the causal inference

community: the counterfactual density function, dose-response function, conditional average treatment

effect function, and counterfactual kernel mean embedding.

1 Introduction

There has been much recent work on combining tools from semiparametric efficiency and machine

learning to estimate finite-dimensional parameters (Baiardi and Naghi, 2021; Kennedy, 2022; Hines et al.,

2022). These works often focus on pathwise differentiable parameters, which are characterized by their

smoothness along regular univariate submodels of the statistical model (Pfanzagl, 1990; van der Vaart,

1991; Bickel et al., 1993). When a finite-dimensional parameter is pathwise differentiable, it also has an

efficient influence function (EIF), which corresponds to the Riesz representation of its pathwise derivative.

Efficient influence functions are the critical ingredient used to define various estimation strategies, such as

those based on one-step estimation (Pfanzagl, 1982; Newey and McFadden, 1994), estimating equations

(van der Laan et al., 2003; Tsiatis, 2006), targeted learning (van der Laan and Rubin, 2006; van der

Laan et al., 2011), and double machine learning (Chernozhukov et al., 2017, 2018). When paired with

cross-fitting (Schick, 1986; Klaassen, 1987), these frameworks yield asymptotically efficient estimators

provided the nuisance functions are estimated well enough as the sample size n grows to make a certain

remainder term negligible. Often, this amounts to requiring an n−1/4-rate condition, which will most

plausibly hold if the nuisance functions are estimated flexibly.

Another line of research has focused on leveraging machine learning tools to estimate function-valued

parameters, such as the causal dose-response function (Dı́az and van der Laan, 2013), counterfactual
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density function (Kennedy et al., 2021), and conditional average treatment effect function (Nie and Wager,

2021). Possibly owing to the wealth of available methods for estimating real-valued functionals, many of

these works have focused on the evaluation of these functions at a point. As has been noted in van der

Laan et al. (2018) and Chernozhukov et al. (2018), the resulting point evaluations tend not to be pathwise

differentiable except in trivial cases (e.g., when the data are discrete). To overcome this challenge,

kernel-smoothed approximations of the function evaluation parameter have been considered in those two

works and others (Colangelo and Lee, 2020; Luedtke and Wu, 2020; Chernozhukov et al., 2021; Jung et al.,

2021), and local polynomial approximations have also been introduced for several parameters (Kennedy

et al., 2017; Takatsu and Westling, 2022; Kennedy et al., 2022). These smoothed approximations tend

to yield pathwise differentiable parameters, which enables the use of one-step estimators. Slower-than-

n1/2 convergence rates are typically attained because the fineness of the approximation must improve

with sample size. The guarantees provided for these estimators tend to be pointwise in nature. Given

that pointwise convergence does not generally imply norm convergence or uniform convergence without

additional regularity conditions, these pointwise-based estimators usually only facilitate inference for the

evaluation of the unknown function at one or finitely many points, rather than for the entire function.

Some works have focused on estimating unknown function-valued parameters in a norm sense. Many

of these works incorporate objects from semiparametric efficiency theory. For example, in the context of

conditional average treatment effect estimation, risk functions have been developed (van der Laan, 2006;

Luedtke and van der Laan, 2016; Nie and Wager, 2021), and Kennedy (2020) develops rate-of-convergence

guarantees for the corresponding empirical risk minimizers. These estimators incorporate (weighted)

variants of the EIF of the marginal average treatment effect in their construction. As further examples,

EIFs have been used to construct norm-convergent estimators of the counterfactual density function

(Kennedy et al., 2021) and dose-response function (Takatsu and Westling, 2022). A drawback to these

approaches to estimating function-valued parameters is that, to date, it has seemed that a new estimator

must be derived and new regularity conditions established for each new parameter considered. Others have

presented general approaches to learning unknown functions based on empirical risk minimization, where

the population risk depends on unknown nuisance functions that can be orthogonalized by conducting

statistical learning using an efficient estimator of the risk function as an objective function (van der Laan

and Dudoit, 2003; Foster and Syrgkanis, 2019). When the population regret takes the form of a squared

norm, these approaches provide a means to derive estimators with norm-convergence guarantees. However,

unlike standard approaches such as one-step-estimation that are used for estimating finite-dimensional

quantities, these methods do not appear to easily lend themselves to the construction of confidence

sets for the unknown functions. Instead, the available approaches to construct confidence sets rely on

approaches that are generally distinct from those used for estimating the function, such as building them

using higher-order influence functions (Robins et al., 2008), a restricted score test (Hudson et al., 2021),

or a maximum mean discrepancy (MMD) criterion (Luedtke et al., 2019).

In this work, we establish that the one-step estimation methodology can be extended to estimate

and make inference about pathwise differentiable parameters that take values in a Hilbert space. This

pathwise differentiability condition turns out to be quite reasonable for many function-valued parameters

of current interest. Indeed, we show that all of the parameters mentioned earlier in this Introduction

satisfy it under regularity conditions. This is true in spite of the fact that these Hilbert-valued parameters

are not pathwise differentiable when composed with an evaluation map.

The notion of pathwise differentiability that we focus on in this work is that studied in some early

literature on semiparametric efficiency theory, which defined pathwise differentiability and EIFs not just

for finite-dimensional parameters, but for general Banach-valued parameters (van der Vaart and Wellner,

1989; van der Vaart, 1991; page 179 of Bickel et al., 1993). Since all Hilbert spaces are Banach spaces, their

definitions apply in our case, as do some useful results that they present, such as a convolution theorem.
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Nevertheless, existing works did not provide any examples of how to evaluate the pathwise differentiability

of infinite-dimensional Hilbert-valued parameters — for example, see van der Vaart (1991) and Chapter

5.3 of Bickel et al. (1993), whose infinite-dimensional examples all pertain to parameters taking values

in a Banach space equipped with the uniform norm. Since they are not even pathwise differentiable at

a point, none of the aforementioned function-valued parameters are pathwise differentiable in such a

Banach space. Previous works also do not indicate whether or how the pathwise differentiability of an

infinite-dimensional Hilbert-valued parameter can be used to facilitate estimation or inference, whether

via the one-step estimation methodology or otherwise. While a brief, one-paragraph sketch was given

on page 405 of Bickel et al. (1993) suggesting that providing a general, efficient n−1/2-rate estimation

framework may be difficult for infinite-dimensional spaces, this sketch only discusses a single example

where n−1/2-rate estimation may not even be possible. Moreover, neither that work, nor any subsequent

ones, appear to evaluate whether leveraging the pathwise differentiability of a Hilbert-valued parameter

would be useful for constructing a performant, but slower than n−1/2-rate, estimator, or for constructing

a confidence set.

The main contributions of this work are as follows:

1. We characterize the EIF of a pathwise differentiable Hilbert-valued parameter, when it exists, and

provide a means to obtain a regularized version thereof, when it does not.

2. We construct one-step estimators using (possibly regularized) EIFs. Any method can be used to

estimate the needed nuisance functions provided it converges at a suitable rate.

3. We provide root-n-rate weak convergence and efficiency guarantees for these estimators, when an

EIF exists, and slower rate-of-convergence guarantees, when one does not.

4. We show how to construct asymptotically-valid confidence sets for the Hilbert-valued estimands.

These confidence sets take different forms depending on whether an EIF exists.

5. We study our framework in examples of current interest to the causal inference community and

establish the pathwise differentiability of several more traditional parameters.

When the estimand is a function, our confidence sets will contain it with a specified probability. Thus, if

the aim is to infer about the whole function, our methodology is likely preferable to pointwise approaches.

To accomplish the last point above, we derive a general lemma that facilitates the evaluation of the

pathwise differentiability of Hilbert-valued parameters. Finally, we have conducted a simulation study to

evaluate the proposed approach. All proofs can be found in the appendix.

2 Pathwise differentiability in Hilbert spaces and constructing

estimators

2.1 Notation

We work on a Polish space (Z,B) with a collection of distributions P, which we refer to as the model.

Let Z1, Z2, · · · , Zn ∼ P0 be an independent and identically distributed (iid) sample from a distribution

P0 ∈ P , and let Pn denote the corresponding empirical distribution. Let P̂n ∈ P be an estimate of P0. To

ease notation, for now we consider a sample splitting approach wherein P̂n is fitted using an iid sample

that is independent of Z1, Z2, · · · , Zn; in Section 2.5, we describe the case where cross-fitting is used

(Schick, 1986; Klaassen, 1987), which is our preferred approach. For Q a signed measure on (Z,B) and

a measurable function f : Z → R, we use the shorthand Qf :=
∫
fdQ. For any object indexed by P0,
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we will abbreviate the notation by replacing ‘P0’ by ‘0’; for example, we will write f0 rather than fP0
.

Similarly, we will replace ‘P̂n’ by ‘n’ and write fn rather than fP̂n
.

All Hilbert spaces mentioned in this paper are real Hilbert spaces. For a measure µ on a measurable

space (X ,Σ), we write L2(µ) to denote the Hilbert space of µ-a.s. equivalence classes of X → R functions

equipped with inner product ⟨f, g⟩L2(µ) :=
∫
fg dµ. If X ⊂ R

d, µ is the Lebesgue measure, and Σ is the

Borel σ-algebra on R
d, we will sometimes write L2(X ) instead of L2(µ). In what follows V denotes a

generic Hilbert space. We let ∥ · ∥V and ⟨·, ·⟩V denote the norm and inner product associated with V . The
space L2(P ;V) is the Hilbert space containing all Bochner measurable functions f : Z → V such that

∥f∥L2(P ;V) :=

(∫
∥f(z)∥2V P (dz)

)1/2

<∞.

The operator norm of a linear functional f : V → R is defined as ∥f∥op := inf{c ≥ 0 : |f(v)| ≤
c∥v∥V for all v ∈ V}. If W is a closed subspace of V , then let ΠV [h | W ] denote the orthogonal projection

of h to W. We let ℓ2 denote the space of all square-summable sequences and ∥b∥ℓ2 := [
∑∞

k=1 b
2
k]

1/2. We

also let [0, 1]N denote the space of all [0, 1]-valued sequences. To avoid having to use different notation

to treat finite- and infinite-dimensional Hilbert spaces, throughout we use the convention that, if V is

finite-dimensional, then we call (vk)
∞
k=1 an orthonormal basis of V if (vk)

dim(V)
k=1 is an orthonormal system

that spans V and vk = 0 for all k > dim(V).

2.2 Pathwise differentiability in Hilbert spaces

We start with a brief review of important definitions that can be used to characterize the smoothness

of a Hilbert-valued parameter. These definitions are adapted from those given in (Bickel et al., 1993)

for more general Banach-valued parameter settings. The subsequent parts of this section will involve

developing estimators for our more specialized, but understudied, setting, where we heavily leverage the

availability of an inner product in our Hilbert parameter space.

Let P be a collection of distributions defined on a common Polish space (Z,B), which we refer to as the

model. Suppose that the model is dominated by a σ-finite measure λ. A submodel {Pϵ : ϵ ∈ [0, δ)} ⊂ P
is said to be quadratic mean differentiable at P if and only if there exists a score function s ∈ L2(P ) such

that

∥∥∥p1/2ϵ − p1/2 − ϵsp1/2/2
∥∥∥
L2(λ)

= o(ϵ), (1)

where, for ϵ ≥ 0, p
1/2
ϵ =

√
dPϵ

dλ and p1/2 =
√

dP
dλ . Let P(P,P, s) refer to the set of quadratic mean

differentiable submodels at P with score function s. The set {s ∈ L2(P ) : P(P,P, s) ̸= ∅} is called the

tangent set, and its closed linear span is called the tangent space of P at P , denoted by ṖP . For all

s ∈ ṖP , Ps =
∫
sdP = 0. We let L2

0(P ) := {h ∈ L2(P ) : Ph = 0}, which is the largest possible tangent

space at P . Any model with this tangent space at all distributions P it contains is referred to as locally

nonparametric.

Let H be a set known as the action space and ν : P → H a parameter whose value is to be estimated.

Throughout we assume that H is a real separable Hilbert space. The parameter ν is said to be pathwise

differentiable at P if and only if there exists a continuous linear operator ν̇P : ṖP → H such that, for all

{Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s),

∥ν(Pϵ)− ν(P )− ϵν̇P (s)∥H = o(ϵ). (2)

The operator ν̇P is called the local parameter of ν at P and its Hermitian adjoint, denoted by ν̇∗P : H → ṖP ,
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is referred to as the efficient influence operator. The image of the local parameter ν̇P , denoted by ḢP , is

a closed subspace of H that is referred to as the local parameter space. Throughout we equip ḢP with

the inner product ⟨·, ·⟩H, so that ḢP is itself a Hilbert space. The efficient influence operator can be

shown to only depend on its argument through its projection onto the local parameter space, in the sense

that ν̇∗P (h) = ν̇∗P (ΠH[h | ḢP ]) for all h ∈ H. At times in this work, we will consider pointwise evaluations

of the efficient influence operator of the form ν̇∗P (h)(z). When doing so, we always assume that suitably

‘nice’ elements of the P -a.s. equivalence classes defined by the elements ν̇∗P (h) of L
2(P ) are used to define

these evaluations. In particular, we select these elements so that the efficient influence process, which we

define as {ν̇∗P (h) : h ∈ H}, is a separable stochastic process, in the sense that there exists a countable

dense subset H′ of H and a P -probability one subset Z ′ of Z such that, for all h ∈ H and z ∈ Z ′, there

exists an H′-valued sequence (hj)
∞
j=1 that converges to h and satisfies ν̇∗P (hj)(z) → ν̇∗P (h)(z) as j → ∞.

Analogous to the case for Euclidean parameters, in some semiparametric models it may be natural

to describe a Hilbert-valued parameter as the restriction of a parameter defined on a larger, possibly

nonparametric, model. If the true parameter lies in a model P ′ ⊂ P with tangent space Ṗ ′
P and

ν : P → H is a parameter defined on P, then the restriction ν|P′ has local parameter ν̇|Ṗ′
P
and efficient

influence operator h 7→ ΠL2(P )[ν̇
∗
P (h)|Ṗ ′

P ]. Armed with this fact, results can easily be transferred from

a larger nonparametric model to a semiparametric model provided the form of the projection operator

ΠL2(P )[ · | Ṗ ′
P ] is known. As a simple example, we may have that ν(P )(·) = EP [Y | X = · ] for each P

in a nonparametric model P, and the model P ′ = {P ∈ P : varP (Y ) = 1} may reflect knowledge that

the variance of an outcome Y is 1. The form of the local parameter and efficient influence operator of

ν relative to P are given in Example 5 in the appendix when H is an L2 space, and the form of the

projection onto Ṗ ′
P is given in Example 3.2.3 of Bickel et al. (1993).

The parameter ν is said to have an EIF ϕP : Z → H when there exists a P -probability-one set Z ′

such that

ν̇∗P (h)(z) = ⟨h, ϕP (z)⟩H for all (h, z) ∈ H ×Z ′. (3)

By the Riesz representation theorem, ν has an EIF if and only if ν̇∗P (·)(z) : H → R is a bounded linear

functional P -almost surely; in those cases, ϕP (z) is P -a.s. equal to the Riesz representation of ν̇∗P (·)(z).
The fact that ν̇∗P (h) = ν̇∗P (ΠH[h | ḢP ]) implies that the image of ϕP is necessarily contained in ḢP .

When H = R
d, the EIF of ν at P takes the form ϕP (z) = (ν̇∗P (et)(z))

d
t=1, where {et}dt=1 is the standard

basis. To our knowledge, the existence and form of this object have not previously been studied in

infinite-dimensional Hilbert spaces. Given that knowing the form of the EIF readily facilitates the

construction of estimators in finite-dimensional settings, this appears to constitute an important gap

in the literature. We therefore focus the remainder of this section on studying the existence of EIFs in

Hilbert spaces and providing ways to construct estimators based on EIFs, when we can show they exist,

or imitations thereof, when we cannot.

The cases where EIFs do not exist become particularly salient in Section 3, where we demonstrate

through examples that, for several interesting L2-valued parameters, ν̇∗P (·)(z) : H → R depends on a

point evaluation functional, and so is not bounded P -almost surely. Nevertheless, even when ν does not

have an EIF, we will show in Section 5.2 that it is always possible to define an injective transformation of

ν that has one. Consequently, the procedure we shall present to construct confidence sets for parameters

with EIFs can also be used to construct them for those without one: first construct a confidence set for

the transformation of ν(P0), and then invert it to obtain one for ν(P0).

Before proceeding, we note that inefficient influence operators can be defined when the model is

semiparametric at P , in that ṖP is a strict subspace of L2
0(P ). Under a condition akin to (3), inefficient

influence functions can also be defined. To streamline presentation, we defer the presentation of these
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objects and their use for constructing estimators to Appendix H. There, we also show that inefficient

influence functions can only exist if an EIF exists.

2.3 One-step estimation based on the efficient influence function

On the one hand, if H is finite-dimensional, then the EIF can be used to construct what is known as

a one-step estimator, which is known to be efficient under conditions (Pfanzagl, 1982). This estimator

takes the form ν(P̂n) + Pnϕn, where P̂n ∈ P is an initial estimate of the data-generating distribution

P0 and we recall the convention that ϕn := ϕP̂n
. On the other hand, if H is infinite-dimensional, then

previously studied one-step estimators cannot be applied. In this section, we provide a natural means

to extend the one-step estimation framework to infinite-dimensional settings. Similarly to the one-step

estimator in finite-dimensional settings, this one-step estimator takes the form ν̂n := ν(P̂n) +Pnϕn for an

H-valued EIF ϕn. This estimator is applicable whenever ν has an EIF at P̂n with P0-probability one.

We will see that, under conditions that include that ν also has an EIF ϕ0 at P0, ν̂n is an asymptotically

linear estimator of ν(P0) with influence function ϕ0, in the sense that

ν̂n − ν(P0) =
1
n

∑n
i=1ϕ0(Zi) + op(n

−1/2), (4)

where throughout we let Hilbert-valued quantities of the form op(n
−a) denote terms whose Hilbert norm

goes to zero in probability even after being multiplied by na. We will be especially interested in cases

where n1/2[ν̂n− ν(P0)] will converge weakly to a tight random element, since this can be used to facilitate

the construction of confidence sets for ν(P0) (see Section 4.2). To be able to apply a central limit theorem

to establish the weak convergence of n1/2[ν̂n − ν(P0)], it suffices that ϕ0 is P0-Bochner square integrable,

in the sense that ∥ϕ0∥L2(P0;H) <∞ (Example 1.8.5 of van der Vaart and Wellner, 1996). Therefore, we

will focus on settings where ϕ0 ∈ L2(P0;H).

We begin by establishing the existence and form of the EIF at a generic P ∈ P in an interesting class

of problems. In particular, we consider cases where H is an RKHS over a space T or, more generally, the

local parameter space ḢP is an RKHS over T . Denote the feature map of ḢP by t 7→ Kt. For P ∈ P,

define ϕ̃P : Z → H as follows for each t ∈ T :

ϕ̃P (z)(t) = ν̇∗P (Kt)(z) P -a.s. z. (5)

The following result shows that ϕ̃P both provides the form of the EIF of ν, when it exists, and also a

sufficient condition that can be used to verify this existence.

Theorem 1 (Form of the efficient influence function in RKHS settings). Suppose ν is pathwise differen-

tiable at P and ḢP is an RKHS. Both of the following implications hold:

(i) If ν has an EIF ϕP at P , then ϕP = ϕ̃P P -almost surely.

(ii) If ∥ϕ̃P ∥L2(P ;H) <∞, then ν has an EIF at P .

The form of the EIF in (5) naturally generalizes its form in finite-dimensional spaces, where the feature

Kt replaces the t-th standard basis element et. The proof of (i) is a straightforward extension of results

about the Riesz representation of a bounded linear functional to our setting, where ν̇∗P (·)(z) is only known

to be bounded and linear P -almost surely (cf. Lemma 10 of Berlinet and Thomas-Agnan, 2011). The

proof of (ii) is more subtle, and involves showing that, when ∥ϕ̃P ∥L2(P ;H) <∞, any separable version of

the efficient influence process must P -a.s. have sample paths ν̇∗P (·)(z) that are both bounded and linear.

In the remainder of this subsection, we suppose that ν has an EIF ϕP at each P ∈ P.
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In Section 4.1, we establish that, under conditions, a cross-fitted variant of the one-step estimator

ν̂n := ν(P̂n) + Pnϕn is efficient, in the sense that ∥ν̂n − ν(P0)∥H is as concentrated about zero as is

possible for any estimator satisfying appropriate regularity conditions. Here, we provide two more

heuristic arguments as to why the one-step correction should lead to improvements. The first, which

applies specifically in cases where H is an RKHS, is based on the pointwise performance of the one-step

estimator. In particular, the fact that norm convergence in an RKHS implies pointwise convergence can

be used to show that the pathwise differentiability of ν : P → H also implies the pathwise differentiability

of ν(·)(t) : P → R for each t ∈ T . Moreover, the EIF of ν(·)(t) at P ∈ P is equal to z 7→ ν̇∗P (Kt)(z),

and so the one-step estimator for the real-valued parameter ν(P0)(t) is equal to the evaluation of the

H-valued one-step estimator ν̂n at the point t. While this pointwise justification of the one-step estimator

ν̂n is informative, it does not in itself explain why ν̂n should be expected to perform well in a norm sense.

Indeed, pointwise convergence in an RKHS does not necessarily imply norm convergence. For the same

reason, pathwise differentiability of the real-valued parameters ν(·)(t), t ∈ T , does not generally imply

pathwise differentiability of the RKHS-valued parameter ν.

The second heuristic justification that we provide here provides initial insights into why the one-step

estimator ν̂n should perform well in a norm sense. This justification applies regardless of whether ḢP

is an RKHS. Fix a submodel {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s). In the appendix, we establish that, under

conditions on either the EIF (Lemma S5) or the submodel (Lemma S6), a first-order approximation

to the local parameter ν̇P (s) is given by ϵ−1(Pϵ − P )ϕP , in the sense that the difference between these

quantities converges to zero as ϵ→ 0. Combining this with (2) and the fact that PϕP = 0, this yields the

approximation ν(Pϵ) ≈ ν(P ) + PϵϕP , which is valid up to an additive o(ϵ) remainder term. Letting P0

play the role of Pϵ and P̂n play the role of P , this suggests that the von Mises approximation

ν(P0) ≈ ν(P̂n) + P0ϕn (6)

may also be valid up to a term that goes to zero in probability at a reasonable rate. Admittedly, caution

is needed when making the leap from the approximation along the fixed quadratic mean differentiable

submodel {Pϵ : ϵ ∈ [0, δ)} to an approximation that involves the random quantity P̂n. For a given

parameter ν, the sense in which the above approximation holds can be made precise by directly studying

the quantity ν(P0)− ν(P̂n)− P0ϕn. In any case, the approximation above is appealing in that it only

relies on P0 through an expectation, which can naturally be approximated by an expectation under the

empirical distribution. This, therefore, suggests the one-step estimator ν̂n := ν(P̂n) + Pnϕn.

As will follow from the upcoming Lemma 7, ḢP need not be an RKHS for an EIF to exist. Consequently,

when one does, it is natural to wonder whether there is a general expression for its form. The Riesz

representation theorem provides an affirmative answer to this question, showing that, when an EIF exists,

it is P -a.s. equal to the following convergent sum:

ϕP (z) =

∞∑

k=1

ν̇∗P (hk)(z)hk, (7)

where here and throughout we let (hk)
∞
k=1 denote an orthonormal basis of H. If ḢP is an RKHS,

evaluating the expression for the EIF in (5) is typically easier than computing (or approximating) the

infinite sum in (7). However, in non-RKHS settings, (7) is useful both as an explicit expression for the

EIF, if it exists, and as a basis for generalizing the one-step estimator to settings where it does not.
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2.4 Regularized one-step estimation when there is no efficient influence

function

We now introduce a generalization of the one-step estimator that can be employed regardless of whether

an EIF exists. This estimator is a type of series estimator (Schwartz, 1967; Chen, 2007) based on the Riesz

representation of a regularized form of the efficient influence operator. This regularized form is motivated

by the fact that, when ν has an EIF ϕP , it is P -a.s. true that ν̇∗P (·)(z) : h 7→∑∞
k=1⟨h, hk⟩Hν̇∗P (hk)(z).

The regularized form is designed to ensure that the terms in this sum must decay as k grows sufficiently

large. For a square summable [0, 1]-valued sequence β := (βk)
∞
k=1, the β-regularized efficient influence

operator is given by rβP (h)(z) :=
∑∞

k=1 βk⟨h, hk⟩Hν̇∗P (hk)(z). We now show that rβP (·)(z) is always P -a.s.

bounded and linear, and we also provide an explicit expression for its Riesz representation. In what

follows we let ℓ2∗ := ℓ2 ∩ [0, 1]N.

Lemma 1 (β-regularized EIF based on β-regularized efficient influence operator). If ν is pathwise

differentiable at P and β ∈ ℓ2∗, then r
β
P (·)(z) : H → R is a bounded linear functional on a P -probability

one set Zβ with Riesz representation

ϕβP (z) :=

∞∑

k=1

βkν̇
∗
P (hk)(z)hk.

Moreover, σP (β) := ∥ϕβP ∥L2(P ;H) = [
∑∞

k=1 β
2
kP ν̇P (hk)

2]1/2 ≤ ∥ν̇∗P ∥op∥β∥ℓ2 <∞.

When ν has an EIF , ϕβP is similar to the expression for it given in (7), but with the k-th term dampened

by the multiplier βk ∈ [0, 1]. Given this similarity, we call ϕβP the β-regularized EIF of ν at P . The

corresponding β-regularized one-step estimator is ν̂βn := ν(P̂n) + Pnϕ
β
n.

We now provide a heuristic argument that is similar to one used in the previous subsection for

justifying the (non-regularized) one-step estimator, but adapted to account for the regularization bias

that arises from using a β-regularized EIF. Fix a submodel {Pϵ : ϵ} ∈ P(P,P, s). In Lemma S7 in the

appendix, we show that, under a regularity condition on the submodel,

∥∥∥ν(P )− ν(Pϵ) + Pϵϕ
β
P −∑∞

k=1(1− βk)⟨ν(P )− ν(Pϵ), hk⟩Hhk
∥∥∥
H

(8)

=
(
1 + ∥ϕβP ∥L2(P ;H)

)
· o(ϵ),

where the o(ϵ) term does not depend on the choice of β. Similarly to how we did when deriving (6), we

let P0 play the role of Pϵ and P̂n play the role of P . Recalling that ν̂βn := ν(P̂n) + Pnϕ
β
n then yields that

ν̂βn − ν(P0) ≈ (Pn − P0)ϕ
β
n + Bβ

P̂n
, (9)

where, for P ′ ∈ P , we let Bβ
P ′ :=

∑∞
k=1(1−βk)⟨ν(P ′)−ν(P0), hk⟩Hhk. Our formal study of the regularized

one-step estimator in Section 5.1 builds on the above. Informally speaking, that study will show that

the latter term above plays the role of a regularization bias term that decays as β grows entrywise to

(1, 1, 1, . . .) under conditions, and the leading term plays the role of a variance term whose magnitude

typically grows with that of β. Hence, a bias-variance tradeoff must be considered when selecting a

value for the tuning parameter β. In Section 5.3, we describe a cross-validation strategy for making this

selection. There, we also discuss the selection of the basis (hk)
∞
k=1.

8



2.5 Cross-fitted (regularized) one-step estimation

So far, the estimators we have defined have assumed the availability of an iid sample that is independent

of Z1, Z2, . . . , Zn that can be used to obtain the estimate P̂n of P0. We now describe how cross-fitting

(Schick, 1986; Klaassen, 1987; Zheng and Laan, 2011; Chernozhukov et al., 2018) can be used to avoid the

need for this independent sample. For simplicity, we focus on the case of 2-fold cross-fitting and suppose

that the sample size is an even number. The generalizations to k-fold cross-fitting (k ≥ 2) and to the case

where n is not divisible by k are straightforward and so are omitted. Let P̂ 1
n ∈ P denote an estimate of P0

based on {Zi}n/2i=1 and let P 1
n denote the empirical distribution of the remainder of the sample {Zi}ni=n/2+1.

Define P̂ 2
n and P 2

n similarly, but with the roles of the two subsamples reversed. We note that, in a slight

abuse of notation, P j
n denotes an empirical distribution derived from n/2 observations rather than a

j-fold product distribution derived from j independent draws from the empirical distribution Pn of the

full sample {Zi}ni=1. Cross-fitting enables the use of arbitrary estimation strategies when constructing

P̂ j
n, j ∈ {1, 2}, including those based on machine learning techniques.

We now present the form of our cross-fitted estimators. From a notational standpoint, these estimators

will be denoted by replacing the hat accents used to denote the sample-splitting estimators in Sections 2.3

and 2.4 by bar accents — for example, the cross-fitted one-step estimator will be denoted by ν̄n

rather than ν̂n. This cross-fitted one-step estimator takes the form ν̄n := 1
2

∑2
j=1[ν(P̂

j
n) + P j

nϕ
j
n],

where ϕjn := ϕP̂ j
n
. Let ϕj,βn := ϕβ

P̂ j
n
. The cross-fitted β-regularized one-step estimator takes the form

ν̄βn := 1
2

∑2
j=1[ν(P̂

j
n) + P j

nϕ
j,β
n ].

3 Examples of pathwise differentiable parameters

In this section, we present examples of pathwise differentiable Hilbert-valued parameters and the forms of

their efficient influence operators and, where applicable, EIFs. From these objects, cross-fitted (regularized)

one-step estimators can be derived using the formulas at the end of the previous section. We study the

performance of these estimators in Section 6.

In the main text, we focus on parameters that have recently become objects of interest to the causal

inference community. Two of these examples (Examples 1b and 3) consider cases where the action space

is an RKHS, and two (Examples 1a and 2) consider cases where the action space is an L2 space, and is

therefore not an RKHS. In Appendix A, we show that four more well-studied Hilbert-valued parameters

are also pathwise differentiable. In particular, we show that regression functions, square-root density

functions, and conditional average treatment effect functions are pathwise differentiable when viewed as

elements of appropriate L2 spaces, and we also show that a kernel mean embedding of a distribution

(Gretton et al., 2012) is pathwise differentiable when viewed as an element of an RKHS. We are not aware

of any reference establishing the pathwise differentiability of any of the eight Hilbert-valued parameters

that we consider in this work.

All derivations for our examples are deferred to Appendix B. For most of these examples, our

derivations make use of the following lemma, which we prove in Appendix C. In this lemma, H(P, P ′) :=

[
∫
(
√
dP −

√
dP ′)2]1/2 denotes the Hellinger distance.

Lemma 2 (Sufficient condition for pathwise differentiability). ν : P → H is pathwise differentiable at P

with local parameter ν̇P = ηP if both of the following hold:

(i) ηP : ṖP → H is bounded and linear and there exists a set of scores S(P ) whose L2(P )-closure is

equal to ṖP such that, for all s ∈ S(P ), there is at least one submodel {Pϵ : ϵ} ∈ P(P,P, s) for

which ∥ν(Pϵ)− ν(P )− ϵ ηP (s)∥H = o(ϵ); and

9



(ii) ν is locally Lipschitz at P in the sense that there exist (c, δ) ∈ (0,∞)2 such that

∥ν(P1)− ν(P2)∥H ≤ cH(P1, P2) for all P1, P2 ∈ Bδ(P ), (10)

where Bδ(P ) consists of all P ′ ∈ P for which H(P, P ′) ≤ δ.

This lemma is most useful when the set S(P ) and corresponding submodels in P(P,P, s) in (i) can be

chosen to make establishing (2) for those submodels simple. For example, in a locally nonparametric

model, we may take S(P ) to be the set of bounded, P -mean zero functions, and we may take the chosen

submodel in P(P,P, s) to be such that, for all ϵ ∈ [0, 1/ ess supz |s(z)|), dPϵ

dP = 1 + ϵs, where the essential

supremum is under P .

All of the examples presented in the main text are motivated by questions arising in causal inference.

The data structure is common across them, with Z = (X,A, Y ) ∼ P , where X is a vector of covariates

with support on X , A is a treatment with support on either {0, 1} or R, and Y is an outcome with

support on Y. In each example, we suppose that P is locally nonparametric. We further suppose, for

simplicity, that all pairs of distributions in P are mutually absolutely continuous. For a given distribution

P , we let PY |A,X denote the conditional distribution of Y given (A,X) and PX denote the marginal

distribution of X. We let gP (· | x) denote the conditional probability mass function of A given X = x

under P , when A is binary, and the density of A given X = x under P , when A is continuous. For

s ∈ ṖP , we let sX(x) := EP [s(Z) | X = x] and sY |A,X(y | a, x) := s(z)− EP [s(Z) | A = a,X = x].

Example 1a (Counterfactual density function). Suppose that the treatment A is binary and the goal

is to estimate the density function of the counterfactual outcome in a setting where everyone receives

treatment A = 1. This density can offer a more nuanced measure of causal effects than can a more

commonly studied counterfactual mean outcome (Kennedy et al., 2021). Suppose that there is a σ-

finite measure λY such that, for all P ∈ P, there is a regular conditional probability PY |A,X such that

PY |A,X(· | a, x) ≪ λY for P -almost all (a, x) ∈ {0, 1} × X . Define the propensity to receive treatment

a as gP (a | x) := P (A = a | X = x) and let pY |A,X(· | 1, x) denote the conditional density of Y given

(A,X) = (1, x). The parameter of interest ν : P → L2(λY ) takes the form

ν(P )(y) =

∫
pY |A,X(y | 1, x)PX(dx). (11)

Under typical causal assumptions, ν corresponds to the density of the counterfactual outcome that would

be seen under treatment A = 1. We require that P satisfy the following conditions:

inf
P∈P

ess inf
x∈X

gP (1 | x) > 0 and sup
P∈P

ess sup
(x,y)∈X×Y

pY |A,X(y | 1, x) <∞, (12)

where the essential infimum is under PX and the essential supremum is under PX × λY . The first

inequality, referred to as a strong positivity assumption, holds when the propensity to receive treatment

1 is not vanishingly small. The second holds when the conditional density of Y given (A,X) = (1, x) is

uniformly bounded across all distributions in the model. While in principle the second condition could be

weakened, this condition appears to be sufficiently general to capture many statistical models of interest.

The local parameter takes the form

ν̇P (s)(y) =

∫ {
sY |A,X(y | 1, x) + sX(x)

}
pY |A,X(y | 1, x)PX(dx), (13)

10



Use the first half of the data to obtain an estimate !"!" of "#, yielding
a plug-in estimator # $%$

% of the true counterfactual density # %& :
1 Evaluate the EIF &!" of ' at each of the (/2 observations in the 
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2

One-step estimation aims to improve this plug-in estimator.
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Unlike the estimation error, "!"&!" can be computed using the data alone. One-step correction reduced the integrated squared error 3-fold:
from 1.4 × 10-3 (plot ①) to 4.5 × 10-4 (plot ④).

Figure 1: Illustration of how a sample-splitting one-step estimator is constructed in Example 1b. The cross-fitted
estimator averages two such estimators, one obtained as above and the other with the roles of the two halves of
the data reversed. Details of the data-generating process, along with a Monte Carlo assessment of the performance
of a cross-fitted one-step estimator, are given in Appendix I.1.

and the efficient influence operator takes the form

ν̇∗P (h)(y, a, x) =
1{a = 1}
gP (a | x) {h(y)− EP [h(Y ) | A = a,X = x]}

+
(
EP [h(Y ) | A = 1, X = x]−

∫
EP [h(Y ) | A = 1, X = x′]PX(dx′)

)
. (14)

Unless λY is a discrete measure, ν̇∗P will not generally be a bounded operator. This can be shown to follow

from the facts that point evaluation is not continuous in L2 spaces (page 8 of Berlinet and Thomas-Agnan,

2011) and ν̇∗P (h)(y, a, x) depends on the evaluation of h at y.

