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Abstract

We present estimators for smooth Hilbert-valued parameters, where smoothness is characterized
by a pathwise differentiability condition. When the parameter space is a reproducing kernel Hilbert
space, we provide a means to obtain efficient, root-n rate estimators and corresponding confidence
sets. These estimators correspond to generalizations of cross-fitted one-step estimators based on
Hilbert-valued efficient influence functions. We give theoretical guarantees even when arbitrary
estimators of nuisance functions are used, including those based on machine learning techniques. We
show that these results naturally extend to Hilbert spaces that lack a reproducing kernel, as long as
the parameter has an efficient influence function. However, we also uncover the unfortunate fact that,
when there is no reproducing kernel, many interesting parameters fail to have an efficient influence
function, even though they are pathwise differentiable. To handle these cases, we propose a regularized
one-step estimator and associated confidence sets. We also show that pathwise differentiability, which
is a central requirement of our approach, holds in many cases. Specifically, we provide multiple
examples of pathwise differentiable parameters and develop corresponding estimators and confidence
sets. Among these examples, four are particularly relevant to ongoing research by the causal inference
community: the counterfactual density function, dose-response function, conditional average treatment

effect function, and counterfactual kernel mean embedding.

1 Introduction

There has been much recent work on combining tools from semiparametric efficiency and machine
learning to estimate finite-dimensional parameters (Baiardi and Naghi, 2021; Kennedy, 2022; Hines et al.,
2022). These works often focus on pathwise differentiable parameters, which are characterized by their
smoothness along regular univariate submodels of the statistical model (Pfanzagl, 1990; van der Vaart,
1991; Bickel et al., 1993). When a finite-dimensional parameter is pathwise differentiable, it also has an
efficient influence function (EIF), which corresponds to the Riesz representation of its pathwise derivative.
Efficient influence functions are the critical ingredient used to define various estimation strategies, such as
those based on one-step estimation (Pfanzagl, 1982; Newey and McFadden, 1994), estimating equations
(van der Laan et al., 2003; Tsiatis, 2006), targeted learning (van der Laan and Rubin, 2006; van der
Laan et al., 2011), and double machine learning (Chernozhukov et al., 2017, 2018). When paired with
cross-fitting (Schick, 1986; Klaassen, 1987), these frameworks yield asymptotically efficient estimators
provided the nuisance functions are estimated well enough as the sample size n grows to make a certain

—1/4_rate condition, which will most

remainder term negligible. Often, this amounts to requiring an n
plausibly hold if the nuisance functions are estimated flexibly.
Another line of research has focused on leveraging machine learning tools to estimate function-valued

parameters, such as the causal dose-response function (Diaz and van der Laan, 2013), counterfactual



density function (Kennedy et al., 2021), and conditional average treatment effect function (Nie and Wager,
2021). Possibly owing to the wealth of available methods for estimating real-valued functionals, many of
these works have focused on the evaluation of these functions at a point. As has been noted in van der
Laan et al. (2018) and Chernozhukov et al. (2018), the resulting point evaluations tend not to be pathwise
differentiable except in trivial cases (e.g., when the data are discrete). To overcome this challenge,
kernel-smoothed approximations of the function evaluation parameter have been considered in those two
works and others (Colangelo and Lee, 2020; Luedtke and Wu, 2020; Chernozhukov et al., 2021; Jung et al.,
2021), and local polynomial approximations have also been introduced for several parameters (Kennedy
et al., 2017; Takatsu and Westling, 2022; Kennedy et al., 2022). These smoothed approximations tend
to yield pathwise differentiable parameters, which enables the use of one-step estimators. Slower-than-
n'/2 convergence rates are typically attained because the fineness of the approximation must improve
with sample size. The guarantees provided for these estimators tend to be pointwise in nature. Given
that pointwise convergence does not generally imply norm convergence or uniform convergence without
additional regularity conditions, these pointwise-based estimators usually only facilitate inference for the
evaluation of the unknown function at one or finitely many points, rather than for the entire function.

Some works have focused on estimating unknown function-valued parameters in a norm sense. Many
of these works incorporate objects from semiparametric efficiency theory. For example, in the context of
conditional average treatment effect estimation, risk functions have been developed (van der Laan, 2006;
Luedtke and van der Laan, 2016; Nie and Wager, 2021), and Kennedy (2020) develops rate-of-convergence
guarantees for the corresponding empirical risk minimizers. These estimators incorporate (weighted)
variants of the EIF of the marginal average treatment effect in their construction. As further examples,
EIFs have been used to construct norm-convergent estimators of the counterfactual density function
(Kennedy et al., 2021) and dose-response function (Takatsu and Westling, 2022). A drawback to these
approaches to estimating function-valued parameters is that, to date, it has seemed that a new estimator
must be derived and new regularity conditions established for each new parameter considered. Others have
presented general approaches to learning unknown functions based on empirical risk minimization, where
the population risk depends on unknown nuisance functions that can be orthogonalized by conducting
statistical learning using an efficient estimator of the risk function as an objective function (van der Laan
and Dudoit, 2003; Foster and Syrgkanis, 2019). When the population regret takes the form of a squared
norm, these approaches provide a means to derive estimators with norm-convergence guarantees. However,
unlike standard approaches such as one-step-estimation that are used for estimating finite-dimensional
quantities, these methods do not appear to easily lend themselves to the construction of confidence
sets for the unknown functions. Instead, the available approaches to construct confidence sets rely on
approaches that are generally distinct from those used for estimating the function, such as building them
using higher-order influence functions (Robins et al., 2008), a restricted score test (Hudson et al., 2021),
or a maximum mean discrepancy (MMD) criterion (Luedtke et al., 2019).

In this work, we establish that the one-step estimation methodology can be extended to estimate
and make inference about pathwise differentiable parameters that take values in a Hilbert space. This
pathwise differentiability condition turns out to be quite reasonable for many function-valued parameters
of current interest. Indeed, we show that all of the parameters mentioned earlier in this Introduction
satisfy it under regularity conditions. This is true in spite of the fact that these Hilbert-valued parameters
are not pathwise differentiable when composed with an evaluation map.

The notion of pathwise differentiability that we focus on in this work is that studied in some early
literature on semiparametric efficiency theory, which defined pathwise differentiability and EIFs not just
for finite-dimensional parameters, but for general Banach-valued parameters (van der Vaart and Wellner,
1989; van der Vaart, 1991; page 179 of Bickel et al., 1993). Since all Hilbert spaces are Banach spaces, their

definitions apply in our case, as do some useful results that they present, such as a convolution theorem.



Nevertheless, existing works did not provide any examples of how to evaluate the pathwise differentiability
of infinite-dimensional Hilbert-valued parameters — for example, see van der Vaart (1991) and Chapter
5.3 of Bickel et al. (1993), whose infinite-dimensional examples all pertain to parameters taking values
in a Banach space equipped with the uniform norm. Since they are not even pathwise differentiable at
a point, none of the aforementioned function-valued parameters are pathwise differentiable in such a
Banach space. Previous works also do not indicate whether or how the pathwise differentiability of an
infinite-dimensional Hilbert-valued parameter can be used to facilitate estimation or inference, whether
via the one-step estimation methodology or otherwise. While a brief, one-paragraph sketch was given

—1/2

on page 405 of Bickel et al. (1993) suggesting that providing a general, efficient n -rate estimation

framework may be difficult for infinite-dimensional spaces, this sketch only discusses a single example

—1/2

where n -rate estimation may not even be possible. Moreover, neither that work, nor any subsequent

ones, appear to evaluate whether leveraging the pathwise differentiability of a Hilbert-valued parameter

—1/2_rate, estimator, or for constructing

would be useful for constructing a performant, but slower than n
a confidence set.

The main contributions of this work are as follows:

1. We characterize the EIF of a pathwise differentiable Hilbert-valued parameter, when it exists, and

provide a means to obtain a regularized version thereof, when it does not.

2. We construct one-step estimators using (possibly regularized) EIFs. Any method can be used to

estimate the needed nuisance functions provided it converges at a suitable rate.

3. We provide root-n-rate weak convergence and efficiency guarantees for these estimators, when an

EIF exists, and slower rate-of-convergence guarantees, when one does not.

4. We show how to construct asymptotically-valid confidence sets for the Hilbert-valued estimands.

These confidence sets take different forms depending on whether an EIF exists.

5. We study our framework in examples of current interest to the causal inference community and

establish the pathwise differentiability of several more traditional parameters.

When the estimand is a function, our confidence sets will contain it with a specified probability. Thus, if
the aim is to infer about the whole function, our methodology is likely preferable to pointwise approaches.
To accomplish the last point above, we derive a general lemma that facilitates the evaluation of the
pathwise differentiability of Hilbert-valued parameters. Finally, we have conducted a simulation study to

evaluate the proposed approach. All proofs can be found in the appendix.

2 Pathwise differentiability in Hilbert spaces and constructing

estimators

2.1 Notation

We work on a Polish space (Z,B) with a collection of distributions P, which we refer to as the model.
Let Z1,Zs,- -+, Z, ~ Py be an independent and identically distributed (iid) sample from a distribution
Py € P, and let P, denote the corresponding empirical distribution. Let 13n € P be an estimate of Py. To
ease notation, for now we consider a sample splitting approach wherein ﬁn is fitted using an iid sample
that is independent of Z1, Zs, -+, Z,,; in Section 2.5, we describe the case where cross-fitting is used
(Schick, 1986; Klaassen, 1987), which is our preferred approach. For @ a signed measure on (£,B) and
a measurable function f : Z — R, we use the shorthand Qf := [ fdQ. For any object indexed by Py,



we will abbreviate the notation by replacing ‘P’ by ‘0’; for example, we will write fo rather than fp,.
Similarly, we will replace ‘P, by ‘n’ and write f,, rather than fﬁn‘

All Hilbert spaces mentioned in this paper are real Hilbert spaces. For a measure y on a measurable
space (X, X), we write L?(u) to denote the Hilbert space of u-a.s. equivalence classes of ¥ — R functions
equipped with inner product (f,g)r2(,) := [ fgdup. It X C R?, i is the Lebesgue measure, and ¥ is the
Borel o-algebra on RY, we will sometimes write L?(X) instead of L?(x). In what follows V denotes a
generic Hilbert space. We let || - ||y and (-,-)y, denote the norm and inner product associated with V. The
space L?(P;V) is the Hilbert space containing all Bochner measurable functions f : Z — V such that

I fllzzpivy = (/ £ ()3 P(dz)>1/2 < oo0.

The operator norm of a linear functional f : V — R is defined as [|f|lop := inf{c > 0 : |f(v)| <
cllvlly for all v € V}. If W is a closed subspace of V, then let II[h | W] denote the orthogonal projection
of h to W. We let £2 denote the space of all square-summable sequences and ||b]|s = [ e, b2]1/2. We
also let [0, 1] denote the space of all [0, 1]-valued sequences. To avoid having to use different notation
to treat finite- and infinite-dimensional Hilbert spaces, throughout we use the convention that, if V is
finite-dimensional, then we call (v;)g2, an orthonormal basis of V if (vk)gi:ml(v)
that spans V and v, = 0 for all & > dim(V).

is an orthonormal system

2.2 Pathwise differentiability in Hilbert spaces

We start with a brief review of important definitions that can be used to characterize the smoothness
of a Hilbert-valued parameter. These definitions are adapted from those given in (Bickel et al., 1993)
for more general Banach-valued parameter settings. The subsequent parts of this section will involve
developing estimators for our more specialized, but understudied, setting, where we heavily leverage the
availability of an inner product in our Hilbert parameter space.

Let P be a collection of distributions defined on a common Polish space (Z, B), which we refer to as the
model. Suppose that the model is dominated by a o-finite measure A\. A submodel {P. : € € [0,d)} C P
is said to be quadratic mean differentiable at P if and only if there exists a score function s € L?(P) such
that
Hp1/2 /2 _ esp1/2/2’

€

- o(e), (1)

L2(\

where, for ¢ > 0, pi/2 = dd};j and p'/? = %. Let P(P,P,s) refer to the set of quadratic mean
differentiable submodels at P with score function s. The set {s € L?(P) : P(P,P,s) # (0} is called the
tangent set, and its closed linear span is called the tangent space of P at P, denoted by Pp. For all
s € Pp, Ps = [sdP = 0. We let L3(P) := {h € L?*(P) : Ph = 0}, which is the largest possible tangent
space at P. Any model with this tangent space at all distributions P it contains is referred to as locally
nonparametric.

Let H be a set known as the action space and v : P — H a parameter whose value is to be estimated.
Throughout we assume that H is a real separable Hilbert space. The parameter v is said to be pathwise
differentiable at P if and only if there exists a continuous linear operator p : Pp — H such that, for all

{Pc:e€(0,0)} € P(P,P,s),
[v(Pe) = v(P) = evp(s)|[s = ofe). (2)

The operator Up is called the local parameter of v at P and its Hermitian adjoint, denoted by v : H — Pp,



is referred to as the efficient influence operator. The image of the local parameter p, denoted by Hp, is
a closed subspace of H that is referred to as the local parameter space. Throughout we equip Hp with
the inner product (-, )4, so that Hp is itself a Hilbert space. The efficient influence operator can be
shown to only depend on its argument through its projection onto the local parameter space, in the sense
that ©5(h) = 5 (Iy[h | Hp)) for all h € H. At times in this work, we will consider pointwise evaluations
of the efficient influence operator of the form 5 (h)(z). When doing so, we always assume that suitably
‘nice’ elements of the P-a.s. equivalence classes defined by the elements % (h) of L?(P) are used to define
these evaluations. In particular, we select these elements so that the efficient influence process, which we
define as {5 (h) : h € H}, is a separable stochastic process, in the sense that there exists a countable
dense subset H’ of H and a P-probability one subset Z’ of Z such that, for all h € H and z € Z’, there
exists an H'-valued sequence (h;)52,; that converges to h and satisfies 5 (h;)(2) — 75 (h)(2) as j — oo.

Analogous to the case for Euclidean parameters, in some semiparametric models it may be natural
to describe a Hilbert-valued parameter as the restriction of a parameter defined on a larger, possibly
nonparametric, model. If the true parameter lies in a model P’ C P with tangent space Pj and
v: P — H is a parameter defined on P, then the restriction v|p, has local parameter 1'/|75;3 and efficient
influence operator h +— Il 2(p)[75(h)|Pp]. Armed with this fact, results can easily be transferred from
a larger nonparametric model to a semiparametric model provided the form of the projection operator
I2(py| - | Pp] is known. As a simple example, we may have that v(P)(-) = Ep[Y | X = -] for each P
in a nonparametric model P, and the model P’ = {P € P : varp(Y) = 1} may reflect knowledge that
the variance of an outcome Y is 1. The form of the local parameter and efficient influence operator of
v relative to P are given in Example 5 in the appendix when # is an L? space, and the form of the
projection onto P}, is given in Example 3.2.3 of Bickel et al. (1993).

The parameter v is said to have an EIF ¢p : £ — H when there exists a P-probability-one set Z’
such that

Up(h)(2) = (h,¢p(2))y for all (h,2) € H x Z'. (3)

By the Riesz representation theorem, v has an EIF if and only if 25(-)(2) : # — R is a bounded linear
functional P-almost surely; in those cases, ¢p(z) is P-a.s. equal to the Riesz representation of v} (-)(z).
The fact that 5(h) = (I [h | Hp]) implies that the image of ¢p is necessarily contained in Hp.
When H = R?, the EIF of v at P takes the form ¢p(2) = (5(e¢)(2)), where {e;}¢_, is the standard
basis. To our knowledge, the existence and form of this object have not previously been studied in
infinite-dimensional Hilbert spaces. Given that knowing the form of the EIF readily facilitates the
construction of estimators in finite-dimensional settings, this appears to constitute an important gap
in the literature. We therefore focus the remainder of this section on studying the existence of EIF's in
Hilbert spaces and providing ways to construct estimators based on EIFs, when we can show they exist,
or imitations thereof, when we cannot.

The cases where EIFs do not exist become particularly salient in Section 3, where we demonstrate
through examples that, for several interesting L2-valued parameters, 5 (-)(2) : H — R depends on a
point evaluation functional, and so is not bounded P-almost surely. Nevertheless, even when v does not
have an EIF, we will show in Section 5.2 that it is always possible to define an injective transformation of
v that has one. Consequently, the procedure we shall present to construct confidence sets for parameters
with EIFs can also be used to construct them for those without one: first construct a confidence set for
the transformation of v(P), and then invert it to obtain one for v(Fp).

Before proceeding, we note that inefficient influence operators can be defined when the model is
semiparametric at P, in that Pp is a strict subspace of L2(P). Under a condition akin to (3), inefficient

influence functions can also be defined. To streamline presentation, we defer the presentation of these



objects and their use for constructing estimators to Appendix H. There, we also show that inefficient

influence functions can only exist if an EIF exists.

2.3 One-step estimation based on the efficient influence function

On the one hand, if H is finite-dimensional, then the EIF can be used to construct what is known as
a one-step estimator, which is known to be efficient under conditions (Pfanzagl, 1982). This estimator
takes the form z/(ﬁn) + P, ¢,,, where ]3n € P is an initial estimate of the data-generating distribution
Py and we recall the convention that ¢, := ¢ B On the other hand, if H is infinite-dimensional, then
previously studied one-step estimators cannot be applied. In this section, we provide a natural means
to extend the one-step estimation framework to infinite-dimensional settings. Similarly to the one-step
estimator in finite-dimensional settings, this one-step estimator takes the form 7, := V(ﬁn) + P, ¢, for an
‘H-valued EIF ¢,,. This estimator is applicable whenever v has an EIF at ]3n with Py-probability one.
We will see that, under conditions that include that v also has an EIF ¢ at Py, 7, is an asymptotically

linear estimator of v(P) with influence function ¢g, in the sense that

Do = v(P) = 5 Xim160(Zi) + 0p(n~1/?), (4)

where throughout we let Hilbert-valued quantities of the form o,(n~*) denote terms whose Hilbert norm
goes to zero in probability even after being multiplied by n®*. We will be especially interested in cases
where n'/2[D,, — v(P,)] will converge weakly to a tight random element, since this can be used to facilitate
the construction of confidence sets for v(Py) (see Section 4.2). To be able to apply a central limit theorem
to establish the weak convergence of n'/2[D,, — v(Py)], it suffices that ¢q is Py-Bochner square integrable,
in the sense that ||[¢ol|12(p,n) < 0o (Example 1.8.5 of van der Vaart and Wellner, 1996). Therefore, we
will focus on settings where ¢y € L?(Py; H).

We begin by establishing the existence and form of the EIF at a generic P € P in an interesting class
of problems. In particular, we consider cases where H is an RKHS over a space T or, more generally, the
local parameter space Hp is an RKHS over 7. Denote the feature map of Hp by ¢ — K;. For P € P,
define ¢p : Z — H as follows for each t € T

op(2)(t) = vp(Ky)(2) P-as. z. ()

The following result shows that q; p both provides the form of the EIF of v, when it exists, and also a

sufficient condition that can be used to verify this existence.

Theorem 1 (Form of the efficient influence function in RKHS settings). Suppose v is pathwise differen-
tiable at P and Hp is an RKHS. Both of the following implications hold:

(i) If v has an EIF ¢p at P, then ¢p = ép P-almost surely.
(i) If ||(£P||L2(P;H) < 00, then v has an EIF at P.

The form of the EIF in (5) naturally generalizes its form in finite-dimensional spaces, where the feature
K; replaces the t-th standard basis element e;. The proof of (i) is a straightforward extension of results
about the Riesz representation of a bounded linear functional to our setting, where 5 (-)(2) is only known
to be bounded and linear P-almost surely (cf. Lemma 10 of Berlinet and Thomas-Agnan, 2011). The
proof of (ii) is more subtle, and involves showing that, when ||(Z~5PHL2(p;7.L) < 00, any separable version of
the efficient influence process must P-a.s. have sample paths v}, (-)(z) that are both bounded and linear.

In the remainder of this subsection, we suppose that v has an EIF ¢p at each P € P.



In Section 4.1, we establish that, under conditions, a cross-fitted variant of the one-step estimator
Uy = v(P,) + Puéy is efficient, in the sense that ||7, — v(Py)|x is as concentrated about zero as is
possible for any estimator satisfying appropriate regularity conditions. Here, we provide two more
heuristic arguments as to why the one-step correction should lead to improvements. The first, which
applies specifically in cases where H is an RKHS, is based on the pointwise performance of the one-step
estimator. In particular, the fact that norm convergence in an RKHS implies pointwise convergence can
be used to show that the pathwise differentiability of v : P — H also implies the pathwise differentiability
of v(-)(t) : P — R for each t € T. Moreover, the EIF of v(-)(¢) at P € P is equal to z — Up(K;)(2),
and so the one-step estimator for the real-valued parameter v(Py)(t) is equal to the evaluation of the
H-valued one-step estimator 7, at the point t. While this pointwise justification of the one-step estimator
U, is informative, it does not in itself explain why 7,, should be expected to perform well in a norm sense.
Indeed, pointwise convergence in an RKHS does not necessarily imply norm convergence. For the same
reason, pathwise differentiability of the real-valued parameters v(-)(t), t € T, does not generally imply
pathwise differentiability of the RKHS-valued parameter v.

The second heuristic justification that we provide here provides initial insights into why the one-step
estimator 7,, should perform well in a norm sense. This justification applies regardless of whether Hp
is an RKHS. Fix a submodel {P, : € € [0,6)} € P(P,P,s). In the appendix, we establish that, under
conditions on either the EIF (Lemma S5) or the submodel (Lemma S6), a first-order approximation
to the local parameter p(s) is given by e *(P. — P)¢p, in the sense that the difference between these
quantities converges to zero as € — 0. Combining this with (2) and the fact that P¢p = 0, this yields the
approximation v(P,) = v(P) + P.¢p, which is valid up to an additive o(¢) remainder term. Letting Py
play the role of P, and ]3n play the role of P, this suggests that the von Mises approximation

V(Po) = v(Py) + Potn (6)

may also be valid up to a term that goes to zero in probability at a reasonable rate. Admittedly, caution
is needed when making the leap from the approximation along the fixed quadratic mean differentiable
submodel {P. : ¢ € [0,6)} to an approximation that involves the random quantity P,. For a given
parameter v, the sense in which the above approximation holds can be made precise by directly studying
the quantity v(FPy) — u(ﬁn) — Py¢,. In any case, the approximation above is appealing in that it only
relies on Py through an expectation, which can naturally be approximated by an expectation under the
empirical distribution. This, therefore, suggests the one-step estimator 7, := 1/(13") + P, ¢y,.

As will follow from the upcoming Lemma 7, H p need not be an RKHS for an EIF to exist. Consequently,
when one does, it is natural to wonder whether there is a general expression for its form. The Riesz
representation theorem provides an affirmative answer to this question, showing that, when an EIF exists,

it is P-a.s. equal to the following convergent sum:
¢p(2) = D> vp(he)(2) hu, (7)
k=1

where here and throughout we let (h;)?2, denote an orthonormal basis of . If Hp is an RKHS,
evaluating the expression for the EIF in (5) is typically easier than computing (or approximating) the
infinite sum in (7). However, in non-RKHS settings, (7) is useful both as an explicit expression for the

EIF, if it exists, and as a basis for generalizing the one-step estimator to settings where it does not.



2.4 Regularized one-step estimation when there is no efficient influence

function

We now introduce a generalization of the one-step estimator that can be employed regardless of whether
an EIF exists. This estimator is a type of series estimator (Schwartz, 1967; Chen, 2007) based on the Riesz
representation of a regularized form of the efficient influence operator. This regularized form is motivated
by the fact that, when v has an EIF ¢p, it is P-a.s. true that v5(-)(2) : h = Yo (b, hi)up (hy)(2).
The regularized form is designed to ensure that the terms in this sum must decay as k grows sufficiently
large. For a square summable [0, 1]-valued sequence 3 := (8;)32,, the S-regularized efficient influence
operator is given by rg(h)(z) = > pey Bl hi) v p(hi)(2). We now show that 2 ()(2) is always P-a.s.
bounded and linear, and we also provide an explicit expression for its Riesz representation. In what
follows we let ¢2 := (2 N [0, 1]

Lemma 1 (f-regularized EIF based on [S-regularized efficient influence operator). If v is pathwise
differentiable at P and 3 € (2, then Tg()(z) : H — R is a bounded linear functional on a P-probability

one set ZP with Riesz representation
$p(2) == > B (hie) (2) .
k=1

Morcover, op(B) = |#pll 2P = [Srly BrPop(hi)*1? < 1157pllop | Blle < oo

When v has an EIF | (;Sg is similar to the expression for it given in (7), but with the k-th term dampened
by the multiplier 8 € [0,1]. Given this similarity, we call qi)?) the B-regularized EIF of v at P. The
corresponding B-regularized one-step estimator is 7 := y(ﬁn) + P, ol

We now provide a heuristic argument that is similar to one used in the previous subsection for
justifying the (non-regularized) one-step estimator, but adapted to account for the regularization bias
that arises from using a fS-regularized EIF. Fix a submodel {P. : €} € P(P,P,s). In Lemma S7 in the

appendix, we show that, under a regularity condition on the submodel,

[/(P) = v(P) + P = 72,1 = B w(P) = w(P.), hk>ﬂthH ®)

= (14 163 llzapa0) ) - ole),

where the o(€) term does not depend on the choice of 8. Similarly to how we did when deriving (6), we
let Py play the role of P, and ﬁn play the role of P. Recalling that ﬁﬁ = I/(f’n) + Pn¢,€ then yields that

i — v(Py) = (P, — Po)gh + B2, 9)

where, for P’ € P, we let Bg, = e (1=B)(W(P")—v(Py), hg)2hi. Our formal study of the regularized
one-step estimator in Section 5.1 builds on the above. Informally speaking, that study will show that
the latter term above plays the role of a regularization bias term that decays as 8 grows entrywise to
(1,1,1,...) under conditions, and the leading term plays the role of a variance term whose magnitude
typically grows with that of 5. Hence, a bias-variance tradeoff must be considered when selecting a
value for the tuning parameter 5. In Section 5.3, we describe a cross-validation strategy for making this

selection. There, we also discuss the selection of the basis (hi)72 ;.



2.5 Cross-fitted (regularized) one-step estimation

So far, the estimators we have defined have assumed the availability of an iid sample that is independent
of Z1,Zs,...,Z, that can be used to obtain the estimate ]3” of Py. We now describe how cross-fitting
(Schick, 1986; Klaassen, 1987; Zheng and Laan, 2011; Chernozhukov et al., 2018) can be used to avoid the
need for this independent sample. For simplicity, we focus on the case of 2-fold cross-fitting and suppose
that the sample size is an even number. The generalizations to k-fold cross-fitting (k > 2) and to the case
where n is not divisible by k are straightforward and so are omitted. Let 13,71 € P denote an estimate of P
based on {Z,}?:/ f and let P} denote the empirical distribution of the remainder of the sample {Z;}_ /241
Define P? and P? similarly, but with the roles of the two subsamples reversed. We note that, in a slight
abuse of notation, PJ denotes an empirical distribution derived from n/2 observations rather than a
j-fold product distribution derived from j independent draws from the empirical distribution P, of the
full sample {Z;}?_,. Cross-fitting enables the use of arbitrary estimation strategies when constructing
ﬁ,{, J € {1,2}, including those based on machine learning techniques.

We now present the form of our cross-fitted estimators. From a notational standpoint, these estimators

will be denoted by replacing the hat accents used to denote the sample-splitting estimators in Sections 2.3

and 2.4 by bar accents — for example, the cross-fitted one-step estimator will be denoted by 7,
rather than 7,,. This cross-fitted one-step estimator takes the form 7, := %Z?Zl[u(ﬁ,{) + Pigl],

where ¢/ 1= ¢ Bi- Let ¢).f .= gb%j. The cross-fitted S-regularized one-step estimator takes the form
vy = % Zj:l[y(Per) + PioiP).

3 Examples of pathwise differentiable parameters

In this section, we present examples of pathwise differentiable Hilbert-valued parameters and the forms of
their efficient influence operators and, where applicable, EIFs. From these objects, cross-fitted (regularized)
one-step estimators can be derived using the formulas at the end of the previous section. We study the
performance of these estimators in Section 6.

In the main text, we focus on parameters that have recently become objects of interest to the causal
inference community. Two of these examples (Examples 1b and 3) consider cases where the action space
is an RKHS, and two (Examples 1a and 2) consider cases where the action space is an L? space, and is
therefore not an RKHS. In Appendix A, we show that four more well-studied Hilbert-valued parameters
are also pathwise differentiable. In particular, we show that regression functions, square-root density
functions, and conditional average treatment effect functions are pathwise differentiable when viewed as
elements of appropriate L? spaces, and we also show that a kernel mean embedding of a distribution
(Gretton et al., 2012) is pathwise differentiable when viewed as an element of an RKHS. We are not aware
of any reference establishing the pathwise differentiability of any of the eight Hilbert-valued parameters
that we consider in this work.