Example 1b (Bandlimited counterfactual density function). The setting is the same as in Example 1a,

except that Y must be real-valued and continuous, λY must be the Lebesgue measure, and, for fixed

b > 0, the target of inference is the following transformation of the counterfactual density ν(P ) that was

defined in Example 1a:

ν(P )(y) :=

∫ ∞

−∞

Ky(ỹ) ν(P )(ỹ)λY (dỹ), (15)

where Ky(ỹ) := {sin[b(ỹ − y)]}/[π(ỹ − y)]. This estimand corresponds to a bandlimiting of the coun-

terfactual density function. In particular, letting F and F−1 denote the Fourier transform and inverse

Fourier transform and fixing b > 0, the b-bandlimiting of a Lebesgue square integrable function f : R → R

is the function B(f) : R → R given by

B(f) := F−1
(
1[−b,b] · F(f)

)
(y) =

∫ ∞

−∞

Ky(ỹ) f(ỹ)λY (dỹ), (16)
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where 1[−b,b] · F(f) represents the function ξ 7→ 1[−b,b](ξ) · F(f)(ξ) and the latter equality holds by the

convolution theorem. The estimand is equal to ν(P ) := B(ν(P )). Lemma S1 in Appendix B.2 shows that

B(ν(P )) corresponds to an L2(λY ) projection of ν(P ) onto

H := {h ∈ C(R) | support[F(h)] ⊆ [−b, b]} ,

where C(R) denotes the set of continuous, Lebesgue square integrable functions. A little care is needed to

make this result precise since L2(λY ) is a space of equivalence classes of functions whereas H is a space

of functions (see the statement of Lemma S1 for details). The space H is an RKHS when equipped with

the L2(λY ) inner product ⟨h, h̃⟩H =
∫
h(y)h̃(y)λY (dy) (Yao, 1967). The kernel function in this RKHS is

given by (y, ỹ) 7→ Ky(ỹ). This RKHS is a smoothness class consisting of all square integrable functions

that have an analytic continuation to the complex plane that satisfies an exponential growth restriction

(Theorem 19.3 and page 372 of Rudin, 1987). When a (non-counterfactual) density function belongs to

H, a particular kernel density estimator has been shown to attain mean integrated squared error (MISE)

that decays at an n−1 rate (Ibragimov and Khas’minskii, 1983; Agarwal et al., 2015). Our setting differs

from earlier ones in that (i) we focus on a counterfactual density, and (ii) we define our estimand as

a nonparametric projection onto the space of b-bandlimited functions, rather than requiring that our

estimand belong to this class. Naturally, when the counterfactual density ν(P ) already belongs to H,

ν(P ) will equal this density and so our approach will yield estimators of it.

In the appendix, we rely heavily on the calculations performed in Example 1a when showing that

ν : P → H is pathwise differentiable. We show that the local parameter ν̇P : ṖP → H of ν at P is closely

related to that of ν. In particular, ν̇P (s) = B(ν̇P (s)), where ν̇P is as defined in Example 1a. Letting [h]

denote the equivalence class of functions that are equal to some h ∈ H Lebesgue-almost everywhere,

the efficient influence operator ν̇∗P : H → ṖP takes the form ν̇∗P (h) = ν̇∗P ([h]), where ν̇
∗
P is as defined in

Example 1a. Since H is an RKHS, we can also look to define the EIF ϕ
P
of ν at P . In particular, (12)

can be used to show that the function ϕ
P
(z) : y 7→ ν∗P (Ky)(z) belongs to L

2(P ;H), and so ϕ
P

is indeed

the EIF of ν at P . See (S5) in the appendix for a more explicit expression for the EIF ϕ
P
.

Figure 1 shows how a one-step estimator can improve an initial estimator in this example.

Example 2 (Counterfactual mean outcome under a continuous treatment). In the previous example,

the treatment was considered to be binary. In this example, we take A to be a continuous treatment

taking values in A = [0, 1], such as a dosage, duration, or frequency of intervention. Denote the marginal

distribution of A by PA and suppose that the Lebesgue measure λA dominates the conditional distribution

PA|X(· | x) of A | X = x under P for P -almost all x. Let gP ( · | x) denote the conditional density

of A given that X = x. The target of estimation is ν : P → L2(λA), where ν(P )(a) =
∫
EP [Y |

A = a,X = x]PX(dx). Under causal conditions, ν(P )(a) corresponds to the mean outcome under a

continuous treatment (Dı́az and van der Laan, 2013). We suppose the strong positivity assumption that

infP∈P ess inf(a,x) gP (a | x) > 0, where the essential infimum is under λA × PX . We further suppose that

Y has a bounded conditional second moment, in the sense that supP∈P ess sup(a,x)EP [Y
2 | A = a,X =

x] <∞, where the essential supremum is under λA × PX .

The local parameter takes the form

ν̇P (s)(a) =

∫∫
{y − µP (a, x)}sY |A,X(y | a, x)PY |A,X(dy | a, x)PX(dx)

+

∫
[µP (a, x)− ν(P )(a)]sX(x)PX(dx), (17)
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where µP (a, x) = EP [Y | A = a,X = x]. The efficient influence operator takes the form

ν̇∗P (h)(y, a, x) =
y − µP (a, x)

gP (a | x) h(a) +

∫
[µP (a

′, x)− ν(P )(a′)]h(a′)λA(da
′). (18)

Similarly to Example 1a, ν̇∗P is not generally a bounded operator.

Example 3 (Counterfactual kernel mean embedding). Let A be a binary treatment and suppose the

strong positivity assumption that infP∈P ess infx∈X gP (1 | x) > 0, where the essential infimum is under

PX . Let κ : Y × Y → R be a bounded, symmetric, positive define function, H be the RKHS associated

with the kernel κ, and Ky := κ(y, ·) be the associated feature map. The counterfactual kernel mean

embedding (Muandet et al., 2021; Fawkes et al., 2022) is a parameter ν : P → H such that

ν(P ) =

∫
EP [KY | A = 1, X = x]PX(dx).

Under standard causal conditions (Robins, 1986), ν(P ) can be shown to be equal to the kernel mean

embedding (Gretton et al., 2012) of the distribution of a counterfactual outcome in a world where

treatment 1 was given to everyone. We suppose that the strong positivity assumption in (12) holds.

The local parameter takes the form

ν̇P (s) =

∫∫
Ky [sY |A,X(y | 1, x) + sX(x)]PY |A,X(dy | 1, x)PX(dx). (19)

The efficient influence operator takes the form

ν̇∗P (h)(y, a, x) =
a

gP (1 | x) {h(y)− EP [h(Y ) | A = a,X = x]}

+ EP [h(Y ) | A = 1, X = x]−
∫
EP [h(Y ) | A = 1, X = x′]PX(dx′),

and the EIF is P -Bochner square integrable and takes the form

ϕP (y, a, x) =
a

gP (1 | x)
{
Ky − µK

P (x)
}
+ µK

P (x)− ν(P ), (20)

where µK
P : X → H is defined as µK

P (x) := EP [KY | A = 1, X = x].

4 Performance guarantees and inference when there is an EIF

4.1 Performance guarantees for one-step estimators

In this section, we provide conditions under which a cross-fitted one-step estimator ν̄n is both asymptoti-

cally linear and efficient. These conditions concern the terms arising in the following decomposition:

∥ν̄n − ν(P0)− Pnϕ0∥H =
1

2

∥∥∥∥∥

2∑

j=1

[
ν(P̂ j

n) + P0ϕ
j
n − ν(P0)

]
+

2∑

j=1

(P j
n − P0)(ϕ

j
n − ϕ0)

∥∥∥∥∥
H

≤ max
j

∥Rj
n∥H +max

j
∥Dj

n∥H, (21)

where Rj
n := ν(P̂ j

n) + P0ϕ
j
n − ν(P0) and Dj

n := (P j
n − P0)(ϕ

j
n − ϕ0). We call Rj

n the remainder terms

and Dj
n the drift terms, j ∈ {1, 2}. Asymptotic linearity, as defined in (4), holds whenever both of these

quantities are negligible, in the sense that they are op(n
−1/2). The remainder terms Rj

n, j ∈ {1, 2},
quantify the error in the approximation (6) across the two splits of the sample. As described heuristically
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in the text surrounding (6), it is reasonable to expect that this remainder term will be negligible under

appropriate conditions. The following result provides a reasonable condition under which the drift terms

will be negligible.

Lemma 3 (Sufficient condition for negligible drift terms). Suppose that ν is pathwise differentiable at P0

with EIF ϕ0. For each j ∈ {1, 2}, ∥ϕjn − ϕ0∥L2(P0;H) = op(1) implies that ∥Dj
n∥H = op(n

−1/2).

In the appendix, this lemma is proved via a conditioning argument that makes use of Chebyshev’s inequality

for Hilbert-valued random variables (Grenander, 1963) and the dominated convergence theorem. In the

next section, we provide lower-level conditions under which the remainder and drift terms will be small in

the contexts of Examples 1b and 3.

In the process of showing that ν̄n is asymptotically linear, we also show that it is regular. An estimator

sequence (ν̃n)
∞
n=1 is said to be regular at P0 ∈ P if and only if there is a tight H-valued random variable H̃

such that, for every score in the tangent set, quadratic mean differentiable submodel {Pϵ : ϵ} ∈ P(P0,P, s),
and every sequence ϵn = O(n−1/2),

√
n[ν̃n − ν(Pϵn)] converges weakly to H̃ under iid sampling of n

observations from Pϵn . We say that an estimator ν̃n is regular when the implied estimator sequence

(ν̃n)
∞
n=1 is clear from context. In the upcoming theorem, we write ‘⇝’ to denote weak convergence in H.

Theorem 2 (Asymptotic linearity and weak convergence of a one-step estimator). Suppose that ν

is pathwise differentiable at P0 with EIF ϕ0 ∈ L2(P0;H) and, for j ∈ {1, 2}, Rj
n = op(n

−1/2) and

Dj
n = oP (n

−1/2). Under these conditions, (4) holds, ν̄n is regular, and

n1/2 [ν̄n − ν(P0)]⇝ H, (22)

where H is a tight H-valued Gaussian random variable that is such that, for each h ∈ H, the marginal

distribution ⟨H, h⟩H is N(0, E0[⟨ϕ0(Z), h⟩2H]).

The convolution theorem for Banach-valued estimators can be used to characterize one sense in which

ν̄n is an efficient estimator of ν(P0) (see Theorem 3.11.2 and Lemma 3.11.4 of van der Vaart and Wellner,

1996, for a convenient version). Rather than present the theorem in full generality, here we present a

particularly interpretable consequence of it. Specifically, under the conditions of Theorem 2, that theorem

shows that ν̄n is optimally concentrated about ν(P0) in the sense that, for any regular estimator sequence

(ν̃n)
∞
n=1 and c ≥ 0,

lim
n→∞

Pn
0

{
n∥ν̄n − ν(P0)∥2H > c

}
≤ lim

n→∞
Pn
0

{
n∥ν̃n − ν(P0)∥2H > c

}
. (23)

The above describes a sense in which ν̄n is optimal among all regular estimators of ν(P0). Under the

conditions of Theorem 2, ν̄n can also be shown to outperform all estimators, including non-regular ones,

in a local asymptotic minimax sense — see Theorem 3.11.5 in van der Vaart and Wellner (1996) for

details.

4.2 Construction of confidence sets based on one-step estimators

As we will now show, the weak convergence result in Theorem 2 can be used to facilitate the construction

of (1 − α)-level confidence sets for the Hilbert-valued parameter ν(P0), where α ∈ (0, 1) is some fixed

constant. Our proposed confidence set is built based upon a quadratic form w( · ; Ω) : h 7→ ⟨Ω(h), h⟩H that

is parameterized by a standardization operator Ω that belongs to the set O of continuous, self-adjoint,

positive definite linear operators mapping from H to H. In particular, letting ζ ≥ 0 be a specified

threshold and Ωn ∈ O an estimator of a some possibly-P0-dependent operator Ω0 ∈ O, our confidence set
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will take the form

Cn(ζ) := {h ∈ H : w(ν̄n − h; Ωn) ≤ ζ/n} . (24)

We will see that, for an appropriate choice of ζ and provided ∥Ωn − Ω0∥op = op(1), the continuous

mapping theorem justifies the asymptotic validity of this confidence set.

Before presenting that result, we discuss two interesting choices of Ω0. The first is the identity function.

This choice yields a spherical confidence set that consists of all h belonging to an H-ball centered at ν̄n

of radius (ζ/n)1/2. Since the form of Ω0 does not rely on P0 in this case, Ωn can be taken to be equal

to Ω0. The second is proportional to the inverse of a regularized form of the covariance operator of H,

which will yield a Wald-type confidence set for ν(P0) that has an elliptical shape. Compared to spherical

confidence sets, Wald-type confidence sets have the benefit of being narrower in the direction of unit

vectors h where estimation is easier, in the sense that the variance of ⟨H, h⟩H is smaller. Regularization is

needed when defining a Wald-type confidence set because the covariance operator of H will not generally

be invertible and, even if it is, this inverse will not be continuous when ∥ϕ0∥L2(P0;H) < ∞ unless H is

finite-dimensional. A simple example of a regularized covariance operator Ω0, and an operator-norm

consistent estimator thereof, is given in Appendix D. Many other types of regularization are also possible

(Tikhonov et al., 1995).

The following result establishes the asymptotic validity of the confidence set in (24) based on a

threshold ζ̂n that is measurable with respect to the σ-field generated by the iid sample Z1, . . . , Zn from

P0. This threshold is an estimate of the (1− α)-quantile ζ1−α of w(H; Ω0).

Theorem 3 (Asymptotically valid confidence set). Suppose the conditions of Theorem 2 hold. Further

suppose that ∥ϕ0∥L2(P0;H) > 0, Ωn ∈ O, Ω0 ∈ O, and ∥Ωn − Ω0∥op = op(1).

(i) if ζ̂n → ζ1−α in probability, then limn→∞ Pn
0 {ν(P0) ∈ Cn(ζ̂n)} = 1− α.

(ii) if ζ̂n is an asymptotically conservative estimator of ζ1−α, in the sense that Pn
0 {ζ̂n ≥ ζ1−α−δ} n→∞−→ 1

for all δ > 0, then lim infn→∞ Pn
0 {ν(P0) ∈ Cn(ζ̂n)} ≥ 1− α.

The proof of this result is similar in structure to those used to establish the validity of Wald-type

confidence sets for finite-dimensional parameters. It consists in applying the continuous mapping theorem

and Slutsky’s lemma to show that n ·w[ν̄n−ν(P0); Ωn]⇝ w(H; Ω0), showing that w(H; Ω0) is a continuous

random variable, and finally using that convergence in distribution implies convergence of cumulative

distribution functions at continuity points.

A consistent estimator of ζ1−α can be defined using the bootstrap (Efron, 1979). To define this

estimator, we let Z♯
1, . . . , Z

♯
n/2

iid∼ P 2
n be sampled independently of Z♯

n/2+1, . . . , Z
♯
n

iid∼ P 1
n . We then let P 2,♯

n

be the empirical distribution of Z♯
1, . . . , Z

♯
n/2 and P 1,♯

n be the empirical distribution of Z♯
n/2+1, . . . , Z

♯
n.

We let H♯
n := n1/2

∑2
j=1(P

j,♯
n −P j

n)ϕ
j
n/2. The threshold ζ̂n is taken to be equal to the (1−α)-quantile of

w(H♯
n,Ωn), conditionally on the original sample (Z1, . . . , Zn) used to define P 1

n and P 2
n . In practice this

quantile can be well-approximated by selecting m Monte Carlo draws of the sample Z♯
1, . . . , Z

♯
n and then

returning the empirical (1− α)-quantile of w(H♯
n,Ωn) over these draws. A computational benefit of this

bootstrap procedure is that it does not require refitting the initial estimators P̂ j
n of P0; indeed, the same

EIFs ϕjn := ϕP̂ j
n
are used for each bootstrap replication.

Theorem 4 (Consistent estimation of ζ1−α via the bootstrap). Suppose the conditions of Theorem 2 hold.

Further suppose that Ωn ∈ O, Ω0 ∈ O, ∥Ωn − Ω0∥op = op(1), and maxj∈{1,2} ∥ϕjn − ϕ0∥L2(P0;H) = op(1).

Under these conditions, ζ̂n → ζ1−α in probability.

In brief, the proof of the above consists in showing that H
♯
n is asymptotically equivalent to H

♯
n,0 :=

n1/2 1
2

∑2
j=1(P

j,♯
n − P j

n)ϕ0 in probability, invoking a guarantee from Giné and Zinn (1990) regarding the
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weak convergence of the bootstrap for Hilbert-valued sample means and the continuous mapping theorem

to show that w(H♯
n,0; Ω0)⇝ w(H; Ω0) conditionally on (Zi)

∞
i=1 with probability one, and finally applying

a Slutsky-type argument to replace the P0-dependent quantities H
♯
n,0 and Ω0 in w(H♯

n,0; Ω0) by H
♯
n and

Ωn, respectively.

When Ω0 is the identity function, Theorem 1 in Székely and Bakirov (2003) provides a means to derive

an alternative estimator of ζ1−α. This estimator does not require the bootstrap, but is asymptotically

conservative. See Appendix E for details.

In practice, it will typically be necessary to use numerical techniques to compute the quadratic form

w(ν̄n − h; Ωn) that is used to define our confidence set. We discuss some such approaches in Appendix F.

5 Performance guarantees and inference when there is no EIF

5.1 Performance guarantees for regularized one-step estimation

In this subsection, we provide performance guarantees for the cross-fitted βn-regularized one-step estimator

ν̄βn
n , where, for each n, βn is an ℓ2∗-valued regularization parameter. Before doing so, we acknowledge a

minor abuse of notation. We will denote the kth entry of a generic regularization parameter β ∈ ℓ2∗ by

βk, which should not be mistaken for the sample-size-n dependent regularization parameter βn, whose

kth entry we will denote by βn,k. This should not cause confusion, as we always denote sample size by n

and a generic index of a vector in ℓ2∗ by k.

We will show that, under conditions, ν̄βn
n satisfies the following biased and slower-than-n−1/2-rate

asymptotically linear expansion, which formalizes the approximation in (9) for a cross-fitted one-step

estimator:

ν̄βn
n − ν(P0) =

1

2

2∑

j=1

Bj,βn
n + Pnϕ

βn

0 +Op

(
∥βn∥ℓ2/n1/2

)
. (25)

Above ϕβn

0 is as defined in Lemma 1 and Bj,βn
n := Bβn

P̂ j
n
denotes the bias term defined below (9). When ν

does not have an EIF, there is generally a tradeoff between the bias term, whose magnitude is smaller

when the entries of βn are closer to 1, and the linear ‘variance’ term Pnϕ
βn

0 , whose magnitude scales as

Op[σ0(βn)/n
1/2], where σ0(βn) = O(∥βn∥ℓ2) is as defined in Lemma 1. These two terms will typically

be of the same order when βn is selected to minimize the mean-squared error EPn
0
[∥ν̄βn

n − ν(P0)∥2H],

which makes it so that ν̄βn
n − ν(P0) converges to zero in probability slower than does n−1/2. Owing to

the bias term, and also to the fact that there is generally not a scaling of Pnϕ
βn

0 that will converge to a

nondegenerate, tight random element when ν does not have an EIF (see Lemma S11 in the appendix),

our focus in this subsection will be on deriving rates of convergence for the regularized estimator ν̄βn
n .

We provide a means to construct confidence sets for ν(P0) in Section 5.2.

To establish (25), we introduce regularized versions of the drift and remainder terms considered in

Section 4.1. In particular, for j ∈ {1, 2} and β = (βk)
∞
k=1 ∈ ℓ2, define the H-valued random elements

Dj,β
n := (P j

n − P0)(ϕ
j,β
n − ϕβ0 ) and Rj,β

n := Rβ

P̂ j
n
, where, for P ∈ P,

Rβ
P := ν(P )− ν(P0) + P0ϕ

β
P −

∞∑

k=1

(1− βk)⟨ν(P )− ν(P0), hk⟩Hhk. (26)

The main result of this subsection is as follows.

Theorem 5 (Rate of convergence of regularized one-step estimator). Suppose ν is pathwise differentiable

at P0, βn ∈ ℓ2∗ for each n ∈ N, and both Rj,βn
n and Dj,βn

n are Op[∥βn∥ℓ2/n1/2] for j ∈ {1, 2}. Under these
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conditions, (25) holds. Moreover, if Bj,βn
n = Op(∥βn∥ℓ2/n1/2) for j ∈ {1, 2}, then

ν̄βn
n − ν(P0) = Op

(
∥βn∥ℓ2/n1/2

)
. (27)

Eq. 27 suggests it is desirable to select βn as small as possible, while still ensuring that the drift, remainder,

and bias terms are all Op(∥βn∥ℓ2/n1/2). Below we provide three general results that can aid in establishing

these conditions. The first two provide ways to guarantee the drift and remainder terms are of no larger

order than the variance term Pnϕ
βn

0 in (25), implying that the rate of convergence is determined by the

variance and bias terms. The third makes precise our earlier statement that the bias term is smaller when

the entries of βn are closer to 1, thereby enforcing a lower bound on how small βn can be to ensure that

the bias term is of the same order as the variance term and, therefore, (27) holds.

Lemma 4 (Sufficient condition for negligible regularized drift terms). Suppose that ν is pathwise

differentiable at P0 and (rn)
∞
n=1 is a nonnegative sequence. Fix j ∈ {1, 2} and, for each n ∈ N, let

βn ∈ ℓ2∗. If ∥ϕj,βn
n − ϕβn

0 ∥L2(P0;H) = op(rn), then ∥Dj,βn
n ∥H = op(rn/n

1/2).

By taking rn = ∥βn∥ℓ2 , the above gives a condition for Dj,βn
n to be op(∥βn∥ℓ2/n1/2), and therefore

Op(∥βn∥ℓ2/n1/2). For the regularized remainder term, the following can be useful.

Lemma 5 (Bound on regularized remainder term). Fix j ∈ {1, 2} and β ∈ ℓ2∗. If ν is pathwise

differentiable at P ∈ P, P0 ≪ P , and ϕβP ∈ L2(P0;H), then

∥Rβ
P ∥2H =

∞∑

k=1

β2
k · (RP,k)

2 ≤ ∥β∥2ℓ2 sup
k∈N

(RP,k)
2
,

where RP,k := ⟨ν(P )− ν(P0), hk⟩H + P0ν̇
∗
P (hk).

For a given k ∈ N, RP,k corresponds to the remainder term in a von Mises expansion of the real-valued

parameter ψk : P ′ 7→ ⟨ν(P ′), hk⟩H (von Mises, 1947), where we note that the pathwise differentiability of

ν at P implies the pathwise differentiability of ψk at P with canonical gradient ν̇∗P (hk).

We now turn to the bias term. For u ≥ 0, let ∥ · ∥u : H → [0,+∞] denote the norm defined by

∥h∥2u :=
∑∞

k=1 k
2u⟨h, hk⟩2H, where the dependence of ∥ · ∥u on the basis (hk)

∞
k=1 used to construct the

regularized one-step estimator is suppressed in the notation.

Lemma 6 (Bound on bias term). For any u ≥ 0 and β ∈ ℓ2∗, ∥Bβ
P ∥H ≤ ∥ν(P )−ν(P0)∥u supk∈N(1−βk)/ku.

If there exists K ∈ N such that βk = 1 for all k ≤ K and βk = 0 for all k > K, then this implies that

∥Bβ
P ∥H ≤ (K + 1)−u∥ν(P )− ν(P0)∥u ≤ 2(K + 1)−u sup

P ′∈P
∥ν(P ′)∥u. (28)

Naturally, the upper bounds are only informative if the evaluations of ∥ · ∥u upon which they rely are

finite. Conditions for the finiteness of this norm have been evaluated in several settings. In particular,

{h ∈ H : ∥h∥u < ∞} corresponds to a periodic Sobolev space when H = L2([0, 1]) and (hk)
∞
k=1 is the

trigonometric basis (Proposition 1.14 of Tsybakov, 2009), Sobolev-Laguerre space when H = L2([0,∞))

and (hk)
∞
k=1 consists of the Laguerre functions (Bongioanni and Torrea, 2008), and Sobolev-Hermite

space when H = L2(R) and (hk)
∞
k=1 consists of the Hermite functions (Bongioanni and Torrea, 2006).

In Section 6, we study the selection of βn in the context of our examples. We do this by leveraging the

bounds from the preceding three lemmas and then deriving the choice of βn that balances the variance

and bias terms.
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5.2 Construction of confidence sets

In what follows we fix β ∈ ℓ2∗ and define Γβ : H → H as Γβ(h) =
∑∞

k=1 βk⟨h, hk⟩Hhk. The following is

the key observation that we use to construct our confidence set for ν(P0).

Lemma 7. If ν is pathwise differentiable at P , then its transformation νβ := Γβ ◦ ν is pathwise

differentiable at P with local parameter ν̇βP := Γβ ◦ ν̇P and EIF ϕβP ∈ L2(P ;H).

Since νβ has an EIF, the methods from Section 4.2 can be used to construct a confidence set for νβ(P0)

based on a one-step estimator. This one-step estimator takes the form ν̃βn := 1
2

∑2
j=1[Γβ ◦ν(P̂ j

n)+P
j
nϕ

j,β
n ].

By Theorem 3, the main condition for the asymptotic validity of the resulting confidence set is that ν̃βn is

an asymptotically linear estimator of νβ(P0) with influence function ϕβ0 . Since ν̃
β
n is a one-step estimator

of νβ(P0), rather than ν(P0), ν̃
β
n generally differs from the regularized one-step estimator ν̄βn of ν(P0)

— indeed, ν̃βn − ν̄βn = 1
2

∑2
j=1[Γβ ◦ ν(P̂ j

n) − ν(P̂ j
n)]. Nevertheless, conditions on the same regularized

remainder and drift terms studied to establish rate guarantees for ν̄βn
n can ensure the asymptotic linearity

of ν̃βn — see Corollary S1 in the appendix.

Let Cβ
n(ζ̂n) denote an asymptotically valid (1−α)-level confidence set for νβ(P0) constructed according

to the methods in Section 4.2. Any standardization operator Ωn satisfying the conditions of Theorem 3

may be used when doing this. For example, if Ωn is taken to be the identity, then, for a cutoff ζ̂n selected

via the bootstrap, a spherical confidence set for νβ(P0) would take the form

Cβ
n(ζ̂n) :=

{
h ∈ H : ∥ν̃βn − h∥2H ≤ ζ̂n/n

}
. (29)

Since the methods in Section 4.2 require the parameter of interest to be fixed and not depend on sample

size, when constructing Cβ
n(ζ̂n) we require the choice of β to remain fixed as n → ∞. Handling cases

where β changes with n or is selected data-adaptively is an interesting area for future work. To transform

the confidence set for νβ(P0) into one for ν(P0), we take the preimage Γ−1
β [Cβ

n(ζ̂n)] := {h ∈ H : Γβ(h) ∈
Cβ
n(ζ̂n)}. Since νβ(P0) := Γβ ◦ ν(P0), this preimage is an asymptotically valid (1− α)-level confidence

set for ν(P0) provided Cβ
n(ζ̂n) is an asymptotically valid (1 − α)-level confidence set for νβ(P0). The

transformation Γβ has a left inverse if all entries of β are nonzero, with Γ−1
β (h) =

∑∞
k=1 β

−1
k ⟨h, hk⟩Hhk for

h in the image of Γβ . Figure 2 illustrates how the map Γ−1
β stretches spherical and Wald-type confidence

sets for the regularized parameter νβ(P0) into confidence sets for ν(P0).

To simplify the discussion, hereafter we focus on the special case where Cβ
n(ζ̂n) takes the spherical

form in (29). In this case, Γ−1
β [Cβ

n(ζ̂n)] takes the elliptical form

{
h ∈ H :

∑∞
k=1β

2
k

[
1
2

∑2
j=1

{
⟨ν(P̂ j

n), hk⟩H + P j
nν̇

j,∗
n (hk)

}
− ⟨h, hk⟩H

]2
≤ ζ̂n/n

}
. (30)

Because βk must tend to zero as k → ∞ in order for β to belong to ℓ2, the ∥ · ∥H-diameter of this

confidence set, namely suph,h′∈Γ−1
β [Cβ

n(ζ̂n)]
∥h − h′∥H, will not converge to zero with sample size. In

contrast, the ∥ · ∥β-diameter of this confidence set will generally shrink to zero at an n−1/2-rate, where

∥h∥β := [
∑∞

k=1 β
2
k⟨h, hk⟩2H]1/2. Here we note that ∥ · ∥β is a norm on H if all of the entries of β are

nonzero and is otherwise a seminorm.

The confidence set in (30) also satisfies another desirable property, which can be most easily described

by studying a corresponding hypothesis test. For fixed h0 ∈ H, this test rejects the null hypothesis

that ν(P0) = h0 in favor of the complementary alternative precisely when h0 ̸∈ Γ−1
β [Cβ

n(ζ̂n)]. This test

asymptotically controls the type I error at level α when Γ−1
β [Cβ

n(ζ̂n)] has asymptotically valid coverage,

and, by the triangle inequality, is consistent against fixed alternatives when ν̃βn is a consistent estimator

of νβ(P0), plimn→∞ ζ̂n <∞, and all entries of β are nonzero. We now show that this test also achieves
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Figure 2: Projections of the boundaries of confidence sets for the regularized parameter νβ(P0) (top) and original
parameter ν(P0) (bottom), plotted via pairs of generalized Fourier coefficients with respect to the basis (hk)

∞

k=1.
The transformation applied to confidence sets for νβ(P0) to obtain those for ν(P0) stretch the axes by the
reciprocals of entries of the regularization parameter β. Since βk → 0 as k → ∞, this stretch factor becomes
arbitrarily large as k → ∞.

nontrivial power against a class of n−1/2-rate local alternatives. In what follows we let Hβ denote a tight

H-valued Gaussian random variable that is such that, for each h ∈ H, the marginal distribution ⟨Hβ , h⟩H
follows a N(0, E0[⟨ϕβ0 (Z), h⟩2H]) distribution, where ϕβ0 is as defined in Lemma 7. Unlike in the rest of

the paper, the following theorem requires all entries of β to be nonzero, since its proof will rely on ∥ · ∥β
being a norm.

Theorem 6 (Local power of regularized hypothesis test). Fix β ∈ ℓ2 ∩ (0, 1]N and h0 ∈ H. Suppose

ν is pathwise differentiable at P0, ν(P0) = h0, ν̃
β
n is an asymptotically linear estimator of νβ(P0) with

influence function ϕβ0 , and ζ̂n is a consistent estimator of the (1 − α)-quantile ζ1−α of ∥Hβ∥2H. Fix

{Pϵ : ϵ} ∈ P(P0,P, s) such that ∥ν̇0(s)∥H > 0. If Γ−1
β [Cβ

n(ζ̂n)] is as defined in (30), then

Pn
ϵ=n−1/2

{
h0 ̸∈ Γ−1

β [Cβ
n(ζ̂n)]

}
n→∞−→ Pr

{
∥Hβ + ν̇β0 (s)∥2H > ζ1−α

}
> α.

Also, hn := ν(Pϵ=n−1/2) is an n−1/2-rate local alternative in that ∥hn − h0∥H = O(n−1/2).

The above focuses on local alternatives that are defined via smooth parametric submodels of P. It is

worth noting, however, that by selecting such a submodel, the first-order direction of the local alternative,

defined by the value of the local parameter ν̇0(s), is fixed as the sample size grows. Since the ∥ · ∥H-

diameter of our confidence set does not decay with sample size, it does not appear that our test will

generally have nontrivial asymptotic power against local alternatives whose direction is not fixed and

whose ∥ · ∥H-magnitude decays at an n−1/2 rate.

5.3 Tuning parameter selection

We begin by discussing tuning parameter selection for the regularized one-step estimator of ν(P0),

and then we subsequently discuss confidence set construction. Evaluating the regularized one-step

estimator requires selecting three key components: the initial estimator P̂ j
n, orthonormal basis (hk)

∞
k=1,

and regularization parameter βn. Similarly to finite-dimensional problems, the suitability of an initial
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estimator P̂ j
n will depend on the parameter of interest and the form of its corresponding remainder term

as defined in (26). In the next section, we will study these remainder terms in our illustrative examples.

In what follows we discuss the choice of basis (hk)
∞
k=1 and regularization parameter βn.

Following the literature on series estimators (Chen, 2007) and motivated by the bound in (28), we

suggest choosing the basis (hk)
∞
k=1 so that the span of finitely many initial basis elements yields an

accurate approximation of ν(P ), P ∈ P, provided these Hilbert random elements are smooth enough.

Here, smoothness is characterized by the rate of decay of the generalized Fourier coefficients ⟨ν(P ), hk⟩H as

k → ∞. If H is an L2(λ) space with λ the Lebesgue measure on the real line or a bounded subset thereof,

then common choices of bases include Legendre polynomials, Laguerre functions, Hermite functions,

trigonometric polynomials, and wavelets, among others. If H is instead an L2(Q) space with Q an

absolutely continuous probability measure on R
d, then an orthonormal basis for H can be obtained in

several ways. One is to multiply an orthornormal basis (gk)
∞
k=1 for L2(Rd) by the root-density q1/2 of Q; in

particular, (q1/2gk)
∞
k=1 is an orthonormal basis for L2(Q). The suitability of these bases for characterizing

the smoothness of ν(P0) can be assessed on a case-by-case basis. If d = 1, then another approach involves

transforming an orthornormal basis (gk)
∞
k=1 for L2([0, 1]) via the cumulative distribution function FQ of

Q; in particular, (gk ◦FQ)
∞
k=1 is an orthonormal basis of L2(Q). Other orthonormal bases of L2(Q)-spaces

are also readily available for certain choices of Q, such as if Q is a Gaussian measure (Chapter 9 of

Da Prato, 2006). Orthonormal bases for some non-L2 spaces, such as Sobolev Hilbert spaces, are also

well studied (Marcellán and Xu, 2015).

We propose using cross-validation to choose the regularization parameter βn. If there is uncertainty

about which orthonormal basis (hk)
∞
k=1 should be used, this could also be selected via cross-validation,

though the discussion that follows focuses on selecting βn. Our proposal is based on the following loss for

ν(P0), which relies on an estimate P of P0:

LP (z;h) :=
1
2∥h− ν(P )∥2H − ν̇∗P [h− ν(P )](z). (31)

The algorithm to implement the proposed cross-validation scheme can be found in Appendix G. There,

we also explain why LP is a reasonable loss function to use for estimating ν(P0). The cross-validation

algorithm will be easiest to implement when the search for a regularization parameter is reduced to a

search over a finite subset Bn of ℓ2∗. A particularly simple choice of Bn consists of the Kn + 1 elements of

ℓ2 that take the value 1 in their first k ∈ {0, 1, . . . ,Kn} entries and zero in all remaining entries. Selecting

over a finite set of possible values is also desirable since there are oracle inequalities for cross-validation

selectors over finite sets provided the loss function satisfies appropriate regularity conditions (van der

Laan and Dudoit, 2003; van der Vaart et al., 2006). Exploring the applicability of these conditions in our

setting is an interesting area for future study.

We now turn to tuning parameter selection for confidence set construction. The considerations for

selecting the basis (hk)
∞
k=1 are similar to those discussed above for estimation, and so we focus on selecting

the regularization parameter β. As our coverage guarantees rely on the regularization parameter β being

fixed and not depending on sample size, cross-validation should not be used to select this quantity.

Instead, we recommend choosing a fixed, square-summable sequence β. One natural family of choices is

given by setting β = (βk)
∞
k=1 with βk = 1/[1 + (k/c)1/2+d] for c, d > 0. The parameters c and d control

the stretch and polynomial rate of decay of the function k 7→ βk, respectively. Finally, we note that,

to ensure computational feasibility, the infinite sum used to define the confidence set in (30) can be

truncated at a large, finite number of terms K⋆
n that grows with n, without adversely affecting coverage.

This follows from the fact that the set on the right-hand side of (30) can only be made larger by replacing

the sum from k = 1 to ∞ with one from k = 1 to K∗
n.
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6 Study of (regularized) one-step estimators in our examples

We now revisit Examples 1a and 1b from Section 3. For each, we evaluate the plausibility of the regularity

conditions that guarantee our theoretical results hold. We revisit the other two examples from Section 3

in Appendices B.3.3 and B.4.4. In what follows, C denotes a generic finite constant whose value may

differ from display to display.

Example 1a (Counterfactual density function, continued). Since there is no EIF in this example, we

study a regularized one-step estimator ν̄βn
n . This estimator is defined based on an orthonormal basis

(hk)
∞
k=1 of H and a regularization parameter βn ∈ ℓ2∗. Guidance on how to choose these quantities is

given in Section 5.3.

Theorem 5 relies on the negligibility of regularized remainder and drift terms Rj,βn
n and Dj,βn

n and

bias terms Bj,βn
n . In Appendix B.1.3, we use Lemma 5 and the strong positivity assumption to show

there exists a constant C that does not depend on β such that, for all P ∈ P,

∥Rβ
P ∥H ≤ C∥β∥ℓ2 ∥gP (1 | ·)− g0(1 | ·)∥L2(P0,X)

∥∥pY |A=1,X − p0,Y |A=1,X

∥∥
L2(τ0)

, (32)

where τ0 denotes the product measure λY × P0,X and, within the L2(τ0) norm, pY |A=1,X − p0,Y |A=1,X

denotes the function (y, x) 7→ pY |A,X(y | 1, x) − p0,Y |A,X(y | 1, x). The upper bound in (32) depends

on three quantities: the ℓ2-magnitude of β, the L2(P0,X)-distance between the propensities gP (1 | · )
and g0(1 | · ), and a root-MISE of the conditional distribution of Y | A = 1, X under P relative to that

under P0, where the mean is taken across values of X ∼ P0. Applying the above inequality to study the

remainder term Rj,βn
n that Theorem 5 requires to be Op[∥βn∥ℓ2/n1/2], we see that Rj,βn

n will satisfy this

condition provided typical n−1/4-rate conditions are satisfied by the estimators of two nuisance functions,

namely the propensity to receive treatment and the conditional density of the outcome given treatment

and covariates. Such conditions have been discussed extensively in the literature across a variety of

problems (e.g,. van der Laan and Rubin, 2006; Chernozhukov et al., 2018), and tend to hold when the

needed nuisance functions are sufficiently smooth or parsimonious relative to the dimension of X and

an appropriate estimation strategy is used. For example, suppose that X is continuous and R
d-valued,

g0(1 | · ) and (x, y) 7→ p0,Y |A,X(y | 1, x) are Hölder smooth with Hölder exponents b and c, respectively

(Robins et al., 2008). If g0(1 | · ) is estimated via a kernel regression and (x, y) 7→ p0,Y |A,X(y | 1, x) is
estimated via conditional kernel density estimation, each using kernels of sufficiently high orders, then the

above can be used to show that Rj,βn
n = Op[∥βn∥ℓ2n−

b
2b+dn− c

2c+d+1 ], and so Rj,βn
n achieves the desired

Op[∥βn∥ℓ2/n1/2] rate provided bc ≥ d(d+ 1)/4. Alternative estimation strategies that often perform well

in practice even when these smoothness assumptions fail, such as those based on random forests (Ho,

1995) or gradient boosting (Friedman, 2001), could also be used.

For the regularized drift terms, Lemma 4 shows that Dj,βn
n is op(∥βn∥ℓ2/n1/2) whenever ∥ϕj,βn −

ϕβ0∥L2(P0;H) = op(∥βn∥ℓ2). To provide conditions under which this is true, we use that there exists a

constant C > 0 that does not depend on β such that, for all P ∈ P , ∥ϕβP − ϕβ0∥L2(P0;H) is upper bounded

by

C∥β∥ℓ2
(
∥gP (1 | ·)− g0(1 | ·)∥L2(P0,X) +

∥∥pY |A=1,X − p0,Y |A=1,X

∥∥
L2(τ0)

)
.

Hence, ∥ϕj,βn
n −ϕβn

0 ∥L2(P0;H) = op(∥βn∥ℓ2) whenever the propensity and conditional density of Y |A = 1, X

under P̂ j
n are consistent according to the norms above. Consistency is a weaker requirement than the

rate conditions imposed to ensure the negligibility of Rj,βn
n , so it is reasonable to expect that Dj,βn

n will

be negligible when Rj,βn
n is negligible.

From Lemma 6, an upper bound on the rate at which the bias terms Bj,βn
n will decay to zero can be
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derived by bounding either ∥ν(P̂ j
n) − ν(P0)∥u or supP∈P ∥ν(P )∥u for some u ≥ 0. The latter of these

quantities is no more than c < ∞ if the parameter space {ν(P ) : P ∈ P} is a subset of the Sobolev

ellipsoid {h ∈ H : ∥h∥u ≤ c}. In this case, when the first Kn entries of βn are one and all others are zero,

Lemma 6 shows that ∥Bj,βn
n ∥H ≤ c/(Kn + 1)u; if the earlier-discussed regularity conditions hold so that

the regularized remainder and drift terms are Op(∥βn∥ℓ2/n1/2), then this yields that, when Kn is of the

order n1/(2u+1),

ν̄βn
n − ν(P0) = Op(n

−u/(2u+1)). (33)

This analysis bears similarity to the study of projection estimators (Theorem 1.9 of Tsybakov, 2009), but

with the added requirement that drift and remainder terms must be considered.

The rate of convergence in (33) was derived based on the looser of the two bounds in (28). While the

former bound would give tighter bounds on the bias term when ∥ν(P̂ j
n)− ν(P0)∥u converges to zero in

probability at some rate, it is unclear whether there are initial estimators P̂ j
n of P0 that would achieve

this. Indeed, since ∥ · ∥u is a stronger norm than ∥ · ∥H, probabilistic convergence relative to ∥ · ∥H is

insufficient to guarantee convergence relative to ∥ · ∥u. Looking to identify or develop initial estimators of

P0 for which ∥ν(P̂ j
n)− ν(P0)∥u p→ 0 is an interesting area for future study, since, when such an initial

estimator is used, faster rates of convergence for ν̄βn
n than that given in (33) may be established.

While the discussion above focused on the regularized one-step estimator, similar arguments can be

used to analyze the confidence sets introduced in Section 5.2 for fixed β ∈ ℓ2∗. Indeed, Corollary S1 in the

appendix shows that the key quantities to bound to establish the validity of these confidence sets are

Rj,β
n and Dj,β

n — in particular, both of these quantities should be op(n
−1/2). We have already bounded

these quantities above when studying the regularized one-step estimator of ν(P0). In particular, these

conditions will hold if each of p0,Y |A,X and g0(1 | · ) is estimated at a faster-than-n−1/4 rate according to

the norms in (32).

In the special case where β is a vector whose first K entries are 1 and whose remaining entries are 0,

the estimator ν̃βn used to construct our confidence sets coincides with the L2(λY ) projection estimator

studied in Corollary 2 of Kennedy et al. (2021). In our notation, that estimator can be viewed as

estimating the parameter Γβ ◦ ν(P0), though if K grows with n, as would typically occur under the

model selection strategy described by Kennedy et al., then it can be viewed as estimating ν(P0) as well.

This estimator differs from the regularized one-step estimator ν̄βn that we have recommended using for

estimation of ν(P0), with the estimators differing by the L2(λY ) projection of 1
2

∑2
j=1 ν(P̂

j
n) onto the

orthogonal complement of the linear span of the first K elements of the chosen basis for L2(λY ). It is

not immediately clear whether one of these two estimators should be preferred over the other in general,

though our upcoming simulation study supports using ν̄βn , especially when n is small. The decision

between using these estimators of ν(P0) can be summarized as follows: ν̄βn should be used to estimate

ν(P0) if
1
2

∑2
j=1 Γβ ◦ ν(P̂ j

n) attains a lower MISE for estimating Γβ ◦ ν(P0) than does the zero function,

and ν̃βn should be preferred otherwise.

Kennedy et al. (2021) also proposes an approach for making inference about the difference between

two counterfactual densities using any of several distance metrics. For the L2(λY ) metric, this inference

is based upon first-order asymptotics the parameter ψ(P0) := ∥ν1(P0) − ν0(P0)∥2L2(λY ), where ν1 is

equal to the counterfactual density parameter ν defined in (11) and ν0 takes the same form but with

pY |A,X(y | 1, x) replaced by pY |A,X(y | 0, x). There, they note an oft-confronted difficulty (Luedtke et al.,

2019; Williamson et al., 2021) wherein their estimator of ψ(P0) converges to zero at a faster-than-n−1/2

rate under the null hypothesis that ν1(P0) = ν0(P0), leading them to propose a conservative threshold

to test this null based on the maximum of the estimated standard error of their estimator and n−1/2.

Since the pathwise differentiability of ν1 and ν0 implies the pathwise differentiability of ν1 − ν0 — with
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efficient influence operator equal to the difference of the efficient influence operators of ν1 and ν0 — our

regularized one-step estimation framework provides an alternative, non-conservative means to test this

hypothesis by constructing a confidence set for this parameter for fixed β ∈ ℓ2 ∩ (0, 1]N and checking

whether it contains zero.

We now compare our inferential procedure in this example to that of Kennedy et al. (2021). We

start by comparing the size of the dual confidence sets. The method from Kennedy et al. can be used

to construct a confidence set by inverting tests of whether ψh(P0) := ∥ν1(P0) − ν0(P0) − h∥2L2(λY ) is

equal to zero across values of h ∈ L2(λY ); the threshold for each h-dependent test is determined using

the same conservative threshold methodology as when h = 0. The L2(λY ) and ∥ · ∥β diameters of this

confidence set both decay at rates no faster than n−1/4. In contrast, the ∥ · ∥β diameter of our confidence

set decays at a quadratically-faster rate of n−1/2, while the L2(λY ) diameter does not decay at all.

Nevertheless, since ∥h∥β = 0 if and only if ∥h∥L2(λY ) = 0, our confidence set will exclude any particular

h ≠ ν1(P0)−ν0(P0) with probability tending to one. As a practical matter, our confidence set will exclude

functions h that differ smoothly from ν1(P0)− ν0(P0) relative to the basis (hk)
∞
k=1 at smaller sample sizes

than will the n−1/4-rate confidence set, and will otherwise require larger sample sizes; here, smoothness is

characterized by the decay rate of ⟨ν1(P0) − ν0(P0) − h, hk⟩H as k → ∞. Our dual hypothesis test of

whether ν1(P0)− ν0(P0) = 0 will also satisfy the local power guarantee from Theorem 6. We investigate

the properties of this test and compare it to the test proposed in Kennedy et al. (2021) in our upcoming

simulation study.

Example 1b (Bandlimited counterfactual density function, continued). Since there is an EIF in this

example, we study a (non-regularized) one-step estimator. Theorem 2 relies on the negligibility of the

remainder and drift terms, namely that they are op(n
−1/2). Let RP := ν(P ) + P0ϕP − ν(P0) denote the

remainder term for a generic P ∈ P. In Appendix B.2.5 we show that there exists a C <∞ that does

not depend on P ∈ P such that

∥RP ∥H ≤ C ∥gP (1 | ·)− g0(1 | ·)∥L2(P0,X)

∥∥pY |A=1,X − p0,Y |A=1,X

∥∥
L2(τ0)

. (34)

Hence, for Rj
n := RP̂ j

n
to be op(n

−1/2), the products of the rate of convergence of gP̂ j
n
(1 | · ) to g0(1 | · )

and pY |A=1,X to p0,Y |A=1,X according to the norms above must be faster than n−1/2. This results in the

same n−1/4-type requirement that we discussed below (32) for Example 1a, except, because we only focus

on rates of convergence for regularized one-step estimators (rather than weak convergence), there we only

required this product to be at least as fast as n−1/2 rather than faster, as we require here. Also similarly

to Example 5.3, for each j ∈ {1, 2}, ∥ϕj
n
− ϕ

0
∥L2(P0;H) can be shown to be op(1) provided the propensity

and conditional density of Y | A = 1, X under P̂ j
n converge to in probability g0(1 | · ) and p0,Y |A=1,X

according to the norms in (34). Hence, Lemma 3 ensures that the drift term Dj
n is op(n

−1/2) under this

condition, and so the conditions of Theorem 2 hold under reasonable conditions. If the operator Ω0

used to construct a confidence set for ν(P0) is fixed, then the conditions of Theorem 4 are also satisfied,

justifying the use of the bootstrap in confidence set construction. If instead the regularized covariance

operator described in Appendix D is used, then the bootstrap will still yield an asymptotically valid

confidence set for ν(P0) provided the estimator of Ω0 described in that appendix is used (see Lemma S12

for details).
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7 Simulation study

7.1 Overview

We conduct a simulation study to evaluate the finite-sample properties of our one-step estimation

framework, both in settings where an EIF exists and in ones where it does not. All of these settings

involve drawing inferences about the distributions or densities of counterfactual outcomes (Examples 1

and 3). Our implemented methods are available in the HilbertOneStep R package (Luedtke, 2023).

We consider multiple data-generating processes, each indexed by real-valued probability distributions

Q(0) and Q(1). Sampling from a generic such process involves drawing n iid samples from P0, where n

takes values in {250, 500, 1000, 2000, 4000}. An observation Z = (X,A, Y ) from P0 is sampled as follows:

(Y (0), Y (1)) ∼ Q(0)×Q(1), V |Y (0), Y (1) ∼ N(05, Id5),

X = V
2 + (V + 1)1{Y (1) > 0}; A | Y (0), Y (1), V,X ∼ Bern

[
1
20 + 9

10 · expit(X1)
]
,

and then letting Y = AY (1)+(1−A)Y (0). For a ∈ {0, 1}, Y (a) is the counterfactual outcome if treatment

A = a were assigned. Since Y (a) ⊥⊥ A | X and the positivity assumption is satisfied, the density of

Y (a) takes the form in (11) when a = 1 and otherwise is the same but with pY |A,X(y | 1, x) replaced by

pY |A,X(y | 0, x). Unless otherwise specified, estimates of performance are based on 1000 Monte Carlo

repetitions.

We estimate all needed nuisance functions using the same approaches as Kennedy et al. (2021). In

particular, we estimate the marginal of X with the empirical distribution, the conditional distribution of

A given X using the ranger package (Wright and Ziegler, 2017), and the conditional density of Y given

(A,X) using ranger and a Gaussian kernel weighted outcome with bandwidth selected by Silverman’s

rule. When implementing the quadratic forms used to define our confidence sets, we use grids of 500

points on the support of Y — see Appendix F for details.

7.2 Performance of the regularized one-step estimator in Example 1a

We evaluate the performance of the regularized one-step estimator of the counterfactual density of Y (1)

from Example 1a when H = L2([0, 1]). We consider three choices of Q(1), which are displayed in Figure S2

in the appendix. The behavior of Y (1) on the boundaries of its support, namely 0 and 1, differs across the

three settings; to emphasize this, we label them ‘zero on both sides’, ‘nonzero on both sides’, and ‘spike

on left side’. The cross-validation strategy outlined in Section 5.3 is used to select the regularization

parameter β over the elements of ℓ2 that take the value 1 in their first K ≤ 16 entries and 0 in all others.

To evaluate sensitivity to the choice of basis, we evaluate our estimator based on the cosine basis, with

hk(y) = 21/2cos[π(k − 1)y], and a rescaled Legendre basis, with hk(y) proportional to the k-th Legendre

function applied to 2y − 1. We also evaluate the use of cross-validation to select between these bases.

Performance is compared to that of a plugin estimator and also the estimation strategy implemented

in the npcausal package (Kennedy et al., 2021), which is a series estimator of the L2([0, 1]) projection of

the counterfactual density onto the first K terms of the cosine basis. We use the cross-validation scheme

implemented in that package to select a value of K ≤ 16. Though npcausal does not return the estimated

density function, we tweaked its open-source code to extract this information.

Figure 3 displays the estimators’ MISEs. In all settings, the regularized one-step estimators are

outperformed by the plug-in estimator at small sample sizes, but their relative performances improve as n

grows and eventually exceed or trend towards exceeding that of the plugin. Compared to the regularized

one-step estimator with the cosine basis, npcausal has MISE that is twice as large at small sample sizes

in two of the three scenarios. In one of these scenarios, npcausal’s performance improves with n, but is
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Figure 3: Mean integrated squared error (MISE) versus sample size (n) in Example 1a for five estimators across
the three data generating processes considered. Both axes are log-transformed.

still worse than all the other estimators. In the other, its performance dramatically improves between

n = 2000 to 4000 from the worst of all the estimators to slightly better than the others. In the remaining

scenario, npcausal and the regularized one-step estimator with the cosine basis perform similarly. Among

the regularized one-step estimators, using the Legendre basis outperforms using the cosine basis in one

scenario, while the two perform similarly otherwise. Selecting the basis via cross-validation yields an

estimator that is about as good as the one based on the Legendre basis in all scenarios.

7.3 Properties of hypothesis tests from Examples 1a and 3

We evaluate 5% level tests of the null hypothesis that Q(1) = Q(0) against the complementary alternative.

The first class of tests uses the results from Example 1a to check if zero is included in an L2([0, 1])

confidence set for the difference ν(P0) = ν1(P0)− ν0(P0) of the densities of Q(1) and Q(0). We obtain

spherical and Wald-type L2([0, 1]) confidence sets for the regularized parameter νβ(P0) using cosine and

Legendre bases. Both are then transformed into elliptical confidence sets for ν(P0) using the approach

from Section 5.2. The Wald-type confidence sets are defined with the correlation-based standardization

operator Ωn from Appendix F with λ = 0.5. For the regularization parameter β, we let βk = 1/[1+(k/c)2]

and consider values of c ∈ 2.5, 5, 10. Results for c = 5 are reported in the main text, while others appear

in the appendix. Additionally, we examine a test based on the Gaussian kernel MMD between Q(1) and

Q(0), which depends on a bandwidth choice of 0.5, 1, and 2 times median{|Yi − Yj | : 1 ≤ i < j ≤ n}
(Garreau et al., 2017). We report results for the middle value in the main text and others in the appendix.

We compare performance to the asymptotically conservative test from Kennedy et al. (2021), implemented

using npcausal.

We set Q(1) to its value from the ‘nonzero on both sides’ simulation setting and consider different

values of Q(0). We explore the null hypothesis with Q(0) = Q(1), and, for k ∈ {1, 2, . . . , 7}, the

alternative hypothesis with ν0(P0)(y) = ν1(P0)(y) + cos(k2πy)/3, denoted as ‘Alt k2’. By examining

these alternatives, we assess the power decay of our tests for ν1(P0)− ν0(P0) = 0 as the direction of the

alternative corresponds to that of a higher-frequency function in the cosine basis.

Figure 4 presents the type I error and power of the tests. In terms of type I error, the five tests based

on our one-step estimation framework achieve or nearly achieve the nominal 5% level. Surprisingly, the

npcausal test has a type I error over three times the nominal level at smaller sample sizes, despite having

an asymptotic rejection probability of zero. However, as n increases, the type I error converges towards its

expected conservative asymptotic behavior. As for power, our tests that regularize using the cosine basis

display the anticipated power decay for rejecting Alt k2 as k increases. Tests using the Legendre basis do

not exhibit the same monotonic dependence on k. The Wald-type test with the cosine basis demonstrates

noticeably higher power for larger k alternatives than the spherical test, while this trend is less apparent
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Figure 4: Type I error and power of tests from Examples 1a and 3.

for the Legendre basis. The MMD test has high power for detecting the smoothest alternative, Alt 1,

but low or no power against all others. It is important to note that the alternatives we have considered

become quite nonsmooth as k increases, making MMD’s poor finite-sample performance for detecting

them potentially acceptable. Figure S3 in the appendix illustrates test performance with various tuning

parameter choices. Overall, the results align with expectations: for tests based on Example 1a, enhanced

power against rougher alternatives (k larger) comes at the cost of reduced power against smoother

alternatives when later entries of the regularization parameter β are increased, and vice versa. For MMD,

modifying the bandwidth results in the same tradeoff.

Appendix I.1 presents simulation results evaluating our confidence sets for a bandlimited counterfactual

density. Nominal coverage is achieved for all sample sizes considered. There, we also highlight the

disadvantage of using our L2 confidence sets when a point evaluation of the counterfactual density, rather

than the function itself, is the true quantity of interest.

8 Discussion

The lack of existence of an EIF that we have confronted in parts of this work bears resemblance to the

lack of existence of higher-order influence functions for many real-valued parameters (Robins et al., 2008;

van der Vaart, 2014; Robins et al., 2017). There, the nonexistence of these objects owes to the lack of a

suitable Riesz-representation-type theorem for multilinear forms. In our case, it owes to the fact that

the efficient influence operator ν̇∗P (·)(z) : H → R typically fails to be (P -a.s.) bounded and linear, even

though ν̇∗P : H → ṖP is. Though the technical details of the two problems differ, similar solutions work

for both: replace the operator that does not satisfy a Riesz-type representation by an approximation

that does. In our case, this involved studying the β-regularized efficient influence operator rβP . In future

work, it would be interesting to investigate the possibility of defining higher-order influence functions for

Hilbert-valued parameters. We have shown that, under mild conditions, a first-order EIF exists when the

Hilbert space is an RKHS, making this case a natural starting point for exploration.

Another interesting area for future work is to develop a systematic means to select the tuning parameter

β needed to define our confidence sets when an EIF does not exist. Although our asymptotic guarantees

hold for any fixed choice of β ∈ ℓ2∗ and our numerical studies shed light on how different choices of

β improve power against different alternatives, it would be desirable to have an automated means of

selecting this parameter. One possible approach would involve drawing inspiration from the choice of

kernel for two-sample tests based on the MMD (Gretton et al., 2012). Like our approach, these tests

rely on selecting a fixed tuning parameter — in their case, a kernel — as n grows. In that context, an

appealing heuristic choice of the bandwidth parameter indexing the kernel has been developed, provided
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a radial basis function kernel is used (Garreau et al., 2017). It would be of interest to develop a similar

heuristic in our setting.

Another area for future study involves extending our results to cases where the Hilbert space depends

on the data-generating distribution. As a simple example, in the regression setting from Example 5 in

the appendix, we may want to evaluate performance relative to L2(λX) with λX equal to the marginal

distribution P0,X of X under P0, rather than some fixed known measure, such as the Lebesgue measure.

The definition of pathwise differentiability at P0 goes through unchanged in that case. However, because

the efficient influence operator at an initial estimate P̂ j
n of P0 depends on P0 when H = L2(P0,X), the

regularized one-step estimator we have presented in this work cannot be evaluated. A natural workaround

would be to modify the definition of this estimator to use the efficient influence operator of ν at P̂ j
n

relative to a Hilbert space that is indexed by P̂ j
n, rather than P0, and replace (hk)

∞
k=1 by a basis of this

space. We leave the study of this estimator to future work.

After establishing that many Hilbert-valued parameters of interest are pathwise differentiable, we

focused on developing and studying a particular estimation framework that leverages this property,

namely one-step estimation. This framework has the benefit that there is a closed-form expression for

the resulting estimators, which simplifies the study of their convergence properties and construction

of corresponding confidence sets. While this approach has advantages, it would be worth considering

alternative frameworks in future work. As one example, an M-estimator based on the loss that we

introduced in (31) could also be considered. Foster and Syrgkanis (2019) offers a general method for

determining the convergence rates of these estimators. Additional research is needed to investigate their

weak convergence properties and the possibility of using them to construct confidence sets.
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A Additional examples of pathwise differentiable parameters

All derivations are given in Appendix B.

Example 4 (Root-density function). Nonparametric density estimation is a well-studied problem.

Estimating the (square root of) the density as an L2 parameter has been done in Cencov (1962). In

our setting, we suppose that Z ∼ P for P ∈ P, where there is a σ-finite measure λ that dominates all

distributions in a locally nonparametric model P and we wish to estimate the square root of the density

of Z, that is, ν(P )(z) := dP
dλ (z)

1/2, where λ denotes the Lebesgue measure. The parameter ν takes values

in H := L2(λ). The local parameter takes the form ν̇P (s)(z) =
1
2s(z)ν(P )(z), and the efficient influence

operator takes the form

ν̇∗P (h)(z) =
h(z)

2ν(P )(z)
− EP

[
h(Z)

2ν(P )(Z)

]
.

Similarly to Example 1a, ν̇∗P is not a bounded operator when λ is not discrete, and so an EIF will not

exist in these cases.

Example 5 (Regression function). We suppose that Z := (X,Y ) ∼ P for P in a locally nonparametric

model P . We assume that for all P, P ′ ∈ P , P is equivalent to P ′ in that P ≪ P ′ and P ′ ≪ P , and also

that

sup
P∈P

ess sup
x

EP [Y
2 | X = x] <∞, (S1)

where ess sup denotes a PX -essential supremum with PX denoting the marginal distribution of X under

P ∈ P . Let λX be a measure that is dominated by the marginal distribution ofX under some (and, by their
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equivalence, all) distributions in P . We wish to estimate the conditional mean ν(P )(x) := EP [Y | X = x],

where ν : P → H with H := L2(λX). We establish pathwise differentiability at any P ∈ P that is such

that dλX

dPX
is bounded PX -almost surely. We note that we do not require that PX ≪ λX ; in such cases,

estimation error quantified via the L2(λX)-norm only measures performance on a strict subset of the

support of PX .

The local parameter is ν̇P (s)(x) =
∫
[y − ν(P )(x)]s(x, y)PY |X(dy | x) and the efficient influence

operator is ν̇∗P (h)(x, y) = dλX

dPX
(x)[y − ν(P )(x)]h(x). Similarly to Example 1a, ν̇∗P is not a bounded

operator when λX is not discrete, and so an EIF will not exist in these cases.

Example 6 (Kernel mean embedding of distributions). Let κ : Z × Z → R be a bounded, symmetric,

positive definite function. Let H be the unique RKHS associated with the kernel κ (Aronszajn, 1950),

and let Kz := κ(z, ·) be the associated feature map. Assume that P is a model on Z such that all P ∈ P
are equivalent and P ≪ λ for all P ∈ P. The target of estimation is the evaluation of the kernel mean

embedding ν : P → H at P (Gretton et al., 2012), where

ν(P ) :=

∫
Kz P (dz).

When the model is locally nonparametric, the local parameter takes the form ν̇P (s) =
∫
Kz s(z)P (dz).

The efficient influence operator takes the form ν̇∗P (h)(y) = h(y)− Ph, and the efficient influence function

is P -Bochner square integrable and takes the form ϕP (z) = Kz − ν(P ). Regardless of the initial estimator

of P0, the one-step estimator is given by ν̄n = 1
n

∑n
i=1KZi

. In other words, ν̄n is the empirical kernel

mean embedding as defined in Gretton et al. (2012).

Example 7 (Conditional average treatment effect). There has recently been much interest in various

fields regarding the estimation of the conditional average treatment effect function (Hill, 2011; Luedtke

and van der Laan, 2016; Künzel et al., 2019). Under conditions, this parameter corresponds to an

additive causal effect between the mean outcome that would be observed among individuals with

a given covariate value if, possibly contrary to fact, treatment 1 had been administered versus not

administered. For the setting, suppose that Z := (X,A, Y ) ∼ P for P ∈ P, where X is a vector of

covariates, A is a binary treatment, and Y is an outcome. As in Example 4, suppose that P is a locally

nonparametric model consisting of equivalent measures. Define the propensity to receive treatment a

as gP (a | x) := P (A = a | X = x) and the outcome regression as µP,a(x) := EP [Y | A = a,X = x].

Suppose that all distributions P ∈ P are such that maxa∈{0,1} ess supx∈X EP (Y
2 | A = a,X = x) < ∞

and maxa∈{0,1} ess supx∈X gP (a | x)−1 <∞. Let λX be a measure that is dominated by the marginal of

X under the distributions in P, and define H := L2(λX). The target of estimation is the conditional

average treatment effect ν : P → H, defined as

ν(P )(x) := µP,1(x)− µP,0(x).

Similarly to Example 4, we establish pathwise differentiability at any P ∈ P that is such that dλX

dPX
is

bounded PX -almost surely. The local parameter takes the form

ν̇P (s)(x) =

∫
(2a− 1)

gP (a | x) [y − µP,a(x)]s(y, a, x)P (dy, da | x). (S2)

The efficient influence operator takes the form

ν̇∗P (h)(y, a, x) =
h(x)

pX(x)

(2a− 1)

gP (a | x) [y − µP,a(x)]. (S3)
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Similarly to Example 1a, ν̇∗P is not a bounded operator when λX is not discrete, and so an EIF will not

exist in these cases.

B Derivations for examples

B.1 Example 1a: counterfactual density function

B.1.1 Pathwise differentiability

We now show that ν is pathwise differentiable relative to a locally nonparametric model P at any

P ∈ P. To do this, we break our argument into two parts. First, we use Lemma 2 to establish that ν is

pathwise differentiable relative to a model Pg that is nonparametric up to the fact that the propensity to

receive treatment is known to be equal to a fixed function g. Specifically, we consider the model Pg that

consists of all distributions P ′ that are such that gP ′ = g and for which there exists P ∈ P such that

P ′
Y |A,X = PY |A,X and P ′

X = PX . Second, we use the fact that ν does not depend on the propensity to

receive treatment to extend this pathwise differentiability result to the locally nonparametric model P.

Throughout this subappendix we suppose that, at each P ∈ P and for a fixed δ > 0, P is large enough

to contain submodels of the form {Pϵ : ϵ ∈ [0, δ)}, where dPϵ,X

dPX
(x) = 1 + ϵsX(x),

dPϵ,A|X

dPA|X
(a | x) = 1,

and
dPϵ,Y |A,X

dPY |A,X
(y | a, x) = 1 + ϵsY |A,X(y | a, x), where sX and sY |A,X are arbitrary functions bounded in

(−δ−1, δ−1) that are such that EP [sX(X)] = 0 and EP [sY |A,X(Y | A,X) | A,X] = 0 P -almost surely.

There is no loss in generality in assuming that P is this large since pathwise differentiability relative to a

larger model also implies pathwise differentiability relative to a smaller model, and, when both the larger

and the smaller models are locally nonparametric, the local parameters and efficient influence operators

in the two models necessarily agree.

We now use Lemma 2 to prove that ν is pathwise differentiable relative to Pg, where for now we take

g to be any fixed function that is such that g = gP ′ for at least one P ′ ∈ P. Fix two distributions P

and P̃ in Pg. Let λX denote a σ-finite measure that dominates the marginals in X of P and P̃ , that is,

PX ≪ λX and P̃ ≪ λX , and let qX and q̃X denote the square root of the marginal density of X relative

to λX under P and P̃ , respectively. For any P ′ ∈ P , we also define qP ′( · | x) to be the square root of the

conditional density of Y given (A,X) = (1, x) under P ′. For brevity we let q := qP and q̃ := qP̃ . We

have that

∥∥∥ν(P̃ )− ν(P )
∥∥∥
2

H

=

∫ [∫ {
q̃2(y | x)q̃2X(x)− q2(y | x)q2X(x)

}
dλX(x)

]2
dλY (y)

=

∫ [∫
{q̃(y | x)q̃X(x) + q(y | x)qX(x)}

· {q̃(y | x)q̃X(x)− q(y | x)qX(x)} dλX(x)

]2
dλY (y)

≤
∫ [∫

{q̃(y | x)q̃X(x) + q(y | x)qX(x)}2 dλX(x)

]

·
[∫

{q̃(y | x)q̃X(x)− q(y | x)qX(x)}2 dλX(x)

]
dλY (y)

≤ 2

∫ [
ν(P̃ )(y) + ν(P )(y)

] [∫
{q̃(y | x)q̃X(x)− q(y | x)qX(x)}2 dλX(x)

]
dλY (y),

where the first inequality holds by Cauchy-Schwarz and the second by the fact that (b+ c)2 ≤ 2(b2 + c2).
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Using (12) and the fact that ν does not depend on the propensity to receive treatment, this shows that,

for C1 = 4 supP ′∈P ess supy ν(P
′)(y),

∥∥∥ν(P̃ )− ν(P )
∥∥∥
2

H

≤ C1

∫∫
{q̃(y | x)q̃X(x)− q(y | x)qX(x)}2 dλX(x)dλY (y)

= C1

∫∫
1

g(1 | x)
{
q̃(y | x)g1/2(1 | x)q̃X(x)− q(y | x)g1/2(1 | x)qX(x)

}2

dλX(x)dλY (y).

Again using (12) and letting C2 = C1/ infP ′∈P ess infx∈X gP ′(1 | x), we find that

∥∥∥ν(P̃ )− ν(P )
∥∥∥
2

H

≤ C2

∫∫ {
q̃(y | x)g1/2(1 | x)q̃X(x)− q(y | x)g1/2(1 | x)qX(x)

}2

dλX(x)dλY (y).

Finally, noting that the double integral on the right-hand side upper bounds by H2(P, P̃ ), we have shown

that ∥ν(P̃ )− ν(P )∥H ≤ C
1/2
2 H(P, P̃ ), which establishes (ii) of Lemma 2 when the model is Pg, where g

is an arbitrary value of the propensity to receive treatment for which there exists some P ∈ P such that

g = gP .

Hereafter we fix P ∈ P and suppose that g = gP . We now establish (i) of Lemma 2 at P for

the model Pg with ηP (s)(y) equal to the right-hand side of (13) from the main text. To do this,

we use the following model: {Pϵ : ϵ ∈ [0, δ)}, where dPϵ,X

dPX
(x) = 1 + ϵsX(x),

dPϵ,A|X

dPA|X
(a | x) = 1, and

dPϵ,Y |A,X

dPY |A,X
(y | a, x) = 1 + ϵsY |A,X(y | a, x), where sX and sY |A,X are bounded in [−δ−1/2, δ−1/2] and

EP [sX(X)] = 0 and EP [sY |A,X(Y | A,X) | A,X] = 0 P -almost surely. The model {Pϵ : ϵ ∈ [0, δ)} is

a submodel of P by assumption and, due to the fact that Pϵ,A|X = PA|X for all ϵ, is therefore also a

submodel of Pg. It can be verified that this submodel has score s(x, a, y) = sX(x) + sY |A,X(y | a, x) at
ϵ = 0 and that the L2(P )-closure of the set containing such scores corresponds to the tangent space of Pg

at P . In what follows we will show that ∥ν(Pϵ)− ν(P )− ϵ ηP (s)∥H = o(ϵ). To this end, observe that

∥ν(Pϵ)− ν(P )− ϵηP (s)∥2H

=

∫ [∫ {(
dPϵ,Y |A,X

dPY |A,X
(y | 1, x)dPϵ,X

dPX
(x)− 1

)
q2(y | x)q2X(x)

}
dλX(x)

− ϵηP (s)(y)

]2
dλY (y)

=

∫ [∫ {(
ϵsY |A,X(y | 1, x)

+ ϵsX(x) + ϵ2sY |A,X(y | 1, x)sX(x)
)
q2(y | x)q2X(x)

}
dλX(x)− ϵηP (s)(y)

]2
dλY (y).

Using that sY |A,X(y | a, x) = s(x, a, y) − EP [s(X,A, Y ) | A = a,X = x] and sX(x) = EP [s(X,A, Y ) |
X = x] and plugging in the definition of ηP , we see that

∥ν(Pϵ)− ν(P )− ϵηP (s)∥2H

=

∫ [∫
ϵ2sY |A,X(y | 1, x)sX(x)q2(y | x)q2X(x)dλX(x)

]2
dλY (y)

≤ ϵ4δ−4

∫ [∫
q2(y | x)q2X(x)dλX(x)

]2
dλY (y)
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= ϵ4δ−4

∫
ν(P )(y)2dλY (y)

≤ ϵ4δ−4

[∫
ν(P )(y)dλY (y)

]
sup
P∈P

ess sup
y

ν(P )(y)

= ϵ4δ−4 sup
P∈P

ess sup
y

ν(P )(y),

where the first inequality used that sY |A,X and sX both have ranges bounded in (−δ−1, δ−1). By (12), the

right-hand side is O(ϵ4), and therefore is o(ϵ2) with much to spare. Hence, ∥ν(Pϵ)−ν(P )−ϵ ηP (s)∥H = o(ϵ).

We now verify that ηP is a bounded operator, which will then show that (i) of Lemma 2 holds at

P for the model Pg. Take any s in the tangent space of Pg at P . Let sY |A,X(y | a, x) := s(x, a, y) −
EP [s(X,A, Y ) | A = a,X = x] and sX(x) := EP [s(X,A, Y ) | X = x]. It can be verified that,

EP [s(X,A, Y ) | A,X]− EP [s(X,A, Y ) | X] = 0 P -a.s., and so s = sY |A,X + sX . We write p( · | a, x) to
denote the conditional density under P of Y given (A,X) = (a, x). Observe that

∥ηP (s)∥2L2(λY )

=

∫ {∫
[sY |A,X(y | 1, x) + sX(x)]p(y | 1, x)PX(dx)

}2

λY (dy)

≤
∫ {

[sY |A,X(y | 1, x) + sX(x)]p(y | 1, x)
}2
λY (dy)PX(dx)

=

∫
[sY |A,X(y | 1, x) + sX(x)]2p(y | 1, x)PY |A,X(dy | 1, x)PX(dx)

=

∫
[sY |A,X(y | 1, x) + sX(x)]2p(y | 1, x) a

P (A = 1 | X = x)
P (dz)

=

∫
[sY |A,X(y | a, x) + sX(x)]2p(y | a, x) a

P (A = 1 | X = x)
P (dz)

≤
(∫

[sY |A,X(y | a, x) + sX(x)]2P (dz)

)
sup
x,y

(
p(y | 1, x) 1

P (A = 1 | X = x)

)

≤ ∥s∥2L2(P ) sup
x,y

(
p(y | 1, x) 1

P (A = 1 | X = x)

)
.

By (12), the supremum is finite and so ηP is a bounded linear operator. Hence, by Lemma 2, ν is pathwise

differentiable at P relative to Pg with ν̇P = ηP .

We now show that ν is pathwise differentiable at P relative to P . To do this, we consider an arbitrary

s ∈ L2
0(P ) and {Pϵ : ϵ} ∈ P(P,P, s). Let sY |A,X(y | a, x) := s(x, a, y) − EP [s(X,A, Y ) | A = a,X = x]

and sX(x) := EP [s(X,A, Y ) | X = x]. Also define {P ′
ϵ : ϵ} to be the submodel consisting of distributions

P ′
ϵ that are such that P ′

ϵ,Y |A,X = Pϵ,Y |A,X , gP ′
ϵ
= gP , and P ′

ϵ,X = Pϵ,X . Lemma S8 can be used to

verify that {P ′
ϵ : ϵ} ∈ P(P,Pg, sY |A,X + sX). Also, since ν does not depend on the propensity to receive

treatment, ν(P ′
ϵ) = ν(Pϵ) and, by the definition of ν̇P in (13), ν̇P (s) = ν̇P (sY |A,X + sX). Hence,

∥ν(Pϵ)− ν(P )− ϵν̇P (s)∥L2(λY ) =
∥∥ν(P ′

ϵ)− ν(P )− ϵν̇P (sY |A,X + sX)
∥∥
L2(λY )

. (S4)

By the pathwise differentiability of ν at P relative to Pg, the right-hand side is o(ϵ). Recalling the

left-hand side above, this shows that ν is pathwise differentiable at P relative to P with local parameter

ν̇P .
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B.1.2 Efficient influence operator

Take any s ∈ L2
0(P ). Let sY |A,X(y | a, x) := s(x, a, y) − EP [s(X,A, Y ) | A = a,X = x] and sX(x) :=

EP [s(X,A, Y ) | X = x]. To compute the adjoint of ν̇P , note that, for h ∈ L2(λY ),

⟨ν̇P (s), h⟩L2(λY ) =

∫
[sY |A,X(y | 1, x) + sX(x)]h(y)PY |A,X(dy | 1, x)PX(dx).