All derivations for our examples are deferred to Appendix B. For most of these examples, our
derivations make use of the following lemma, which we prove in Appendix C. In this lemma, H(P, P’) :=
[[(V/dP — /dP")?]/? denotes the Hellinger distance.

Lemma 2 (Sufficient condition for pathwise differentiability). v : P — H is pathwise differentiable at P
with local parameter vp = np if both of the following hold:

(i) np : Pp — H is bounded and linear and there exists a set of scores S(P) whose L?(P)-closure is
equal to Pp such that, for all s € S(P), there is at least one submodel {P. : €} € P(P,P,s) for
which ||[v(P.) — v(P) —enp(s)||i = o(€); and



(ii) v is locally Lipschitz at P in the sense that there exist (c,8) € (0,00)? such that
||Z/(P1) — I/(PQ)”H < CH(Pl,PQ) for all Pl,PQ S Bg(P), (10)

where Bs(P) consists of all P' € P for which H(P,P') < 4.

This lemma is most useful when the set S(P) and corresponding submodels in P(P, P, s) in (i) can be
chosen to make establishing (2) for those submodels simple. For example, in a locally nonparametric
model, we may take S(P) to be the set of bounded, P-mean zero functions, and we may take the chosen

submodel in P(P, P, s) to be such that, for all e € [0,1/esssup, |s(z)|), ‘2’;} = 1+ es, where the essential

supremum is under P.

All of the examples presented in the main text are motivated by questions arising in causal inference.
The data structure is common across them, with Z = (X, A,Y) ~ P, where X is a vector of covariates
with support on X, A is a treatment with support on either {0,1} or R, and Y is an outcome with
support on ). In each example, we suppose that P is locally nonparametric. We further suppose, for
simplicity, that all pairs of distributions in P are mutually absolutely continuous. For a given distribution
P, we let Py|4 x denote the conditional distribution of Y given (4, X) and Px denote the marginal
distribution of X. We let gp(- | ) denote the conditional probability mass function of A given X =z
under P, when A is binary, and the density of A given X = x under P, when A is continuous. For
s € Pp, we let sx(x) := Ep[s(Z) | X = z] and syjax(yla,r):=5(z) - Ep[s(Z) | A=a,X = z].

Example 1la (Counterfactual density function). Suppose that the treatment A is binary and the goal
is to estimate the density function of the counterfactual outcome in a setting where everyone receives
treatment A = 1. This density can offer a more nuanced measure of causal effects than can a more
commonly studied counterfactual mean outcome (Kennedy et al., 2021). Suppose that there is a o-
finite measure Ay such that, for all P € P, there is a regular conditional probability Py |4 x such that
Pyiax(- | a,z) < Ay for P-almost all (a,z) € {0,1} x X. Define the propensity to receive treatment
aas gp(a|x):=P(A=a|X =x)and let py|4 x(- | 1,7) denote the conditional density of ¥ given
(A, X) = (1,z). The parameter of interest v : P — L?(\y) takes the form

v(P)(y) = / pyiax(y | 1,2) Px(dz). (11)

Under typical causal assumptions, v corresponds to the density of the counterfactual outcome that would

be seen under treatment A = 1. We require that P satisfy the following conditions:

inf essinfgp(l|2) >0 and sup esssup pyjax(y|1,z)<oo, (12)
PeP zeX PEP (z,y)eX xY
where the essential infimum is under Px and the essential supremum is under Px X Ay. The first
inequality, referred to as a strong positivity assumption, holds when the propensity to receive treatment
1 is not vanishingly small. The second holds when the conditional density of ¥ given (A, X) = (1,z) is
uniformly bounded across all distributions in the model. While in principle the second condition could be
weakened, this condition appears to be sufficiently general to capture many statistical models of interest.

The local parameter takes the form

vp(s)(y) = / {syiax(w|1,2) 4+ sx(2)}pyiax(y | 1,2)Px(dz), (13)

10
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Figure 1: Illustration of how a sample-splitting one-step estimator is constructed in Example 1b. The cross-fitted
estimator averages two such estimators, one obtained as above and the other with the roles of the two halves of
the data reversed. Details of the data-generating process, along with a Monte Carlo assessment of the performance
of a cross-fitted one-step estimator, are given in Appendix I.1.

and the efficient influence operator takes the form

e = L= G0 By | A=a X =a])
gral)

+ (Ep M(Y)|A=1,X =a] - /Ep M(Y)|A=1,X = 2] PX(dx’)). (14)

Unless Ay is a discrete measure, 5 will not generally be a bounded operator. This can be shown to follow
from the facts that point evaluation is not continuous in L? spaces (page 8 of Berlinet and Thomas-Agnan,

2011) and 5 (h)(y, a, ) depends on the evaluation of h at y.

Example 1b (Bandlimited counterfactual density function). The setting is the same as in Example 1a,
except that Y must be real-valued and continuous, Ay must be the Lebesgue measure, and, for fixed
b > 0, the target of inference is the following transformation of the counterfactual density v(P) that was

defined in Example la:

uPI) = [ K0P A ), (15)
where K, (7) := {sin[b(g — y)]}/[7(§ — y)]. This estimand corresponds to a bandlimiting of the coun-
terfactual density function. In particular, letting 7 and F~! denote the Fourier transform and inverse

Fourier transform and fixing b > 0, the b-bandlimiting of a Lebesgue square integrable function f : R — R
is the function B(f) : R — R given by

B(7) = 7 (- U)W = [ K () £5) M (di). (16)
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where 1_p - F(f) represents the function § — 11— 3 (£) - F(f)(§) and the latter equality holds by the
convolution theorem. The estimand is equal to v(P) := B(v(P)). Lemma S1 in Appendix B.2 shows that
B(v(P)) corresponds to an L?(\y) projection of v(P) onto

H :={h € C(R) | support[F(h)] € [-b,b]},

where C(R) denotes the set of continuous, Lebesgue square integrable functions. A little care is needed to
make this result precise since L?(\y) is a space of equivalence classes of functions whereas H is a space
of functions (see the statement of Lemma S1 for details). The space H is an RKHS when equipped with
the L2(\y) inner product (h, h)y = i h(y)h(y) Ay (dy) (Yao, 1967). The kernel function in this RKHS is
given by (y,9) — K, (7). This RKHS is a smoothness class consisting of all square integrable functions
that have an analytic continuation to the complex plane that satisfies an exponential growth restriction
(Theorem 19.3 and page 372 of Rudin, 1987). When a (non-counterfactual) density function belongs to
H, a particular kernel density estimator has been shown to attain mean integrated squared error (MISE)
that decays at an n~! rate (Ibragimov and Khas'minskii, 1983; Agarwal et al., 2015). Our setting differs
from earlier ones in that (i) we focus on a counterfactual density, and (ii) we define our estimand as
a nonparametric projection onto the space of b-bandlimited functions, rather than requiring that our
estimand belong to this class. Naturally, when the counterfactual density v(P) already belongs to H,
v(P) will equal this density and so our approach will yield estimators of it.

In the appendix, we rely heavily on the calculations performed in Example 1a when showing that
v : P — H is pathwise differentiable. We show that the local parameter ©p : 75p — H of v at P is closely
related to that of v. In particular, Up(s) = B(p(s)), where vp is as defined in Example la. Letting [h]
denote the equivalence class of functions that are equal to some h € H Lebesgue-almost everywhere,
the efficient influence operator s : % — Pp takes the form 5 (h) = 5([h]), where &% is as defined in
Example la. Since H is an RKHS, we can also look to define the EIF ¢, of v at P. In particular, (12)
can be used to show that the function ¢ ,(2) : y = vp(K,)(2) belongs to L?(P;#H), and so ¢, is indeed
the EIF of v at P. See (S5) in the appendix for a more explicit expression for the EIF @b

Figure 1 shows how a one-step estimator can improve an initial estimator in this example.

Example 2 (Counterfactual mean outcome under a continuous treatment). In the previous example,
the treatment was considered to be binary. In this example, we take A to be a continuous treatment
taking values in A = [0, 1], such as a dosage, duration, or frequency of intervention. Denote the marginal
distribution of A by P4 and suppose that the Lebesgue measure A 4 dominates the conditional distribution
Paox(- | z) of A| X = x under P for P-almost all . Let gp(- | ) denote the conditional density
of A given that X = x. The target of estimation is v : P — L?*(\4), where v(P)(a) = [Ep[Y |
A = a,X = z]Px(dz). Under causal conditions, v(P)(a) corresponds to the mean outcome under a
continuous treatment (Diaz and van der Laan, 2013). We suppose the strong positivity assumption that
infpep essinf(, 4y gp(a | ) > 0, where the essential infimum is under A4 x Py. We further suppose that
Y has a bounded conditional second moment, in the sense that suppcp esssup, ,) Ep Y2 |A=a,X =
x] < 0o, where the essential supremum is under A4 x Px.

The local parameter takes the form

7p(s)(a) = / / (v — (@ 2)}sviax (u | a,2)Priax(dy | a,2)Py (dz)

+ / lap(a,) — v(P)(a)]sx (2) Py (dx), (17)
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where pp(a,x2) = Ep[Y | A =a,X = z]. The efficient influence operator takes the form
. % Y —ppla,r
o509 0v) = LI ) 1 [lup ) - (P bl A (). (13)
gp(a| )
Similarly to Example la, o} is not generally a bounded operator.

Example 3 (Counterfactual kernel mean embedding). Let A be a binary treatment and suppose the
strong positivity assumption that infpep essinf,cx gp(1 | ) > 0, where the essential infimum is under
Px. Let k: Y x Y — R be a bounded, symmetric, positive define function, H be the RKHS associated
with the kernel x, and K, := k(y,-) be the associated feature map. The counterfactual kernel mean
embedding (Muandet et al., 2021; Fawkes et al., 2022) is a parameter v : P — H such that

:/EP[KY | A=1,X = 2] Px (da).

Under standard causal conditions (Robins, 1986), v(P) can be shown to be equal to the kernel mean
embedding (Gretton et al., 2012) of the distribution of a counterfactual outcome in a world where
treatment 1 was given to everyone. We suppose that the strong positivity assumption in (12) holds.

The local parameter takes the form

vp(s) = / Ky [syjax(|1,2) + sx(z)] Pyjax(dy | 1,2)Px(dz). (19)

The efficient influence operator takes the form

gr(1| )
4 Eplh(Y)|A=1,X =a] — /Ep[h(Y) | A=1,X = 2/|Px(da’),

vp(h)(y, a,x) = {h(y) — Ep[h(Y) | A =a, X = ]}

and the EIF is P-Bochner square integrable and takes the form
op(y,a,r) = W {K, - (33)} + pup () — v(P), (20)

where pf§ 1 X — H is defined as pff(z) := Ep[Ky | A=1,X = z].

4 Performance guarantees and inference when there is an EIF

4.1 Performance guarantees for one-step estimators

In this section, we provide conditions under which a cross-fitted one-step estimator 7, is both asymptoti-

cally linear and efficient. These conditions concern the terms arising in the following decomposition:

2

i[ 1)+ Pogl, —v Po}+z — Po) (¢}, — o)

j=1 j=1

[7n = v(Fo) = Padolly, = 5

H
< max R}, |l + max || D} |1, (21)
J J

where RJ = v(P) + Pygd, — v(Py) and Di := (P4 — Py)(¢) — ¢p). We call RJ, the remainder terms
and DJ the drift terms, j € {1,2}. Asymptotic linearity, as defined in (4), holds whenever both of these
quantities are negligible, in the sense that they are op(n’l/ 2). The remainder terms R/, j € {1,2},

quantify the error in the approximation (6) across the two splits of the sample. As described heuristically

13



in the text surrounding (6), it is reasonable to expect that this remainder term will be negligible under
appropriate conditions. The following result provides a reasonable condition under which the drift terms

will be negligible.

Lemma 3 (Sufficient condition for negligible drift terms). Suppose that v is pathwise differentiable at Py
with EIF ¢o. For each j € {1,2}, ||¢% — doll12(py:2) = 0p(1) implies that | Dz = op(n=1/2).

In the appendix, this lemma is proved via a conditioning argument that makes use of Chebyshev’s inequality
for Hilbert-valued random variables (Grenander, 1963) and the dominated convergence theorem. In the
next section, we provide lower-level conditions under which the remainder and drift terms will be small in
the contexts of Examples 1b and 3.

In the process of showing that ,, is asymptotically linear, we also show that it is regular. An estimator
sequence (7,)22; is said to be regular at Py € P if and only if there is a tight H-valued random variable H
such that, for every score in the tangent set, quadratic mean differentiable submodel {P, : €} € P(Py, P, s),
and every sequence €, = O(n"Y/2), \/n[t, — v(P., )] converges weakly to H under iid sampling of n
observations from P. . We say that an estimator v, is regular when the implied estimator sequence

(Un)52 4 is clear from context. In the upcoming theorem, we write ‘~~’ to denote weak convergence in H.

Theorem 2 (Asymptotic linearity and weak convergence of a one-step estimator). Suppose that v
is pathwise differentiable at Py with EIF ¢o € L*(Py;H) and, for j € {1,2}, R} = o0,(n"/?) and

Di = op(n~1/2). Under these conditions, (4) holds, 1,, is regular, and
n'/2 [, — v(Po)] ~ H, (22)

where H is a tight H-valued Gaussian random variable that is such that, for each h € H, the marginal

distribution (H, h)y is N (0, Eo[{(¢o(Z), h)3,]).

The convolution theorem for Banach-valued estimators can be used to characterize one sense in which
Uy, is an efficient estimator of v(Py) (see Theorem 3.11.2 and Lemma 3.11.4 of van der Vaart and Wellner,
1996, for a convenient version). Rather than present the theorem in full generality, here we present a
particularly interpretable consequence of it. Specifically, under the conditions of Theorem 2, that theorem
shows that 7, is optimally concentrated about v(P) in the sense that, for any regular estimator sequence
(Tn)22, and ¢ > 0,

nh_)ngo P An||on — v(Po)|3 > ¢} < nh_{rgo Py Anl||on — v(Po)|3 > ¢} (23)
The above describes a sense in which 7, is optimal among all regular estimators of v(Fp). Under the
conditions of Theorem 2, 7,, can also be shown to outperform all estimators, including non-regular ones,
in a local asymptotic minimax sense — see Theorem 3.11.5 in van der Vaart and Wellner (1996) for
details.

4.2 Construction of confidence sets based on one-step estimators

As we will now show, the weak convergence result in Theorem 2 can be used to facilitate the construction
of (1 — «a)-level confidence sets for the Hilbert-valued parameter v(Fy), where a € (0, 1) is some fixed
constant. Our proposed confidence set is built based upon a quadratic form w(-;Q) : h — (Q(h), h)% that
is parameterized by a standardization operator {2 that belongs to the set O of continuous, self-adjoint,
positive definite linear operators mapping from H to H. In particular, letting ¢ > 0 be a specified

threshold and 2,, € O an estimator of a some possibly- Py-dependent operator )y € O, our confidence set
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will take the form
Cn(Q):i={heH : w(D, —h;Q,) <(/n}. (24)

We will see that, for an appropriate choice of ¢ and provided ||, — Qollop = 0p(1), the continuous
mapping theorem justifies the asymptotic validity of this confidence set.

Before presenting that result, we discuss two interesting choices of £2g. The first is the identity function.
This choice yields a spherical confidence set that consists of all h belonging to an H-ball centered at 7,
of radius (¢/n)/2. Since the form of Qy does not rely on Py in this case, 2, can be taken to be equal
to . The second is proportional to the inverse of a regularized form of the covariance operator of H,
which will yield a Wald-type confidence set for v(Py) that has an elliptical shape. Compared to spherical
confidence sets, Wald-type confidence sets have the benefit of being narrower in the direction of unit
vectors h where estimation is easier, in the sense that the variance of (H, h)3, is smaller. Regularization is
needed when defining a Wald-type confidence set because the covariance operator of H will not generally
be invertible and, even if it is, this inverse will not be continuous when |[|¢o||z2(p,;) < 00 unless H is
finite-dimensional. A simple example of a regularized covariance operator €, and an operator-norm
consistent estimator thereof, is given in Appendix D. Many other types of regularization are also possible
(Tikhonov et al., 1995).

The following result establishes the asymptotic validity of the confidence set in (24) based on a
threshold En that is measurable with respect to the o-field generated by the iid sample Z1,..., Z, from
Py. This threshold is an estimate of the (1 — a)-quantile ¢;_, of w(H; Q).

Theorem 3 (Asymptotically valid confidence set). Suppose the conditions of Theorem 2 hold. Further
suppose that ||ollL2(py;2) > 0, Qn € O, Qo € O, and || — Qollop = 0,(1).

(i) if Cn = Ci_a in probability, then lim,_ e P{v(Fy) € Cn(gn)} =1-a.

n—oo

(i) if Cn is an asymptotically conservative estimator of (1_q, in the sense that Pg‘{zn >(—q—0} — 1
for all § > 0, then liminf,_.c PP {v(Py) € Cu((n)} > 1 — o

The proof of this result is similar in structure to those used to establish the validity of Wald-type
confidence sets for finite-dimensional parameters. It consists in applying the continuous mapping theorem
and Slutsky’s lemma to show that n-w[7, —v(Py); Qn] ~ w(H; Qp), showing that w(H; ) is a continuous
random variable, and finally using that convergence in distribution implies convergence of cumulative
distribution functions at continuity points.

A consistent estimator of (;_, can be defined using the bootstrap (Efron, 1979). To define this
., Z8 14 Pl We then let P2#
28

ne

estimator, we let Zf, e Zfl/Q iid P? be sampled independently of Zfz/2+1’ .

be the empirical distribution of Zf, ceey Zi/2 and P}f be the empirical distribution of Zi/ﬂp ..
We let HE := n'/? Z?Zl(ngﬂ — PJ)¢? /2. The threshold (, is taken to be equal to the (1 — a)-quantile of
w(HE, Q,), conditionally on the original sample (Z1,. .., Z,) used to define P! and P2. In practice this
quantile can be well-approximated by selecting m Monte Carlo draws of the sample Zf, ..., Z% and then
returning the empirical (1 — a)-quantile of w(HE,,,) over these draws. A computational benefit of this
bootstrap procedure is that it does not require refitting the initial estimators ﬁ,{ of Py; indeed, the same

EIFs ¢), := ¢p; are used for each bootstrap replication.

Theorem 4 (Consistent estimation of (;_, via the bootstrap). Suppose the conditions of Theorem 2 hold.
Further suppose that Q, € O, Qo € O, [ — Qllop = 0p(1), and max;cqy 2y |64 — dollL2(pym) = 0p(1)-
Under these conditions, ¢, — C1—q in probability.

In brief, the proof of the above consists in showing that Hf is asymptotically equivalent to ng,o =

nt/21 Z?:ﬂpﬂ’ﬁ — PJ)¢q in probability, invoking a guarantee from Giné and Zinn (1990) regarding the
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weak convergence of the bootstrap for Hilbert-valued sample means and the continuous mapping theorem
to show that w(Hi,()? Q) ~ w(H; Q) conditionally on (Z;)$2, with probability one, and finally applying
a Slutsky-type argument to replace the Py-dependent quantities Hfl’o and Qg in w(Hi,O; Q) by H¥ and
Q,, respectively.

When Qg is the identity function, Theorem 1 in Székely and Bakirov (2003) provides a means to derive
an alternative estimator of (;_,. This estimator does not require the bootstrap, but is asymptotically
conservative. See Appendix E for details.

In practice, it will typically be necessary to use numerical techniques to compute the quadratic form

w (v, — h;€,) that is used to define our confidence set. We discuss some such approaches in Appendix F.

5 Performance guarantees and inference when there is no EIF

5.1 Performance guarantees for regularized one-step estimation

In this subsection, we provide performance guarantees for the cross-fitted 3, -regularized one-step estimator
vPn where, for each n, 3, is an £2-valued regularization parameter. Before doing so, we acknowledge a
minor abuse of notation. We will denote the k*" entry of a generic regularization parameter 3 € ¢2 by
Bk, which should not be mistaken for the sample-size-n dependent regularization parameter (3,,, whose
k™ entry we will denote by Bn k- This should not cause confusion, as we always denote sample size by n
and a generic index of a vector in £2 by k.

We will show that, under conditions, 7~ satisfies the following biased and slower-than-n—'/2-rate
asymptotically linear expansion, which formalizes the approximation in (9) for a cross-fitted one-step

estimator:

2
1 .
75 = v(Py) = 5 DB 4+ Pudf)" + Oy (|IBnller/n2) (25)

j=1

Above ¢" is as defined in Lemma 1 and BJ#» = Blgz denotes the bias term defined below (9). When v
does not have an EIF, there is generally a tradeoff between the bias term, whose magnitude is smaller
when the entries of f3,, are closer to 1, and the linear ‘variance’ term Pn(bg", whose magnitude scales as
Oplo0(Bn)/n/?], where o0(8,) = O([|Bnlle2) is as defined in Lemma 1. These two terms will typically
be of the same order when f3,, is selected to minimize the mean-squared error Epn[||75» — v(Po)|3,],
which makes it so that 7’ — v(P,) converges to zero in probability slower than does n~1/2. Owing to
the bias term, and also to the fact that there is generally not a scaling of Pngﬁg" that will converge to a
nondegenerate, tight random element when v does not have an EIF (see Lemma S11 in the appendix),
our focus in this subsection will be on deriving rates of convergence for the regularized estimator 7°n.
We provide a means to construct confidence sets for v(FP) in Section 5.2.

To establish (25), we introduce regularized versions of the drift and remainder terms considered in
Section 4.1. In particular, for j € {1,2} and 3 = (8x)2, € ¢2, define the H-valued random elements
Dib = (PI — Py)(¢)# — ¢F) and R .= R%{, where, for P € P,

oo
RY == v(P) = v(Po) + Podlp — > (1= Be)(v(P) — v(Po), ha)ah. (26)
k=1

The main result of this subsection is as follows.

Theorem 5 (Rate of convergence of regularized one-step estimator). Suppose v is pathwise differentiable
at Py, By € €2 for each n € N, and both Ri:Pr and DA are Op||Bnllez/nt/?] for j € {1,2}. Under these
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conditions, (25) holds. Moreover, if BLPm = O,(||Bullez/n'/?) for j € {1,2}, then

7 = v(Po) = Op (IBulles/n'?) (27)

Eq. 27 suggests it is desirable to select 3, as small as possible, while still ensuring that the drift, remainder,
and bias terms are all O, (||3,¢2/n'/?). Below we provide three general results that can aid in establishing
these conditions. The first two provide ways to guarantee the drift and remainder terms are of no larger
order than the variance term P,¢," in (25), implying that the rate of convergence is determined by the
variance and bias terms. The third makes precise our earlier statement that the bias term is smaller when
the entries of 3, are closer to 1, thereby enforcing a lower bound on how small 3,, can be to ensure that

the bias term is of the same order as the variance term and, therefore, (27) holds.

Lemma 4 (Sufficient condition for negligible regularized drift terms). Suppose that v is pathwise
differentiable at Py and (r,)5, is a nonnegative sequence. Fix j € {1,2} and, for each n € N, let
B € 6. If || — ¢gn||L2(Po;7'l) = 0p(rn), then | DEF |3 = op(rn/n'/?).

By taking 7, = ||3a|¢2, the above gives a condition for D% to be o, (|Bnlle/n'/?), and therefore

O, (||Bnllez/nt/?). For the regularized remainder term, the following can be useful.

Lemma 5 (Bound on regularized remainder term). Fir j € {1,2} and B € (2. If v is pathwise
differentiable at P € P, Py < P, and QS[;, € L?(Py;H), then

IRIZ, =S 82 (Rp)® < |181% sup (Re)?
k=1

where Rpy, := (V(P) — v(Fy), hi)y, + Povp(hy).

For a given k € N, Rp, corresponds to the remainder term in a von Mises expansion of the real-valued
parameter ¢y, : P’ — (V(P’), hi)% (von Mises, 1947), where we note that the pathwise differentiability of
v at P implies the pathwise differentiability of ¢, at P with canonical gradient v5(hg).

We now turn to the bias term. For u > 0, let || - ||, : H — [0, +0oc] denote the norm defined by
B2 == Yo, k?“(h, hy)3,, where the dependence of || - ||, on the basis (hg)32; used to construct the

regularized one-step estimator is suppressed in the notation.

Lemma 6 (Bound on bias term). For anyu > 0 and 3 € €2, |Bo|ln < |v(P)=v(Po)|u suppen(1—05k)/k".
If there exists K € N such that B, = 1 for all k < K and B, =0 for all k > K, then this implies that

BRIl < (K +1)"||v(P) = v(Py)|lu < 2(K + 1) S [ (P7) - (28)

Naturally, the upper bounds are only informative if the evaluations of || - ||, upon which they rely are
finite. Conditions for the finiteness of this norm have been evaluated in several settings. In particular,
{h € H : ||h|l, < oo} corresponds to a periodic Sobolev space when H = L?([0,1]) and (hy)52, is the
trigonometric basis (Proposition 1.14 of Tsybakov, 2009), Sobolev-Laguerre space when H = L?([0, 00))
and (hg)g2, consists of the Laguerre functions (Bongioanni and Torrea, 2008), and Sobolev-Hermite
space when H = L?(R) and (hg)52, consists of the Hermite functions (Bongioanni and Torrea, 2006).
In Section 6, we study the selection of (3, in the context of our examples. We do this by leveraging the
bounds from the preceding three lemmas and then deriving the choice of 3, that balances the variance

and bias terms.
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5.2 Construction of confidence sets

In what follows we fix 3 € ¢2 and define I'z : H — H as I'g(h) = > o, Br(h, hi)ahi. The following is

the key observation that we use to construct our confidence set for v(F).

Lemma 7. If v is pathwise differentiable at P, then its transformation v? = Tg o v is pathwise
differentiable at P with local parameter Dlﬂ) :=Tgo00p and EIF d)?g € L3(P;H).

Since v? has an EIF, the methods from Section 4.2 can be used to construct a confidence set for v%(F)
based on a one-step estimator. This one-step estimator takes the form 7 := 1 25:1 Lo y(ﬁﬂb) + Pigih.
By Theorem 3, the main condition for the asymptotic validity of the resulting confidence set is that 7/° is
an asymptotically linear estimator of v (Py) with influence function ¢g. Since 7% is a one-step estimator
of v#(Py), rather than v(P), 72 generally differs from the regularized one-step estimator 7 of v(Pp)
— indeed, 78 — 8 = %E?ZI[FB o v(PJ) — v(P9)]. Nevertheless, conditions on the same regularized
remainder and drift terms studied to establish rate guarantees for 7°» can ensure the asymptotic linearity
of 72 — see Corollary S1 in the appendix.

Let C2(C,) denote an asymptotically valid (1 — «)-level confidence set for 1/%(Py) constructed according
to the methods in Section 4.2. Any standardization operator 2, satisfying the conditions of Theorem 3
may be used when doing this. For example, if €, is taken to be the identity, then, for a cutoff En selected

via the bootstrap, a spherical confidence set for v7(Py) would take the form
CHG) 1= {he s |7~ hli3 < Gu/n} (29)

Since the methods in Section 4.2 require the parameter of interest to be fixed and not depend on sample
size, when constructing Cﬁ(fn) we require the choice of 8 to remain fixed as n — oo. Handling cases
where 8 changes with n or is selected data-adaptively is an interesting area for future work. To transform
the confidence set for % (Py) into one for v(Py), we take the preimage Fgl[Cﬁ(Zn)] ={heH:Tg(h)e
CB(Cy)}. Since VP (Py) == I's o v(P), this preimage is an asymptotically valid (1 — «)-level confidence
set for v(Py) provided Cﬁ(fn) is an asymptotically valid (1 — «)-level confidence set for v?(P). The
transformation I'g has a left inverse if all entries of 5 are nonzero, with Fgl(h) =302, Be Hhy hy)why, for
h in the image of I'g. Figure 2 illustrates how the map FEI stretches spherical and Wald-type confidence
sets for the regularized parameter v?(Py) into confidence sets for v(P).

To simplify the discussion, hereafter we focus on the special case where C? (En) takes the spherical
form in (29). In this case, I‘El[Cg (Zn)] takes the elliptical form

{nens s et [T, (@B + P ()} = i <Cinf. @0

Because () must tend to zero as k — oo in order for B to belong to £2, the || - ||5-diameter of this
confidence set, namely sup, Wer=t et C)] Ik — h'||3, will not converge to zero with sample size. In
B ELTCn (Cn

—1/2_rate, where

contrast, the || - || g-diameter of this confidence set will generally shrink to zero at an n
Al = [Sope, BE(h, hi)2,]'/2. Here we note that | - || is a norm on H if all of the entries of 3 are
nonzero and is otherwise a seminorm.