Note that

∫
sY |A,X(y | 1, x)h(y)PY |A,X(dy | 1, x)PX(dx)

=

∫
1{a = 1}
gP (a | x) {h(y)− EP [h(Y ) | A = a,X = x]} s(z)P (dz),

∫
sX(x)h(y)PY |A,X(dy | 1, x)PX(dx)

=

∫
{EP [h(Y ) | A = 1, X = x]− EPEP [h(Y ) | A = 1, X]} s(z)P (dz).

Thus, (14) holds.

B.1.3 Bounding the regularized remainder term

For k ∈ N, let mP,k : x 7→ EP [hk(Y ) | A = 1, X = x]. We now use Lemma 5 to study Rj,βn
n . Towards

this, note that, for any P ∈ P and k ∈ N,

⟨ν(P )− ν(P0), hk⟩H + P0ν̇
∗
P (hk) = E0

[(
1− g0(1 | X)

gP (1 | X)

)
(mP,k(X)−m0,k(X))

]
.

Hence, by Lemma 5 and the Cauchy-Schwarz inequality,

∥Rβ
P ∥2H ≤

∥∥∥∥1−
g0(1 | ·)
gP (1 | ·)

∥∥∥∥
2

L2(P0,X)

∞∑

k=1

β2
k ∥mP,k −m0,k∥2L2(P0,X) .

Combining this with (12) and letting C := 1/ infP∈P ess infx∈X gP (1 | x) <∞, we then obtain

∥Rβ
P ∥2H ≤ C ∥gP (1 | ·)− g0(1 | ·)∥2L2(P0,X)

∞∑

k=1

β2
k ∥mP,k −m0,k∥2L2(P0,X) .

Further observe that, for any k ∈ N, Cauchy-Schwarz and the fact that hk has unit length in H = L2(λY )

yield that

∥mP,k −m0,k∥2L2(P0,X)

=

∫ (∫
hk(y)[pY |A,X(y | 1, x)− p0,Y |A,X(y | 1, x)]λY (dy)

)2

P0,X(dx)

≤
∫ (∫

hk(y)
2λY (dy)

)(∫
[pY |A,X(y | 1, x)− p0,Y |A,X(y | 1, x)]2λY (dy)

)
P0,X(dx)

=

∫∫
[pY |A,X(y | 1, x)− p0,Y |A,X(y | 1, x)]2λY (dy)P0,X(dx).

Combining the preceding two displays gives (32).
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B.2 Example 1b: bandlimited counterfactual density function

B.2.1 Preliminaries

Many of our arguments rely on the following result, which shows the sense in which B can be viewed

as an L2(λY ) projection onto H. In this lemma and in this lemma only, we are careful to distinguish

between elements of L2(λY ), which are equivalence classes of functions of the form [f ], and elements of

H, which are functions. After this lemma, we return to following the usual conventions that (i) a generic

λY -square integrable function h : R → R can be treated as an element of L2(λY ) by simply replacing h

by [h], and (ii) for a generic equivalence class [f ] of L2(λY ), the function y 7→ f(y) corresponds to any

function belonging to the equivalence class [f ]. In all contexts where the convention (ii) is used, the

particular element of the equivalence class that is selected will not matter.

Lemma S1. For a λY -square integrable function h : R → R, let [h] denote the equivalence class of

functions that are λY -a.e. equal to h. Denoting a generic element of L2(λY ) by [h], the operator

[h] 7→ [B(h)] is an orthogonal projection in L2(λY ) onto the closed subspace H‡ := {[h] : h ∈ H}.

Proof. Let B
‡ : [h] 7→ [B(h)]. For any function v : R → C, we define 1[−b,b] · v as the function

ξ 7→ 1[−b,b](ξ) · v(ξ).
We first show that B

‡ is a linear operator. We show this using that [f + g] = [f ] + [g] for any

[f ], [g] ∈ L2(λY ) and also that the Fourier and inverse Fourier transforms are linear. In particular, for

any [f ], [g] ∈ L2(λY ) and c ∈ R, we have that

B
‡([cf + g]) = B

‡([cf ] + [g]) = [B(cf + g)] = [F−1(1[−b,b] · F(cf + g))]

= [F−1(1[−b,b] · F(cf) + 1[−b,b] · F(g))]

= [F−1(1[−b,b] · F(cf)) + F−1(1[−b,b] · F(g))]

= [cF−1(1[−b,b] · F(f)) + F−1(1[−b,b] · F(g))]

= [cB(f) +B(g)] = c[B(f)] + [B(g)] = cB‡([f ]) +B
‡([g]).

The operator B‡ is idempotent since, for any [f ] ∈ L2(λY ),

B
‡ ◦B‡([f ]) = B

‡([B(f)]) = [B ◦B(f)]

= [F−1(1[−b,b] · F ◦B(f))] = [F−1(1[−b,b] · F ◦ F−1(1[−b,b] · F(f)))]

= [F−1(1[−b,b] · 1[−b,b] · F(f))] = [F−1(1[−b,b] · F(f))] = [B(f)] = B
‡([f ]).

We now show that B‡ is self-adjoint. For any [f ], [g] ∈ L2(λY ), the definitions of B and B
‡ show that

⟨[g],B‡([f ])⟩L2(λY ) = ⟨[g], [B(f)]⟩L2(λY ) =

∫
g(y)B(f)(y)λY (dy)

=

∫
g(y)F−1(1[−b,b] · F(f))(y)λY (dy)

Applying Plancherel’s theorem, the above display continues as follows:

=

∫
F(g)(y) (1[−b,b] · F(f))(y)λY (dy)

=

∫
(1[−b,b] · F)(g)(y)F(f)(y)λY (dy)

=

∫
F−1(1[−b,b] · F)(g)(y) f(y)λY (dy) =

∫
B(g)(y) f(y)λY (dy)

= ⟨[B(g)], [f ]⟩L2(λY ) = ⟨B‡([g]), [f ]⟩L2(λY ).
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Hence, B‡ is an orthogonal projection. Furthermore, the image Im(B‡) of B‡ can be seen to be equal to H‡.

Indeed, (i) H‡ ⊆ Im(B‡) since, for any [h] ∈ H‡, [h] = [B(h)] = B
‡([h]) ∈ Im(B‡) and (ii) Im(B‡) ⊆ H‡

since, for any [h] ∈ Im(B‡), the idempotency of B‡ shows that F(h) = F ◦B(h) = 1[−b,b] · F(h), and so

h ∈ H and [h] ∈ H‡. As the image of an orthogonal projection in a Hilbert space is closed, H‡ is a closed

subspace of L2(λY ). This completes the proof.

B.2.2 Pathwise differentiability

Lemma S1 and the pathwise differentiability of ν, established in Example 1a, implies the pathwise

differentiability of ν by the following display, which holds for any {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s):

∥ν(Pϵ)− ν(P0)− ϵB(ν̇P (s))∥L2(λY ) = ∥B(ν(Pϵ)− ν(P0)− ϵν̇0(s))∥L2(λY )

≤ ∥ν(Pϵ)− ν(P0)− ϵν̇0(s)∥L2(λY ) = o(ϵ).

Hence, ν̇P (s) = B◦ ν̇P (s). Because B and ν̇P are both linear operators, ν̇P : ṖP → H is a linear operator.

This operator is also bounded since, by Lemma S1 and the boundedness of ν̇P , the following holds for

any s ∈ ṖP :

∥ν̇P (s)∥L2(λY ) = ∥B ◦ ν̇P (s)∥L2(λY ) ≤ ∥ν̇P (s)∥L2(λY ) ≤ ∥s∥L2(P )∥ν̇P ∥op.

B.2.3 Efficient influence operator

Since B is self-adjoint, for any h ∈ H,

⟨B ◦ ν̇P (s), h⟩L2(λY ) = ⟨ν̇P (s),B(h)⟩L2(λY ) = ⟨s, ν̇∗P ◦B(h)⟩L2(λY ).

Thus, ν̇∗P (h) = ν̇∗P ◦B(h). Furthermore, as h ∈ H and B is a projection onto H, ν̇∗P (h) = ν̇∗P (h).

B.2.4 Efficient influence function

To compute the efficient influence function, we let

ϕ
P
(y, a, x)(ỹ)

:= ν̇∗P (K ỹ)(y, a, x)

=
1{a = 1}
gP (a | x)

{
K ỹ(y)− EP

[
K ỹ(Y ) | A = a,X = x

]}

+

(
EP

[
K ỹ(Y ) | A = 1, X = x

]
−
∫
EP

[
K ỹ(Y ) | A = 1, X = x̃

]
PX(dx̃)

)
.

By the symmetry of the kernel, K ỹ(y) = Ky(ỹ). Plugging this into the above and noting that ν(P ) =∫
EP [KY | A = 1, X = x̃]PX(dx̃), we find that

ϕ
P
(y, a, x)

=
1{a = 1}
gP (a | x)

{
Ky − EP [KY | A = a,X = x]

}
+ EP [KY | A = 1, X = x]− ν(P ). (S5)

Combining (12) with the square integrability of the sinc function shows that ϕ
P
belongs to L2(P ;H).

Hence, Theorem 1 shows that ϕ
P
is the EIF of ν.
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B.2.5 Bounding the remainder term

Fix P ∈ P. Observe that, for any y ∈ R, the definition of ν and the expression in (S5) yields that

RP := ν(P ) + P0ϕP − ν(P0)

= E0

[(
1− g0(1 | X)

gP (1 | X)

)
(EP [KY | A = 1, X]− E0[KY | A = 1, X])

]

= E0

[(
1− g0(1 | X)

gP (1 | X)

)∫
Ky[pY |A,X(y | 1, X)− p0,Y |A,X(y | 1, X)]λY (dy)

]
.

Hence, letting X1, X2 denote independent draws from P 2
0,X , we find that

∥RP ∥2H

= E0

[∫∫
Ky(y

′)





2∏

j=1

[pY |A,X(y′ | 1, Xj)− p0,Y |A,X(y′ | 1, Xj)]

(
1− g0(1 | Xj)

gP (1 | Xj)

)


λY (dy)λY (dy
′)

]

≤
(

sup
y,y′∈R

|Ky(y
′)|
)
E0

[∫∫ ∣∣∣∣∣

2∏

j=1

[pY |A,X(y′ | 1, Xj)− p0,Y |A,X(y′ | 1, Xj)]

·
(
1− g0(1 | Xj)

gP (1 | Xj)

) ∣∣∣∣∣λY (dy)λY (dy
′)

]
.

Using that supy,y′∈R |Ky(y
′)| = b/π and applying Fubini’s theorem to the expectation above shows that

∥RP ∥2H is equal to

b

π
E0

[∫ ∣∣∣[pY |A,X(y′ | 1, X1)− p0,Y |A,X(y′ | 1, X1)]
(
1− g0(1|X1)

gP (1|X1)

)∣∣∣λY (dy)
]2
.

Letting C2 := b/[π infP ′∈P ess infx∈X gP ′(1 | x)2] and applying Cauchy-Schwarz,

∥RP ∥2H ≤ C2 ∥gP (1 | ·)− g0(1 | ·)∥2L2(P0,X)

∥∥pY |A=1,X − p0,Y |A=1,X

∥∥2
L2(λY ×P0,X)

,

where pY |A=1,X − p0,Y |A=1,X denotes the function (y, x) 7→ pY |A,X(y | 1, x) − p0,Y |A,X(y | 1, x). We

conclude by noting that C2 <∞ by the strong positivity assumption. Hence, (34) holds.

B.3 Example 2: counterfactual mean outcome under a continuous treatment

B.3.1 Pathwise differentiability

We now show that ν is pathwise differentiable relative to a locally nonparametric model P at any P ∈ P .

To do this, we follow similar arguments to those used in Appendix B.1.1. In particular, we first use

Lemma 2 to establish that ν is pathwise differentiable relative to a model Pg that is nonparametric

up to the fact that the propensity to receive treatment gP is known to be equal to a fixed function g.

Specifically, we consider the model Pg that consists of all distributions P ′ that are such that gP ′ = g and

for which there exists P ∈ P such that P ′
Y |A,X = PY |A,X and P ′

X = PX . Second, we use the fact that ν

does not depend on the propensity to receive treatment to extend this pathwise differentiability result to

the locally nonparametric model P.

Let g be such that g = gP ′ for some fixed P ′ ∈ P. We first show that ν is Lipschitz over Pg. Fix

P, P̃ ∈ Pg. For each a ∈ A, let Pa and P̃a denote the distributions on R defined so that, for any Borel set
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B, Pa(B) =
∫
X

∫
B
PY |A,X(dy | a, x)PX(dx) and P̃a(B) =

∫
X

∫
B
P̃Y |A,X(dy | a, x)P̃X(dx). We have that

∥ν(P̃ )− ν(P )∥2L2(λA)

=

∫ [∫
y{Pa(dy)− P̃a(dy)}

]2
λA(da)

≤
∫ [∫

y2{P 1/2
a (dy) + P̃ 1/2

a (dy)}2
] [∫

{P 1/2
a (dy)− P̃ 1/2

a (dy)}2
]
λA(da)

≤
∫ [

2

∫
y2{Pa(dy) + P̃a(dy)}

] [∫
{P 1/2

a (dy)− P̃ 1/2
a (dy)}2

]
λA(da)

≤
(
2 sup
P ′∈P

ess sup
a,x

EP ′ [Y 2 | A = a,X = x]

)∫ [∫
{P 1/2

a (dy)− P̃ 1/2
a (dy)}2

]
λA(da)

=

(
2 sup
P ′∈P

ess sup
a,x

EP ′ [Y 2 | A = a,X = x]

)

·
∫ [∫

1

g(a | x){g
1/2(a | x)P 1/2

a (dy)− g1/2(a | x)P̃ 1/2
a (dy)}2

]
λA(da)

≤ 2 supP ′∈P ess supa,xEP ′ [Y 2 | A = a,X = x]

infP ′∈P ess inf(a,x)∈X gP ′(a | x)

∫
[P 1/2(dz)− P̃ 1/2(dz)]2

=
2 supP ′∈P ess supa,xEP ′ [Y 2 | A = a,X = x]

infP ′∈P ess inf(a,x)∈X gP ′(a | x) H2(P, P̃ ).

The first inequality above holds by Cauchy-Schwarz, the second by the fact that (b+ c)2 ≤ 2(b2 + c2), the

third by the Hölder’s inequality with exponents (p, q) = (1,∞), and the fourth by the strong positivity

assumption. The constant in front of H2(P, P̃ ) above is finite by the assumptions regarding the uniform

boundedness of the conditional second moment of Y across distributions in P and the strong positivity

assumption. Hence, ν is Lipschitz over Pg. This establishes (ii) of Lemma 2 when the model is Pg, where

g is an arbitrary value of the propensity to receive treatment for which there exists some P ′ ∈ P such

that g = gP ′ .

Hereafter we fix P ∈ P and suppose that g = gP . We now establish (i) of Lemma 2 at P for the

model Pg with ηP (s)(a) as defined on the right-hand side of (17). To do this, we use the following

model: {Pϵ : ϵ ∈ [0, δ)}, where dPϵ,X

dPX
(x) = 1 + ϵsX(x),

dPϵ,A|X

dPA|X
(a | x) = 1, and

dPϵ,Y |A,X

dPY |A,X
(y | a, x) =

1 + ϵsY |A,X(y | a, x), where sX and sY |A,X are bounded in [−δ−1/2, δ−1/2] and EP [sX(X)] = 0 and

EP [sY |A,X(Y | A,X) | A,X] = 0 P -almost surely. As in Appendix B.1.1, we assume that {Pϵ : ϵ ∈ [0, δ)}
is a submodel of Pg without loss of generality. This submodel has score s(x, a, y) = sX(x)+sY |A,X(y | a, x)
at ϵ = 0 and the L2(P )-closure of the set containing such scores corresponds to the tangent space of Pg

at P . It holds that

∥ν(Pϵ)− ν(P )− ϵηP (s)∥2L2(λA)

=

∫
[ν(Pϵ)(a)− ν(P )(a)− ϵηP (s)(a)]

2
λA(da)

=

∫ [∫∫
y[1 + ϵsY |A,X(y | a, x)][1 + ϵsX(x)]PY |A,X(dy | a, x)PX(dx)

−
∫∫

yPY |A,X(dy | a, x)PX(dx)− ϵηP (s)(a)

]2
λA(da)

= ϵ4
∫ [∫∫

ysY |A,X(y | a, x)sX(x)PY |A,X(dy | a, x)PX(dx)

]2
λA(da)

40



≤ ϵ4δ−4

∫ [∫∫
|y|PY |A,X(dy | a, x)PX(dx)

]2
λA(da)

≤ ϵ4δ−4

∫∫∫
y2PY |A,X(dy | a, x)PX(dx)λA(da),

where the first inequality holds by the bounds on the ranges of sY |A,X and sX , and the second holds by

Jensen’s inequality. By the bounds on the conditional second moment of Y under P , the right-hand side

is O(ϵ4), and so is o(ϵ2) with much to spare. Hence, ∥ν(Pϵ)− ν(P )− ϵ ηP (s)∥H = o(ϵ).

We now verify that ηP is a bounded operator. When combined with the linearity of ηP , this will then

show that (i) of Lemma 2 holds at P for the model Pg. Take any s in the tangent space of Pg at P . Let

sY |A,X(y | a, x) := s(x, a, y) − EP [s(X,A, Y ) | A = a,X = x] and sX(x) := EP [s(X,A, Y ) | X = x]. It

can be verified that, EP [s(X,A, Y ) | A,X] − EP [s(X,A, Y ) | X] = 0 P -a.s., and so s = sY |A,X + sX .

Using that (b + c)2 ≤ 2(b2 + c2), applying Cauchy-Schwarz and Hölder’s inequalities, and leveraging

Fubini’s theorem, we find that

∥ηP (s)∥2L2(λA)

≤ 2

∫ [∫∫
ysY |A,X(y | a, x)PY |A,X(dy | a, x)PX(dx)

]2
λA(da)

+ 2

∫ [∫
µP (a, x)sX(x)PX(dx)

]2
λA(da)

≤ 2

∫ [∫∫
y2PY |A,X(dy | a, x)PX(dx)

]

·
[∫∫

s2Y |A,X(y | a, x)PY |A,X(dy | a, x)PX(dx)

]
λA(da)

+ 2

∫ [∫
µ2
P (a, x)PX(dx)

] [∫
s2X(x)PX(dx)

]
λA(da)

≤ 2

{
ess sup

a,x
EP [Y

2 | A = a,X = x]

}

·
∫∫ [∫

s2Y |A,X(y | a, x)PY |A,X(dy | a, x) + s2X(x)

]
PX(dx)λA(da)

= 2

{
ess sup

a,x
EP [Y

2 | A = a,X = x]

}

·
∫∫

1

gP (a | x)

[∫
s2Y |A,X(y | a, x)PY |A,X(dy | a, x) + s2X(x)

]

· PX(dx)gP (a | x)λA(da)

≤ 2
ess supa,xEP [Y

2 | A = a,X = x]

ess infa,x gP (a | x)

·
∫∫ [∫

s2Y |A,X(y | a, x)PY |A,X(dy | a, x) + s2X(x)

]
PX(dx)gP (a | x)λA(da)

= 2
ess supa,xEP [Y

2 | A = a,X = x]

ess infa,x gP (a | x)

∫ [
s2Y |A,X(y | a, x) + s2X(x)

]
P (dz)

= 2
ess supa,xEP [Y

2 | A = a,X = x]

ess infa,x gP (a | x) ∥s∥2L2(P ).

Above all essential suprema and infima are under the joint distribution of (A,X) implied by P . The

fraction above is finite by the strong positivity assumption and the assumed bound on the conditional

second moment of Y . Hence, ηP is a bounded operator. By Lemma 2, ν is pathwise differentiable at

P relative to Pg with ν̇P = ηP . In the same way as was done in (S4) for Example 1a, this pathwise
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differentiability over Pg can be extended to show that ν is pathwise differentiable over the locally

nonparametric model P.

B.3.2 Efficient influence operator

Take any s ∈ L2
0(P ). Let sY |A,X(y | a, x) := s(x, a, y) − EP [s(X,A, Y ) | A = a,X = x] and sX(x) :=

EP [s(X,A, Y ) | X = x]. To compute the adjoint of ν̇P , note that, for any h ∈ L2(λA),

⟨h, ν̇P (s)⟩L2(λA) =

∫∫∫
{y − µP (a, x)}sY |A,X(y, a, x)h(a)PY |A,X(dy | a, x)PX(dx)λA(da)

+

∫∫
[µP (a, x)− ν(P )(a)]h(a)sX(x)PX(dx)λA(da).

The first term may be rearranged as follows:

∫∫∫
{y − µP (a, x)}sY |A,X(y, a, x)h(a)PY |A,X(dy | a, x)PX(dx)λA(da)

=

∫
y − µP (a, x)

gP (a | x) h(a)sY |A,X(y | a, x)P (dz)

=

∫
y − µP (a, x)

gP (a | x) h(a)s(z)P (dz).

For the second term:

∫∫
[µP (a, x)− ν(P )(a)]h(a)sX(x)PX(dx)λA(da)

=

∫ [∫
[µP (a, x)− ν(P )(a)]h(a)λA(da)

]
sX(x)PX(dx)

=

∫ [∫
[µP (a

′, x)− ν(P )(a′)]h(a′)λA(da
′)

]
s(z)P (dz).

Thus,

ν̇∗P (h)(y, a, x) =
y − µP (a, x)

gP (a | x) h(a) +

∫
[µP (a

′, x)− ν(P )(a′)]h(a′)dλA(a
′).

B.3.3 Study of regularized one-step estimator

Since there is no EIF in this example, we study a regularized one-step estimator ν̄βn
n . This estimator is

defined based on an orthonormal basis (hk)
∞
k=1 — guidance for selecting this basis is given in Section 5.3.

We study the regularized remainder, regularized drift, and bias terms appearing in Theorem 5 and

establish a rate of convergence of ν̄βn
n for an appropriately chosen sequence of regularization parameters

βn. In what follows, C denotes a generic finite constant whose value may differ from display to display.

We begin by bounding the regularized remainder terms. We use Lemma 5 to derive our bound. To

this end, we note that, for any P ∈ P and k ∈ N,

〈
ν(P )− ν(P0), hk

〉
H
+ P0ν̇

∗
P (hk)

= E0

[
Y − µP (A,X)

gP (A | X)
hk(A) +

∫
[µP (a,X)− ν(P0)(a)]hk(a)λA(da)

]

= E0

[
µ0(A,X)− µP (A,X)

gP (A | X)
hk(A) +

∫
[µP (a,X)− µ0(a,X)]hk(a)λA(da)

]

= E0

[∫ [
1− g0(a | X)

gP (a | X)

]
[µP (a,X)− µ0(a,X)]hk(a)λA(da)

]
.

From here, different bounds are possible, depending on the basis (hk)
∞
k=1. If the functions in hk are
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uniformly bounded — that is, supa∈A,k∈N |hk(a)| <∞ — then the strong positivity assumption and the

Cauchy-Schwarz inequality together show that there is a finite constant C that does not depend on P ∈ P
or k ∈ N such that

|⟨ν(P )− ν(P0), hk⟩H + P0ν̇
∗
P (hk)| ≤ C∥gP − g0∥L2(λA×P0,X)∥µP − µ0∥L2(λA×P0,X),

where, for f : (a, x) 7→ R and q ≥ 1, ∥f∥qLq(λA×P0,X) :=
∫∫

f(a, x)q λA(da)P0,X(dx) and gP − g0 denotes

the function (a, x) 7→ gP (a | x)− g0(a | x). Requiring functions in (hk)
∞
k=1 to be uniformly bounded is

not such a strong condition, with this condition being satisfied by both the trigonometric and cosine

bases for L2([0, 1]). If a basis is used that does not satisfy this assumption, then the following alternative

bound can be derived by twice applying Cauchy-Schwarz, using Jensen’s inequality, invoking the strong

positivity assumption, and leveraging the fact that all elements of (hk)
∞
k=1 have unit length in L2([0, 1]):

there exists a C that does not depend on P ∈ P or k ∈ N such that

|⟨ν(P )− ν(P0), hk⟩H + P0ν̇
∗
P (hk)| ≤ C∥gP − g0∥L4(λA×P0,X)∥µP − µ0∥L4(λA×P0,X).

Plugging the above bounds into Lemma 5 shows that, depending on whether or not the functions in

(hk)
∞
k=1 are uniformly bounded (q = 2) or not (q = 4), there exists a C <∞ such that

∥Rβ
P ∥H ≤ C∥β∥ℓ2∥gP − g0∥Lq(λA×P0,X)∥µP − µ0∥Lq(λA×P0,X).

Hence, for each j ∈ {1, 2}, Rj,βn
n := Rβn

P̂ j
n
will be Op(∥βn∥ℓ2/n1/2) provided the product of the rates of

convergence in probability of gP̂ j
n
and µP̂ j

n
to g0 and µ0 under the Lq(λA × P0,X) norm is at least n−1/2.

We now turn to the regularized drift terms. We will bound them via Lemma 4. We begin by noting

that, for any P ∈ P and β ∈ ℓ2∗,

∥ϕβP − ϕβ0∥2L2(P0;H) =

∞∑

k=1

β2
k ∥ν̇P (hk)− ν̇0(hk)∥2L2(P0)

≤ ∥β∥2ℓ2 sup
k∈N

∥ν̇P (hk)− ν̇0(hk)∥2L2(P0)
.

It can further be shown that there exists a constant C < ∞ that does not depend on P ∈ P or k ∈ N

such that

∥ν̇P (hk)− ν̇0(hk)∥L2(P0)
≤ C

(
∥gP − g0∥L2(λA×P0,X) + ∥µP − µ0∥L2(λA×P0,X)

)
.

Combining the preceding two displays shows that

∥ϕβP − ϕβ0∥L2(P0;H) ≤ C∥β∥ℓ2
(
∥gP − g0∥L2(λA×P0,X) + ∥µP − µ0∥L2(λA×P0,X)

)
.

Hence, for each j ∈ {1, 2}, ∥ϕj,βn
n − ϕβn

0 ∥L2(P0;H) = op(∥βn∥ℓ2) provided gP̂ j
n
and µP̂ j

n
converge in

probability to g0 and µ0 under the L2(λA × P0,X) norm. Since no requirement is made on the rate of

convergence and the L4(λA ×P0,X) is stronger than the L2(λA ×P0,X) norm, this condition will typically

be weaker than the condition required above to make the regularized remainder term negligible. In any

case, under this consistency condition, Lemma 4 shows that Dj,βn
n is op(∥βn∥ℓ2/n1/2), as desired.

The analysis of the bias term is nearly identical to the one given for Example 1a in the main

text. In particular, if the first Kn entries of βn are one and all the others are zero, then, provided

supP∈P ∥ν(P )∥u < ∞, Lemma 6 shows that ∥Bj,βn
n ∥H ≤ c/(Kn + 1)u. Hence, if Kn is of the order
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n1/(2u+1) and the regularized remainder and drift terms are Op(∥βn∥ℓ2/n1/2), then

ν̄βn
n − ν(P0) = Op(n

−u/(2u+1)).

B.4 Example 3: counterfactual kernel mean embedding

B.4.1 Pathwise differentiability

We now show that ν is pathwise differentiable relative to a locally nonparametric model P at any P ∈ P .

To do this, we follow similar arguments to those used in Appendix B.1.1. In particular, first we use

Lemma 2 to establish that ν is pathwise differentiable relative to the same model Pg considered in

Appendix B.1.1. Second, we use the fact that ν does not depend on the propensity to receive treatment

to extend this pathwise differentiability result to the locally nonparametric model P.

Let g be such that g = gP ′ for some fixed P ′ ∈ P. We first show that ν is Lipschitz over Pg. Fix

P, P̃ ∈ Pg. For each a ∈ A, let Pa and P̃a denote the distributions on R defined so that, for any Borel set

B, P1(B) =
∫
X

∫
B
PY |A,X(dy | 1, x)PX(dx) and P̃1(B) =

∫
X

∫
B
P̃Y |A,X(dy | 1, x)P̃X(dx). Observe that

∥ν(P )− ν(P̃ )∥2H

=

∫∫
κ(y1, y2)

2∏

i=1

(P1 − P̃1)(dyi)

=

∫∫
κ(y1, y2)

2∏

i=1

ai
g(ai | xi)

(P − P̃ )(dzi)

=

∫∫
κ(y1, y2)

2∏

i=1

ai
g(ai | xi)

[√
dP (zi) +

√
dP̃ (zi)

] [√
dP (zi)−

√
dP̃ (zi)

]

≤
(∫∫

κ2(y1, y2)

2∏

i=1

ai
g2(ai | xi)

[√
dP (zi) +

√
dP̃ (zi)

]2)1/2

·
(∫∫ 2∏

i=1

[√
dP (zi)−

√
dP̃ (zi)

]2)1/2

,

where the inequality holds by Cauchy-Schwarz. The latter of the two terms in the product on the

right-hand side is equal to H2(P, P̃ ). Using the inequality (b+ c)2 ≤ 2(b2+ c2) and then applying Hölder’s

inequality with exponents (p, q) = (1,∞), the square of the former term in this product bounds as follows:

∫∫
κ2(y1, y2)

2∏

i=1

ai
g2(ai | xi)

[√
dP (zi) +

√
dP̃ (zi)

]2

≤ 2

∫∫
κ2(y1, y2)

2∏

i=1

ai
g2(ai | xi)

(P + P̃ )(dzi)

≤ 8 supy1,y2∈Y κ
2(y1, y2)

infP ′∈P ess infx g2P ′(1 | x) .

The right-hand side above is finite by the strong positivity assumption and the fact that κ is bounded.

Hence, ν is Lipschitz over Pg. Combining the preceding two displays establishes (ii) of Lemma 2 when

the model is Pg, where g is an arbitrary value of the propensity to receive treatment for which there

exists some P ′ ∈ P such that g = gP ′ .

Hereafter we fix P ∈ P and suppose that g = gP . We now establish (i) of Lemma 2 at P for

the model Pg with ηP (s) as defined on the right-hand side of (19). To do this, we use the following
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model: {Pϵ : ϵ ∈ [0, δ)}, where dPϵ,X

dPX
(x) = 1 + ϵsX(x),

dPϵ,A|X

dPA|X
(a | x) = 1, and

dPϵ,Y |A,X

dPY |A,X
(y | a, x) =

1 + ϵsY |A,X(y | a, x), where sX and sY |A,X are bounded in [−δ−1/2, δ−1/2] and EP [sX(X)] = 0 and

EP [sY |A,X(Y | A,X) | A,X] = 0 P -almost surely. As in Appendix B.1.1, we assume that {Pϵ : ϵ ∈ [0, δ)}
is a submodel of Pg without loss of generality. This submodel has score s(x, a, y) = sX(x)+sY |A,X(y | a, x)
at ϵ = 0 and the L2(P )-closure of the set containing such scores corresponds to the tangent space of Pg

at P . It holds that

∥ν(Pϵ)− ν(P )− ϵηP (s)∥2H

= ϵ4
∥∥∥∥
∫∫

KysY |A,X(y | a, x)sX(x)PY |A,X(dy | 1, x)PX(dx)

∥∥∥∥
2

H

= ϵ4
∥∥∥∥
∫

a

gP (a | x)KysY |A,X(y | a, x)sX(x)P (dz)

∥∥∥∥
2

H

.

The right-hand side is certainly o(ϵ2) if the squared H-norm on that side is finite. To see that this is

the case, note first that, by the strong positivity assumption and the fact that κ, sY |A,X , and sX are

all bounded functions, (x, a, y) 7→ a
gP (a|x)KysY |A,X(y | a, x)sX(x) belongs to L2(P ;H). Hence, that term

satisfies the following:

∥∥∥∥
∫

a

gP (a | x)KysY |A,X(y | a, x)sX(x)P (dz)

∥∥∥∥
2

H

=

∫∫
a

gP (a | x)
a′

gP (a′ | x′)
κ(y, y′)sY |A,X(y | a, x)sX(x)P (dz)P (dz′) <∞,

where z′ = (x′, a′, y′). This establishes that ∥ν(Pϵ)− ν(P )− ϵ ηP (s)∥H = o(ϵ).

We now verify that ηP is a bounded operator. When combined with the linearity of ηP , this will then

show that (i) of Lemma 2 holds at P for the model Pg. Take any s in the tangent space of Pg at P . Let

sY |A,X(y | a, x) := s(x, a, y) − EP [s(X,A, Y ) | A = a,X = x] and sX(x) := EP [s(X,A, Y ) | X = x]. It

can be verified that, EP [s(X,A, Y ) | A,X] − EP [s(X,A, Y ) | X] = 0 P -a.s., and so s = sY |A,X + sX .

Since s is P -square integrable, sY |A,X and sX are as well. By rewriting the right-hand side of (19), we

see that ηP satisfies:

ηP (s) =

∫
a

gP (a | x)Ky [sY |A,X(y | a, x) + sX(x)]P (dz). (S6)

By the strong positivity assumption, the fact that κ is a bounded function, and the fact that sY |A,X and

sX belong to L2(P ), (x, a, y) 7→ a
gP (a|x)Ky [sY |A,X(y | a, x) + sX(x)] belongs to L2(P ;H). Hence,

∥ηP (s)∥2H =

∫∫
a

gP (a | x)
a′

gP (a′ | x′)
κ(y, y′) [sY |A,X(y | a, x) + sX(x)]

· [sY |A,X(y′ | a′, x′) + sX(x′)]P 2(dz, dz′)

≤
∫∫

a

gP (a | x)
a′

gP (a′ | x′)
√
κ(y, y)κ(y′, y′) |sY |A,X(y | a, x) + sX(x)|

· |sY |A,X(y′ | a′, x′) + sX(x′)|P 2(dz, dz′)

=

[∫
a

gP (a | x)
√
κ(y, y) |sY |A,X(y | a, x) + sX(x)|P (dz)

]2

≤
[∫

a

g2P (a | x) |κ(y, y)|P (dz)
] [∫

[sY |A,X(y | a, x) + sX(x)]2 P (dz)

]

≤ supy∈Y |κ(y, y)|
infP ′∈P ess infx gP ′(1 | x)

[∫
[sY |A,X(y | a, x) + sX(x)]2 P (dz)

]
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=
supy∈Y |κ(y, y)|

infP ′∈P ess infx gP ′(1 | x)∥s∥
2
L2(P ), (S7)

where the first inequality holds by applying Jensen’s inequality to bring the absolute value function inside

the integral and then applying Cauchy-Schwarz to the (positive semidefinite) kernel κ, the second by

Cauchy-Schwarz, and the third by Hölder’s inequality with exponents (p, q) = (1,∞). The fraction on

the right-hand side of (S7) is finite by the strong positivity assumption and the fact that κ is bounded,

and so ηP is a bounded operator. Hence, by Lemma 2, ν is pathwise differentiable relative to Pg with

ν̇P = ηP . In the same way as was done in (S4) for Example 1a, this pathwise differentiability over Pg can

be extended to show that ν is pathwise differentiable over the locally nonparametric model P.

B.4.2 Efficient influence operator

Let s ∈ ṖP and h ∈ H, and let sY |A,X and sX be as defined above (S6). We have that

⟨ν̇P (s), h⟩H =

∫∫
h(y)[sY |A,X(y | 1, x) + sX(x)]PY |A,X(dy | 1, x)PX(dx)

=

∫
a

gP (1 | x) {h(y)− E[h(Y ) | A = a,X = x]} s(z)P (dz)

+

∫
(EP [h(Y ) | A = 1, X = x]− EPEP [h(Y ) | A = 1, X]) s(z)P (dz).

Hence,

ν̇∗P (h)(z) =
a

gP (1 | x) {h(y)− E[h(Y ) | A = 1, X = x]}

+ EP [h(Y ) | A = 1, X = x]− EPEP [h(Y ) | A = 1, X].

B.4.3 Efficient influence function

By Theorem 1, the EIF will take the form

ϕP (z)(y
′) = ν̇∗P (Ky′)(z) =

a

gP (1 | x) {κ(y, y
′)− E[κ(Y, y′) | A = a,X = x]}

+ EP [κ(Y, y
′) | A = 1, X = x]− EPEP [κ(Y, y

′) | A = 1, X].

provided we can show that this function belongs to L2(P ;H). Defining µK
P (x) = EP [KY | A = 1, X = x]

and noting that EPµ
K
P (X) = ν(P ), we can rewrite the above as follows:

ϕP (z) =
a

gP (1 | x) [Ky − µK
P (x)] + µK

P (x)− ν(P ).