The confidence set in (30) also satisfies another desirable property, which can be most easily described
by studying a corresponding hypothesis test. For fixed hg € H, this test rejects the null hypothesis
that v(Pp) = ho in favor of the complementary alternative precisely when hg ¢ F/gl[Cﬁ (En)] This test
asymptotically controls the type I error at level @ when I‘El [C2((,)] has asymptotically valid coverage,
and, by the triangle inequality, is consistent against fixed alternatives when 7/ is a consistent estimator

of VA (Ry), plim,,_, o Zn < 00, and all entries of 8 are nonzero. We now show that this test also achieves

18



-----

h Y
Y,
4
!
|
h
U
’
. :pazuenboey

d
'
1
'
'
'
.

(Odt)gr

Stretch

horizontally

rby 1/B211 4
[r——— p “\

Generalized Fourier Coefficient 2k, <1p, h2k>}[
‘\
v
y
A
1
}
4
‘l
.
’
v
A
R
/
)
.
.
.
L
x
'
/
4
N
\
'I
‘/
—
Y
.
t :reubuo

*a
)
‘
‘
-
"\
T
-
.
’
4
4
.
.
o
:
‘
0
\Y
>3
U4
.
.
e—
S\
(Od)A =

Generalized Fourier Coefficient (2k-1), (v, hzk_1)}[

Type of confidence set for regularized parameter: Spherical -- Wald-Type

Figure 2: Projections of the boundaries of confidence sets for the regularized parameter v (Py) (top) and original
parameter v(FPp) (bottom), plotted via pairs of generalized Fourier coefficients with respect to the basis (hx)fe;.
The transformation applied to confidence sets for v°(Py) to obtain those for v(Pp) stretch the axes by the
reciprocals of entries of the regularization parameter 5. Since 8, — 0 as k — oo, this stretch factor becomes
arbitrarily large as k — oo.

nontrivial power against a class of n~1/2-rate local alternatives. In what follows we let H? denote a tight
H-valued Gaussian random variable that is such that, for each h € H, the marginal distribution (H?, h)
follows a N (0, E0[<¢)g(Z), h)3,]) distribution, where d)g is as defined in Lemma 7. Unlike in the rest of
the paper, the following theorem requires all entries of 3 to be nonzero, since its proof will rely on || - ||3

being a norm.

Theorem 6 (Local power of regularized hypothesis test). Fiz 3 € ¢2 N (0,1]N and hg € H. Suppose
v is pathwise differentiable at Py, v(Py) = hg, U2 is an asymptotically linear estimator of v°(Py) with
influence function ¢g, and Zn is a consistent estimator of the (1 — a)-quantile (1_, of ||]HIB||$_L Fiz
{P.: €} € P(Py,P,s) such that ||ig(s)|l» > 0. If Fgl[Cﬁ(Zn)] is as defined in (30), then

€

P {ho @ 051CR G} =5 Pr{IB° + (&), > oo} > o

Also, hy, := v(P._,,-12) is an n~?-rate local alternative in that ||h, — holl% = O(n=1/?).

The above focuses on local alternatives that are defined via smooth parametric submodels of P. It is
worth noting, however, that by selecting such a submodel, the first-order direction of the local alternative,
defined by the value of the local parameter y(s), is fixed as the sample size grows. Since the || - ||3-
diameter of our confidence set does not decay with sample size, it does not appear that our test will
generally have nontrivial asymptotic power against local alternatives whose direction is not fixed and

whose || - || #-magnitude decays at an n~'/2 rate.

5.3 Tuning parameter selection

We begin by discussing tuning parameter selection for the regularized one-step estimator of v(Fp),
and then we subsequently discuss confidence set construction. Evaluating the regularized one-step
estimator requires selecting three key components: the initial estimator ﬁ,{, orthonormal basis (hy)32 ,

and regularization parameter (3,. Similarly to finite-dimensional problems, the suitability of an initial
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estimator ﬁ,{ will depend on the parameter of interest and the form of its corresponding remainder term
as defined in (26). In the next section, we will study these remainder terms in our illustrative examples.
In what follows we discuss the choice of basis (hx)52, and regularization parameter 3,.

Following the literature on series estimators (Chen, 2007) and motivated by the bound in (28), we
suggest choosing the basis (hi)g2, so that the span of finitely many initial basis elements yields an
accurate approximation of v(P), P € P, provided these Hilbert random elements are smooth enough.
Here, smoothness is characterized by the rate of decay of the generalized Fourier coefficients (v(P), hy)3 as
k — oo. If H is an L?()\) space with X the Lebesgue measure on the real line or a bounded subset thereof,
then common choices of bases include Legendre polynomials, Laguerre functions, Hermite functions,
trigonometric polynomials, and wavelets, among others. If H is instead an L?(Q) space with @ an
absolutely continuous probability measure on R?, then an orthonormal basis for H can be obtained in
several ways. One is to multiply an orthornormal basis (gx)§2, for L2(R%) by the root-density ¢'/2 of @Q; in
particular, (¢/? gr)5%, is an orthonormal basis for L?(Q). The suitability of these bases for characterizing
the smoothness of v(P,) can be assessed on a case-by-case basis. If d = 1, then another approach involves
transforming an orthornormal basis (g )52, for L?([0,1]) via the cumulative distribution function Fg of
Q; in particular, (gx o F)52 , is an orthonormal basis of L?(Q). Other orthonormal bases of L?(Q)-spaces
are also readily available for certain choices of @, such as if @ is a Gaussian measure (Chapter 9 of
Da Prato, 2006). Orthonormal bases for some non-L? spaces, such as Sobolev Hilbert spaces, are also
well studied (Marcelldn and Xu, 2015).

We propose using cross-validation to choose the regularization parameter (5,. If there is uncertainty
about which orthonormal basis (h;)72, should be used, this could also be selected via cross-validation,
though the discussion that follows focuses on selecting 3,,. Our proposal is based on the following loss for

v(Py), which relies on an estimate P of P:
Lp(zh) = 3llh = v(P)l3, — vplh — v(P)](2). (31)

The algorithm to implement the proposed cross-validation scheme can be found in Appendix G. There,
we also explain why Lp is a reasonable loss function to use for estimating v(Py). The cross-validation
algorithm will be easiest to implement when the search for a regularization parameter is reduced to a
search over a finite subset B,, of 2. A particularly simple choice of B,, consists of the K,, + 1 elements of
% that take the value 1 in their first & € {0,1,..., K, } entries and zero in all remaining entries. Selecting
over a finite set of possible values is also desirable since there are oracle inequalities for cross-validation
selectors over finite sets provided the loss function satisfies appropriate regularity conditions (van der
Laan and Dudoit, 2003; van der Vaart et al., 2006). Exploring the applicability of these conditions in our
setting is an interesting area for future study.

We now turn to tuning parameter selection for confidence set construction. The considerations for
selecting the basis (hg)52 ; are similar to those discussed above for estimation, and so we focus on selecting
the regularization parameter 5. As our coverage guarantees rely on the regularization parameter 5 being
fixed and not depending on sample size, cross-validation should not be used to select this quantity.
Instead, we recommend choosing a fixed, square-summable sequence §. One natural family of choices is
given by setting 8 = (8x)2, with By = 1/[1 + (k/c)'/?%4] for ¢,d > 0. The parameters ¢ and d control
the stretch and polynomial rate of decay of the function k — [, respectively. Finally, we note that,
to ensure computational feasibility, the infinite sum used to define the confidence set in (30) can be
truncated at a large, finite number of terms K5 that grows with n, without adversely affecting coverage.
This follows from the fact that the set on the right-hand side of (30) can only be made larger by replacing

the sum from k& = 1 to oo with one from k =1 to K.
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6 Study of (regularized) one-step estimators in our examples

We now revisit Examples 1la and 1b from Section 3. For each, we evaluate the plausibility of the regularity
conditions that guarantee our theoretical results hold. We revisit the other two examples from Section 3
in Appendices B.3.3 and B.4.4. In what follows, C denotes a generic finite constant whose value may

differ from display to display.

Example 1la (Counterfactual density function, continued). Since there is no EIF in this example, we
study a regularized one-step estimator 72». This estimator is defined based on an orthonormal basis
(hi)72, of H and a regularization parameter 3, € ¢2. Guidance on how to choose these quantities is
given in Section 5.3.

Theorem 5 relies on the negligibility of regularized remainder and drift terms R%%» and D7A» and
bias terms B/, In Appendix B.1.3, we use Lemma 5 and the strong positivity assumption to show

there exists a constant C' that does not depend on 3 such that, for all P € P,

||R§||H < CBllez lgp(1 | -) = go(1 | ')||L2(P0,X) HpY\A:I,X _pO,Y|A:1,XHL2(TO) ) (32)

where 7 denotes the product measure Ay x Py x and, within the L?(79) norm, pyja—1,x — Po,y|a=1,x
denotes the function (y,z) — pyja,x(¥ | 1,2) —po,yja,x(y | 1,z). The upper bound in (32) depends
on three quantities: the ¢2-magnitude of 3, the L?(Py x)-distance between the propensities gp(1 | -)
and go(1]-), and a root-MISE of the conditional distribution of Y | A =1, X under P relative to that
under Py, where the mean is taken across values of X ~ Py. Applying the above inequality to study the
remainder term RJ%» that Theorem 5 requires to be O,[|| 3.2 /n'/?], we see that R%F» will satisfy this

—1/4_rate conditions are satisfied by the estimators of two nuisance functions,

condition provided typical n
namely the propensity to receive treatment and the conditional density of the outcome given treatment
and covariates. Such conditions have been discussed extensively in the literature across a variety of
problems (e.g,. van der Laan and Rubin, 2006; Chernozhukov et al., 2018), and tend to hold when the
needed nuisance functions are sufficiently smooth or parsimonious relative to the dimension of X and
an appropriate estimation strategy is used. For example, suppose that X is continuous and R%valued,
go(1]-) and (z,y) = po,y|a,x(y | 1,z) are Hélder smooth with Holder exponents b and c, respectively
(Robins et al., 2008). If go(1 | -) is estimated via a kernel regression and (z,y) + po,yja,x(y | 1,2) is
estimated via conditional kernel density estimation, each using kernels of sufficiently high orders, then the
above can be used to show that R% » = Op[Hﬁanzn_ﬁn_W], and so RJA» achieves the desired
Oy l||Bnlle2 /n'/?] rate provided be > d(d + 1)/4. Alternative estimation strategies that often perform well
in practice even when these smoothness assumptions fail, such as those based on random forests (Ho,
1995) or gradient boosting (Friedman, 2001), could also be used.

For the regularized drift terms, Lemma 4 shows that D29 is 0,(||8n| e /n'/?) whenever ||¢7° —
ngHLz(pU;H) = 0p(||Brllez). To provide conditions under which this is true, we use that there exists a
constant C' > 0 that does not depend on 3 such that, for all P € P, ||¢§ - ¢g|‘L2(PO;’H) is upper bounded
by

CllBl e (||9P(1 | ) —go(1| ')”L?(PO,X) + HPY|A:1,X _pO,Y|A:1,XHL2(TO)) .

Hence, ||¢J:2n —pim |2 (Py;1) = 0p(||Bnllez) whenever the propensity and conditional density of Y| A =1, X
under 13,{ are consistent according to the norms above. Consistency is a weaker requirement than the
rate conditions imposed to ensure the negligibility of R%A», so it is reasonable to expect that D% » will
be negligible when R/ is negligible.

From Lemma 6, an upper bound on the rate at which the bias terms B7%~ will decay to zero can be
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derived by bounding either ||1(P?) — v(Py)l|, or suppep |[V(P)]|w for some v > 0. The latter of these
quantities is no more than ¢ < oo if the parameter space {v(P) : P € P} is a subset of the Sobolev
ellipsoid {h € H : ||h]], < ¢}. In this case, when the first K, entries of 3,, are one and all others are zero,
Lemma 6 shows that ||B%P |y < ¢/(K, + 1)%; if the earlier-discussed regularity conditions hold so that
the regularized remainder and drift terms are O, (||3,/¢2/n'/?), then this yields that, when K, is of the
order nl/(utl)

v = v(Py) = Op(n=*/2D), (33)
This analysis bears similarity to the study of projection estimators (Theorem 1.9 of Tsybakov, 2009), but
with the added requirement that drift and remainder terms must be considered.

The rate of convergence in (33) was derived based on the looser of the two bounds in (28). While the
former bound would give tighter bounds on the bias term when ||1/(ﬁ7{) — v(Py)l., converges to zero in
probability at some rate, it is unclear whether there are initial estimators ]3,{ of Py that would achieve
this. Indeed, since || - ||, is a stronger norm than || - ||, probabilistic convergence relative to || - ||3 is
insufficient to guarantee convergence relative to || - ||,,. Looking to identify or develop initial estimators of
Py for which Hy(ﬁg) — v(Py)|le 2 0 is an interesting area for future study, since, when such an initial
estimator is used, faster rates of convergence for 72+ than that given in (33) may be established.

While the discussion above focused on the regularized one-step estimator, similar arguments can be
used to analyze the confidence sets introduced in Section 5.2 for fixed 3 € £2. Indeed, Corollary S1 in the
appendix shows that the key quantities to bound to establish the validity of these confidence sets are
RZP and DA — in particular, both of these quantities should be o,(n~'/2). We have already bounded
these quantities above when studying the regularized one-step estimator of v(FPp). In particular, these

conditions will hold if each of py y|4,x and go(1 | -) is estimated at a faster-than-n—1/4

rate according to
the norms in (32).

In the special case where g is a vector whose first K entries are 1 and whose remaining entries are 0,
the estimator 772 used to construct our confidence sets coincides with the L?(\y) projection estimator
studied in Corollary 2 of Kennedy et al. (2021). In our notation, that estimator can be viewed as
estimating the parameter I'g o v(P), though if K grows with n, as would typically occur under the
model selection strategy described by Kennedy et al., then it can be viewed as estimating v(Py) as well.
This estimator differs from the regularized one-step estimator 7° that we have recommended using for
estimation of v(P), with the estimators differing by the L?(\y) projection of 1 23:1 v(P7) onto the
orthogonal complement of the linear span of the first K elements of the chosen basis for L?(\y). It is
not immediately clear whether one of these two estimators should be preferred over the other in general,
though our upcoming simulation study supports using 7, especially when n is small. The decision
between using these estimators of v(Py) can be summarized as follows: 77 should be used to estimate
v(Py) if %Z?Zl I'go v(PJ) attains a lower MISE for estimating I's o v(P) than does the zero function,
and 7° should be preferred otherwise.

Kennedy et al. (2021) also proposes an approach for making inference about the difference between
two counterfactual densities using any of several distance metrics. For the L?(\y) metric, this inference

is based upon first-order asymptotics the parameter ¢(Py) = |11 (FPy) — vo(Fo)||%2 ( where vy is

Ay)?
equal to the counterfactual density parameter v defined in (11) and vy takes the sameyzorm but with
py|a,x (y | 1,2) replaced by py|a,x(y | 0,2). There, they note an oft-confronted difficulty (Luedtke et al.,
2019; Williamson et al., 2021) wherein their estimator of 1(Py) converges to zero at a faster-than-n—'/2
rate under the null hypothesis that v1(Py) = vo(Fp), leading them to propose a conservative threshold
to test this null based on the maximum of the estimated standard error of their estimator and n~1/2.

Since the pathwise differentiability of 11 and 1 implies the pathwise differentiability of 14 — 1y — with
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efficient influence operator equal to the difference of the efficient influence operators of v; and vy — our
regularized one-step estimation framework provides an alternative, non-conservative means to test this
hypothesis by constructing a confidence set for this parameter for fixed 8 € 2N (0,1]N and checking
whether it contains zero.

We now compare our inferential procedure in this example to that of Kennedy et al. (2021). We
start by comparing the size of the dual confidence sets. The method from Kennedy et al. can be used
to construct a confidence set by inverting tests of whether ¢y (Py) := ||v1(FPo) — vo(FPo) — hH%Q(Aﬂ is
equal to zero across values of h € L?(\y); the threshold for each h-dependent test is determined using
the same conservative threshold methodology as when h = 0. The L?(\y) and | - || diameters of this
confidence set both decay at rates no faster than n='/4. In contrast, the || - || diameter of our confidence
set decays at a quadratically-faster rate of n~'/2, while the L?(\y) diameter does not decay at all.
Nevertheless, since ||h||s = 0 if and only if ||A[[z2(x,) = 0, our confidence set will exclude any particular
h # 11 (Py) —vo(Pp) with probability tending to one. As a practical matter, our confidence set will exclude
functions h that differ smoothly from 11 (FPy) — vo(FPp) relative to the basis (hy)2, at smaller sample sizes
than will the n~/%-rate confidence set, and will otherwise require larger sample sizes; here, smoothness is
characterized by the decay rate of (v1(Py) — vo(FPo) — h, hg)u as k — oo. Our dual hypothesis test of
whether v4(Py) — vo(Fy) = 0 will also satisfy the local power guarantee from Theorem 6. We investigate
the properties of this test and compare it to the test proposed in Kennedy et al. (2021) in our upcoming

simulation study.

Example 1b (Bandlimited counterfactual density function, continued). Since there is an EIF in this
example, we study a (non-regularized) one-step estimator. Theorem 2 relies on the negligibility of the
remainder and drift terms, namely that they are o,(n™1/2). Let Rp := v(P) + Po¢, — v(F) denote the
remainder term for a generic P € P. In Appendix B.2.5 we show that there exists a C' < co that does
not depend on P € P such that

IRpllze < Cllgp(X]) =901 [ )2, 4 |lpy)az1,x —PO,Y\A:LXHLz(TO)- (34)

Hence, for RY := Rp; to be 0,(n~1/2), the products of the rate of convergence of 9pi(1]-) togo(1]-)
and py|a—1,x t0 poy|a=1,x according to the norms above must be faster than n~1/2. This results in the

1/4

same n~'/*-type requirement that we discussed below (32) for Example la, except, because we only focus

on rates of convergence for regularized one-step estimators (rather than weak convergence), there we only

~1/2 yather than faster, as we require here. Also similarly

required this product to be at least as fast as n
to Example 5.3, for each j € {1, 2}, ||Qfl = & ll2(Py;34) can be shown to be o0,(1) provided the propensity
and conditional density of Y | A = 1, X under P] converge to in probability go(1 | -) and pgy|a=1,x
according to the norms in (34). Hence, Lemma 3 ensures that the drift term D’ is 0,(n~'/2) under this
condition, and so the conditions of Theorem 2 hold under reasonable conditions. If the operator g
used to construct a confidence set for v(P) is fixed, then the conditions of Theorem 4 are also satisfied,
justifying the use of the bootstrap in confidence set construction. If instead the regularized covariance
operator described in Appendix D is used, then the bootstrap will still yield an asymptotically valid
confidence set for v(P,) provided the estimator of €y described in that appendix is used (see Lemma S12

for details).
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7 Simulation study

7.1 Overview

We conduct a simulation study to evaluate the finite-sample properties of our one-step estimation
framework, both in settings where an EIF exists and in ones where it does not. All of these settings
involve drawing inferences about the distributions or densities of counterfactual outcomes (Examples 1
and 3). Our implemented methods are available in the HilbertOneStep R package (Luedtke, 2023).

We consider multiple data-generating processes, each indexed by real-valued probability distributions
Q(0) and Q(1). Sampling from a generic such process involves drawing n iid samples from Py, where n
takes values in {250, 500, 1000, 2000, 4000}. An observation Z = (X, A,Y") from Py is sampled as follows:

(¥(0),Y (1)) ~Q(0) x Q(1), V' [Y(0),Y(1) ~ N(05,1d5),

X=Y+V+1){Y(1) >0} A[Y(0),Y(1),V,X ~Bern [z + - - expit(X1)],
and then letting Y = AY (1)+(1—A)Y(0). For a € {0,1}, Y (a) is the counterfactual outcome if treatment
A = a were assigned. Since Y(a) 1L A | X and the positivity assumption is satisfied, the density of
Y (a) takes the form in (11) when a = 1 and otherwise is the same but with py|4 x(y | 1,2) replaced by
Py|a,x(y | 0,2). Unless otherwise specified, estimates of performance are based on 1000 Monte Carlo
repetitions.

We estimate all needed nuisance functions using the same approaches as Kennedy et al. (2021). In
particular, we estimate the marginal of X with the empirical distribution, the conditional distribution of
A given X using the ranger package (Wright and Ziegler, 2017), and the conditional density of Y given
(A, X) using ranger and a Gaussian kernel weighted outcome with bandwidth selected by Silverman’s
rule. When implementing the quadratic forms used to define our confidence sets, we use grids of 500

points on the support of Y — see Appendix F for details.

7.2 Performance of the regularized one-step estimator in Example 1a

We evaluate the performance of the regularized one-step estimator of the counterfactual density of Y (1)
from Example 1a when H = L2([0, 1]). We consider three choices of Q(1), which are displayed in Figure S2
in the appendix. The behavior of Y'(1) on the boundaries of its support, namely 0 and 1, differs across the
three settings; to emphasize this, we label them ‘zero on both sides’, ‘nonzero on both sides’, and ‘spike
on left side’. The cross-validation strategy outlined in Section 5.3 is used to select the regularization
parameter 3 over the elements of £? that take the value 1 in their first K < 16 entries and 0 in all others.
To evaluate sensitivity to the choice of basis, we evaluate our estimator based on the cosine basis, with
hi(y) = 24/2cos[m(k — 1)y], and a rescaled Legendre basis, with hy(y) proportional to the k-th Legendre
function applied to 2y — 1. We also evaluate the use of cross-validation to select between these bases.

Performance is compared to that of a plugin estimator and also the estimation strategy implemented
in the npcausal package (Kennedy et al., 2021), which is a series estimator of the L?([0,1]) projection of
the counterfactual density onto the first K terms of the cosine basis. We use the cross-validation scheme
implemented in that package to select a value of K < 16. Though npcausal does not return the estimated
density function, we tweaked its open-source code to extract this information.

Figure 3 displays the estimators’ MISEs. In all settings, the regularized one-step estimators are
outperformed by the plug-in estimator at small sample sizes, but their relative performances improve as n
grows and eventually exceed or trend towards exceeding that of the plugin. Compared to the regularized
one-step estimator with the cosine basis, npcausal has MISE that is twice as large at small sample sizes

in two of the three scenarios. In one of these scenarios, npcausal’s performance improves with n, but is
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Figure 3: Mean integrated squared error (MISE) versus sample size (n) in Example la for five estimators across
the three data generating processes considered. Both axes are log-transformed.

still worse than all the other estimators. In the other, its performance dramatically improves between
n = 2000 to 4000 from the worst of all the estimators to slightly better than the others. In the remaining
scenario, npcausal and the regularized one-step estimator with the cosine basis perform similarly. Among
the regularized one-step estimators, using the Legendre basis outperforms using the cosine basis in one
scenario, while the two perform similarly otherwise. Selecting the basis via cross-validation yields an

estimator that is about as good as the one based on the Legendre basis in all scenarios.

7.3 Properties of hypothesis tests from Examples 1a and 3

We evaluate 5% level tests of the null hypothesis that Q(1) = Q(0) against the complementary alternative.
The first class of tests uses the results from Example la to check if zero is included in an L2([0,1])
confidence set for the difference v(Py) = v1(Py) — vo(Pp) of the densities of Q(1) and Q(0). We obtain
spherical and Wald-type L2([0, 1]) confidence sets for the regularized parameter v*(P,) using cosine and
Legendre bases. Both are then transformed into elliptical confidence sets for v(FPy) using the approach
from Section 5.2. The Wald-type confidence sets are defined with the correlation-based standardization
operator €, from Appendix F with A = 0.5. For the regularization parameter 3, we let 8 = 1/[1+ (k/c)?]
and consider values of ¢ € 2.5,5,10. Results for ¢ = 5 are reported in the main text, while others appear
in the appendix. Additionally, we examine a test based on the Gaussian kernel MMD between (1) and
Q(0), which depends on a bandwidth choice of 0.5, 1, and 2 times median{|Y; —Y;| : 1 < i < j < n}
(Garreau et al., 2017). We report results for the middle value in the main text and others in the appendix.
We compare performance to the asymptotically conservative test from Kennedy et al. (2021), implemented
using npcausal.

We set Q(1) to its value from the ‘nonzero on both sides’ simulation setting and consider different
values of Q(0). We explore the null hypothesis with Q(0) = Q(1), and, for k € {1,2,...,7}, the
alternative hypothesis with vo(Pp)(y) = v1(Po)(y) + cos(k®my)/3, denoted as ‘Alt k?’. By examining
these alternatives, we assess the power decay of our tests for v1(Py) — vo(Fo) = 0 as the direction of the
alternative corresponds to that of a higher-frequency function in the cosine basis.

Figure 4 presents the type I error and power of the tests. In terms of type I error, the five tests based
on our one-step estimation framework achieve or nearly achieve the nominal 5% level. Surprisingly, the
npcausal test has a type I error over three times the nominal level at smaller sample sizes, despite having
an asymptotic rejection probability of zero. However, as n increases, the type I error converges towards its
expected conservative asymptotic behavior. As for power, our tests that regularize using the cosine basis
display the anticipated power decay for rejecting Alt k2 as k increases. Tests using the Legendre basis do
not exhibit the same monotonic dependence on k. The Wald-type test with the cosine basis demonstrates

noticeably higher power for larger k alternatives than the spherical test, while this trend is less apparent
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Figure 4: Type I error and power of tests from Examples 1la and 3.

for the Legendre basis. The MMD test has high power for detecting the smoothest alternative, Alt 1,
but low or no power against all others. It is important to note that the alternatives we have considered
become quite nonsmooth as k increases, making MMD’s poor finite-sample performance for detecting
them potentially acceptable. Figure S3 in the appendix illustrates test performance with various tuning
parameter choices. Overall, the results align with expectations: for tests based on Example 1a, enhanced
power against rougher alternatives (k larger) comes at the cost of reduced power against smoother
alternatives when later entries of the regularization parameter § are increased, and vice versa. For MMD,
modifying the bandwidth results in the same tradeoff.

Appendix I.1 presents simulation results evaluating our confidence sets for a bandlimited counterfactual
density. Nominal coverage is achieved for all sample sizes considered. There, we also highlight the
disadvantage of using our L? confidence sets when a point evaluation of the counterfactual density, rather

than the function itself, is the true quantity of interest.

8 Discussion

The lack of existence of an EIF that we have confronted in parts of this work bears resemblance to the
lack of existence of higher-order influence functions for many real-valued parameters (Robins et al., 2008;
van der Vaart, 2014; Robins et al., 2017). There, the nonexistence of these objects owes to the lack of a
suitable Riesz-representation-type theorem for multilinear forms. In our case, it owes to the fact that
the efficient influence operator U5(-)(z) : H — R typically fails to be (P-a.s.) bounded and linear, even
though o5 : H — Pp is. Though the technical details of the two problems differ, similar solutions work
for both: replace the operator that does not satisfy a Riesz-type representation by an approximation
that does. In our case, this involved studying the g-regularized efficient influence operator rﬁ. In future
work, it would be interesting to investigate the possibility of defining higher-order influence functions for
Hilbert-valued parameters. We have shown that, under mild conditions, a first-order EIF exists when the
Hilbert space is an RKHS, making this case a natural starting point for exploration.

Another interesting area for future work is to develop a systematic means to select the tuning parameter
[ needed to define our confidence sets when an EIF does not exist. Although our asymptotic guarantees
hold for any fixed choice of 8 € ¢? and our numerical studies shed light on how different choices of
B improve power against different alternatives, it would be desirable to have an automated means of
selecting this parameter. One possible approach would involve drawing inspiration from the choice of
kernel for two-sample tests based on the MMD (Gretton et al., 2012). Like our approach, these tests
rely on selecting a fixed tuning parameter — in their case, a kernel — as n grows. In that context, an

appealing heuristic choice of the bandwidth parameter indexing the kernel has been developed, provided

26



a radial basis function kernel is used (Garreau et al., 2017). It would be of interest to develop a similar
heuristic in our setting.

Another area for future study involves extending our results to cases where the Hilbert space depends
on the data-generating distribution. As a simple example, in the regression setting from Example 5 in
the appendix, we may want to evaluate performance relative to L?(Ax) with Ax equal to the marginal
distribution Py x of X under Fp, rather than some fixed known measure, such as the Lebesgue measure.
The definition of pathwise differentiability at Py goes through unchanged in that case. However, because
the efficient influence operator at an initial estimate IA’,{ of Py depends on Py when H = L2(P07 x), the
regularized one-step estimator we have presented in this work cannot be evaluated. A natural workaround
would be to modify the definition of this estimator to use the efficient influence operator of v at ]3%
relative to a Hilbert space that is indexed by ﬁ,{, rather than Py, and replace (hy)32, by a basis of this
space. We leave the study of this estimator to future work.