The fact that ϕP ∈ L2(P ;H) follows from the strong positivity assumption and the fact that the kernel κ

is a bounded function.

B.4.4 Study of one-step estimator

The one-step estimator ν̄n := 1
2

∑2
j=1[ν(P̂

j
n)+P

j
nϕ

j
n] that we study is a cross-fitted version of the estimator

of the counterfactual kernel mean embedding introduced in Eq. 10 of Fawkes et al. (2022). Our general

results provide several new results about this estimator that did not appear in that earlier work. First,

Theorem 2 provides a set of conditions under which this estimator converges weakly to a tight limit.

Second, when the conditions of Theorem 23 hold, (23) provides a precise sense in which ν̄n outperforms the

inverse probability weighted estimator that was earlier introduced in Muandet et al. (2021). The earlier
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work suggested that this estimator would be more efficient but did not provide any theoretical guarantees

establishing this. Third, Theorems 3 and 4 provide a means to construct bootstrap-based confidence

sets and hypothesis tests regarding the counterfactual mean embedding, with accompanying theoretical

guarantees. Fawkes et al. (2022) proposed using an alternative, permutation-based procedure for making

inference, but no theoretical guarantees were provided ensuring type I error control, consistency, or local

power of the resulting test.

The calculations needed to establish that the conditions of our Theorem 2 hold are similar to those

used to prove Theorem 1 in Fawkes et al. (2022) and those in our Appendix B.2.5, and therefore we only

summarize the main findings here. For the remainder term RP := ν(P ) + Pϕ0 − ν(P0), it holds that, for

finite constants C1 and C2 that do not depend on P ∈ P,

∥RP ∥H ≤ C1∥gP (1 | · )− g0(1 | · )∥L2(P0,X)

[∫
∥µK

P − µK
0 ∥2HP0,X(dx)

]1/2
,

∥ϕP − ϕ0∥L2(P0;H)

≤ C2

(
∥gP (1 | · )− g0(1 | · )∥L2(P0,X) +

[∫
∥µK

P − µK
0 ∥2HP0,X(dx)

]1/2)
.

Taken together, these bounds show that the conditions of Theorem 2 will be satisfied in this example

when, for j ∈ {1, 2}, P̂ j
n is such that gP̂ j

n
and µK

P̂ j
n
converge to g0 and µK

0 in probability according to the

norms above and, moreover, the product of their rates of convergence is faster than n−1/2.

B.5 Example 4: root-density function

Fix a distribution P ∈ P , score s in the tangent set of P at P , and submodel {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s).
Since ν is the square root of the density function in this example, the quadratic mean differentiability of

{Pϵ : ϵ ∈ [0, δ)} in (1) is, by definition, equivalent to the pathwise differentiability of ν as defined in (2),

with the local parameter ν̇P (s) equal to ϵsν(P )/2. This local parameter is a bounded operator since, for

any s,

∥ν̇P (s)∥2L2(λ) =
1

4

∫
s2ν(P )2 dλ =

1

4
∥s∥2L2(P ).

To verify the claimed form of the efficient influence operator given in Appendix A, we note that, for any

s ∈ ṖP and h ∈ L2(λ),

⟨ν̇P (s), h⟩L2(λ) =
1

2

∫
h(z)s(z)ν(P )(z) dλ(z) =

∫
h(z)

2ν(P )(z)
s(z) dP (z)

=

∫ (
h(z)

2ν(P )(z)
− EP

[
h(Z)

2ν(P )(Z)

])
s(z) dP (z).

As s and h were arbitrary, ν̇∗P (h)(z) =
h(z)

2ν(P )(z) − EP

[
h(Z)

2ν(P )(Z)

]
.

B.6 Example 5: regression function

B.6.1 Pathwise differentiability

Fix a distribution P ∈ P and suppose that dλX

dPX
is bounded PX -almost surely. We prove that ν is pathwise

differentiable at P relative to a locally nonparametric model and that ν̇P = ηP , where

ηP (s)(x) =

∫
[y − ν(P )(x)]s(x, y)PY |X(dy | x).
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Fix a score function s ∈ L2
0(P ). Let {Pϵ : ϵ} ∈ P(P,P, s) and qϵ :=

√
dPϵ

dP . Let qϵ,X :=
√

dPϵ,X

dPX
denote

the square root of the marginal density, qϵ,Y |X(· | x) :=
√

dPϵ,Y |X

dPY |X
( · | x) the square root of the conditional

density, sX(x) = EP [s(X,Y ) | X = x] and sY |X(y | x) = s(x, y) − sX(x). Observe that the following

holds for PX -almost all x:

[ν(Pϵ)− ν(P )− ϵηP (s)](x)

=

∫
y[q2ϵ,Y |X(y | x)− 1− ϵsY |X(y | x)]PY |X(dy | x)

=

∫
y
{
[qϵ,Y |X(y | x)− 1][qϵ,Y |X(y | x) + 1]− ϵsY |X(y | x)

}
PY |X(dy | x)

=

∫
y
{[
qϵ,Y |X(y | x)− 1− ϵ

2
sY |X(y | x)

]
[qϵ,Y |X(y | x) + 1]

}
PY |X(dy | x)

+
ϵ

2

∫
ysY |X(y | x)[qϵ,Y |X(y | x)− 1]PY |X(dy | x).

For shorthand, we refer to the first term on the right as Aϵ(x) and the second as ϵ
2Bϵ(x). We will

show that ∥Aϵ∥L2(λX) = o(ϵ) and ∥Bϵ∥L2(λX) = o(1). Combining this with the triangle inequality for

the L2(λX) norm and the relation above will then give the result. For the first term, we note that the

Cauchy-Schwarz inequality and the inequality (a+ b)2 ≤ 2a2 + 2b2, we have, for PX -almost all x,

|Aϵ(x)|2 ≤
∥∥∥qϵ,Y |X − 1− ϵ

2
sY |X

∥∥∥
2

L2(PY |X=x)

(
2EPϵ

[Y 2 | X = x] + 2EP [Y
2 | X = x]

)
.

Integrating both sides above against λX , applying Hölder’s inequality with exponents (1,∞), and applying

Lemma S8, we find that

∥Aϵ∥2L2(λX) ≤ 2 ess sup
x

dλX
dPX

(x)
(
EPϵ

[Y 2 | X = x] + EP [Y
2 | X = x]

)

·
∥∥∥qϵ,Y |X − 1− ϵ

2
sY |X

∥∥∥
2

L2(P )
= o(ϵ2),

where the essential supremum is over PX . Above we used (S1) and the assumption that dλX

dPX
is bounded

with PX -probability one.

We now show that ∥Bϵ∥L2(λX) = o(1). Let Bϵ,1(x) =
∫
1{|ysY |X(y | x)| ≤ ϵ−1/2}ysY |X(y |

x)[qϵ,Y |X(y | x) − 1]PY |X(dy | x) and Bϵ,2(x) = Bϵ(x) − Bϵ,1(x). By the triangle inequality, it suffices

to show that ∥Bϵ,j∥L2(λX) = o(1), j ∈ {1, 2}. Using that y2s2Y |X(y | x)1{|ysY |X(y | x)| ≤ ϵ−1/2} ≤ ϵ−1,

Jensen’s inequality, Hölder’s inequality with exponents (1,∞), and Lemma S8,

∥Bϵ,1∥2L2(λX) ≤ ϵ−1

[
ess sup

x

dλX
dPX

(x)

]
∥qϵ,Y |X − 1∥2L2(P ) = O(ϵ),

where the essential supremum is over PX . By the Cauchy-Schwartz inequality and the inequality

(a− b)2 ≤ 2(a2 + b2), the following holds for PX -almost all x:

|Bϵ,2(x)|2 ≤ 2(EPϵ [Y
2 | X = x] + EP [Y

2 | X = x])

·
∫
s2Y |X(y | x)1{|ysY |X(y | x)| > ϵ−1/2}PY |X(dy | x).

Integrating both sides over λX and applying Hölder’s inequality with exponents (1,∞) gives that

∥Bϵ,2∥2L2(λX) ≤ 2

[
ess sup

x

dλX
dPX

(x)(EPϵ
[Y 2 | X = x] + EP [Y

2 | X = x])

]
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·
∫
s2Y |X(y | x)1{|ysY |X(y | x)| > ϵ−1/2}dP (z)

= o(1),

where the essential supremum is over PX . Thus, ∥ν(Pϵ)− ν(P )− ϵηP (s)∥L2(λX) = o(ϵ).

We now prove that ηP is a bounded operator. For any s ∈ ṖP , applying Cauchy-Schwarz followed by

Hölder’s inequality with exponents (1,∞) shows that

∥ηP (s)∥2L2(λX) =

∫
dλX
dPX

(x)

[∫
[y − ν(P )(x)]sY |X(y | x)PY |X(dy | x)

]2
PX(dx)

≤
∫

dλX
dPX

(x)VarP (Y | X = x)

[∫
|sY |X(y | x)|2PY |X(dy | x)

]
PX(dx)

≤
[
ess sup

x

dλX
dPX

(x)VarP (Y | X = x)

]
∥s∥2L2(P ),

where the essential supremum is over PX . Hence,

∥ηP ∥op ≤ ess sup
x

√
dλX
dPX

(x)VarP (Y | X = x),

which is finite by (S1) and the assumption that dλX

dPX
is PX -a.s. bounded. Since ηP is also linear, ν is

pathwise differentiable with local parameter ν̇P = ηP .

B.6.2 Efficient influence operator

For any h ∈ L2(λX) and s ∈ ṖP ,

⟨ν̇P (s), h⟩L2(λX) =

∫∫
[y − ν(P )(x)]h(x)s(x, y)PY |X(dy | x)λX(dx)

=

∫∫
dλX
dPX

(x)[y − ν(P )(x)]h(x)s(x, y)PY |X(dy | x)PX(dx)

=

∫
dλX
dPX

(x)[y − ν(P )(x)]h(x)s(x, y)P (dz) = ⟨ν̇∗P (h), s⟩L2(P ),

where ν̇∗P (h)(z) =
dλX

dPX
(x)[y − ν(P )(x)]h(x). Hence, ν̇∗P is the efficient influence operator.

B.7 Example 6: kernel mean embedding

The parameter considered in this example is a special case of the counterfactual kernel mean embedding

parameter considered in Example 3 when A = 1 almost surely. Consequently, the proof of the pathwise

differentiability of the parameter in this example, and also the calculation of its efficient influence operator

and EIF, follow directly from those in Appendix B.4.

B.8 Example 7: conditional average treatment effect

The proof we provide does not require a new application of Lemma 2, but instead leverages the application

of that lemma that we already worked out in Example 5. First, we establish that ν is pathwise differentiable

with the claimed local parameter relative to a semiparametric model where the propensity is known. We

do this by leveraging the result from Example 5 to establish the pathwise differentiability of a regression of

a certain pseudo-outcome against the covariates. Second, we establish that working in the larger, locally

nonparametric model where this quantity is not known does not change this result: ν is still pathwise

differentiable with the same local parameter. An alternative argument, which we do not give here, would
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entail directly applying Lemma 2 when establishing pathwise differentiability in the semiparametric model

considered in the first step.

Fix a distribution P0 in the locally nonparametric model P that is such that dλX

dP0,X
is bounded P0,X -a.s.

and let g := gP0 . We will establish pathwise differentiability at P0 with the claimed efficient influence

operator, and, since P0 was arbitrary, this will establish the desired result. For a distribution P ∈ P,

let Pg denote the distribution of Z that has the same conditional distribution of Y | A,X and marginal

distribution of X as P , but has propensity equal to g; in other words, for all bounded, continuous functions

f : Z → R, EPg [f(Z)] =
∫ ∑1

a=0

∫
f(x, a, y)PY |A,X(dy | a, x)g(a | x)PX(dx). The semiparametric model

that we study is given by Pg := {Pg : P ∈ P}. Without loss of generality, we suppose that Pg ⊆ P; if

this is not the case, then we can simply extend the definition of ν to Pg by letting ν(Pg) = ν(P ) for any

P ∈ P. For any Pg ∈ Pg, it can be verified that, for λX -almost all X,

ν(Pg)(x) = EPg [W |X = x] ,

where W := (2A− 1)Y/g(A | X). The above suggests that we can use our results from the regression

setting in Example 5 to derive the efficient influence operator of ν relative to Pg. To this end, we

define the model P̃g := {Pg ◦ f−1
g : Pg ∈ Pg}, where Pg ◦ f−1

g is the pushforward measure of Pg under

fg(x, a, y) := (x,w) := (x, [2a − 1]y/g(a | x)]). We also define the parameter ν̃ : P̃g → H so that

ν̃(Pg ◦ f−1
g ) = ν(Pg), where this definition is valid even if there are two distinct distributions Pg, P

′
g ∈ Pg

that make it so that Pg ◦ f−1
g = P ′

g ◦ f−1
g since the preceding display shows that ν(Pg) = ν(P ′

g) in this

case. The parameter ν̃ takes as input a distribution of features X and an outcome W from a locally

nonparametric model and outputs a regression function. Consequently, the results of Example 5 imply

that, for any Pg such that
dPg,X

dλX
is bounded, this parameter is pathwise differentiable at P̃g := Pg ◦ f−1

g

with local parameter

˙̃νP̃g
(s̃)(x) =

∫ [
w − ν̃(P̃g)(x)

]
s̃(x,w) P̃g(dw | x).

We now use the pathwise differentiability of ν̃ relative to P̃g to establish the pathwise differentiability

of ν relative to Pg. To this end, let {Pg,ϵ : ϵ ∈ [0, δ)} ∈ P(Pg,Pg, sg), where Pg ∈ Pg and sg belong to

the tangent set of Pg at Pg. Similar arguments to those used to establish Lemma S8 can be used to

show that {Pg,ϵ ◦ f−1
g : ϵ ∈ [0, δ)} ∈ P(P̃g, P̃g, s̃g), where s̃g(x,w) := EPg

[sg(X,A, Y ) | X = x,W = w].

Combining this with the pathwise differentiability of ν̃ relative to P̃g and the definition of ν̃ shows that

∥∥∥ν(Pg,ϵ)− ν(Pg)− ϵ ˙̃νPg◦f
−1
g

(s̃g)
∥∥∥
H

=
∥∥∥ν̃(Pg,ϵ ◦ f−1

g )− ν̃(Pg ◦ f−1
g )− ϵ ˙̃νPg◦f

−1
g

(s̃g)
∥∥∥
H

= o(ϵ).

Since the operator ν̇Pg
: Ṗg,Pg

→ H defined by ν̇Pg
(sg) := ν̇P̃g

(s̃g) is bounded and linear, where Ṗg,Pg

denotes the tangent space of Pg at Pg, this shows that ν is pathwise differentiable at Pg relative to Pg

with local parameter ν̇Pg
.

We now use the pathwise differentiability of ν relative to Pg to establish its pathwise differentiability

at P0 relative to P. Let {Pϵ : ϵ ∈ [0, δ)} ∈ P(P0,P, s), where s is the tangent set of P at P0. Letting

Pg,ϵ be the distribution that has the same conditional distribution of Y | A,X and marginal distribution

of X as under Pϵ but with propensity g, it can be shown that {Pg,ϵ : ϵ ∈ [0, δ)} ∈ P(P0,Pg, sg), where

sg(z) = s(z)−E0[s(Z) | A = a,X = x] +E0[s(Z) | X = x]. Combining this with the facts that Pg,0 = P0

and ν is invariant to changes in the propensity of its input, we find that

∥ν(Pϵ)− ν(P0)− ϵν̇0(sg)∥H = ∥ν(Pg,ϵ)− ν(Pg)− ϵν̇0(sg)∥H = o(ϵ).
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The above establishes that ν is pathwise differentiable at P0 relative to P, with local parameter

s 7→ ν̇0(sg) = ˙̃νP0◦f
−1
g

(s̃g)

=

∫
[w − ν(P0)(x)]E0[sg(X,A, Y ) | X = x,W = w] (P0 ◦ f−1

g )(dw | x)

= E0 {[W − ν(P0)(X)]E0[sg(X,A, Y ) | X,W ] |X = x}
= E0 {[W − ν(P0)(X)] sg(X,A, Y ) |X = x}
= E0 {[W − E0(W | A,X) + E0(W | X)− ν(P0)(X)] sg(X,A, Y ) |X = x}
= E0 {[W − E0(W | A,X)] sg(X,A, Y ) |X = x}
= E0 {[W − E0(W | A,X)] s(X,A, Y ) |X = x}

= E0

{[
2A− 1

gP0
(A | X)

{Y − µP0,A(X)}
]
s(X,A, Y )

∣∣∣∣X = x

}
,

which matches the claimed form of the local parameter from (S2). To verify that the efficient influence

operator takes the form in (S3), it can be directly established that ⟨ν̇∗0 (h), s⟩L2(P0) = ⟨h, ν̇0(s)⟩H for all

h ∈ H and s ∈ L2
0(P0). The calculations to establish this are straightforward and so are omitted.

C Proofs of results from the main text, and supporting lemmas

C.1 Proofs for Section 2

C.1.1 Proofs for Section 2.3

Lemma S2. Suppose ḢP is an RKHS, ν : P → H is pathwise differentiable at P , and ϕ̃P as defined

in (5) is P -Bochner square integrable. For all h ∈ H, define ⟨ϕ̃P , h⟩H : Z → R so that ⟨ϕ̃P , h⟩H(z) =

⟨ϕ̃P (z), h⟩H. Then, ⟨ϕ̃P , h⟩H ∈ ṖP and ⟨ϕ̃P , h⟩H = ν̇∗P (h) P -almost surely.

Proof. Fix h ∈ H. The fact that ⟨ϕ̃P , h⟩H ∈ L2(P ) follows from Cauchy-Schwarz and the fact that

ϕ̃P ∈ L2(P ;H). In particular,

∫
|⟨ϕ̃P (z), h⟩H|2P (dz) ≤ ∥h∥2H∥ϕ̃P ∥2L2(P ;H) <∞.

Let s⊥ be an element of the orthogonal complement of the tangent space ṖP . Then,

∫
⟨ϕ̃P (z), h⟩Hs⊥(z)P (dz) =

∫
⟨t 7→ ν̇∗P (Kt)(z), h⟩Hs⊥(z)P (dz)

=

〈
t 7→

∫
ν̇∗P (Kt)(z)s

⊥(z)P (dz), h

〉

H

= ⟨t 7→ ⟨ν̇∗P (Kt), s
⊥⟩L2(P ), h⟩H = 0,

where we use the P -Bochner square integrability of ϕ̃P to interchange the integral and the inner product

and use that ν̇∗P (Kt) ∈ ṖP for all t ∈ T . Note also that ⟨ν̇∗P (h), s⊥⟩L2(P ) = 0 since ν̇∗P (h) ∈ ṖP . Hence,

for any s⊥ in the orthogonal complement of ṖP ,

〈
⟨ϕ̃P , h⟩H − ν̇∗P (h), s

⊥
〉
L2(P )

= 0. (S8)
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Let s ∈ ṖP . Then, following some of the same calculations as earlier,

∫
⟨ϕ̃P (z), h⟩Hs(z)P (dz) = ⟨t 7→ ⟨ν̇∗P (Kt), s⟩L2(P ), h⟩H.

Furthermore, for any t ∈ T , ⟨ν̇∗P (Kt), s⟩L2(P ) = ⟨Kt, ν̇P (s)⟩H. Since ν̇P (s) belongs to the RKHS ḢP ,

⟨Kt, ν̇P (s)⟩H = ν̇P (s)(t). Plugging these observations into the above shows that the right-hand side is

equal to ⟨ν̇P (s), h⟩H = ⟨ν̇∗P (h), s⟩L2(P ), and so

〈
⟨ϕ̃P , h⟩H − ν̇∗P (h), s

〉
L2(P )

= 0.

As the above holds for all s in the tangent space ṖP and (S8) holds for all s⊥ in its orthogonal complement,

⟨ϕ̃P , h⟩H = ν̇∗P (h) P -almost surely.

Lemma S3. In the setting of Lemma S2, it is P -a.s. true that suph∈H |⟨ϕ̃P , h⟩H − ν̇∗P (h)| = 0. Hence,

for P -almost all z, ν̇∗P (·)(z) : H → R is a bounded linear functional with Riesz representation ϕ̃P (z). In

other words, ϕ̃P is the EIF of ν at P .

Proof. Since we have assumed throughout that a separable version of the efficient influence process is

used, there exists a countable dense subset H′ of H and a P -probability one subset Z ′ of Z such that,

for all h ∈ H and z ∈ Z ′, there exists an H′-valued sequence (h′j)
∞
j=1 that converges to h and satisfies

ν̇∗P (h
′
j)(z) → ν̇∗P (h)(z) as j → ∞. For each h ∈ H′, we let

Z ′′
h = {z ∈ Z ′ : ⟨ϕ̃P (z), h⟩H − ν̇∗P (h)(z) = 0},

and we define Z ′′ := ∩h∈H′ Z ′′
h . By Lemma S2 and the fact that Z ′ is a P -probability one set, P (Z ′′

h ) = 1

for each h ∈ H′ and, as H′ is countable, P (Z ′′) = 1 as well. In what follows we will show that, for all

z ∈ Z ′′, suph∈H |⟨ϕ̃P (z), h⟩H − ν̇∗P (h)(z)| = 0. To this end, fix z ∈ Z ′′ and ϵ > 0 and let hϵ ∈ H be such

that

∣∣∣⟨ϕ̃P (z), hϵ⟩H − ν̇∗P (hϵ)(z)
∣∣∣ ≥ sup

h∈H

∣∣∣⟨ϕ̃P (z), h⟩H − ν̇∗P (h)(z)
∣∣∣− ϵ.

By the separability of the efficient influence process, there exists anH′-valued sequence (hϵ,j) that converges

to hϵ that is such that ν̇∗P (hϵ,j)(z) → ν̇∗P (hϵ)(z) as j → ∞. By the continuity of the inner product

⟨ϕ̃P (z), · ⟩H, it also holds that ⟨ϕ̃P (z), hϵ,j⟩H → ⟨ϕ̃P (z), hϵ⟩H as j → ∞. Consequently, |⟨ϕ̃P (z), hϵ,j⟩H −
ν̇∗P (hϵ,j)(z)| converges to the left-hand side above as j → ∞, and so there exists a sufficiently large j such

that

∣∣∣⟨ϕ̃P (z), hϵ,j⟩H − ν̇∗P (hϵ,j)(z)
∣∣∣ ≥ sup

h∈H

∣∣∣⟨ϕ̃P (z), h⟩H − ν̇∗P (h)(z)
∣∣∣− 2ϵ.

As z is in Z ′′, z is in Z ′′
hϵ,j

as well. Hence, the left-hand side above is zero, which shows that

sup
h∈H

∣∣∣⟨ϕ̃P (z), h⟩H − ν̇∗P (h)(z)
∣∣∣ ≤ 2ϵ.

As ϵ > 0 was arbitrary, the left-hand side above is equal to zero. This proves the first claim of the lemma.

The second claim follows directly from the fact that h 7→ ⟨ϕ̃P (z), h⟩ is a bounded linear functional and

by the definition of the Riesz representation of such a functional.

Lemma S4. Let ν : P → H be pathwise differentiable at P and suppose that ḢP is an RKHS. If ν has

EIF ϕP at P , then ϕP = ϕ̃P P -a.s., where ϕ̃P is as defined in (5).
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Proof. Since ϕP is the EIF of ν at P , there exists a P -probability-one set Z ′ such that, for all z ∈ Z ′,

ν̇∗P (·)(z) : H → R is a bounded linear functional with Riesz representation ϕP . In other words, for all

z ∈ Z ′,

sup
h∈H

|⟨ϕP (z), h⟩H − ν̇∗P (h)(z)| = 0.

Fix z ∈ Z ′. Since ḢP ⊆ H, the above shows that ⟨ϕP (z),Kt⟩H − ν̇∗P (Kt)(z) = 0 for all t ∈ T . Since

ϕP (z) ∈ ḢP , ϕP (z)(t) = ⟨ϕP (z),Kt⟩H for all t ∈ T . Combining this with the fact that ϕ̃P (t) := ν̇∗P (Kt)(z),

this shows that ϕP (z) = ϕ̃P (z). As z is an arbitrary element of the P -probability one set Z ′, this shows

that ϕP = ϕ̃P P -almost surely.

Proof of Theorem 1. The first statement, (i), was established in Lemma S4. The second statement, (ii),

was established in Lemma S3.

Lemma S5. Let P be a statistical model of distributions that are equivalent in that, for all P1, P2 ∈ P,

P1 ≪ P2 and P2 ≪ P1. Let {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s) be a quadratic mean differentiable submodel. Let

ν : P → H be pathwise differentiable at P ∈ P with a P -almost surely bounded EIF ϕP , in the sense that

∥ϕP (Z)∥H is a bounded random variable when Z ∼ P . Under these conditions,

(Pϵ − P )ϕP − ϵν̇P (s) = o(ϵ). (S9)

The above lemma requires that ∥ϕP (Z)∥H be a bounded random variable in order to show that (S9)

holds. Lemma S6 will provide an alternative condition under which (S9) holds. In particular, rather than

impose a boundedness condition on the EIF, that lemma will require that the submodel be approximately

linear, in the sense that dPϵ

dP ≈ 1 + ϵs in an appropriate sense.

Proof of Lemma S5. Fix a quadratic mean differentiable submodel {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s). For

ϵ ∈ [0, δ), let hϵ := (Pϵ − P )ϕP − ϵν̇P (s). We will show that ∥hϵ∥H = o(ϵ). Let gϵ := hϵ/∥hϵ∥H, where we

use the convention that gϵ = 0 when hϵ = 0. Observe that

∥hϵ∥H = ⟨(Pϵ − P )ϕP − ϵν̇P (s), hϵ⟩H = ⟨(Pϵ − P )ϕP , gϵ⟩H − ϵ⟨s, ν̇∗P (gϵ)⟩L2(P ). (S10)

We now study the inner product ⟨(Pϵ − P )ϕP , hϵ⟩H that appears above. Since ϕP (Z) is bounded under

sampling from P and Pϵ ≪ P , ϕP : Z → H is Bochner integrable both under sampling from P and Pϵ.

Consequently, ⟨(Pϵ − P )ϕP , gϵ⟩H =
∫
⟨ϕP (z), gϵ⟩Hd(Pϵ − P )(z). Adding and subtracting terms from this

identity and letting qϵ := p
1/2
ϵ and q := p1/2 yields that

⟨(Pϵ − P )ϕP , gϵ⟩H

=

∫
⟨ϕP (z), gϵ⟩H[qϵ(z) + q(z)][qϵ(z)− q(z)]dλ(z)

= ϵ

∫
⟨ϕP (z), gϵ⟩Hs(z)q2(z)dλ(z) +

1

2
ϵ

∫
⟨ϕP (z), gϵ⟩H[qϵ(z)− q(z)]s(z)q(z)dλ(z)

+

∫
⟨ϕP (z), gϵ⟩H[qϵ(z) + q(z)]

[
qϵ(z)− q(z)− 1

2
ϵs(z)q(z)

]
dλ(z).

By the definition of the EIF, ⟨ϕP (z), gϵ⟩H = ν̇∗P (gϵ)(z) P -almost surely. Hence, the first term on the

right-hand side above is equal to ϵ⟨s, ν̇∗P (gϵ)⟩L2(P ), and so (S10) shows that

∥hϵ∥H =
1

2
ϵ

∫
⟨ϕP (z), gϵ⟩H[qϵ(z)− q(z)]s(z)q(z)dλ(z)
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+

∫
⟨ϕP (z), gϵ⟩H[qϵ(z) + q(z)]

[
qϵ(z)− q(z)− 1

2
ϵs(z)q(z)

]
dλ(z).

By Jensen’s inequality and Cauchy-Schwarz, this yields that

∥hϵ∥H ≤ 1

2
ϵ∥gϵ∥H

∫
∥ϕP (z)∥H|qϵ(z)− q(z)|s(z)q(z)dλ(z)

+ ∥gϵ∥H
∫

∥ϕP (z)∥H[qϵ(z) + q(z)]

∣∣∣∣qϵ(z)− q(z)− 1

2
ϵs(z)q(z)

∣∣∣∣ dλ(z). (S11)

Since ∥gϵ∥H is either equal to 1, if hϵ ≠ 0, or is equal to zero otherwise, we can establish that ∥hϵ∥H = o(ϵ)

by showing that the first integral above is o(1) and the second is o(ϵ). To show that the first integral is

o(1), we use (i) Cauchy-Schwarz, (ii) the fact that ϕP is essentially bounded, (iii) s ∈ L2(P ), and (iv)

the fact that the quadratic mean differentiability of {Pϵ : ϵ ∈ [0, δ)} implies that ∥qϵ − q∥L2(λ) = O(ϵ).

Combining these observations yields the display

∫
∥ϕP (z)∥H|qϵ(z)− q(z)|s(z)q(z)dλ(z)

≤
∥∥∥ϕP (·)∥Hs(·)q(·)

∥∥
L2(λ)

∥qϵ − q∥L2(λ) = O(ϵ) = o(1).

For the second integral in (S11), (i), (ii), and (iii), together with the inequality (a+ b)2 ≤ 2(a2 + b2) and

the quadratic mean differentiability of {Pϵ : ϵ ∈ [0, δ)}, yield that

∫
∥ϕP (z)∥H[qϵ(z) + q(z)]

∣∣∣∣qϵ(z)− q(z)− 1

2
ϵs(z)q(z)

∣∣∣∣ dλ(z)

≤
∥∥∥ϕP (·)∥H(qϵ + q)

∥∥
L2(λ)

∥∥∥∥qϵ − q − 1

2
ϵsq

∥∥∥∥
L2(λ)

≤ 21/2
[∫

∥ϕP (z)∥2Hd(Pϵ + P )(z)

]1/2
∥qϵ + q∥L2(λ)

∥∥∥∥qϵ − q − 1

2
ϵsq

∥∥∥∥
L2(λ)

= o(ϵ).

Plugging the preceding two displays into (S11) completes the proof.

Lemma S6. Fix a score s in the tangent set of P at P and let {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s) be such that

∥dPϵ/dP − 1− ϵs∥L2(P ) = o(ϵ). (S12)

If ν is pathwise differentiable at P , then

sup
h∈H1

|Pϵν̇
∗
P (h) + ⟨ν(P )− ν(Pϵ), h⟩H| = sup

h∈H1

|Pϵν̇
∗
P (h) + ϵ⟨ν̇P (s), h⟩H|+ o(ϵ) = o(ϵ), (S13)

where H1 denotes the unit ball in H. Moreover, if ν has P -Bochner square integrable EIF ϕP at P , then

(Pϵ − P )ϕP + ϵν̇P (s) = o(ϵ).

When s is bounded and P is nonparametric, there is a quadratic mean differentiable submodel {Pϵ :

ϵ ∈ [0, δ)} ∈ P(P,P, s) that is such that dPϵ

dP = 1 + ϵs. The condition in (S12) holds trivially for this

submodel, since ∥dPϵ/dP − 1 − ϵs∥L2(P ) = 0. This condition will generally also hold for many other

quadratic mean differentiable submodels.

Proof of Lemma S6. Suppose that s and {Pϵ : ϵ ∈ [0, δ)} are as in the statement of the lemma and that
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ν is pathwise differentiable at P . For any h ∈ H, the fact that P ν̇∗P (g) = 0 implies that

Pϵν̇
∗
P (h) = ϵ⟨s, ν̇∗P (h)⟩L2(P ) + P

[(
dPϵ

dP
− 1− ϵs

)
ν̇∗P (h)

]
.

Combining this with the fact that ⟨s, ν̇∗P (h)⟩L2(P ) = ⟨ν̇P (s), h⟩H shows that

Pϵν̇
∗
P (h) + ⟨ν(P )− ν(Pϵ), h⟩H

= ⟨ν(P )− ν(Pϵ)− ϵν̇P (s), h⟩H + P

[(
dPϵ

dP
− 1− ϵs

)
ν̇∗P (h)

]
.

Taking an absolute value and then a supremum over h ∈ H1 and subsequently applying the triangle

inequality and Cauchy-Schwarz yields that

sup
h∈H1

|Pϵν̇
∗
P (h) + ⟨ν(P )− ν(Pϵ), h⟩H|

≤ sup
h∈H1

|⟨ν(P )− ν(Pϵ)− ϵν̇P (s), h⟩H|+ sup
h∈H1

∣∣∣∣P
[(

dPϵ

dP
− 1− ϵs

)
ν̇∗P (h)

]∣∣∣∣

≤ ∥ν(P )− ν(Pϵ)− ϵν̇P (s)∥H +

∥∥∥∥
dPϵ

dP
− 1− ϵs

∥∥∥∥
L2(P )

∥ν̇∗P ∥op

The first term on the right-hand side is o(ϵ) by the pathwise differentiability of ν, and the second is o(ϵ)

by (S12) and the fact that ν̇∗P is a bounded operator. Eq. S13 follows by combining the above with the

fact that, by the pathwise differentiability of ν,

sup
h∈H1

|Pϵν̇
∗
P (h) + ⟨ν(P )− ν(Pϵ), h⟩H| = sup

h∈H1

|Pϵν̇
∗
P (h) + ϵ⟨ν̇P (s), h⟩H|+ o(ϵ).

Now suppose that ν has a P -Bochner square integrable EIF ϕP at P . We have that

∥(Pϵ − P )ϕP + ϵν̇P (s)∥H
= ∥(Pϵ − P )ϕP + ν(Pϵ)− ν(P )∥H + o(ϵ)

= sup
h∈H1

[⟨PϵϕP + ν(Pϵ)− ν(P ), h⟩H] + o(ϵ)

≤ sup
h∈H1

|⟨PϵϕP , h⟩H − Pϵν̇
∗
P (h)|+ sup

h∈H1

|⟨ν(Pϵ)− ν(P ), h⟩H + Pϵν̇
∗
P (h)|+ o(ϵ).

The second term on the right is o(ϵ) by (S13), and so it remains to show that the leading term is also

o(ϵ). In fact, we will have shown that the leading term is zero if we can show that ϕP is Pϵ-Bochner

integrable, since that would imply that ⟨PϵϕP , h⟩H = Pϵ⟨ϕP , h⟩H = Pϵν̇
∗
P (h). To see that ϕP is indeed

Pϵ-Bochner integrable, note that

∫
∥ϕP (z)∥HPϵ(dz) =

∫
∥ϕP (z)∥H

dPϵ

dP
(z)P (dz)

≤
∣∣∣∣
∫

∥ϕP (z)∥H
[
dPϵ

dP
(z)− 1

]
P (dz)

∣∣∣∣+
∫

∥ϕP (z)∥HP (dz)

≤ ∥ϕP ∥L2(P ;H)

∥∥∥∥
dPϵ

dP
− 1

∥∥∥∥
L2(P )

+ ∥ϕP ∥L2(P ;H)

≤ ∥ϕP ∥L2(P ;H)

(∥∥∥∥
dPϵ

dP
− 1− ϵs

∥∥∥∥
L2(P )

+ ϵ∥s∥L2(P )

)
+ ∥ϕP ∥L2(P ;H),

where the first inequality holds by the triangle inequality, the second by Cauchy Schwarz and Jensen’s
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inequality, and the third by the triangle inequality. The right-hand side is finite since ϕP is P -Bochner

square integrable and (S12) holds.

Proofs for Section 2.4

Proof of Lemma 1. We begin by showing that
∑∞

k=1 β
2
kP ν̇P (hk)

2 < ∞ and that (βkν̇
∗
P (hk)(z))

∞
k=1 is

P -a.s. a square summable sequence. To see why this is the case, note that, by the monotone convergence

theorem,

EP

[
∞∑

k=1

β2
k ν̇

∗
P (hk)(Z)

2

]
= lim

K→∞
EP

[
K∑

k=1

β2
k ν̇

∗
P (hk)(Z)

2

]
= lim

K→∞

K∑

k=1

β2
k∥ν̇∗P (hk)∥2L2(P )

≤ lim
K→∞

K∑

k=1

β2
k∥ν̇∗P ∥2op∥hk∥2H ≤ ∥ν̇∗P ∥2op lim

K→∞

K∑

k=1

β2
k <∞, (S14)

where the final inequality holds because ν̇∗P : H → L2(P ) is a bounded operator and (βk)
∞
k=1 is square

summable. The above implies that
∑∞

k=1 β
2
k ν̇

∗
P (hk)(z)

2 is finite on a P -probability one set Zβ . Hence,

ϕβP (z) ∈ H P -a.s. To see that ϕβP ∈ L2(P ;H), note that, by the continuity and linearity of inner products

and the orthonormality of (hk)
∞
k=1,

∫
⟨ϕβP (z), ϕ

β
P (z)⟩HP (dz)

=

∫

Zβ

〈
lim

K→∞

K∑

k=1

βkν̇
∗
P (hk)(z)hk, lim

K′→∞

K′∑

k′=1

βk′ ν̇∗P (hk′)(z)hk′

〉

H

P (dz)

=

∫

Zβ

lim
K→∞

lim
K′→∞

〈
K∑

k=1

βkν̇
∗
P (hk)(z)hk,

K′∑

k′=1

βk′ ν̇∗P (hk′)(z)hk′

〉

H

P (dz)

=

∫

Zβ

lim
K→∞

lim
K′→∞

K∑

k=1

K′∑

k′=1

βkν̇
∗
P (hk)(z)βk′ ν̇∗P (hk′)(z) ⟨hk, hk′⟩H P (dz)

=

∫

Zβ

lim
K→∞

K∑

k=1

β2
k ν̇

∗
P (hk)(z)

2P (dz) = EP

[
∞∑

k=1

β2
k ν̇

∗
P (hk)(Z)

2

]
,

which is finite by (S14). It remains to show that, for all z ∈ Zβ and h ∈ H, rβP (h)(z) = ⟨ϕβP (z), h⟩H.