After establishing that many Hilbert-valued parameters of interest are pathwise differentiable, we
focused on developing and studying a particular estimation framework that leverages this property,
namely one-step estimation. This framework has the benefit that there is a closed-form expression for
the resulting estimators, which simplifies the study of their convergence properties and construction
of corresponding confidence sets. While this approach has advantages, it would be worth considering
alternative frameworks in future work. As one example, an M-estimator based on the loss that we
introduced in (31) could also be considered. Foster and Syrgkanis (2019) offers a general method for
determining the convergence rates of these estimators. Additional research is needed to investigate their

weak convergence properties and the possibility of using them to construct confidence sets.
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A Additional examples of pathwise differentiable parameters

All derivations are given in Appendix B.

Example 4 (Root-density function). Nonparametric density estimation is a well-studied problem.
Estimating the (square root of) the density as an L? parameter has been done in Cencov (1962). In
our setting, we suppose that Z ~ P for P € P, where there is a o-finite measure A that dominates all

distributions in a locally nonparametric model P and we wish to estimate the square root of the density

of Z, that is, v(P)(2) := 2£(2)!/2, where A denotes the Lebesgue measure. The parameter v takes values

in H := L%*(\). The local parameter takes the form p(s)(z) = 3s(z)v(P)(z), and the efficient influence

operator takes the form

k) h(z)
PG = e {MP)(ZJ |

Similarly to Example la, o} is not a bounded operator when A is not discrete, and so an EIF will not

exist in these cases.

Example 5 (Regression function). We suppose that Z := (X,Y) ~ P for P in a locally nonparametric
model P. We assume that for all P, P’ € P, P is equivalent to P’ in that P <« P’ and P’ < P, and also
that

sup esssup Ep[Y? | X = z] < oo, (S1)
PeP T

where esssup denotes a Px-essential supremum with Px denoting the marginal distribution of X under

P € P. Let Ax be a measure that is dominated by the marginal distribution of X under some (and, by their

31



equivalence, all) distributions in P. We wish to estimate the conditional mean v(P)(z) := Ep[Y | X = z],
where v : P — H with H := L?(\x). We establish pathwise differentiability at any P € P that is such
that ZAT); is bounded Px-almost surely. We note that we do not require that Py < Ax; in such cases,
estimation error quantified via the L?(\x)-norm only measures performance on a strict subset of the
support of Px.

The local parameter is vp(s)(z) = [[y — v(P)(z)]s(z,y)Py|x(dy | =) and the efficient influence
operator is vp(h)(z,y) = g%(((a:)[y — v(P)(z)]h(z). Similarly to Example la, U} is not a bounded

operator when Ax is not discrete, and so an EIF will not exist in these cases.

Example 6 (Kernel mean embedding of distributions). Let x: Z x Z — R be a bounded, symmetric,
positive definite function. Let H be the unique RKHS associated with the kernel £ (Aronszajn, 1950),
and let K, := k(z,-) be the associated feature map. Assume that P is a model on Z such that all P € P
are equivalent and P < A for all P € P. The target of estimation is the evaluation of the kernel mean
embedding v : P — H at P (Gretton et al., 2012), where

v(P) = /Kz P(dz).

When the model is locally nonparametric, the local parameter takes the form vp(s) = [ K, s(z) P(dz).
The efficient influence operator takes the form 5 (h)(y) = h(y) — Ph, and the efficient influence function
is P-Bochner square integrable and takes the form ¢p(z) = K, — v(P). Regardless of the initial estimator
of Py, the one-step estimator is given by 7, = % Z?:l Kz,. In other words, 7, is the empirical kernel
mean embedding as defined in Gretton et al. (2012).

Example 7 (Conditional average treatment effect). There has recently been much interest in various
fields regarding the estimation of the conditional average treatment effect function (Hill, 2011; Luedtke
and van der Laan, 2016; Kiinzel et al., 2019). Under conditions, this parameter corresponds to an
additive causal effect between the mean outcome that would be observed among individuals with
a given covariate value if, possibly contrary to fact, treatment 1 had been administered versus not
administered. For the setting, suppose that Z := (X, A,Y) ~ P for P € P, where X is a vector of
covariates, A is a binary treatment, and Y is an outcome. As in Example 4, suppose that P is a locally
nonparametric model consisting of equivalent measures. Define the propensity to receive treatment a
as gp(a | ) == P(A = a | X = x) and the outcome regression as ppq(z) := EplY | A =a,X = z].
Suppose that all distributions P € P are such that max,c(o,1} esssup,cy Ep(Y? | A=0a,X = 2) < o0
and max,e (0,1} esssup,cy gp(a | 2)~! < oo. Let Ax be a measure that is dominated by the marginal of
X under the distributions in P, and define H := L?(Ax). The target of estimation is the conditional

average treatment effect v : P — H, defined as

v(P)(x) = ppa(x) — ppo(2).

dAx

Similarly to Example 4, we establish pathwise differentiability at any P € P that is such that 3 P Is

bounded Px-almost surely. The local parameter takes the form

ir(s)a) = [ m[y ~ upa(@)ls(y, a,2)P(dy. da | 2). (s2)

The efficient influence operator takes the form

h(z) (2a—1)
px(z) gp(a | z)

*

l./P(h)(:%avx) =

[y — pp.a(w)]. (S3)
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Similarly to Example 1a, o} is not a bounded operator when Ax is not discrete, and so an EIF will not

exist in these cases.

B Derivations for examples

B.1 Example la: counterfactual density function
B.1.1 Pathwise differentiability

We now show that v is pathwise differentiable relative to a locally nonparametric model P at any
P € P. To do this, we break our argument into two parts. First, we use Lemma 2 to establish that v is
pathwise differentiable relative to a model P, that is nonparametric up to the fact that the propensity to
receive treatment is known to be equal to a fixed function g. Specifically, we consider the model P, that
consists of all distributions P’ that are such that gpr = g and for which there exists P € P such that
P{,lA’X = Py|a,x and Py = Px. Second, we use the fact that v does not depend on the propensity to
receive treatment to extend this pathwise differentiability result to the locally nonparametric model P.

Throughout this subappendix we suppose that, at each P € P and for a fixed § > 0, P is large enough

to contain submodels of the form {P. : € € [0,0)}, where d;j;"xx () =1+ esx(x), dﬁ,ﬁ‘xx (a]z) =1,

dP, . . .
and #‘;’;(y | a,2) =1+ esy|ax(y|a,z), where sx and sy|4 x are arbitrary functions bounded in

(=671,671) that are such that Ep[sx(X)] =0 and Ep[syja x(Y | A, X) | A, X] = 0 P-almost surely.
There is no loss in generality in assuming that P is this large since pathwise differentiability relative to a
larger model also implies pathwise differentiability relative to a smaller model, and, when both the larger
and the smaller models are locally nonparametric, the local parameters and efficient influence operators
in the two models necessarily agree.

We now use Lemma 2 to prove that v is pathwise differentiable relative to P4, where for now we take
g to be any fixed function that is such that g = gp/ for at least one P’ € P. Fix two distributions P
and P in Pgy. Let Ax denote a o-finite measure that dominates the marginals in X of P and P, that is,
Px < Ax and P < Ax, and let ¢x and §x denote the square root of the marginal density of X relative
to Ax under P and P, respectively. For any P’ € P, we also define gp/(- | x) to be the square root of the
conditional density of ¥ given (A4, X) = (1,z) under P’. For brevity we let ¢ := ¢p and ¢ := gp. We
have that

~ 2
J#) =P,

=/[/ {cf(yw)d?c(w)—f(ylw)qi(w)}dAx(w)rdky(y)
-/ [ [t 12)ix(@) + aty | ax (@)
Hdly | 7)gx (z) — q(y | 2)gx (z)} dAx (fv)l 2dAy(y)
< [ [ a1 2)ix(@) + aty | 2)ax(@))* drx(o)
| [t 21ix(@) -t | o (@) drs )| arvio
<2 [ [P+ P | [t | 2ixte) ~ aty | Dhax (@) arxo)] ar o)

where the first inequality holds by Cauchy-Schwarz and the second by the fact that (b + c)? < 2(b% + ¢?).
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Using (12) and the fact that v does not depend on the propensity to receive treatment, this shows that,
for Oy = 4supp,cp esssup, v(P')(y),

2 - e
< 01/ {a(y | ©)ix (z) — aly | 2)gx ()} drx (@)dAy (y)
=0 [[ s {1200 20 9x @)~y | 20020 | 2)ax(@)} i @)iry o)
Again using (12) and letting Cy = Cy/infp/ep essinf,cx gp/ (1 | ), we find that
2 - vep

<Ca [[{atw 121920 | 2)3x @) - aly | 29201 | 2)ax ()} dix ()i o).

Finally, noting that the double integral on the right-hand side upper bounds by H?(P, 15), we have shown
that ||v(P) — v(P)||x < C;/QH(P, P), which establishes (ii) of Lemma 2 when the model is P,, where g
is an arbitrary value of the propensity to receive treatment for which there exists some P € P such that
9g=9p-

Hereafter we fix P € P and suppose that ¢ = gp. We now establish (i) of Lemma 2 at P for
the model P, with np(s)(y) equal to the right-hand side of (13) from the main text. To do this,

we use the following model: {P. : € € [0,§)}, where jﬁ X(z) =1+ esx(z), df;,::‘XX (a | z) =1, and

P, . _ _
ﬁ(y | a,z) = 1+ esyja,x(y | a,x), where sx and sy|a x are bounded in [—671/2,67!/2] and

Ep[sx(X)] = 0 and Ep[syja,x(Y | A, X) | A, X] = 0 P-almost surely. The model {P, : € € [0,0)} is
a submodel of P by assumption and, due to the fact that P, 4jx = Pax for all ¢, is therefore also a
submodel of Pg. It can be verified that this submodel has score s(z,a,y) = sx(z) + syja,x(y | a,z) at
€ = 0 and that the L?(P)-closure of the set containing such scores corresponds to the tangent space of Py
at P. In what follows we will show that ||v(P.) — v(P) — enp(s)|lx = o(€). To this end, observe that

lv(Pe) = v(P) = enp(s)Il3,

N / [/ { (m(y | 17x)d£§f (z) = 1> 7y | x)qi(x)} dAx(z)

2

dAy (y)

—enp(s)(y)

]

2
+esx (@) + sypax(y | 1,2)sx(2)) ¢ (y | 2)ak (#) pdAx (= —enP(S)(y)] dAy (y)-

/{(GSYIAX(Z/ |1,2)

Using that sy 4 x(y | a,7) = s(x,a,y) — Ep[s(X,A,Y) | A=a,X = 2] and sx(x) = Ep[s(X,A,Y) |
X = z] and plugging in the definition of np, we see that

lv(Pe) = v(P) — enp(s)ll3

=/UGQSYA,x(yI1,x)sX(w)q2(yw)qi(w)dkx(w)rdh(y)

< i /[/ (v | 2)% (@)drx (@ )}QdMy)
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— 645_4/V(P)(y)2d>\Y(y)

< i [ / u(P)(y)dAy@)] sup esssup(P)(y)

PEP y
= ¢*67* sup esssupv(P)(y),
PEP y

where the first inequality used that sy 4 x and sx both have ranges bounded in (—0-1,671). By (12), the
right-hand side is O(e*), and therefore is o(€?) with much to spare. Hence, ||v(P,)—v(P)—enp(s)|x = o(e).

We now verify that np is a bounded operator, which will then show that (i) of Lemma 2 holds at
P for the model P,. Take any s in the tangent space of P, at P. Let syja x(y | a,z) := s(x,a,y) —
Ep[s(X,A)Y) | A = a,X = 2] and sx(z) := Ep[s(X,A,Y) | X = z]. It can be verified that,
Ep[s(X,A,Y) | A, X] - Ep[s(X,A,Y) | X] =0 P-a.s., and so s = sy|4,x + sx. We write p(- | a,z) to
denote the conditional density under P of Y given (A, X) = (a,z). Observe that

mp(s) ||2L2(,\Y)
-/ { [iviaxt 1)+ sx@lnly Lx)PX(dx)} Ay (dy)
< / (syiax( | 1.2) + sx(@)]p(y | 1,2)} Ay (dy) P (dz)

- / syiax (] L) + sx(@)p(y | 1,2)Pyiax(dy | 1,2)Px(dz)
PA=1|X =2)
PA=1]X=2)

— [Isviax( | 1.0) + sx(@Poly | Lo) P(d2)

— [Iviax( | a.o) + sx@Pply | a.2) P(d2)

< (/[sY|A,X(y |a,z) + SX(w)FP(dZ)) Sup (p(y | 1’””)P(A = 11| X = x))

1
< |Is||? 1 .
< sl s (0 11.2) == )

By (12), the supremum is finite and so np is a bounded linear operator. Hence, by Lemma 2, v is pathwise
differentiable at P relative to P, with vp = np.

We now show that v is pathwise differentiable at P relative to P. To do this, we consider an arbitrary
s € L3(P) and {P. : ¢} € P(P,P,s). Let syjax(y|a z) :=s(z,a,y) — Ep[s(X,AY) | A=a,X = 1]
and sx(x) := Ep[s(X,A,Y) | X = z]|. Also define {P! : €} to be the submodel consisting of distributions
P! that are such that P;YlA’X = P.yjax, gpr = gp, and P/ yx = P, x. Lemma S8 can be used to
verify that {P! : e} € P(P, Py, sy|a,x + 5x). Also, since v does not depend on the propensity to receive
treatment, v(P!) = v(P.) and, by the definition of op in (13), vp(s) = Pp(sy|a,x + sx). Hence,

I(B) = v(P) = eip(s) 2 ay ) = [(PL) = v(P) = eip(syiax + 55)|agr, - (34)

By the pathwise differentiability of v at P relative to Py, the right-hand side is o(e). Recalling the
left-hand side above, this shows that v is pathwise differentiable at P relative to P with local parameter

vp.
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B.1.2 Efficient influence operator

Take any s € L§(P). Let syja x(y | a,2) = s(z,a,y) — Ep[s(X,A,Y) | A=0a,X = z] and sx(z) :=
Ep[s(X,A,Y) | X = x]. To compute the adjoint of p, note that, for h € L2(\y),

(Tp(s),h)2ny) = /[3Y|A,X(y | 1,2) + sx(2)]h(y) Pyia,x(dy | 1,2)Px(dx).
Note that

/8Y|A,X(y | 1,2)h(y) Py|a,x(dy | 1,7)Px(dx)

= /M {h(y) — Ep[0M(Y) | A=a,X = 2]} s(z)P(dz),
gr(a| )

/ sx(2)h(y) Pyiax (dy | 1,7)Px (dz)

= /{Ep [hY)|A=1,X =2]— EpEp[h(Y)| A=1,X]|}s(z)P(dz).
Thus, (14) holds.