This can be seen by noting that, for any z ∈ Zβ and h ∈ H,

⟨ϕβP (z), h⟩H

=

〈
ϕβP (z),

∞∑

k′=1

⟨h, hk′⟩Hhk′

〉

H

=

〈
∞∑

k=1

βkν̇
∗
P (hk)(z)hk,

∞∑

k′=1

⟨h, hk′⟩Hhk′

〉

H

=

∞∑

k=1

∞∑

k′=1

⟨h, hk′⟩Hβkν̇∗P (hk)(z) ⟨hk, hk′⟩H =

∞∑

k=1

⟨h, hk⟩Hβkν̇∗P (hk)(z) = rβP (h)(z).

As h ∈ H and z ∈ Zβ were arbitrary, rβP (·)(z) is a bounded linear functional with Riesz representation

ϕβP (z) for all z ∈ Zβ .

Lemma S7. Fix a score s in the tangent set of P at P and let {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s) satisfy (S12).

If ν is pathwise differentiable at P , then

∥∥∥∥∥ν(P )− ν(Pϵ) + Pϵϕ
β
P −

∞∑

k=1

(1− βk)⟨ν(P )− ν(Pϵ), hk⟩Hhk
∥∥∥∥∥
H
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=
(
1 + ∥ϕβP ∥L2(P ;H)

)
· o(ϵ),

where the o(ϵ) terms do not depend on the choice of β.

Proof of Lemma S7. Suppose that s and {Pϵ : ϵ ∈ [0, δ)} are as in the statement of the lemma and

that ν is pathwise differentiable at P . Let H1 denote the unit ball of H. Since ν(Pϵ) − ν(P0) =
∑∞

k=1⟨ν(Pϵ)− ν(P ), hk⟩Hhk, it holds that

ν(P )− ν(Pϵ) + Pϵϕ
β
P −

∞∑

k=1

(1− βk)⟨ν(P )− ν(Pϵ), hk⟩Hhk

= Pϵϕ
β
P −

∞∑

k=1

βk⟨ν(Pϵ)− ν(P ), hk⟩Hhk.

The remainder of our analysis bounds the terms on the right of the following decomposition, which holds

by the triangle inequality:

∥∥∥∥∥Pϵϕ
β
P −

∞∑

k=1

βk⟨ν(Pϵ)− ν(P ), hk⟩Hhk
∥∥∥∥∥
H

(S15)

≤
∥∥∥∥Pϵϕ

β
P − ϵ

∫
s(z)ϕβP (z)P (dz)

∥∥∥∥
H

+ ϵ

∥∥∥∥∥

∫
s(z)ϕβP (z)P (dz)−

∞∑

k=1

βk⟨ν̇P (s), hk⟩Hhk
∥∥∥∥∥
H

+

∥∥∥∥∥

∞∑

k=1

βk⟨ϵν̇P (s), hk⟩Hhk −
∞∑

k=1

βk⟨ν(Pϵ)− ν(P ), hk⟩Hhk
∥∥∥∥∥
H

.

To bound the leading term, we use that ϕβP ∈ L2(P ;H) by Lemma 1 and that PϕβP = 0, which give that

∥∥∥∥Pϵϕ
β
P − ϵ

∫
s(z)ϕβP (z)P (dz)

∥∥∥∥
H

= sup
h∈H1

〈∫ (
dPϵ

dP
(z)− 1− ϵs(z)

)
ϕβP (z)P (dz), h

〉

H

= sup
h∈H1

∫ (
dPϵ

dP
(z)− 1− ϵs(z)

)〈
ϕβP (z), h

〉
H
P (dz).

By twice applying Cauchy-Schwarz, once in H and once in L2(P ), and recalling (S12) and that H1 is the

unit ball of H, the right-hand side can be seen to be upper bounded by ∥ϕβP ∥L2(P ) · o(ϵ), where the o(ϵ)

term denotes the behavior of the term on the left-hand side of (S12), which does not depend on β.

We will show that the second term on the right of (S15) is zero. To do this, we recall that (i)

ϕβP ∈ L2(P ;H) by Lemma 1, (ii) ϕβP :=
∑∞

k=1 βkν̇
∗
P (hk)(z)hk, (iii) inner products are continuous, (iv)

(hk)
∞
k=1 is an orthonormal basis of Hk, and (v) ν̇∗P is the adjoint of ν̇P . Applying these facts in sequence

justifies the following for any basis element hk:

〈∫
s(z)ϕβP (z)P (dz), hk

〉

H

=

∫
s(z)⟨ϕβP (z), hk⟩HP (dz) =

∫
s(z)

〈
∞∑

k′=1

βk′ ν̇∗P (hk′)(z)hk′ , hk

〉

H

P (dz)

=

∫
s(z)

[
∞∑

k′=1

βk′ ν̇∗P (hk′)(z) ⟨hk′ , hk⟩H

]
P (dz)

= βk⟨hk, hk⟩H
∫
s(z)ν̇∗P (hk)(z)P (dz) = βk⟨hk, hk⟩H⟨ν̇P (s), hk⟩H
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=

〈
∞∑

k′=1

βk′⟨ν̇P (s), hk′⟩Hhk′ , hk

〉

H

As hk was an arbitrary element of an orthonormal basis of H, this shows that the second term on the

right of (S15) is zero.

We will show that the third term on the right of (S15) is o(ϵ). We begin by noting that

∥∥∥∥∥

∞∑

k=1

βk⟨ϵν̇P (s), hk⟩Hhk −
∞∑

k=1

βk⟨ν(Pϵ)− ν(P ), hk⟩Hhk
∥∥∥∥∥
H

=

∥∥∥∥∥

∞∑

k=1

βk⟨ν(Pϵ)− ν(P )− ϵν̇P (s), hk⟩Hhk
∥∥∥∥∥
H

= sup
h∈H1

〈
∞∑

k=1

βk⟨ν(Pϵ)− ν(P )− ϵν̇P (s), hk⟩Hhk, h
〉

H

= sup
h∈H1

∞∑

k=1

βk⟨ν(Pϵ)− ν(P )− ϵν̇P (s), hk⟩H ⟨hk, h⟩H .

Combining the above with the fact that all βk belong to [0, 1], the Cauchy-Schwarz inequality in ℓ2, and

Parseval’s identity, the above shows that

∥∥∥∥∥

∞∑

k=1

βk⟨ϵν̇P (s), hk⟩Hhk −
∞∑

k=1

βk⟨ν(Pϵ)− ν(P ), hk⟩Hhk
∥∥∥∥∥
H

≤ sup
h∈H1

∞∑

k=1

|⟨ν(Pϵ)− ν(P )− ϵν̇P (s), hk⟩H ⟨hk, h⟩H|

≤
(

∞∑

k=1

⟨ν(Pϵ)− ν(P )− ϵν̇P (s), hk⟩2H

)1/2(
sup
h∈H1

∞∑

k=1

⟨hk, h⟩2H

)1/2

= ∥ν(Pϵ)− ν(P )− ϵν̇P (s)∥H .

The right-hand side does not depend on β and, by the pathwise differentiability of ν, is o(ϵ). This

completes the proof.

C.2 Proofs for Section 3

We now prove the sufficient condition for pathwise differentiability that we presented in the main text.

We refer the interested reader to Remark 2 in Appendix A.5 of Bickel et al. (1993) for an alternative

characterization of pathwise differentiability that may also be useful in some contexts.

Proof of Lemma 2. Suppose that (i) and (ii) hold. Let {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s) for some s in the

tangent set of P at P . Since S(P ) is dense in ṖP , there exists a S(P )-valued sequence (sn)
∞
n=1 such

that sn → s in L2(P ). For each n, let {P [n]
ϵ : ϵ} be the element of P(P,P, sn) satisfying ∥ν(P [n]

ϵ ) −
ν(P ) − ϵ ηP (s)∥H = o(ϵ) that is guaranteed to exist by (i). Observe that, for any ϵ > 0 and any map

N : (0, δ] → N, the triangle inequality and the linearity of ηP show that

∥∥ϵ−1 [ν(Pϵ)− ν(P )]− ηP (s)
∥∥
H

≤
∥∥∥ϵ−1

[
ν(P [N(ϵ)]

ϵ )− ν(P )
]
− ηP (sN(ϵ))

∥∥∥
H

+ ϵ−1
∥∥∥ν(P [N(ϵ)]

ϵ )− ν(Pϵ)
∥∥∥
H
+
∥∥ηP (sN(ϵ) − s)

∥∥
H
. (S16)
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Our argument will be based on the above with a map N : (0, δ] → N that we construct to satisfy all of

the following properties as ϵ→ 0:

a) N(ϵ) → ∞;

b) ∥ϵ−1[

√
dP

[N(ϵ)]
ϵ −

√
dP ]− 1

2sN(ϵ)

√
dP∥L2(λ) → 0;

c) ∥ϵ−1[ν(P
[N(ϵ)]
ϵ )− ν(P )]− ηP (sN(ϵ))∥H → 0.

We will first establish that such a map exists, and then show that, when combined with (S16), this

establishes that ν is pathwise differentiable at P with local parameter ν̇P = ηP .

Now, for any fixed n ∈ N, the quadratic mean differentiability of {P [n]
ϵ : ϵ} paired with the fact that

∥ν(P [n]
ϵ )− ν(P )− ϵ ηP (s)∥H = o(ϵ) implies that limϵ→0 fn(ϵ) = 0, where

fn(ϵ) :=

∥∥∥∥ϵ
−1

[√
dP

[n]
ϵ −

√
dP

]
− 1

2
sn

√
dP

∥∥∥∥
L2(λ)

+
∥∥∥ϵ−1

[
ν(P [n]

ϵ )− ν(P )
]
− ηP (sn)

∥∥∥
H
.

We use this fact to define N : (0, δ] → N via a recursive formulation. For a strictly decreasing positive

sequence (ϵℓ)
∞
ℓ=1 that we will define momentarily, we let N(ϵ) := max{ℓ ∈ N : ϵ ≤ ϵℓ}. This sequence

will be constructed so that ϵℓ ↓ 0 as ℓ ↑ ∞, which ensures that the maximum used to define N(ϵ) is

well-defined and that N(ϵ) → ∞ as ϵ→ 0 or, in other words, condition a) holds. The construction of the

sequence will also ensure that fN(ϵ)(ϵ) → 0 as ϵ→ 0, which will guarantee that conditions b) and c) hold

as well. We now construct this sequence. We first let ϵ1 := δ. Then, recursively from ℓ = 1, 2, . . ., we let

ϵℓ+1 := 1
2 sup{ϵ ∈ (0, ϵℓ] : supϵ′∈(0,ϵ] fℓ+1(ϵ

′) ≤ 2−(ℓ+1)}; since fℓ+1(ϵ) → 0 as ϵ→ 0, ϵℓ+1 is well-defined

and positive. Also, by its definition, ϵℓ+1 ≤ ϵℓ/2 and fℓ+1(ϵ) ≤ 2−(ℓ+1) for all ϵ ≤ ϵℓ+1. As a consequence,

fN(ϵ)(ϵ) ≤ 2−N(ϵ) for all ϵ ≤ ϵ2. Since N(ϵ) → ∞ as ϵ → 0, this implies that fN(ϵ)(ϵ) → 0 as ϵ → 0,

which implies that b) and c) hold.

Having now defined N : (0, δ] → N, we return to (S16). Because s was an arbitrary element of the

tangent set, we will have established that ν is pathwise differentiable at P with local parameter ν̇P = ηP

if we can show that the right-hand side of that display converges to zero as ϵ→ 0. Since the choice of

N ensured that c) holds, the first term on the right-hand side of that display goes to zero as ϵ → 0.

Since ηP : ṖP → H is a bounded linear operator by (i) and limϵ→0 sN(ϵ) = s by virtue of the fact that

limn→∞ sn = s and and N(ϵ) → ∞ as ϵ→ 0, the third term on the right-hand side of that display goes

to zero as ϵ→ 0. It remains to study the second term. For this term, we will first show that the Hellinger

distance between P
[N(ϵ)]
ϵ and Pϵ is o(ϵ), and then we will leverage the local Lipschitz property of ν that

holds by (ii). Beginning by studying the Hellinger distance, we use the triangle inequality to show that

H
(
P [N(ϵ)]
ϵ , Pϵ

)
:=

∥∥∥∥
√
dP

[N(ϵ)]
ϵ −

√
dPϵ

∥∥∥∥
L2(λ)

≤
∥∥∥∥
√
dPϵ −

√
dP − 1

2
ϵs
√
dP

∥∥∥∥
L2(λ)

+

∥∥∥∥
√
dP

[N(ϵ)]
ϵ −

√
dP − 1

2
ϵsN(ϵ)

√
dP

∥∥∥∥
L2(λ)

+
1

2
ϵ
∥∥sN(ϵ) − s

∥∥
L2(P )

.

The first term on the right is o(ϵ) by the quadratic mean differentiability of {Pϵ : ϵ ∈ [0, δ)}, the second

is o(ϵ) by b), and the third is o(ϵ) by the fact that sN(ϵ) → s in L2(P ). Hence, H(P
[N(ϵ)]
ϵ , Pϵ) is o(ϵ).

Letting c be the constant from (ii), this implies that, for all ϵ small enough, the second term in (S16)

bounds as follows:

ϵ−1
∥∥∥ν(P [N(ϵ)]

ϵ )− ν(Pϵ)
∥∥∥
H

≤ ϵ−1cH(P [N(ϵ)]
ϵ , Pϵ) = o(1).
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We now establish a lemma concerning the preservation of quadratic mean differentiability, which we

used several times in the derivations for the examples provided in Appendix B.

Lemma S8. Let P be a statistical model of distributions of Z = (X,Y ) that are equivalent in that, for

all P1, P2 ∈ P, P1 ≪ P2 and P2 ≪ P1. Let {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s), where s is in the tangent set

of P at P . Let qϵ =
√

dPϵ

dP and qϵ,X , qϵ,Y |X be the square root of the marginal density and conditional

density of Pϵ relative to P , respectively. Let sX(x) = EP [s(Z) | X = x] and sY |X(y | x) = s(z)− sX(x).

Then, both of the following hold:

∥∥∥qϵ,X − 1− ϵ

2
sX

∥∥∥
L2(P )

= o(ϵ),
∥∥∥qϵ,Y |X − 1− ϵ

2
sY |X

∥∥∥
L2(P )

= o(ϵ).

Proof of Lemma S8. Applying Proposition A.5.5 in Bickel et al. (1993) and taking (x, y) 7→ x as the

statistic, we have the first inequality, namely that ∥qϵ,X − 1− ϵ
2sX∥L2(P ) = o(ϵ).

We now establish the second equality. Let s
(ϵ)
X := sX1{|sX | ≤ ϵ−1/2} and f(ϵ) := ∥qϵ,Y |X − 1 −

ϵ
2sY |X∥2L2(P ). We have that

f(ϵ) =

∫ (
qϵ,Y |X [1− qϵ,X ] + qϵ − 1− ϵ

2
sY |X

)2
dP

=

∫ (
qϵ,Y |X

[
1− qϵ,X +

ϵ

2
s
(ϵ)
X

]
+ qϵ − 1− ϵ

2
[sY |X + s

(ϵ)
X ]

− ϵ

2

[
qϵ,Y |X − 1− ϵ

2
sY |X

]
s
(ϵ)
X − ϵ2

4
sY |Xs

(ϵ)
X

)2

dP

≤ 4

∫ (
qϵ,Y |X

[
1− qϵ,X +

ϵ

2
s
(ϵ)
X

])2
dP + 4

∫ (
qϵ − 1− ϵ

2
[sY |X + s

(ϵ)
X ]
)2
dP

+ ϵ2
∫ [

qϵ,Y |X − 1− ϵ

2
sY |X

]2
(s

(ϵ)
X )2dP +

ϵ4

4

∫
s2Y |X(s

(ϵ)
X )2dP, (S17)

where the final inequality uses that (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2). We consider each of the four

terms above separately, showing that the first two are o(ϵ2), the third is no more than ϵf(ϵ) and the last

is O(ϵ3). Subtracting the third term from both sides and dividing both sides by 1− ϵ will then show that

f(ϵ) = o(ϵ2). For the first term, note that

4

∫ (
qϵ,Y |X

[
1− qϵ,X +

ϵ

2
s
(ϵ)
X

])2
dP

= 4

∫∫ (
1− qϵ,X(x) +

ϵ

2
s
(ϵ)
X (x)

)2
Pϵ,Y |X(dy | x)PX(dx)

= 4

∫ (
1− qϵ,X +

ϵ

2
s
(ϵ)
X

)2
dPX

≤ 8

∫ (
1− qϵ,X +

ϵ

2
sX

)2
dPX + 8ϵ2

∫
s2X1{|sX | > ϵ−1/2}dP,

where we used that (a + b)2 ≤ 2(a2 + b2). The first term on the right is o(ϵ2) since quadratic mean

differentiability is preserved under marginalization as proved earlier, and the second is o(ϵ2) by the

dominated convergence theorem. For the second term in (S17), similar arguments show that

4

∫ (
qϵ − 1− ϵ

2
[sY |X + s

(ϵ)
X ]
)2
dP = o(ϵ2).
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For the third integral in (S17),

ϵ2
∫ [

qϵ,Y |X − 1− ϵ

2
sY |X

]2
(s

(ϵ)
X )2dP ≤ ϵ

∫ [
qϵ,Y |X − 1− ϵ

2
sY |X

]2
dP = ϵf(ϵ)

and, for the final term in (S17),

ϵ4

4

∫
s2Y |X(s

(ϵ)
X )2dP ≤ ϵ3

4

∫
s2Y |XdP.

This completes the proof.

C.3 Proofs for Section 4

C.3.1 Proofs for Section 4.1

Proof of Lemma 3. Fix δ > 0. Suppose that ∥ϕ1n − ϕ0∥L2(P0;H) = op(1). We will show that

lim
n→∞

Pn
0 {∥D1

n∥H > n−1/2δ} = 0. (S18)

As δ was arbitrary, this will show that D1
n = op(n

−1/2). An analogous argument can be used to show

that ∥ϕ2n − ϕ0∥L2(P0;H) = op(1) implies that D2
n = op(n

−1/2).

Let 1En denote the indicator that the event En that ∥ϕ1n − ϕ0∥2L2(P0;H) ≤ δ2/2 and let Ec
n denote the

complement of En. We will leverage the following decomposition when showing (S18):

Pn
0 {∥D1

n∥H > n−1/2δ} ≤ Pn
0

(
{∥D1

n∥H > n−1/2δ} ∩ En
)
+ Pn

0 (Ec
n)

= En
0

[
1En

Pn
0

{
∥D1

n∥H > n−1/2δ
∣∣∣Z1, . . . , Zn/2

}]
+ o(1), (S19)

where En
0 denotes an expectation under sampling from the n-fold product measure Pn

0 and o(1) denotes a

deterministic term that goes to zero as n→ ∞. The equality above holds by the law of total probability,

the fact that En is measurable with respect to the σ-field generated by Z1, . . . , Zn/2, and the assumption

that ∥ϕ1n − ϕ0∥L2(P0;H) = op(1) implies that Pn
0 (Ec

n) = o(1). To show (S18), the above shows that it

suffices to show that the first term on the right-hand side is o(1). To this end, note that Chebyshev’s

inequality for Hilbert-valued random variables (Grenander, 1963) and the bilinearity of inner products

shows that

1En
Pn
0

{
∥D1

n∥H > n−1/2δ
∣∣∣Z1, . . . , Zn/2

}
(S20)

≤ 1En

EPn
0
[∥(P 1

n − P0)(ϕ
1
n − ϕ0)∥2H | Z1, . . . , Zn/2]

n−1δ2

= 1En

(n/2)−1EPn
0
[P 1

n∥(I − P0)(ϕ
1
n − ϕ0)∥2H | Z1, . . . , Zn/2]

n−1δ2

+ 1En

4

n2

∑

(i,j)∈{n/2+1,...,n}2:i ̸=j

EPn
0
[⟨(I−P0)(ϕ

1
n−ϕ0)(Zi),(I−P0)(ϕ

1
n−ϕ0)(Zk)⟩H|Z1,...,Zn/2]

n−1δ2 ,

where (I − P0)(ϕ
1
n − ϕ0) denotes the map z 7→ (ϕ1n − ϕ0)(z) − P0(ϕ

1
n − ϕ0) and each expectation in

the summand on the right-hand side above is well-defined since (ϕ1n − ϕ0) ∈ L2(P0;H) implies that

(I − P0)(ϕ
1
n − ϕ0) ∈ L2(P0;H) as well. In fact, each expectation in the summand on the right-hand side

is zero since, by the fact that (I − P0)(ϕ
1
n − ϕ0) ∈ L2(P0;H) and Fubini’s theorem,

EPn
0
[⟨(I − P0)(ϕ

1
n − ϕ0)(Zi), (I − P0)(ϕ

1
n − ϕ0)(Zk)⟩H | Z1, . . . , Zn/2]
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=

∫
⟨(I − P0)(ϕ

1
n − ϕ0)(z1), (I − P0)(ϕ

1
n − ϕ0)(z2)⟩HP 2

0 (dz1, dz2)

=

∫∫
⟨(I − P0)(ϕ

1
n − ϕ0)(z1), (I − P0)(ϕ

1
n − ϕ0)(z2)⟩HP0(dz1)P0(dz2)

=

∫ 〈∫
(I − P0)(ϕ

1
n − ϕ0)(z1)P0(dz1), (I − P0)(ϕ

1
n − ϕ0)(z2)

〉

H

P0(dz2)

=

∫ 〈
0, (I − P0)(ϕ

1
n − ϕ0)(z2)

〉
H
P0(dz2) = 0.

Returning to (S20) and simplifying the first term on the right-hand side of that expression, this shows

that

1En
Pn
0

{
∥D1

n∥H > n−1/2δ
∣∣∣Z1, . . . , Zn/2

}
≤ 1En

2∥(I − P0)(ϕ
1
n − ϕ0)∥2L2(P0;H)

δ2
.

Using that P0(ϕ
1
n − ϕ0) is a minimizer over h ∈ H of ∥ϕ1n − ϕ0 − h∥2L2(P ;H) and subsequently leveraging

the definition of the event En, this shows that

1En
Pn
0

{
∥D1

n∥H > n−1/2δ
∣∣∣Z1, . . . , Zn/2

}

≤ 1En

2∥ϕ1n − ϕ0∥2L2(P0;H)

δ2
≤ min

{
1,

2∥ϕ1n − ϕ0∥2L2(P0;H)

δ2

}
.

Note that the right-hand side above is no larger than 1. Taking an expectation of both sides over

Z1, . . . , Zn/2
iid∼ P0 and recalling that ∥ϕ1n − ϕ0∥L2(P0;H) = op(1), the dominated convergence theorem

shows that the first term on the right-hand side of (S19) is o(1). This completes the proof.

Proof of Theorem 2. In this argument, we will let H̃ denote the Hilbert space of elements (h, r) ∈ H× R

that is equipped with inner product ⟨(h1, r1), (h2, r2)⟩H̃ = ⟨h1, h2⟩H + r1r2. Fix s ∈ ṖP . Since Rj
n =

oP (n
−1/2) and Dj

n = oP (n
−1/2) for j ∈ {1, 2}, (21) shows that

(
ν̄n − ν(P0)

Pns

)
=

(
Pnϕ0

Pns

)
+ op(n

−1/2) = Pn

(
ϕ0

s

)
+ op(n

−1/2). (S21)

Moreover, ∥(ϕ0, s)∥2L2(P ;H̃)
= ∥ϕ0∥2L2(P ;H) + ∥s∥2L2(P ) < ∞. Hence, by Slutsky’s lemma and a central

limit theorem for Hilbert-valued random variables (see Examples 1.4.7 and 1.8.5 in van der Vaart and

Wellner, 1996), it holds that

n1/2

(
ν̄n − ν(P0)

Pns

)
⇝

(
H

S

)
, (S22)

where (H, S) is a tight H̃-valued Gaussian random variable that is such that

⟨(h, r), (H, S)⟩H̃ ∼ N
(
0, E0

[
{⟨ϕ0(Z), h⟩H + rs(Z)}2

])
.

Marginalizing the Pns term on the left-hand side of (S21) shows that (S36) holds.

We will use (S22) along with Theorem 3 in Chapter 5.2 of Bickel et al. (1993) to establish the

regularity of ν̄n. To use this result, it suffices to show that E[SH] = ν̇P (s). We will establish this

by showing that ⟨h,E[SH]⟩H = ⟨h, ν̇P (s)⟩H for all h ∈ H. To see that this holds, first note that

⟨h,E[SH]⟩H = E[S⟨h,H⟩H] since

E[∥SH∥2H] = E[S2∥H∥2H] ≤ E[S4]1/2E[∥H∥4H]1/2 <∞,
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where the first inequality holds by Cauchy-Schwarz and the second by Fernique’s theorem (Fernique,

1970). Hence, it suffices to show that E[S⟨h,H⟩H] = ⟨h, ν̇P (s)⟩H. To show that this is the case, we

let fh : H̃ → R
2 be defined so that fh(h1, r1) = (⟨h1, h⟩H, r1). For any (a, b) ∈ R

2, the dot product

(a, b)·fh(H, S) is equal to a⟨h,H⟩H+bS = ⟨(ah, b), (H, S)⟩H̃, which follows a mean-zero normal distribution

with variance

E0

[
{a⟨ϕ0(Z), h⟩H + bs(Z)}2

]
= (a, b)⊤Σ (a, b),

where

Σ :=

(
E0

[
⟨ϕ0(Z), h⟩2H

]
E0 [s(Z)⟨ϕ0(Z), h⟩H]

E0 [s(Z)⟨ϕ0(Z), h⟩H] E0[s(Z)
2]

)
.

As (a, b) ∈ R
2 was arbitrary, it follows that (⟨h,H⟩H, S) ∼ N((0, 0),Σ). Hence, E[S⟨h,H⟩H] is equal to

E0 [s(Z)⟨ϕ0(Z), h⟩H]. Finally, note that ⟨ϕ0(Z), h⟩H = ν̇∗P (h)(Z) P -a.s. since ϕ0 is the EIF of ν, and so

E0 [s(Z)⟨ϕ0(Z), h⟩H] = E0 [s(Z)ν̇
∗
P (h)(Z)] = ⟨s, ν̇∗P (h)⟩L2(P ) = ⟨h, ν̇P (s)⟩H.

Proofs for Section 4.2

Proof of Theorem 3. Suppose the conditions of Theorem 2 hold and that ∥ϕ0∥L2(P0;H) is strictly positive,

Ωn ∈ O, Ω0 ∈ O, and ∥Ωn − Ω0∥op = op(1). For brevity, we will let wn(·) := w( · ; Ωn) and w0(·) :=
w( · ; Ω0) in this proof. By Theorem 2, n1/2[ν̄n − ν(P0)] ⇝ H, where H is as defined in that theorem.

Slutsky’s lemma and the continuous mapping theorem can further be used to show that n·wn[ν̄n−ν(P0)]⇝

w0(H). To see this, first note that

n · wn[ν̄n − ν(P0)] = n · w0[ν̄n − ν(P0)] + n · w[ν̄n − ν(P0); Ωn − Ω0]. (S23)

The first of the two terms on the right converges weakly to w0(H) by the continuous mapping theorem,

where we have used that, by virtue of belonging to O, Ω0 is a continuous operator, and therefore

w0 : H → R is a continuous functional. The second term on the right is op(1), since, by Cauchy-Schwarz,

the definition of the operator norm, and the continuous mapping theorem,

|n · w[ν̄n − ν(P0); Ωn − Ω0]| ≤ n∥(Ωn − Ω0)[ν̄n − ν(P0)]∥H∥ν̄n − ν(P0)∥H
≤ ∥Ωn − Ω0∥op∥n1/2[ν̄n − ν(P0)]∥2H = op(1)Op(1) = op(1).

Plugging this into (S23) and applying Slutsky’s lemma shows that n · wn[ν̄n − ν(P0)]⇝ w0(H).

We apply Corollary 3.3 of Bogachev (1996) to show that w0(H) is absolutely continuous. To apply

this corollary, it suffices to show that w0 : H → R is locally Lipschitz and that the image of the

Gateaux derivative dw0(h; · ) is P-a.s. equal to R, where P is the distribution of H. For the Gateaux

derivative condition, we note that, for any g ∈ H, dw0(h; g) = d
dϵw(h + ϵg; Ω0) = ⟨Ω0(g), h⟩H +

⟨Ω0(h), g⟩H = 2⟨Ω0(g), h⟩H, where the latter equality used that Ω0 is self-adoint. Since Ω0 is positive

definite, ⟨Ω0(h), h⟩H > 0 for all h ∈ H. Hence, for any h ∈ H\{0}, the image of dw0(h; ·) is equal to

R; this can be seen by considering dw0(h; ch) with c varying over R. As ∥ϕ0∥L2(P0;H) > 0, H\{0} is a

P-probability one set. The locally Lipschitz property follows from the fact that, for all h ∈ H and all g1
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and g2 in the unit ball H1 of H,

|w0(h+ g1)− w0(h+ g2)|

=

∣∣∣∣
∫ 1

0

[dw0(h; ϵg1)− dw0(h; ϵg2)]dϵ

∣∣∣∣ ≤
∫ 1

0

|dw0(h; ϵg1)− dw0(h; ϵg2)| dϵ

= 2 |⟨Ω0(g1 − g2), h⟩H|
∫ 1

0

ϵ dϵ = |⟨Ω0(g1 − g2), h⟩H| ≤ ∥Ω0(g1 − g2)∥H∥h∥H

≤ ∥Ω0∥op∥g1 − g2∥H∥h∥H = ∥Ω0∥op∥(h+ g1)− (h+ g2)∥H∥h∥H.

Hence, w0 is ∥Ω0∥op∥h∥H-Lipschitz continuous in the radius-one ball centered at h. As h was arbitrary, w0

is locally Lipschitz. Corollary 3.3 of Bogachev (1996) thus shows that w0(H) is an absolutely continuous

random variable.

Because convergence in distribution implies convergence of cumulative distribution functions at

continuity points, n · wn[ν̄n − ν(P0)]⇝ w0(H) implies that

Pn
0 {n · wn[ν̄n − ν(P0)] ≤ ζ1−α + δ} n→∞−→ F(ζ1−α + δ) (S24)

for all δ ∈ R, where F is the cumulative distribution function of w0(H). In what follows, we will use this

fact twice when establishing the asymptotic validity of the (1− α)-confidence sets Cn(ζ̂n). When doing

so, we will also use that the event {ν(P0) ∈ Cn(ζ̂n)} is the same as the event {n · wn[ν̄n − ν(P0)] ≤ ζ̂n}.
We now establish (ii). To do this, we use that, for any δ > 0,

Pn
0

{
n · wn[ν̄n − ν(P0)] > ζ̂n

}

≤ Pn
0

{
n · wn[ν̄n − ν(P0)] > ζ̂n, ζ̂n − ζ1−α ≥ −δ

}
+ Pn

0

{
ζ̂n − ζ1−α < −δ

}

≤ Pn
0 {n · wn[ν̄n − ν(P0)] > ζ1−α − δ}+ Pn

0

{
ζ̂n − ζ1−α < −δ

}
.

Subtracting both sides from 1 yields that

Pn
0

{
n · wn[ν̄n − ν(P0)] ≤ ζ̂n

}

≥ Pn
0 {n · wn[ν̄n − ν(P0)] ≤ ζ1−α − δ} − Pn

0

{
ζ̂n − ζ1−α < −δ

}
.

Taking n→ ∞, applying (S24), and then taking δ ↓ 0 shows that, if ζ̂n is an asymptotically conservative

estimator of ζ1−α in the sense stated in (ii), then

lim inf
n

Pn
0

{
n · wn[ν̄n − ν(P0)] ≤ ζ̂n

}
≥ F(ζ1−α) = 1− α.

This establishes (ii).

We now establish (i). To do this, we use that, for any δ > 0,

Pn
0

{
n · wn[ν̄n − ν(P0)] ≤ ζ̂n

}

≤ Pn
0

{
n · wn[ν̄n − ν(P0)] ≤ ζ̂n, ζ̂n − ζ1−α ≤ δ

}
+ Pn

0

{
ζ̂n − ζ1−α > δ

}

≤ Pn
0 {n · wn[ν̄n − ν(P0)] ≤ ζ1−α + δ}+ Pn

0

{
ζ̂n − ζ1−α > δ

}
.

Taking n→ ∞, applying (S24), and then taking δ ↓ 0 shows that, if ζ̂n is a consistent estimator of ζ1−α,

then lim supn P
n
0 {n · wn[ν̄n − ν(P0)] ≤ ζ̂n} ≤ F(ζ1−α) = 1− α. Combining this with (ii) gives (i).
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In the following result, we write op(1) to denote a term that converges to zero in probability marginally

over the randomness both in the original sample (Z1, . . . , Zn) and the bootstrap sample (Z#
1 , . . . , Z

#
n ).

Lemma S9. If ∥ϕjn − ϕ0∥L2(P0;H) = op(1) for each j ∈ {1, 2}, then ∥H#
n − H

#
n,0∥H = op(1), where

H
#
n,0 := n1/2 1

2

∑2
j=1(P

j,#
n − P j

n)ϕ0.

Proof of Lemma S9. This proof bears resemblance to that of Lemma 3. In what follows we use Zn
1 as

shorthand for the sample (Z1, Z2, . . . , Zn). Note that, for any δ > 0,

Pr
{∥∥∥H#

n −H
#
n,0

∥∥∥
H
> δ

∣∣∣Zn
1

}
= Pr





∥∥∥∥∥∥
1

2

2∑

j=1

(P j,#
n − P j

n)[ϕ
j
n − ϕ0]

∥∥∥∥∥∥
H

> n−1/2δ

∣∣∣∣∣∣
Zn
1





≤
2∑

j=1

Pr
{∥∥(P j,#

n − P j
n)[ϕ

j
n − ϕ0]

∥∥
H
> n−1/2δ

∣∣∣Zn
1

}
.

Taking an expectation of both sides over Z1, Z2, . . . , Zn
iid∼ P0,

Pr
{∥∥∥H#

n −H
#
n,0

∥∥∥
H
> δ
}
=

2∑

j=1

Pr
{∥∥(P j,#

n − P j
n)[ϕ

j
n − ϕ0]

∥∥
H
> n−1/2δ

}
.

In what follows we show that Pr
{∥∥(P j,#

n − P j
n)[ϕ

j
n − ϕ0]

∥∥
H
> n−1/2δ

}
= o(1) when j = 1. An analogous

argument holds for j = 2. As δ > 0 was arbitrary, this will complete the proof.

We begin by noting that

Pr
{∥∥(P 1,#

n − P 1
n)[ϕ

1
n − ϕ0]

∥∥
H
> n−1/2δ

∣∣∣Zn
1

}

≤ n

δ2
E
[∥∥(P 1,#

n − P 1
n)(ϕ

1
n − ϕ0)

∥∥2
H

∣∣∣Zn
1

]

=
2

δ2
E
[
P 1,#
n

∥∥(I − P 1
n)(ϕ

1
n − ϕ0)

∥∥2
H

∣∣∣Zn
1

]

+ 4
∑

(i,j)∈{n/2+1,...,n}2:i ̸=j

E[⟨(I−P 1
n)(ϕ

1
n−ϕ0)(Z

#
i ),(I−P 1

n)(ϕ
1
n−ϕ0)(Z

#
k )⟩H|Zn

1 ]
nδ2 ,

where (I − P 1
n)(ϕ

1
n − ϕ0) denotes the map z 7→ (ϕ1n − ϕ0)(z) − P 1

n(ϕ
1
n − ϕ0). Because Z#

i and Z#
k are

independent draws from P 1
n conditional on Zn

1 when i ≠ k, each term in the summand on the right-hand

side is exactly equal to zero. Since P 1,#
n is the empirical distribution of an iid sample from P 1

n , the first

term on the right rewrites as (2/δ2)∥(I − P 1
n)(ϕ

1
n − ϕ0)∥2L2(P 1

n;H). As P 1
n(ϕ

1
n − ϕ0) is a minimizer over

h ∈ H of ∥ϕ1n − ϕ0 − h∥2L2(P 1
n;H), this term upper bounds by (2/δ2)∥ϕ1n − ϕ0∥2L2(P 1

n;H). Plugging this

bound into the above yields that

Pr
{∥∥(P 1,#

n − P 1
n)[ϕ

1
n − ϕ0]

∥∥
H
> n−1/2δ

∣∣∣Zn
1

}
≤ 2

δ2
∥ϕ1n − ϕ0∥2L2(P 1

n;H).

Taking the mean of both sides over the sample Zn/2+1, Zn/2+2, . . . , Zn
iid∼ P0 used to define P 1

n shows that

Pr
{∥∥(P 1,#

n − P 1
n)[ϕ

1
n − ϕ0]

∥∥
H
> n−1/2δ

∣∣∣Z1, . . . , Zn/2

}
≤ 2

δ2
∥ϕ1n − ϕ0∥2L2(P0;H).

Using the trivial bound that probabilities are no more than 1 and subsequently taking an expectation on

both sides over Z1, Z2, . . . , Zn/2
iid∼ P0 yields that

Pr
{∥∥(P 1,#

n − P 1
n)[ϕ

1
n − ϕ0]

∥∥
H
> n−1/2δ

}
≤ E

[
min

{
1,

2

δ2
∥ϕ1n − ϕ0∥2L2(P0;H)

}]
.
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Using that ∥ϕ1n − ϕ0∥L2(P0;H) = op(1) by assumption and applying the dominated convergence theorem

shows that the right-hand side is o(1), which gives the result.

Proof of Theorem 4. By Lemma S9, ∥H#
n − H

#
n,0∥H = op(1). By Remark 2.5 of Giné and Zinn (1990)

and the fact that ϕ0 ∈ L2(P0;H), H
#
n,0 ⇝ H weakly a.s., that is, weakly conditionally on the iid

sequence (Zi)
∞
i=1 with P0-probability one. By the continuous mapping theorem, this implies that

w(H#
n,0; Ω0)⇝ w(H; Ω0) weakly a.s. as well. In what follows we will use these facts, along with the fact

that ∥Ωn − Ω0∥op = op(1), to show that w(H#
n ; Ωn) ⇝ w(H; Ω0) weakly, conditionally on (Zi)

∞
i=1, in

probability, in the sense defined in Chapter 23.2.1 of van der Vaart (2000). To show this, we begin by

noting that, as Ωn and Ω0 belong to O,

w(H#
n ; Ωn)− w(H#

n,0; Ω0) = w(H#
n −H

#
n,0; Ω0) + w(H#

n ; Ωn − Ω0). (S25)

We now show that each of the terms on the right are marginally op(1). For the first, this follows from the fact

that |w(H#
n −H

#
n,0; Ω0)| = |⟨Ω0(H

#
n −H

#
n,0),H

#
n −H

#
n,0⟩H| ≤ ∥H#

n −H
#
n,0∥2H∥Ω0∥op, and this upper bound is

op(1) by Lemma S9. For the second, this follows from the fact that |w(H#
n ; Ωn−Ω0)| ≤ ∥H#

n ∥2H∥Ωn−Ω0∥op,
combined with the fact that ∥Ωn − Ω0∥op = op(1), by assumption, and ∥H#

n ∥2H = Op(1), by virtue of the

fact that ∥H#
n −H

#
n,0∥H = op(1) and H

#
n,0 ⇝ H weakly almost surely.

We now derive a form of Slutsky’s lemma to show that w(H#
n ; Ω0)⇝ w(H; Ω0) weakly, conditionally

on (Zi)
∞
i=1, in probability. In particular, taking f : R → [−1, 1] to be a bounded, 1-Lipschitz function,

letting Zn
1 := (Zi)

n
i=1, and recalling (S25), we see that

∣∣E
[
f
(
w[H#

n ; Ωn]
) ∣∣Zn

1

]
− E[f (w[H; Ω0])]

∣∣

≤
∣∣∣E
[
f
(
w[H#

n ; Ωn]
) ∣∣Zn

1

]
− E

[
f
(
w[H#

n,0; Ω0]
) ∣∣∣Zn

1

]∣∣∣

+
∣∣∣E
[
f
(
w[H#

n,0; Ω0]
) ∣∣∣Zn

1

]
− E[f (w[H; Ω0])]

∣∣∣

≤ E
[
min

{
2,
∣∣∣w(H#

n −H
#
n,0; Ω0) + w(H#

n ; Ωn − Ω0)
∣∣∣
} ∣∣∣Zn

1

]

+
∣∣∣E
[
f
(
w[H#

n,0; Ω0]
) ∣∣∣Zn

1

]
− E [f (w[H; Ω0])]

∣∣∣ .

Taking a supremum over all 1-Lipschitz f : R → [−1, 1] on both sides and using that w[H#
n,0; Ω0] ⇝

w[H; Ω0] weakly a.s. is equivalent to the supremum over such f of the latter term on the right being

P0-a.s. o(1) (Chapter 23.2.1 of van der Vaart, 2000), we see that it is P0-a.s. true that

sup
f

∣∣E
[
f
(
w[H#

n ; Ωn]
) ∣∣Zn

1

]
− E[f (w[H; Ω0])]

∣∣

≤ E
[
min

{
2,
∣∣∣w(H#

n −H
#
n,0; Ω0) + w(H#

n ; Ωn − Ω0)
∣∣∣
} ∣∣∣Zn

1

]
+ o(1).

Taking an expectation of the first term on the right over Z1, Z2, . . . , Zn
iid∼ P0, recalling that w(H#

n −
H

#
n,0; Ω0) +w(H#

n ; Ωn −Ω0) is marginally op(1), and applying the dominated convergence theorem shows

that this nonnegative conditional expectation converges to zero in mean, and therefore also in probability.

Hence, the above shows that w(H#
n ; Ωn) converges weakly to w(H; Ω0), given (Zi)

∞
i=1, in probability. This

implies that the (1− α) quantile of w(H#
n ; Ωn) conditional on Z

n
1 , namely ζ̂n, converges in probability to

the (1− α)-quantile of w(H; Ω0), namely ζ1−α.
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C.4 Proofs for Section 5

Proofs for Section 5.1

Recall that the (squared) Hilbert-Schmidt norm is defined as ∥ν̇∗P ∥2HS :=
∑∞

k=1 ∥ν̇∗P (hk)∥2L2(P ).

Lemma S10. Suppose ν is pathwise differentiable at P with EIF ϕP . Then, ∥ϕP ∥2L2(P ;H) = ∥ν̇∗P ∥2HS.

Proof of Lemma S10. Suppose that ν has EIF ϕP . Using that (i) since ϕP is the EIF, it is P -a.s. true

that ν̇∗P (hk)(z) = ⟨ϕP (z), hk⟩H for all k ∈ N, and (ii) for any h ∈ H, ∥h∥2H =
∑∞

k=1⟨h, hk⟩2H, we see that

EP

[
∞∑

k=1

ν̇∗P (hk)(Z)
2

]
= EP

[
∞∑

k=1

⟨ϕP (Z), hk⟩2H

]
= EP

[
∥ϕP (Z)∥2H

]
= ∥ϕP ∥2L2(P ;H) . (S26)

In the following lemma, the little-oh and big-Omega notation both denote behavior as n→ ∞.

Lemma S11 (No tight, non-zero weak limit for a scaling of the the regularized one-step estimator when
∑∞

k=1 P0ν̇
∗
0 (hk)

2 = +∞). Suppose that ν is pathwise differentiable at P0. Let (βn)
∞
n=1 be an ℓ2-valued

sequence that grows to (1, 1, . . .) pointwise as n→ ∞ and let (cn)
∞
n=1 be a nonnegative real-valued sequence.

All of the following hold:

(i) if cn = o[n1/2/σ0(βn)], then cnPnϕ
βn

0

p→ 0;

(ii) if cn = o(n1/2), then either cnPnϕ
βn

0 does not converge weakly in H to a tight random element or

cnPnϕ
βn

0

p→ 0;

(iii) if cn = Ω(n1/2) and
∑∞

k=1 P0ν̇
∗
0 (hk)

2 = +∞, then cnPnϕ
βn

0 does not converge weakly in H to a

tight random element.

Before giving the proof, we note that the condition that
∑∞

k=1 P0ν̇
∗
0 (hk)

2 = +∞ holds in all of the

examples we exhibit in this work for which there does not exist an EIF. Moreover, if there does exist

an EIF ϕ0, then Lemma S10 shows that
∑∞

k=1 P0ν̇
∗
0 (hk)

2 < +∞ if and only if ϕ0 is P0-Bochner square

integrable.

Proof of Lemma S11. Let ν and (βn)
∞
n=1 be as in the statement of the lemma.

We first prove (i). Suppose that cn = o[n1/2/σ0(βn)]. By the definition of σ2
0(βn), we have that

EPn
0
∥n1/2Pnϕ

βn

0 /σ0(βn)∥2H

= EPn
0

[
1

n

n∑

i=1

∞∑

k=1

β2
n,kν̇

∗
0 (hk)(Zi)

2

]
/σ2

0(βn) = σ2
0(βn)/σ

2
0(βn) = 1.

As cn = o[n1/2/σ0(βn)], this implies that EPn
0
∥cnPnϕ

βn

0 ∥2H = o(1), which in turn implies that ∥cnPnϕ
βn

0 ∥2H
is op(1), as desired.

We now prove (ii). Suppose that cn = o(n1/2) and cnPnϕ
βn

0 converges weakly in H to a tight

random element H0. We will show that this can only be true if H0 is equal to the zero element of

H almost surely. By Theorem 1.8.4 of van der Vaart and Wellner (1996), cnPnϕ
βn

0 ⇝ H0 implies

that ⟨cnPnϕ
βn

0 , hk⟩H ⇝ ⟨H0, hk⟩H for all k ∈ N. Moreover, since ⟨cnPnϕ
βn

0 , hk⟩H = cnPn⟨ϕβn

0 , hk⟩H =

βn,k[cn/n
1/2][n1/2Pnν̇

∗
0 (hk)], this shows that βn,k[cn/n

1/2][n1/2Pnν̇
∗
0 (hk)] ⇝ ⟨H0, hk⟩H for all k ∈ N.

Since cn/n
1/2 = o(1), βn,k

n→∞−→ 1, and, by the central limit theorem, n1/2Pnν̇
∗
0 (hk) = Op(1), it holds

that βn,k[cn/n
1/2][n1/2Pnν̇

∗
0 (hk)]

p→ 0. As weak limits must share the same distribution, this shows that

⟨H0, hk⟩H is degenerate at zero for all k. Hence, H0 is almost surely equal to the zero element of H.
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We now prove (iii). It suffices to show that cnPnϕ
βn

0 does not converge weakly to a tight random

element when cn = n1/2. We argue this by contradiction. To this end, suppose that there exists a tight

random element H0 such that n1/2Pnϕ
βn

0 ⇝ H0. By Lemma 1.8.4 of van der Vaart and Wellner (1996),

H0 is then such that ⟨n1/2Pnϕ
βn

0 , hk⟩H ⇝ ⟨H0, hk⟩H for all k ∈ N. Combining this with the fact that

⟨n1/2Pnϕ
βn

0 , hk⟩H = βn,kn
1/2Pnν̇

∗
0 (hk), βn,k

k→∞−→ 1, and a univariate central limit theorem, this shows

that H0 is such that ⟨H0, hk⟩H ∼ N [0, ν̇∗0 (hk)
2] for all k ∈ N. Hence, H0 is a Gaussian random element.

Also, by Fernique’s theorem (Fernique, 1970), H0 ∈ L2(P0;H). But ∥H0∥2L2(P0;H) = E[
∑∞

k=1⟨H0, hk⟩2H] =
∑∞

k=1 P0ν̇
∗
0 (hk)

2, which is equal to +∞ by assumption. Contradiction.

Proof of Theorem 5. By the definitions of ν̄βn
n , ϕβn

0 , Rj,βn
n , and Dj,βn

n ,

ν̄βn
n − ν(P0)− Pnϕ

βn

0 − 1

2

2∑

j=1

∞∑

k=1

(1− βn,k)⟨ν(P̂ j
n)− ν(P0), hk⟩Hhk

=
1

2

2∑

j=1

[Rj,βn
n +Dj,βn

n ].

Taking an H-norm of both sides, applying the triangle inequality on the right, and upper bounding

averages by maxima yields

∥∥∥∥∥∥
ν̄βn
n − ν(P0)− Pnϕ

βn

0 − 1

2

2∑

j=1

Bj,βn
n

∥∥∥∥∥∥
H

≤ max
j

∥Rj,βn
n ∥H +max

j
∥Dj,βn

n ∥H,

which bears resemblance to (21) but contains an extra bias term 1
2

∑2
j=1 Bj,βn

n . Plugging in the assumption

that ∥Rj,βn
n ∥H and ∥Dj,βn

n ∥H are Op(∥βn∥ℓ2/n1/2) for each j ∈ {1, 2} gives (25). Combining this

with the assumption that Bj,βn
n = Op[∥βn∥ℓ2/n1/2] for each j ∈ {1, 2} and the fact that Pnϕ

βn

0 is

Op[σ0(βn)/n
1/2] = Op[∥βn∥ℓ2/n1/2] by Chebyshev’s inequality (Grenander, 1963) and Lemma 1 then

gives (27).

Proof of Lemma 4. This proof is similar to that of Lemma 3. Fix δ > 0 and an ℓ2-valued sequence

(βn)
∞
n=1 that is such that ∥ϕ1,βn

n − ϕβn

0 ∥L2(P0;H) = op(rn) holds. We will show that

lim
n→∞

Pn
0 {∥D1,βn

n ∥H > rnn
−1/2δ} = 0. (S27)

As δ was arbitrary, this will show that D1,βn
n = op(rn/n

1/2). This will establish the stated result in the

case where j = 1, and an analogous argument can be used to handle the case where j = 2.

Let 1En
denote the indicator that the event En that ∥ϕ1,βn

n − ϕβn

0 ∥2L2(P0;H) ≤ r2nδ
2/2 and let Ec

n denote

the complement of En. We will leverage the following decomposition when showing (S27):

Pn
0 {∥D1,βn

n ∥H > n−1/2δ} ≤ Pn
0

(
{∥D1,βn

n ∥H > rnn
−1/2δ} ∩ En

)
+ Pn

0 (Ec
n)

= En
0

[
1En

Pn
0

{
∥D1,βn

n ∥H > rnn
−1/2δ

∣∣∣Z1, . . . , Zn/2

}]
+ o(1), (S28)

where En
0 denotes an expectation under sampling from the n-fold product measure Pn

0 and o(1) denotes a

deterministic term that goes to zero as n→ ∞. The equality above holds by the law of total probability,

the fact that En is measurable with respect to the σ-field generated by Z1, . . . , Zn/2, and the assumption

that ∥ϕ1,βn
n − ϕβn

0 ∥L2(P0;H) = op(rn) implies that Pn
0 (Ec

n) = o(1). To show (S27), the above shows that it

suffices to show that the first term on the right-hand side is o(1). To this end, note that Chebyshev’s

inequality for Hilbert-valued random variables (Grenander, 1963) and the bilinearity of inner products
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shows that

1En
Pn
0

{
∥D1,βn

n ∥H > rnn
−1/2δ

∣∣∣Z1, . . . , Zn/2

}
(S29)

≤ 1En

EPn
0
[∥(P 1

n − P0)(ϕ
1,βn
n − ϕβn

0 )∥2H | Z1, . . . , Zn/2]

r2nn
−1δ2

= 1En

(n/2)−1EPn
0
[P 1

n∥(I − P0)(ϕ
1,βn
n − ϕβn

0 )∥2H | Z1, . . . , Zn/2]

r2nn
−1δ2

+ 1En

4

n2

∑

i ̸=j

EPn
0
[⟨(I−P0)(ϕ

1,βn
n −ϕβn

0 )(Zi),(I−P0)(ϕ
1,βn
n −ϕβn

0 )(Zk)⟩H|Z1,...,Zn/2]

r2nn
−1δ2 ,

where (I − P0)(ϕ
1,βn
n − ϕβn

0 ) denotes the map z 7→ (ϕ1,βn
n − ϕβn

0 )(z) − P0(ϕ
1,βn
n − ϕβn

0 ) and the sum is

over (i, j) ∈ {n/2 + 1, . . . , n}2 such that i ≠ j. Each expectation in the summand on the right-hand side

above is well-defined since (ϕ1,βn
n − ϕβn

0 ) ∈ L2(P0;H) implies that (I − P0)(ϕ
1,βn
n − ϕβn

0 ) ∈ L2(P0;H) as

well. In fact, each expectation in the summand on the right-hand side is zero since, by the fact that

(I − P0)(ϕ
1,βn
n − ϕβn

0 ) ∈ L2(P0;H) and Fubini’s theorem,

EPn
0
[⟨(I − P0)(ϕ

1,βn
n − ϕβn

0 )(Zi), (I − P0)(ϕ
1,βn
n − ϕβn

0 )(Zk)⟩H | Z1, . . . , Zn/2]

=

∫
⟨(I − P0)(ϕ

1,βn
n − ϕβn

0 )(z1), (I − P0)(ϕ
1,βn
n − ϕβn

0 )(z2)⟩HP 2
0 (dz1, dz2)

=

∫∫
⟨(I − P0)(ϕ

1,βn
n − ϕβn

0 )(z1), (I − P0)(ϕ
1,βn
n − ϕβn

0 )(z2)⟩HP0(dz1)P0(dz2)

=

∫ 〈∫
(I − P0)(ϕ

1,βn
n − ϕβn

0 )(z1)P0(dz1), (I − P0)(ϕ
1,βn
n − ϕβn

0 )(z2)

〉

H

P0(dz2)

=

∫ 〈
0, (I − P0)(ϕ

1,βn
n − ϕβn

0 )(z2)
〉
H
P0(dz2) = 0.

Returning to (S29) and simplifying the first term on the right-hand side of that expression, this shows

that

1EnP
n
0

{
∥D1,βn

n ∥H > rnn
−1/2δ

∣∣∣Z1, . . . , Zn/2

}
≤ 1En

2∥(I − P0)(ϕ
1,βn
n − ϕβn

0 )∥2L2(P0;H)

r2nδ
2

.

Using that P0(ϕ
1,βn
n − ϕβn

0 ) is a minimizer over h ∈ H of ∥ϕ1,βn
n − ϕβn

0 − h∥2L2(P0;H) and subsequently

leveraging the definition of the event En, this shows that

1EnP
n
0

{
∥D1,βn

n ∥H > rnn
−1/2δ

∣∣∣Z1, . . . , Zn/2

}
≤ 1En

2∥ϕ1,βn
n − ϕβn

0 ∥2L2(P0;H)

r2nδ
2

≤ min

{
1,

2∥ϕ1,βn
n − ϕβn

0 ∥2L2(P0;H)

r2nδ
2

}
.

Note that the right-hand side above is no larger than 1. Taking an expectation of both sides over

Z1, . . . , Zn/2
iid∼ P0 and recalling that ∥ϕ1,βn

n −ϕβn

0 ∥L2(P0;H) = op(rn), the dominated convergence theorem

shows that the first term on the right-hand side of (S28) is o(1). This completes the proof.

Proof of Lemma 5. Since ν(P ), ν(P0) ∈ H and ϕβP ∈ L2(P0;H), it holds that Rβ
P ∈ H. We begin by

showing that, for any ℓ ∈ N,

〈
Rβ

P , hℓ

〉
H

= βℓ [⟨ν(P )− ν(P0), hℓ⟩H + P0ν̇
∗
P (hℓ)] . (S30)
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As ℓ was arbitrary and (hk)
∞
k=1 is an orthonormal basis of H, this will then show that

Rβ
P =

∞∑

k=1

βk [⟨ν(P )− ν(P0), hk⟩H + P0ν̇
∗
P (hk)]hk. (S31)

We now establish (S30) for a fixed ℓ ∈ N. Note that

〈
Rβ

P , hℓ

〉
H

:=

〈
ν(P )− ν(P0) + P0ϕ

β
P −

∞∑

k=1

(1− βk)⟨ν(P )− ν(P0), hk⟩Hhk, hℓ
〉

H

=

〈
∞∑

k=1

⟨ν(P )− ν(P0), hk⟩H hk + P0ϕ
β
P −

∞∑

k=1

(1− βk)⟨ν(P )− ν(P0), hk⟩Hhk, hℓ
〉

H

=

〈
∞∑

k=1

βk ⟨ν(P )− ν(P0), hk⟩H hk + P0ϕ
β
P , hℓ

〉

H

= βℓ ⟨ν(P )− ν(P0), hℓ⟩H +
〈
P0ϕ

β
P , hℓ

〉
H
.

It remains to show that ⟨P0ϕ
β
P , hℓ⟩H = βℓP0ν̇

∗
P (hℓ). To see that this holds, note that, since ν is pathwise

differentiable at P , Lemma 1 ensures that ϕβP (z) is the Riesz representation of rβP (·)(z) on a set Zβ of

P -probability one. Since P0 ≪ P , Zβ has P0-probability one as well. Hence,
∫
⟨ϕβP (z), hℓ⟩HP0(dz) =∫

rβP (hℓ)(z)P0(dz) = P0r
β
P (hℓ). Furthermore, since ϕβP ∈ L2(P0;H),

∫
⟨ϕβP (z), hℓ⟩HP0(dz) = ⟨P0ϕ

β
P , hℓ⟩H,

and so ⟨P0ϕ
β
P , hℓ⟩H = P0r

β
P (hℓ). Plugging in the definition of rβP shows that ⟨P0ϕ

β
P , hℓ⟩H = βℓP0ν̇

∗
P (hℓ),

as desired. This establishes (S30), which in turn establishes (S31). Using the form of Rβ
P given in (S31)

establishes the equality in the statement of the lemma. The inequality follows by Cauchy-Schwarz.

Proof of Lemma 6. We have that

∥Bβ
P ∥2H

=

∞∑

k=1

(1− βk)
2⟨ν(P )− ν(P0), hk⟩2H =

∞∑

k=1

k−2u(1− βk)
2k2u⟨ν(P )− ν(P0), hk⟩2H

≤
[
sup
k∈N

(1− βk)
2

k2u

] ∞∑

k=1

k2u⟨ν(P )− ν(P0), hk⟩2H =

[
sup
k∈N

(1− βk)
2

k2u

]
∥ν(P )− ν(P0)∥2u.

Taking a square root of both sides above gives the inequality from the lemma statement for general β. In

the special case where βk = 1 for all k ≤ K and βk = 0 for all k > K, (28) follows by plugging this value

of β and then applying the triangle inequality.

C.4.1 Proofs for Section 5.2

Proof of Lemma 7. In this proof, we will use that Γβ : H → H is a linear mapping, and also that

∥Γβ(h)∥H ≤ ∥h∥H for all h.

We now show that Γβ ◦ ν is pathwise differentiable with local parameter Γβ ◦ ν̇P . To see that this

holds, fix a quadratic mean differentiable submodel {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s). Note that

∥Γβ ◦ ν(Pϵ)− Γβ ◦ ν(P )− ϵΓβ ◦ ν̇P (s)∥H = ∥Γβ ◦ [ν(Pϵ)− ν(P )− ϵν̇P (s)]∥H
≤ ∥ν(Pϵ)− ν(P )− ϵν̇P (s)∥H = o(ϵ),

where the final equality holds by the pathwise differentiability of ν. Hence, Γβ ◦ν is pathwise differentiable
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with local parameter Γβ ◦ ν̇P . The efficient influence operator is equal to rβP , where this quantity is as

defined above Lemma 1. Indeed, for any s ∈ ṖP and h ∈ H,

〈
s, rβP (h)

〉
L2(P )

=

〈
s,

∞∑

k=1

βk⟨h, hk⟩Hν̇∗P (hk)
〉

L2(P )

=
∞∑

k=1

βk⟨h, hk⟩H ⟨s, ν̇∗P (hk)⟩L2(P )

=
∞∑

k=1

βk⟨h, hk⟩H ⟨ν̇P (s), hk⟩H =

〈
h,

∞∑

k=1

βk ⟨ν̇P (s), hk⟩H hk

〉

H

= ⟨h,Γβ ◦ ν̇P (s)⟩H ,

where above we have used the linearity and continuity of inner products and the definition of the efficient

influence operator ν̇∗P of ν. By Lemma 1, rβP (·)(z) is P -almost surely a bounded linear operator with

Riesz representation ϕβP ∈ L2(P ;H), and therefore ϕβP is the EIF of Γβ ◦ ν.

The following is a consequence of Theorem 2, specialized to the case where the pathwise differentiable

parameter of interest takes the form νβ := Γβ ◦ ν. Below Rj,β
n and Dj,β

n are the regularized remainder

and drift terms for the β-regularized one-step estimator ν̄βn of ν(P0), as defined in Section 5.1.

Corollary S1 (Asymptotic linearity of ν̃βn). Fix β ∈ ℓ2∗. Suppose that ν is pathwise differentiable at P0

and that Rj,β
n and Dj,β

n are both op(n
−1/2) for j ∈ {1, 2}. Under these conditions,

ν̃βn − νβ(P0) =
1

n

n∑

i=1

ϕβ0 (Zi) + op(n
−1/2), (S32)

ν̃βn is regular, and n1/2[ν̃n − νβ(P0)]⇝ H, where H is a tight H-valued Gaussian random variable that is

such that, for each h ∈ H, the marginal distribution ⟨H, h⟩H follows a N(0, E0[⟨ϕβ0 (Z), h⟩2H]) distribution.

Since the above imposes conditions on the regularized remainder and drift terms for the regularized

one-step estimator ν̄βn , any analysis that is performed to bound these terms when studying ν̄βn can also be

used to bound these terms when studying ν̃βn . In particular, Lemmas 4 and 5 can be used to study these

terms.

Proof of Corollary S1. We establish that the conditions of Theorem 2 are satisfied. By Lemma 7, the

EIF of νβ is equal to ϕβ0 ∈ L2(P0;H) at P0 and ϕj,βn at P̂ j
n, j ∈ {1, 2}. Hence, for each j ∈ {1, 2}, the

regularized drift term Dj,β
n := (P j

n − P0)(ϕ
j,β
n − ϕβ0 ) for the β-regularized one-step estimator ν̄βn of ν(P0)

is identical to the drift term for the one-step estimator ν̃βn of νβ(P0). Moreover, since

Rj,β
n := ν(P̂ j

n)− ν(P0) + P0ϕ
j,β
n −

∞∑

k=1

(1− βk)⟨ν(P̂ j
n)− ν(P0), hk⟩Hhk

= νβ(P̂ j
n)− νβ(P0) + P0ϕ

j,β
n ,

the regularized remainder term Rj,β
n for the β-regularized one-step estimator ν̄βn of ν(P0) is also identical

to the remainder term for the one-step estimator ν̃βn of νβ(P0). As we have assumed that both Dj,β
n and

Rj,β
n are op(n

−1/2), j ∈ {1, 2}, Theorem 2 implies all the claims in the statement of this corollary.

Proof of Theorem 6. By Lemma 7, ϕβ0 is the EIF of νβ at P0. By the same arguments used to establish

Theorem 2, ν̃βn is a regular estimator of νβ(P0), and, in particular, n1/2[ν̃βn − νβ(Pϵ)]⇝ H
β under the

sampling of n iid draws from Pϵ=n−1/2 . Combining this with the pathwise differentiability of νβ , this

shows that n1/2[ν̃βn − νβ(P0)] ⇝ H
β + ν̇β0 (s), where ν̇

β
0 := Γβ ◦ ν̇0 is the local parameter of νβ at P0.
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By similar arguments to those used in the proof of Theorem 3, ∥Hβ + ν̇β0 (s)∥2H is a continuous random

variable. Combining this with the fact that ζ̂n → ζ1−α shows that

Pn
ϵ=n−1/2

{
h0 ̸∈ Γ−1

β [Cβ
n(ζ̂n)]

}
n→∞−→ Pr

{
∥Hβ + ν̇β0 (s)∥2H > ζ1−α

}
.

By Corollary 2 of Lewandowski et al. (1995), the definition of ζ1−α, and the fact that ∥ν̇0(s)∥H > 0 and

β > 0 entrywise together imply that ∥ν̇β0 (s)∥H > 0, the right-hand side above is strictly larger than α.

To see that ν(Pϵ=n−1/2) is an n−1/2-rate local alternative, note that

∥ν(Pϵ=n−1/2)− h0∥H = ∥ν(Pϵ=n−1/2)− ν(P0)∥H
= n−1/2∥ν̇0(s)∥H + o(n−1/2) = O(n−1/2).

Above we used that ν(P0) = h0, {Pϵ : ϵ} is quadratic mean differentiable, and ν̇0 is the local parameter

of ν at P0.

D A regularized inverse covariance operator and a consistent

estimator thereof

Let Σ0 : h 7→ E[⟨h,H⟩HH] denote the covariance operator of the Gaussian random element H from

Theorem 2. In this appendix, we study the regularized inverse Ω0 = [(1− λ)Σ0 + λI]−1, where λ > 0

and I denotes the identity operator on H. Though it would be interesting to study the behavior of

our confidence set in cases where λ shrinks to zero with sample size, doing so may be challenging since

the inverse covariance operator Σ−1
0 may not exist and, even if it does, it will generally be unbounded,

which will complicate the use of the continuous mapping theorem that we use to justify the proof of the

asymptotic validity of our confidence set (Theorem 3). Hence, while studying the case where λ shrinks to

zero slowly with sample size is an interesting area for future work, here we focus on the case where λ is a

fixed constant that does not depend on sample size.

The regularized inverse of interest writes as Ω0 = fλ(Σ0), where, for a positive semidefinite linear

operator Σ : H → H, fλ(Σ) := [(1− λ)Σ+ λI]−1. The operator fλ can be seen to be Lipschitz continuous

relative to the operator norm with Lipschitz constant (1−λ)/λ2, which holds since, for positive semidefinite

Σ1 and Σ2,

∥fλ(Σ1)− fλ(Σ2)∥op
=
∥∥[(1− λ)Σ1 + λI]−1 ◦ {[(1− λ)Σ2 + λI]− [(1− λ)Σ1 + λI]} ◦ [(1− λ)Σ2 + λI]−1

∥∥
op

= (1− λ)
∥∥[(1− λ)Σ1 + λI]−1 ◦ (Σ1 − Σ2) ◦ [(1− λ)Σ2 + λI]−1

∥∥
op

≤ (1− λ) ∥(1− λ)Σ1 + λI∥op ∥Σ1 − Σ2∥op ∥(1− λ)Σ2 + λI∥op
≤ (1− λ)λ−2 ∥Σ1 − Σ2∥op .

By the continuous mapping theorem, an operator-norm-consistent estimator Ωn of Ω0 — that is,

one for which ∥Ωn − Ω0∥op = op(1) — is thus given by Ωn = fλ(Σn), where Σn is any operator-

norm consistent estimator of Σ0. The following lemma shows that one such estimator is given by

h 7→ 1
2

∑2
j=1EP j

n
[⟨h, ϕjn(Z)⟩Hϕjn(Z)].

Lemma S12. Fix λ > 0. Suppose that ∥ϕ0∥L2(P0;H) < ∞ and ∥ϕjn − ϕ0∥L2(P0;H) = op(1) for each

j ∈ {1, 2}. If Σn : h 7→ 1
2

∑2
j=1EP j

n
[⟨h, ϕjn(Z)⟩Hϕjn(Z)], then ∥Σn − Σ0∥op = op(1).

In what follows, for a function ϕ : Z → H, we let ⟨h, ϕ⟩H denote the map z 7→ ⟨h, ϕ(z)⟩H. We also recall
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that H1 denotes the unit ball of H. We give the proof of the above result after we prove the following

supporting lemma.

Lemma S13. In the setting of Lemma S12,
{
z 7→ ⟨h, ϕ0(z)⟩2H : h ∈ H1

}
is P0-Glivenko-Cantelli. Hence,

suph∈H1
(P 1

n − P0)⟨h, ϕ0⟩2H = op(1).

Proof of Lemma S13. In what follows we let F :=
{
⟨h, ϕ0⟩2H : h ∈ H1

}
. We will show that this collection

of functions is P0-Glivenko-Cantelli, which is the first result in the statement of the lemma. Combining

this with the fact that P 1
n is the empirical distribution of an iid sample from P0 will then give the second

result. To establish that F is Glivenko-Cantelli, we will show that the conditions of Theorem 2.4.3 in

van der Vaart and Wellner (1996) are satisfied. These conditions follow from F having a P0-integrable

envelope function F and, moreover, satisfying an appropriate covering number condition — we will define

this condition in the next paragraph. Before doing so, we note that F has P0-integrable envelope function

F (z) := ∥ϕ0(z)∥2H. To see that this function is indeed an envelope of F , note that, for any h ∈ H1, the

Cauchy-Schwarz inequality shows that ⟨h, ϕ0(z)⟩2H ≤ ∥ϕ0(z)∥2H = F (z). To see that F is P0-integrable,

note that P0F = ∥ϕ0∥2L2(P0;H), which is finite by an assumption of Lemma S12.

In the remainder of this proof, we will establish a covering number condition on F that implies the

covering number condition from Theorem 2.4.3 in van der Vaart and Wellner (1996). In particular, in

what follows we will show that, for any ϵ > 0, there exists an N ∈ N such that, with probability tending

to one, the L1(P 1
n)-covering number of F is no more than N ; here we recall that, for fixed ϵ > 0, the

corresponding L1(P 1
n) covering number of F denotes the size of the minimal ϵ-cover of F relative to the

L1(P 1
n) metric. Problem 2.4.2 in van der Vaart and Wellner (1996) justifies why this condition suffices to

establish the covering number condition in Theorem 2.4.3 of that reference.

Fix ϵ > 0 and an orthonormal basis (hk)
∞
k=1 of H. By the monotone convergence theorem and the

P0-Bochner square integrability of ϕ0,

lim
K′→∞

P0




K′∑

k=1

⟨hk, ϕ0⟩2H


 = P0

[
∞∑

k=1

⟨hk, ϕ0⟩2H

]
= ∥ϕ0∥2L2(P0;H) <∞.

Hence, there exists a K < ∞ such that P0

[∑K
k=1⟨hk, ϕ0⟩2H

]
> ∥ϕ0∥2L2(P0;H) − ϵ/8, and so, for this K,

P0

[∑∞
k=K+1⟨hk, ϕ0⟩2H

]
≤ ϵ/8. By the weak law of large numbers, we further have that

P 1
n

[
∞∑

k=K+1

⟨hk, ϕ0⟩2H

]
= P0

[
∞∑

k=K+1

⟨hk, ϕ0⟩2H

]
+ op(1).

Hereafter we work on the event En where (i) the op(1) term above is less than ϵ/8, so that the left-hand

side above is no more than ϵ/4, and (ii) ∥ϕ0∥2L2(P 1
n;H) ≤ ∥ϕ0∥2L2(P0;H) + ϵ; note that En holds with

probability tending to one as n → ∞. We now show that there exists a fixed subset H̃1 of H1 such

that, on this event, Fϵ := {⟨h, ϕ0⟩2H : h ∈ H̃1} is an ϵ-cover of F . In particular, we take H̃1 to be

a finite δ-cover of the finite-dimensional subset H̃1 := H1 ∩ span{h1, . . . , hK} of H1 relative to the

H-norm, where δ := ϵ/[4(∥ϕ0∥2L2(P0;H) + ϵ)]. Such a finite δ-cover is guaranteed to exist because the

unit ball in a finite-dimensional Hilbert space is necessarily totally bounded in the norm topology. To

see that Fϵ is indeed an ϵ-cover of F , fix h ∈ H and let h̃ ∈ H̃1 be such that ∥πKh − h̃∥H ≤ δ, where

πKh := ΠH(h | span{h1, . . . , hK}). Observe that

∥∥∥⟨h, ϕ0⟩2H − ⟨h̃, ϕ0⟩2H
∥∥∥
L1(P 1

n)

≤
∥∥⟨h, ϕ0⟩2H − ⟨πKh, ϕ0⟩2H

∥∥
L1(P 1

n)
+
∥∥∥⟨πKh, ϕ0⟩2H − ⟨h̃, ϕ0⟩2H

∥∥∥
L1(P 1

n)
. (S33)
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We now show each of the two terms on the right-hand side is no more than ϵ/2. For the first term, we let

πKϕ0(z) := ΠH[ϕ0(z) | span{h1, . . . , hK}] and note that

∥∥⟨h, ϕ0⟩2H − ⟨πKh, ϕ0⟩2H
∥∥
L1(P 1

n)

=

∫
|⟨h+ πKh, ϕ0(z)⟩H⟨h− πKh, ϕ0(z)⟩H|P 1

n(dz)

≤
[∫

⟨h+ πKh, ϕ0(z)⟩2HP 1
n(dz)

]1/2 [∫
⟨h− πKh, ϕ0(z)⟩2HP 1

n(dz)

]1/2

=

[∫
⟨h+ πKh, ϕ0(z)⟩2HP 1

n(dz)

]1/2 [∫
⟨h− πKh, ϕ0(z)− πKϕ(z)⟩2HP 1

n(dz)

]1/2

≤ ∥h+ πKh∥H∥h− πKh∥H∥ϕ0 − πKϕ0∥2L2(P 1
n;H).

The first equality holds by the definition of the L1(P 1
n) norm, both inequalities hold by Cauchy-Schwarz,

and the second equality holds because h− πKh is orthogonal to span{h1, . . . , hK}. Now, since h ∈ H1,

the triangle inequality and the fact that orthogonal projections cannot increase length show that

∥h+ πKh∥H∥h− πKh∥H ≤ 2. Furthermore, by the choice of K and the fact that we are working on the

event En, ∥ϕ0 − πKϕ0∥2L2(P 1
n;H) ≤ ϵ/4. Hence, the first term on the right-hand side of (S33) is no more

than ϵ/2. For the second term in (S33), two consecutive applications of the Cauchy-Schwarz inequality

yield that

∥∥∥⟨πKh, ϕ0⟩2H − ⟨h̃, ϕ0⟩2H
∥∥∥
L1(P 1

n)

=

∫
|⟨πKh+ h̃, ϕ0(z)⟩H⟨πKh− h̃, ϕ0(z)⟩H|P 1

n(dz)

≤
[∫

⟨πKh+ h̃, ϕ0(z)⟩2HP 1
n(dz)

]1/2 [∫
⟨πKh− h̃, ϕ0(z)⟩2HP 1

n(dz)

]1/2

≤ ∥πKh+ h̃∥H∥πKh− h̃∥H∥ϕ0∥2L2(P 1
n;H).

Now, by the triangle inequality and the fact that πKh and h̃ belong to H1, ∥πKh+ h̃∥H ≤ 2. Moreover,

because we are working on the event En, ∥ϕ0∥2L2(P 1
n;H) ≤ ∥ϕ0∥2L2(P0;H) + ϵ. Combining these bounds with

the fact that ∥πKh− h̃∥H ≤ δ := ϵ/[4(∥ϕ0∥2L2(P0;H) + ϵ)] gives that ∥⟨πKh, ϕ0⟩2H − ⟨h̃, ϕ0⟩2H∥L1(P 1
n)

≤ ϵ/2.

Returning to (S33), this shows that ∥⟨h, ϕ0⟩2H − ⟨h̃, ϕ0⟩2H∥L1(P 1
n)

≤ ϵ. As h ∈ H1 was arbitrary and

⟨h̃, ϕ0⟩2H ∈ Fϵ, this shows that Fϵ is an ϵ-cover of H1 on the event En. Since Fϵ contains finitely many

functions, we can invoke Theorem 2.4.3 of van der Vaart and Wellner (1996) to show that F is a

P0-Glivenko Cantelli class.

We conclude this appendix with the proof of Lemma S12.

Proof of Lemma S12. For j ∈ {1, 2}, let Σj
n(h) := EP j

n
[⟨h, ϕjn(Z)⟩Hϕjn(Z)]. By the triangle inequality,

∥Σn − Σ0∥op =

∥∥∥∥∥∥
1

2

2∑

j=1

Σj
n − Σ0

∥∥∥∥∥∥
op

≤ 1

2

2∑

j=1

∥∥Σj
n − Σ0

∥∥
op
.

Hence, it suffices to show that
∥∥Σj

n − Σ0

∥∥
op

= op(1). We show this for the case where j = 1, and the case

where j = 2 follows by analogous arguments.

Because Σ1
n − Σ0 is a positive, self-adjoint operator, it holds that

∥Σ1
n − Σ0∥op = sup

h∈H1

⟨Σ1
n(h)− Σ0(h), h⟩H. (S34)
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We will bound the right-hand side above in what follows. To do this, we will use that, for any h ∈ H1,

⟨Σ1
n(h)− Σ0(h), h⟩H =

〈
P 1
n⟨h, ϕ1n⟩Hϕ1n − P0⟨h, ϕ0⟩Hϕ0, h

〉
H

=
〈
P 1
n

[
⟨h, ϕ1n⟩Hϕ1n − ⟨h, ϕ0⟩Hϕ0

]
+ (P 1

n − P0)⟨h, ϕ0⟩Hϕ0, h
〉
H

= P 1
n

[
⟨h, ϕ1n⟩2H − ⟨h, ϕ0⟩2H

]
+ (P 1

n − P0)⟨h, ϕ0⟩2H
= P 1

n⟨h, ϕ1n − ϕ0⟩H⟨h, ϕ1n + ϕ0⟩H + (P 1
n − P0)⟨h, ϕ0⟩2H.

Applying the triangle and Cauchy-Schwarz inequalities to the above and combining the result with (S34)

shows that

∥Σ1
n − Σ0∥op ≤

[
sup
h∈H1

P 1
n⟨h, ϕ1n − ϕ0⟩2H

]1/2 [
sup
h∈H1

P 1
n⟨h, ϕ1n + ϕ0⟩2H

]1/2

+ sup
h∈H1

(P 1
n − P0)⟨h, ϕ0⟩2H.

Using that suph∈H1
P 1
n⟨h, ϕ⟩2H ≤ ∥ϕ∥2L2(P 1

n;H) for ϕ : Z → H and then subsequently applying the triangle

inequality in L2(P 1
n ;H), we find that

∥Σ1
n − Σ0∥op ≤ ∥ϕ1n − ϕ0∥L2(P 1

n;H)

(
2∥ϕ0∥L2(P 1

n;H) + ∥ϕ1n − ϕ0∥L2(P 1
n;H)

)

+ sup
h∈H1

(P 1
n − P0)⟨h, ϕ0⟩2H.

The second term is op(1) by Lemma S13. We now show that the first term is also op(1). To see this, first

note that ∥ϕ0∥L2(P 1
n;H) = Op(1) by the fact that ∥ϕ0∥L2(P0;H) <∞ and since, by the weak law of large

numbers, ∥ϕ0∥2L2(P 1
n;H) = ∥ϕ0∥2L2(P0;H) + op(1). Hence, it suffices to show that ∥ϕ1n −ϕ0∥L2(P 1

n;H) = op(1).

To see that this holds, note that, for any δ > 0, the probability that ∥ϕ1n − ϕ0∥2L2(P 1
n;H) exceeds δ

conditional on the data used to create the estimate ϕ1n of ϕ0 satisfies the following:

Pn
0

{
∥ϕ1n − ϕ0∥2L2(P 1

n;H) > δ
∣∣∣Z1, . . . , Zn/2

}

≤ min
{
1, δ−1EPn

0

[
∥ϕ1n − ϕ0∥2L2(P 1

n;H)

∣∣∣Z1, . . . , Zn/2

]}

= min
{
1, δ−1∥ϕ1n − ϕ0∥2L2(P0;H)

}
.

Taking an expectation of both sides over Z1, . . . , Zn/2, using that ∥ϕ1n−ϕ0∥2L2(P0;H) = op(1), and applying

the dominated convergence theorem shows that the right-hand side is o(1). As δ > 0 was arbitrary, this

shows that ∥ϕ1n − ϕ0∥L2(P 1
n;H) = op(1), which gives the result.

E A conservative estimator of the threshold used to define our

confidence sets that does not require the bootstrap

We now present a conservative estimator of the threshold ζ1−α that is used to construct the confidence

sets described in Section 4.2. This estimator is applicable in settings where Ω0 is the identity function.

Its form is motivated by Theorem 1 in Székely and Bakirov (2003), which concerns tail probabilities for

Gaussian quadratic forms of the type
∑∞

k=1 ckN
2
k , where (Nk)

∞
k=1 is an iid sequence of standard normal

random variables and (ck)
∞
k=1 is a sequence of nonnegative constants. This result is applicable when Ω0 is

the identity operator since, in that case, ∥H∥2H has the same distribution as
∑∞

k=1E0[⟨ϕ0(Z), h0,k⟩2H]N2
k ,

where (h0,k)
∞
k=1 are the unit eigenvectors of the covariance operator E[⟨H, · ⟩HH] of H. When α ≤ 0.2, as

it will be in most practical settings, Theorem 1 in Székely and Bakirov (2003) can be used to show that
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Pr{∥H∥2H > χ2
1−α∥ϕ0∥2L2(P0;H)} ≤ α, where χ2

1−α denotes the (1−α)-quantile of a chi-squared distribution

with 1 degree of freedom. Hence, if s2n is a consistent estimator of ∥ϕ0∥2L2(P0;H), then Theorem 3 shows

that Cn(χ2
1−α · s2n) is an asymptotically valid, albeit conservative, (1 − α)-confidence set for ν(P0). If

ϕjn → ϕ0 in probability in L2(P0;H) for j ∈ {1, 2}, then Lemma S14, given below, shows that the

cross-fitted estimator 1
2

∑2
j=1 ∥ϕjn∥2L2(P j

n;H)
will converge in probability to ∥ϕ0∥2L2(P0;H), so that s2n can

be taken to be equal to this estimator.

Lemma S14. If ∥ϕ0∥L2(P0;H) <∞ and ∥ϕjn−ϕ0∥L2(P0;H) = op(1) for each j ∈ {1, 2}, then ∥ϕjn∥2L2(P j
n;H)

converges to ∥ϕ0∥2L2(P0;H) in probability for each j ∈ {1, 2} and, consequently, 1
2

∑2
j=1 ∥ϕjn∥2L2(P j

n;H)
→

∥ϕ0∥2L2(P0;H) in probability as well.

Proof of Lemma S14. We begin by showing that ∥ϕjn∥2L2(P j
n;H)

p→ ∥ϕ0∥2L2(P0;H) for fixed j ∈ {1, 2}. Note

that

∣∣∣∥ϕjn∥2L2(P j
n;H)

− ∥ϕ0∥2L2(P0;H)

∣∣∣

≤
∣∣∣∣
∫

∥ϕjn(z)∥2H(P j
n − P0)(dz)

∣∣∣∣+
∣∣∣∥ϕjn∥2L2(P0;H) − ∥ϕ0∥2L2(P0;H)

∣∣∣ .

We study these two terms separately. The second term is op(1) since (i) by the reverse triangle inequality

and the assumption of this theorem, |∥ϕjn∥L2(P0;H)−∥ϕ0∥L2(P0;H)| ≤ ∥ϕjn−ϕ0∥L2(P0;H) = op(1) and (ii) by

the continuous mapping theorem, ∥ϕjn∥L2(P0;H)
p→ ∥ϕ0∥L2(P0;H) implies that ∥ϕjn∥2L2(P0;H)

p→ ∥ϕ0∥2L2(P0;H).

In what follows, we show that the first term above is op(1) as well.

Combining the fact that ∥ϕjn(z)∥H ≤ ∥ϕjn(z) − ϕ0∥H + ∥ϕ0(z)∥H with the basic inequality that

(a+ b)2 ≤ 2(a2 + b2), and subsequently applying the triangle inequality, yields that

1

2

∣∣∣∣
∫

∥ϕjn(z)∥2H(P j
n − P0)(dz)

∣∣∣∣

≤
∣∣∣∣
∫ (

∥ϕjn(z)− ϕ0(z)∥2H + ∥ϕ0(z)∥2H
)
(P j

n − P0)(dz)

∣∣∣∣

≤
∣∣∣∣
∫

∥ϕjn(z)− ϕ0(z)∥2HP j
n(dz)

∣∣∣∣+
∣∣∣∣
∫

∥ϕjn(z)− ϕ0(z)∥2HP0(dz)

∣∣∣∣

+

∣∣∣∣
∫

∥ϕ0(z)∥2H(P j
n − P0)(dz)

∣∣∣∣ . (S35)

The second term is equal to ∥ϕjn(z)− ϕ0(z)∥2L2(P0;H) and so is op(1) by assumption. The third term is

op(1) by the weak law of large numbers, which is applicable since ∥ϕ0∥2L2(P0;H) < ∞ by assumption.

By Markov’s inequality, the fact that P j
n and P̂ j

n are fitted on different subsamples, and the fact that

probabilities are no more than 1, the conditional probability that the first term exceeds any fixed δ > 0

satisfies the following:

Pn
0

{∣∣∣∣
∫

∥ϕjn(z)− ϕ0(z)∥2HP j
n(dz)

∣∣∣∣ > δ

∣∣∣∣Z(j−1)n/2+1, . . . , Z(j−1)n/2+n/2

}

≤ min

{
1,

1

δ
∥ϕjn − ϕ0∥2L2(P0;H)

}
.

Taking an expected value of both sides over Z(j−1)n/2+1, . . . , Z(j−1)n/2+n/2
iid∼ P0 and using that ∥ϕjn(z)−

ϕ0(z)∥2L2(P0;H) = op(1), the dominated convergence theorem shows that
∣∣∫ ∥ϕjn(z)− ϕ0(z)∥2HP j

n(dz)
∣∣ > δ

occurs with probability tending to zero. As δ > 0 was arbitrary, this shows that the first term on the

right-hand side of (S35) is op(1), which completes the proof of the fact that ∥ϕjn∥2L2(P j
n;H)

p→ ∥ϕ0∥2L2(P0;H)

for j ∈ {1, 2}.
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Since ∥ϕjn∥2L2(P j
n;H)

p→ ∥ϕ0∥2L2(P0;H) for j ∈ {1, 2}, the continuous mapping theorem shows that

1
2

∑2
j=1 ∥ϕjn∥2L2(P j

n;H)
→ ∥ϕ0∥2L2(P0;H).

F Numerical considerations for computing the proposed confi-

dence sets

Evaluating whether some h0 ∈ H belongs to the confidence set in (24) requires computing the quadratic

form ⟨Ωn(ν̄n − h0), ν̄n − h0⟩H in a possibly infinite dimensional Hilbert space. In many cases, computing

this quadratic form will require leveraging some form of numerical approximation. One way of doing

this is to replace the computation of the quadratic form in (24) by a finite-dimensional approximation

thereof. To this end, for each m ∈ N we let Dm : H → R
m denote a linear operator. This linear operator

should have the property that, for any h1 and h2 in H, ⟨h1, h2⟩H m→∞−→ Dm(h1)
⊤Dm(h2), where here

and in all subsequent calculations all vectors are taken to be equal to column vectors when involved in

matrix operations. In practice, for a given sample size n, m can be chosen to be some large constant.

One natural choice of Dm corresponds to the map from h to the vector of the first m generalized Fourier

coefficients of h with respect to some orthonormal basis (hk)
∞
k=1, so that Dm(h) = (⟨hk, h⟩H)mk=1. If

H = L2([0, 1]) and it is known that Dm will only be evaluated on elements of H that have a continuous

version, as occurs if h0 is continuous and ν̄n is continuous with probability one, then another natural

choice is to take Dm(h) to be equal to (h(tk)/m
1/2)mk=1, where tk = k/(m+ 1) and h(tk) is taken to be

the evaluation of the continuous version of h at tk. If instead H = L2(R) and h still has a continuous

version, then Dm can be taken equal to (h(tk)/[mφµ,σ(tk)]
1/2)mk=1, where, for µ ∈ R and σ > 0, {tk}mk=1

are such that Φµ,σ(tk) = k/(m+1) with Φµ,σ and φµ,σ denoting the cumulative distribution function and

probability density function of a N(µ, σ2) distribution, respectively. In practice µ and σ may be selected

based on the data, which can be justified theoretically so long as their random values converge to some

limits in probability asymptotically — for example, in our simulation implementation of the bandlimited

density estimator from Example 1b, we take µ and σ/4 to be the empirical mean and standard deviation

of Y given A = 1, respectively.

The linear operator Dm can be used to approximate the infinite-dimensional quadratic form in (24)

with a finite-dimensional quadratic form. In particular, ⟨Ωn(ν̄n − h0), ν̄n − h0⟩H can be replaced by

Dm(ν̄n − h0)
⊤ Ω̃n,mDm(ν̄n − h0), where Ω̃n,m is an m-dimensional positive definite Hermitian matrix

whose value will depend on the standardization operator Ωn that it is meant to approximate. If Ωn is the

identity operator, then Ω̃n,m can be taken to be equal to the m-dimensional identity matrix Im. If Ωn is

instead the estimator of the regularized covariance operator described in Appendix D, then it can instead

be approximated by a regularized empirical covariance matrix. In particular, we can let Ω̃n,m := [(1−
λ)Σn,m + λIm]−1, where Σn,m := 1

2

∑2
j=1 P

j
n[Dm(ϕjn(·))Dm(ϕjn(·))⊤], where P j

n[Dm(ϕjn(·))Dm(ϕjn(·))⊤]
corresponds to the empirical covariance matrix of the random variable Dm(ϕjn(Z)) computed using the

empirical distribution P j
n. Alternatively, P j

n[Dm(ϕjn(·))Dm(ϕjn(·))⊤] may be replaced by the empirical

correlation matrix ofDm(ϕjn(Z)) under P
j
n in the definition of Ω̃n,m. Though using an empirical correlation

matrix rather than an empirical covariance matrix changes the quadratic form used to define the confidence

set, doing so can make selecting the parameter λ simpler because, in that case, the matrices Σn,m and Im

are on the same scale in the sense that both have trace m.

We conclude by noting that, when H is an RKHS on T with feature map t 7→ Kt, it will be possible to

compute the quadratic form ⟨Ωn(ν̄n−h0), ν̄n−h0⟩H explicitly in some cases. One particularly interesting

case occurs when ν̄n and h0 are both contained in the linear span of {Ktk}mk=1 and Ωn is the identity

operator, where the set {Ktk}mk=1 may depend on the observed data. In such cases, ν̄n−h0 =
∑m

k=1 ckKtk

for some c := (ck)
m
k=1 ∈ R

m, and so, letting G denote the Gram matrix with Gjk = Ktj (tk), it holds that
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⟨ν̄n−h0, ν̄n−h0⟩H = c⊤Gc. If h0 = 0, which would be the key value of h0 to consider when the confidence

set is being used to test the null hypothesis that ν(P0) = 0 against the complementary alternative, it is

necessarily the case that h0 is in the linear span of {Ktk}mk=1 for any collection {tk}mk=1. Hence, in these

cases, it suffices that ν̄n be in the linear span of {Ktk}mk=1 for some m. Such cases arise, for example,

when using the MMD to test for the equality of two distributions (Gretton et al., 2012); when conducting

these tests, ν̄n is equal to the difference of the one-step estimators of the kernel mean embeddings of two

distributions.

G Cross-validated selection of the regularization parameter

The key observation that motivates the risk we use is that, along any quadratic mean differentiable

submodel {Pϵ : ϵ ∈ [0, δ)} ∈ P(P,P, s), ν(Pϵ) − ν(P ) should approximately be equal to ϵν̇P (s) or, put

another way, should approximately be equal to

argmin
h∈H

∥h− ϵν̇P (s)∥2H = argmin
h∈H

[
1

2
∥h∥2H − ϵ⟨h, ν̇P (s)⟩H

]

= argmin
h∈H

[
1

2
∥h∥2H − ϵ⟨ν̇∗P (h), s⟩L2(P )

]
.

By Lemma S6 in Appendix C, ϵ⟨ν̇∗P (h), s⟩L2(P ) = Pϵν̇
∗
P (h) + o(ϵ) under appropriate conditions. This

suggests that ν(Pϵ)− ν(P ) should approximately equal argminh∈H[ 12∥h∥2H − Pϵν̇
∗
P (h)]. Letting P0 play

the role of Pϵ and an estimate P̂ loss
n of P0 play the role of P suggests that ν(P0) − ν(P̂ loss

n ) should

approximately minimize 1
2∥h∥2H − P0ν̇P̂ loss

n
(h) over h ∈ H. Put another way, ν(P0) should approximately

minimize E0[LP̂ loss
n

(Z;h)] = 1
2∥h−ν(P̂ loss

n )∥2H−P0ν̇P̂ loss
n

[h−ν(P̂ loss
n )] over h ∈ H. This suggests using the

loss LP̂ loss
n

when performing cross-validation to select the regularization parameter βn. Such an approach

is presented in Algorithm 1. We refer the reader to van der Laan and Dudoit (2003) for arguments that

can be used to establish oracle guarantees for this cross-validation selector.

H Inefficient influence operators and influence functions

When H is finite-dimensional and the model is semiparametric at P0 — in the sense that its tangent space

ṖP0
is a strict subspace of L2

0(P0) — there are generally many influence functions that can be used to

construct a one-step estimator of ν(P0). In our more general Hilbert-valued setting, the same can be done

by replacing the efficient influence operator that we use to construct our (regularized) one-step estimators

by an inefficient influence operator. Each inefficient influence operator is the Hermitian adjoint of a

bounded linear extension ν̇ext,P of the local parameter ν̇P from ṖP to L2
0(P ). All such extensions take

the form ν̇ext,P (s) = ν̇P (ΠL2
0(P )[s | ṖP ]) + ξ̇P (ΠL2

0(P )[s | Ṗ⊥
P ]), where Ṗ⊥

P is the orthogonal complement

of ṖP ⊂ L2
0(P ) and ξ̇P : Ṗ⊥

P → H is bounded and linear. The corresponding influence operator is the

Hermitian adjoint of ν̇ext,P , which takes the form ν̇∗ext,P = ν̇∗P + ξ̇∗P , where ν̇
∗
P is the efficient influence

operator and ξ̇∗P is the Hermitian adjoint of ξ̇P . The efficient influence operator is recovered by taking ξ̇P

to be the zero operator. If ξ̇P ≠ 0, which we assume hereafter, then ν̇∗ext,P ≠ ν̇∗P and we call ν̇∗ext,P an

inefficient influence operator.

In some cases, ν̇∗ext,P will have an associated inefficient influence function ϕext,P . Concretely, this

holds if and only if ν̇∗ext,P (·)(z) is bounded and linear P -almost surely; in these cases, ϕext,P (z) is the

Riesz representation of this operator. The following result shows that an efficient influence function must

exist for an inefficient one to exist, and also provides a means to derive the form of the EIF based on

the form of an inefficient influence function. We let Φ denote the L2(P ;H)-closure of the linear span of
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Algorithm 1 Cross-validated selection of the regularization parameter βn

1: Inputs: Data Z1, Z2, . . . , Zn, estimator to be used to estimate the nuisance P0 and a finite subset

Bn of ℓ2∗ of candidate values for the regularization parameter

2: Generate folds: partition the multiset {Zi}ni=1 into multisets Z1,Z2,Z3,Z4 of roughly equal size

3: for all folds j = 1, 2, 3, 4 do

4: Nuisance estimation: using only data in Zj , estimate P0 as P̂ j
n.

5: end for

6: for all permutations j = (j(1), j(2), j(3), j(4)) of {1, 2, 3, 4} do

7: Nuisance for regularized one-step: let P̂ os
n = P̂

j(1)
n

8: Nuisance for loss function: let P̂ loss
n = P̂

j(2)
n

9: for all candidate regularization parameters β := (βk)
∞
k=1 ∈ Bn do

10: Define regularized one-step estimator: ν̃βn,j := ν(P̂ os
n ) + 1

|Zj(3)|

∑
z∈Zj(3)

ϕβ
P̂ os

n

(z)

11: Compute risk (j, β)-specific risk: Rβ
j := 1

|Zj(4)|

∑
z∈Zj(4)

LP̂ loss
n

(z; ν̃βn,j)

12: end for

13: end for

14: for all candidate regularization parameters β := (βk)
∞
k=1 ∈ Bn do

15: Aggregate the risks: Rβ := 1
24

∑
permutations j of {1, 2, 3, 4}R

β
j

16: end for

17: return β⋆ ∈ argminβ∈Bn
Rβ

{z 7→ s(z)h : h ∈ H, s ∈ ṖP }.

Lemma S15 (Expressing the EIF in terms of an inefficient influence function). If ν is pathwise dif-

ferentiable at P ∈ P with inefficient influence function ϕext,P ∈ L2(P ;H), then ν has EIF ϕP =

ΠL2(P ;H) [ϕext,P |Φ] ∈ L2(P ;H).

The proof of this lemma is given at the end of this appendix.

One-step estimators can be constructed using inefficient influence operators. Beginning with cases

where an inefficient influence function exists and using notation from Section 2.5, we define a cross-

fitted one-step estimator as ν̄ext,n := 1
2

∑2
j=1[ν(P̂

j
n) + P j

nϕ
j
ext,n], where ϕ

j
ext,n := ϕext,P̂ j

n
. Under similar

conditions to those of Theorem 2, it can be shown that ν̄ext,n is regular and asymptotically linear with

influence function ϕext,0 := ϕext,P0
and

n1/2 [ν̄ext,n − ν(P0)]⇝ Hext, (S36)

where Hext is a tight H-valued Gaussian random variable that is such that, for each h ∈ H, ⟨Hext, h⟩H ∼
N(0, E0[⟨ϕext,0(Z), h⟩2H]). The above weak convergence facilitates the construction of confidence sets for

ν(P0) using analogous methods to those used in Section 4.2. The main distinction between ν̄ext,n and ν̄n

is that, since ϕext,0 is not the EIF, the conditions of the convolution theorem fail to hold (Theorem 3.11.2

and Lemma 3.11.4 of van der Vaart and Wellner, 1996), and so ν̄ext,n will not be efficient — e.g., (23)

will not generally hold.

Moving now to cases where an inefficient influence function does not exist, we define a βn-regularized

one-step estimator as ν̄βn

ext,n := 1
2

∑2
j=1[ν(P̂

j
n) + P j

nϕ
j,βn

ext,n] with ϕ
j,βn

ext,n(z) :=
∑∞

k=1 βn,kν̇
∗
ext,P̂ j

n
(hk)(z)hk.

This regularized one-step estimator satisfies similar guarantees to those satisfied by the one based on
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the efficient influence operator: it achieves a ∥βn∥ℓ2/n1/2-rate of convergence when a drift, regular-

ized remainder, and bias terms are small; the drift term will be small if ϕj,βn

ext,n is close to ϕβn

ext,0(z) :=∑∞
k=1 βn,kν̇

∗
ext,P0

(hk)(z)hk in L2(P0;H); the remainder will be small if maxj supk∈N |⟨ν(P̂ j
n)−ν(P0), hk⟩H+

P0ν̇
∗
ext,P̂ j

n
(hk)| is op(n−1/2); and the bias term will be small if ν(P ) is sufficiently smooth for all P ∈ P.

As for confidence sets, the same methods as described in Section 5.2 can be used once one notes that, for

any fixed β ∈ ℓ2 ∩ (0, 1]N, νβ := Γβ ◦ ν is pathwise differentiable at P0 with inefficient influence function

ϕβext,0. This can be used to justify, for example, the asymptotic validity of the (1− α) confidence set

{
h ∈ H :

∑∞
k=1β

2
k

[
1
2

∑2
j=1

{
⟨ν(P̂ j

n), hk⟩H + P j
nν̇

∗
ext,P̂ j

n
(hk)

}
− ⟨h, hk⟩H

]2
≤ ζ̂ext,n/n

}
,

where ζ̂ext,n is selected via the bootstrap. Since ν̇∗
ext,P̂ j

n
is an inefficient influence operator, the threshold

ζ̂ext,n will generally be asymptotically larger than the one used for the confidence set built based on the

efficient influence operator given in (30) (see Lemma 3.11.4 of van der Vaart and Wellner, 1996).

Proof of Lemma S15. Denote by ν̇∗ext,P the inefficient influence operator to which ϕext,P corresponds,

and let its Hermitian adjoint ν̇ext,P denote the extension of the local parameter ν̇P used to define this

inefficient influence operator. Throughout this proof we let ϕ⋄P := ΠL2(P ;H)[ϕext,P |Φ] ∈ L2(P ;H). Our

goal is to show that ν has EIF ϕP = ϕ⋄P .

Since we have assumed throughout that a separable version of the efficient influence process is used,

there exists a countable dense subset H′ of H and a P -probability one subset Z ′ of Z such that, for

all h ∈ H and z ∈ Z ′, there exists an H′-valued sequence (h′j)
∞
j=1 that converges to h and satisfies

ν̇∗P (h
′
j)(z) → ν̇∗P (h)(z) as j → ∞. Fix ϵ > 0 and z ∈ Z ′. Let hϵ be such that

|ν̇∗P (hϵ)(z)− ⟨hϵ, ϕ⋄P (z)⟩H| ≥ sup
h∈H

|ν̇∗P (h)(z)− ⟨h, ϕ⋄P (z)⟩H| − ϵ.

Fix an H′-valued sequence (hϵ,j)
∞
j=1 that converges to hϵ and is such that ν̇∗P (hϵ,j)(z) → ν̇∗P (hϵ)(z) as

j → ∞. By the choice of this sequence and the fact that ⟨ · , ϕ⋄P (z)⟩H is continuous, there exists a large

enough j such that

∣∣ν̇∗P (hϵ,j)(z)− ⟨hϵ,j , ϕ⋄P (z)⟩H
∣∣ ≥ sup

h∈H
|ν̇∗P (h)(z)− ⟨h, ϕ⋄P (z)⟩H| − 2ϵ.

Taking a supremum over hϵ,j ∈ H′ on the left and then recalling that ϵ > 0 was arbitrary shows that

sup
h∈H′

|ν̇∗P (h)(z)− ⟨h, ϕ⋄P (z)⟩H| = sup
h∈H

|ν̇∗P (h)(z)− ⟨h, ϕ⋄P (z)⟩H| .

Now, for each h ∈ H′, let Z ′′
h := {z ∈ Z : ν̇∗P (h)(z) = ⟨h, ϕ⋄P (z)⟩H}. In the remainder we shall show that

Z ′′
h has P -probability one. Combining this with the above display then shows that ν has EIF ϕP = ϕ⋄P ,

since that will show that the right-hand side above is 0 on the P -probability one set Z ′ ∩ [∩h∈H′Z ′′
h ].

Fix h ∈ H′ and let ⟨h, ϕ⋄P ⟩H denote the function z 7→ ⟨h, ϕ⋄P (z)⟩H. We will show that ⟨ν̇∗P (h) −
⟨h, ϕ⋄P ⟩H, u⟩L2(P ) = 0 for a generic u ∈ L2(P ), which will then establish that Z ′′

h is a P -probability one set

and complete our proof. Writing u = s+s⊥ with s ∈ ṖP and s⊥ belonging to the orthogonal complement of

ṖP in L2(P ), it suffices to show that ⟨ν̇∗P (h)−⟨h, ϕ⋄P ⟩H, s⟩L2(P ) = 0 and ⟨ν̇∗P (h)−⟨h, ϕ⋄P ⟩H, s⊥⟩L2(P ) = 0.

Beginning with the former equality and using that the restriction of ν̇ext,P to ṖP is equal to ν̇P ,

⟨ν̇∗P (h), s⟩L2(P ) = ⟨h, ν̇P (s)⟩H = ⟨h, ν̇ext,P (s)⟩H =
〈
ν̇∗ext,P (h), s

〉
L2(P )

=

∫
ν̇∗ext,P (h)(z)s(z)P (dz) =

∫
⟨h, ϕext,P (z)⟩H s(z)P (dz)
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=

∫
⟨s(z)h, ϕext,P (z)⟩H P (dz) = ⟨z 7→ s(z)h, ϕext,P ⟩L2(P ;H) .

Since z 7→ s(z)h ∈ Φ and ϕ⋄P is an orthogonal projection of ϕext,P onto Φ, the right-hand side equals

⟨z 7→ s(z)h, ϕ⋄P ⟩L2(P ;H). By similar calculations to those used above, this in turn equals ⟨⟨h, ϕ⋄P ⟩H, s⟩L2(P ).

Hence, ⟨ν̇∗P (h) − ⟨h, ϕ⋄P ⟩H, s⟩L2(P ) = 0. To see that ⟨ν̇∗P (h) − ⟨h, ϕ⋄P ⟩H, s⊥⟩L2(P ) = 0, observe that

⟨ν̇∗P (h), s⊥⟩L2(P ) = 0 since ν̇∗P has codomain ṖP , and

⟨⟨h, ϕ⋄P ⟩H, s⊥⟩L2(P ) = ⟨z 7→ s⊥(z)h, ϕ⋄P ⟩L2(P ;H) = 0,

where we have used that all elements of Φ ⊂ L2(P ;H) are orthogonal to z 7→ s⊥(z)h by virtue of the fact

that s⊥ is orthogonal to ṖP ⊂ L2(P ).

I Additional simulation results

I.1 Simulation results for Example 1b

We evaluate the coverage of our spherical L2(R) confidence sets for a bandlimited counterfactual density of

Y (1). When doing this, we take Q(1) to be the distribution of σMS+µM , where (µ1, µ2, µ3) = (−6,−2, 5),

(σ1, σ2, σ3) = (2, 3, 2), and M ∼ Unif{1, 2, 3} is drawn independently of the random variable S, which

has density function 3sinc4(·)/(2π). The density of Q(1) is depicted in the top left corner of Figure 1. It

is bandlimited, with the support of its Fourier transform equal to [−2, 2]. We focus on the case where the

bandlimiting parameter b used to define ν in Eq. 15 is equal to 2, so that the target of inference ν(P0)

coincides with the density of Q(1).

Figure S1 displays the coverage of our confidence sets at different nominal levels. At all nominal levels

larger than 75%, the confidence sets are slightly conservative at the sample sizes considered, with the

actual coverage probability approaching the nominal level as n grows. A similar improvement with n holds

across the full 0-100% range of nominal levels, which both supports our theoretical weak convergence

guarantees for the one-step estimator and their finite-sample utility. In Table S1, we also verified that,

as anticipated by our theory for cases where an EIF exists, the mean integrated squared error of the

one-step estimator decays at an n−1 rate.

We conclude by comparing the size our L2(R) confidence set Cn to those of a pointwise confidence

interval for the counterfactual density function at zero, namely ν(P0)(0). To make this comparison, we

first note that, for any y ∈ R, including y = 0, and any h ∈ Cn := {h ∈ H : ∥h− ν̄n∥2L2(λY ) ≤ ζ̂n/n},

|h(y)− ν̄n(y)| =
∣∣∣∣
∫ ∞

−∞

Ky(ỹ) [h(ỹ)− ν̄n(y)]λY (dỹ)

∣∣∣∣

≤
∥∥Ky

∥∥
L2(λY )

∥h− ν̄n∥L2(λY ) ≤ (bζ̂n/[nπ])
1/2, (S37)

where we used that
∥∥Ky

∥∥
L2(λY )

= (b/π)1/2. Consequently, our L2(R) confidence set yields an interval for

ν(P0)(0) of the form ν̄n(0)± (bζ̂n/[nπ])
1/2. In our simulation setting, this confidence interval was about

2.3 times wider than an efficient Wald-type confidence interval for the real-valued quantity ν(P0)(0) when

α = 0.05. Hence, if a point evaluation of ν(P0) is truly the target of inference, then there would be a

benefit to directly pursuing inference for this quantity, rather than the function as a whole. However,

if the function ν(P0) is the target of inference, then our L2(R) confidence set is likely the preferred

method for making inference. This may be especially true in this bandlimited density example since

the fact that (S37) holds for all y ∈ R shows that a uniform confidence band for ν(P0) is given by

Cn,∞ := {h ∈ H : supy∈R |h(y)− ν̄n(y)| ≤ (bζ̂n/[nπ])
1/2}.
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Figure S1: Actual versus nominal coverage of confidence sets for the bandlimited density function based on 5000
Monte Carlo repetitions. The inset displays nominal coverage values that are of particular interest in practice.

Sample Size (n)
250 500 1000 2000 4000

Plug-In 1.11 1.59 2.22 3.04 4.15
One-Step 3.58 3.30 3.11 2.97 2.84

Table S1: Performance of the plug-in and one-step estimators at different sample sizes n, where performance is
measured in terms of n times the mean integrated squared error. As would be predicted by theory, this criterion
appears to stabilize with n for the one-step estimator. In contrast, it grows with n for the plug-in estimator.

I.2 Supplemental tables and figures for simulation studies
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Figure S2: Densities Q(1) of Y (1) used in the three settings considered in the evaluation of estimators in
Example 1a. Each of these densities is a uniform mixture 1

3

∑
3

k=1
Beta(ck, dk), where the parameters indexing

the beta distributions in this mixture differ across the three settings plotted in the figure. In particular,
{(c1, d1), (c2, d2), (c3, d3)} is equal to {(2, 2), (3, 3), (4, 4)} for ‘Zero on Both Sides’, {(1, 1), (8, 4), (4, 8)} for ‘Nonzero
on Both Sides’, and {(1, 5), (5, 2), (4, 8)} for ‘Spike on Left Side’. When evaluating the mean integrated squared
error performance of estimators of the density of Y (1), Q(0) is set equal to Q(1).
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(a) Parameter choices leading to improved power against smoother alternatives: c = 2.5 and s = 2.
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(b) Parameter choices leading to improved power against rougher alternatives: c = 10 and s = 0.5.

Figure S3: Same as Figure 4, but at different choices of the tuning parameters indexing the tests. The tests based
on Example 1a set the regularization parameter so that βk = 1/[1 + (k/c)2] for a constant c and the MMD test
selects a bandwidth equal to some constant s times median{Y1, . . . , Yn}. The same npcausal panel from Figure 4
is shown as a benchmark in both subfigures.
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