B.1.3 Bounding the regularized remainder term

For k € N, let mpy : © +— Ep[hg(Y) | A=1,X = x]. We now use Lemma 5 to study R%’". Towards
this, note that, for any P € P and k € N,

1 go(1 | X)

((P) = v(Po), hi)y + Porp(hi) = Eo K gp(1] X)

)(mp,kof) ~mo(X))] .

Hence, by Lemma 5 and the Cauchy-Schwarz inequality,

g1 1)

gr(1]-)

oo
Z 513 [mpk —mok

L2(Po,x) k=1

2
||R1ﬁ3||3_1 < Hl - |L2(P0,X) ’

Combining this with (12) and letting C' := 1/ inf pep essinfcx gp(1 | ) < 0o, we then obtain

o0
2
IRE5 < Cllgp(1] ) = 901 | )22 (p, <) D BE lmps — mok
k=1

2
Lz(Poyx) .

Further observe that, for any k € N, Cauchy-Schwarz and the fact that hj has unit length in H = L?(\y)
yield that

2
[mpx — mO,ka(po,X)

-/ ( [ @lbviaxty | 15) - mriax(s] Lx)}Ay(dw) Po.x(dz)
</ ( / hk<y>2Ay<dy>) ( [iviaxt| 10) = moiax(s] way(dy)) Po.x(dz)
_ / pyiax @ | 1,2) — poyiax(y | 1,2)Ay (dy) Po.x (dz).

Combining the preceding two displays gives (32).
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B.2 Example 1b: bandlimited counterfactual density function
B.2.1 Preliminaries

Many of our arguments rely on the following result, which shows the sense in which B can be viewed
as an L?()\y) projection onto H. In this lemma and in this lemma only, we are careful to distinguish
between elements of L?(\y ), which are equivalence classes of functions of the form [f], and elements of
H, which are functions. After this lemma, we return to following the usual conventions that (i) a generic
Ay-square integrable function h : R — R can be treated as an element of L?(\y) by simply replacing h
by [h], and (ii) for a generic equivalence class [f] of L?(\y), the function y + f(y) corresponds to any
function belonging to the equivalence class [f]. In all contexts where the convention (ii) is used, the

particular element of the equivalence class that is selected will not matter.

Lemma S1. For a Ay -square integrable function h : R — R, let [h] denote the equivalence class of
functions that are \y-a.e. equal to h. Denoting a generic element of L*(\y) by [h], the operator
[h] = [B(h)] is an orthogonal projection in L*(\y) onto the closed subspace H* := {[h] : h € H}.
Proof. Let B¥ : [h] + [B(h)]. For any function v : R — C, we define 1|_;; - v as the function
> 1y (&) - v(8).

We first show that B* is a linear operator. We show this using that [f + g] = [f] + [g] for any
[f],lg] € L?(\y) and also that the Fourier and inverse Fourier transforms are linear. In particular, for
any [f],[g] € L?>(\y) and ¢ € R, we have that

BH([ef + g)) = BH([ef] + [9]) = [Blef + 9)] = [F (1 opp) - Flef +9))]
+ 1—p, - F(9))]

+ F (A - F9))]

+F (- F(9)]

B(f)] + [B(9)] = eBH([f]) + B*([9])-

o)
=
)
_|_
%
S
I
e

The operator B* is idempotent since, for any [f] € L*(\y),

Bt o BY([f]) = BH(B()])) = [BoB(f)]
= [F Aoy - Fo B = [F " Lov - F o F (Lppy - F ()]
= [F oy Lenay - FOD) = [F Ay - FO)] = [B()] = B[S

We now show that B¥ is self-adjoint. For any [f],[g] € L?(\y), the definitions of B and B* show that

(1o BEUD) 2ary = (9], B 2ayy = / o(y) B(F) () M (dy)
- / 9(0) F (U - F() ) M (dy)

Applying Plancherel’s theorem, the above display continues as follows:



Hence, B* is an orthogonal projection. Furthermore, the image Im(B*) of B* can be seen to be equal to HE.
Indeed, (i) H* C Im(B?) since, for any [h] € H, [h] = [B(R)] = B*([h]) € Im(B?) and (ii) Im(BF) C H*
since, for any [h] € Im(B*), the idempotency of B* shows that F(h) = F o B(h) = 1|_y4 - F(h), and so
h €M and [h] € #*. As the image of an orthogonal projection in a Hilbert space is closed, H* is a closed
subspace of L?(\y). This completes the proof. O
B.2.2 Pathwise differentiability

Lemma S1 and the pathwise differentiability of v, established in Example la, implies the pathwise
differentiability of v by the following display, which holds for any {P. : € € [0,6)} € P(P, P, s):

v(Pe) — v(FPo) — €B(p(s))llL2(ay) = [IBW(Pe) — v(Po) — eto(5)) | 2 (ay)
< |w(Pe) — v(Po) — etn(s)|[2(ay) = 0(€)-

Hence, vp(s) = Borvp(s). Because B and vp are both linear operators, vp : 75p — H is a linear operator.
This operator is also bounded since, by Lemma S1 and the boundedness of ©p, the following holds for

any s € 75p:
1Zp($)|z2(ayv) = 1B o Zp(8)llL200y) < PP () 220ay) < lsllL2(p) PP llop-

B.2.3 Efficient influence operator

Since B is self-adjoint, for any h € H,

(Bovp(s),h)r2(ny) = (Pp(s), B(h))r2(ry) = (5, 7P 0 B(h)) 1205y )-
Thus, vp(h) = Uy o B(h). Furthermore, as h € H and B is a projection onto H, vp(h) = v (h).

B.2.4 Efficient influence function

To compute the efficient influence function, we let

& p(y,a,7)(7)
= Up(Ky)(y, a, )

= = k0 - Be (1501 4= 0. X =)

+(Ep[ YY) A=1,X =q] /Ep ()|A:1,X:g~c]PX(da~:)).

By the symmetry of the kernel, K;(y) = K, (7). Plugging this into the above and noting that v(P) =
[Ep[Ky | A=1,X = i] Px(di), we find that

p(y,a,2)
;{?Ji} (K, Ep[Ky |A=a.X =al} + Ep[Ky [A=1X =a] ~p(P).  (S5)

Combining (12) with the square integrability of the sinc function shows that ¢, belongs to L?(P;H).
Hence, Theorem 1 shows that QP is the EIF of v.
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B.2.5 Bounding the remainder term

Fix P € P. Observe that, for any y € R, the definition of v and the expression in (S5) yields that

EP = I/ P +P0¢ — I/(Po)

— 5 | (1- 20055 ) (Brliy [ 4=1.X] - Eolkcy | 4= 1.X))

11X

=L K 9ol | )> /K Py1ax(W |1, X) —poyiax(y|l X)})‘Y(dy):|
gp(l | X

Hence, letting X7, X5 denote independent draws from P027 , we find that

IR pI3

= F, // K, () 1;[ pyiax(@ |1, X;5) —poyiax®' | 1,X;)] (1 - m>

Ay (dy)Ay(dy')]

< (yb;lleoRlK )Eo // ﬁpYAX W' |1 1,X5) = poyiax | 1,X;)]
(-0

Using that sup,, ,/cg |Ky(y')| = b/ and applying Fubini’s theorem to the expectation above shows that

Ay(dy)Ay(dy')] :

HEpHZﬂ is equal to

b 2
20 [ [ [Ipvia’ 1150 = poviax v |1.X0] (1 - 28580 ey

Letting C? := b/[minf prep essinfex gpr (1 | 2)?] and applying Cauchy-Schwarz,
2 2
”EPHZﬂ <c? lgp(1]-) —go(1] ')||L2(p0,x) ||pY\A:1,X _pO,Y‘A:LXHLZ(AYXPO‘X) )

where py|a=1,x — Po,y|a=1,x denotes the function (y,z) = pyjax(y | 1,2) —poyjax(y | 1,7). We
conclude by noting that C? < co by the strong positivity assumption. Hence, (34) holds.

B.3 Example 2: counterfactual mean outcome under a continuous treatment
B.3.1 Pathwise differentiability

We now show that v is pathwise differentiable relative to a locally nonparametric model P at any P € P.
To do this, we follow similar arguments to those used in Appendix B.1.1. In particular, we first use
Lemma 2 to establish that v is pathwise differentiable relative to a model P, that is nonparametric
up to the fact that the propensity to receive treatment gp is known to be equal to a fixed function g.
Specifically, we consider the model P, that consists of all distributions P’ that are such that gp = g and
for which there exists P € P such that P}//|A,X = Pyja,x and P{ = Px. Second, we use the fact that v
does not depend on the propensity to receive treatment to extend this pathwise differentiability result to
the locally nonparametric model P.

Let g be such that g = gp/ for some fixed P’ € P. We first show that v is Lipschitz over Py. Fix
P Pe Py. For each a € A, let P, and P, denote the distributions on R defined so that, for any Borel set
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B, Po(B) = [, [3 Pyiax(dy | a,x)Px(dz) and Po(B) = [, [5 Py|ax(dy | a,)Px(dz). We have that
Il (P) = (Pl Z2a0)
2
[ Pt = Pata}] 2t

(B) -
/
ez + any] | [ e - 2y aao
/

IN

IN

2 [ {Puldy) + Pala) H [era - P“Q(dy)}]AA(da)

< (2 sup esssup Ep V2| A= a, X — m]) / { / (PL2(dy) — ﬁj/Q(dy)}Q} Aa(da)

PeP a,x

= (2 sup esssup Ep/ [Y? | A=a,X = z])
PeP a,x

/U (a|x){gl/2(a\x)P1/2(dy) 1/Q(aoc)ﬁéﬂ(dy)}z} Aa(da)

2 SUp pr=p €SS SU Ep[Y?|A=0a,X =2 -
S pP-E'P pa.,z P [ | ] /[Pl/z(dz) _ P1/2(d2)]2
infprep essinf(, 1)ex gp/(a | 2)
2supprepesssup, . Ep Y2 |A=a, X ==z -
_ pP'eP pa.,x P [ | ] HQ(P’ P).
infprep essinf (g zyex gpi(a | )

The first inequality above holds by Cauchy-Schwarz, the second by the fact that (b+ c)? < 2(b? + ¢2), the
third by the Hoélder’s inequality with exponents (p,q) = (1, 00), and the fourth by the strong positivity
assumption. The constant in front of H?(P, P) above is finite by the assumptions regarding the uniform
boundedness of the conditional second moment of Y across distributions in P and the strong positivity
assumption. Hence, v is Lipschitz over P,. This establishes (ii) of Lemma 2 when the model is P, where
g is an arbitrary value of the propensity to receive treatment for which there exists some P’ € P such
that g = gp-.

Hereafter we fix P € P and suppose that g = gp. We now establish (i) of Lemma 2 at P for the
model P, with np(s)(a) as defined on the right-hand side of (17). To do this, we use the following
model: {F, : € € [0.6)}, where G5 (x) = 1+ esx(x), G (a | ) = 1, and GEHAX(y | a.x) =
1+ esyja x(y | a,x), where sx and sy|4 x are bounded in [-671/2,67!/2] and EP[SX(X)] =0 and
Eplsyjax(Y | A, X) | A, X] =0 P-almost surely. As in Appendix B.1.1, we assume that {P, : € € [0,9)}

is a submodel of P, without loss of generality. This submodel has score s(x, a,y) = sx(x)+syja,x(y | a, )

at € = 0 and the L?(P)-closure of the set containing such scores corresponds to the tangent space of Py
at P. It holds that

lv(P.) — v(P) — 677P(8)H%2(,\A)

[V(Pe)(a) = v(P)(a) — enp(s)(a)]” Aa(da)

= / l//y[l +esyjax(y | a,x)][1 4 esx ()] Pyja,x(dy | a,z)Px (dx)
_ // yPyia,x(dy | a,z)Px(dz) — enp(s)(a)] Aa(da)

2
- 64/ [// ysyiax (W | a,x)sx(x)Pya x(dy | a,x)PX(dg;)] Aa(da)
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2
< 64574/ [/ ly|Pya,x (dy | a,z)Px(dz)| Aa(da)

< gt / / / Y2 Py x(dy | a,2)Px (dz)Aa(da),

where the first inequality holds by the bounds on the ranges of sy |4 x and sy, and the second holds by
Jensen’s inequality. By the bounds on the conditional second moment of Y under P, the right-hand side
is O(e?), and so is o(e?) with much to spare. Hence, |[v(P.) — v(P) — enp(s)|lx = o(e).

We now verify that np is a bounded operator. When combined with the linearity of np, this will then
show that (i) of Lemma 2 holds at P for the model P,. Take any s in the tangent space of P, at P. Let
syja,x(y | a,z) == s(x,a,y) — Ep[s(X,A,Y) | A=a,X = 2] and sx(v) := Ep[s(X,A,Y) | X =z]. Tt
can be verified that, Ep[s(X,A,Y) | A, X] — Ep[s(X,A,Y) | X] =0 P-a.s., and so s = sy|a,x + 5x.
Using that (b + ¢)? < 2(b® + ¢?), applying Cauchy-Schwarz and Hélder’s inequalities, and leveraging

Fubini’s theorem, we find that

e ()72 (x4

<3 / { / / ysyax(y | a,2) Pyiax(dy | a,z>Px<dx>]2 Aa(da)

wof]f MP(G»CU)SX(CU)PX(dx)r Aa(da)

< 2/ {// Y2 Pyja x(dy | avx)PX(dI)}

[ f] S 1axtaoPraclan | o)px(an)] antaa)

vz f [ / uQP(ame(dx)} { / s_%<<x>Px<dx>} Aa(da)

< 2{esssupEp[Y2 |A=a,X = m]}

. / / U 2ax(y | a,2)Pyiax(dy | a,x) + s%ax)} Px(dx)\a(da)

= 2{esssupEp[Y2 |A=a,X = x]}

// m {/ 5%/|A,X(y | a,2)Pyia x(dy | a,z) + .S%((x)}

- Px(dz)gp(a | 2)Aa(da)
2esssupa LEplY? | A=a, X =1]

essinf, , gp(a | x)

// {/ syjax (¥ | a,2)Pyax(dy | a,x) + (x)} Px(dz)gp(a | £)Aa(da)

ey BrlY? [A=a X =3 11 2 )] Pl
- €ss infa71. gp(a | Jj) / [SY‘A,X(y | a’7x) + Sx(l')j| ( Z)
eSS D, , BplY? | A =0, X = a]

- essinf, , gp(a | x) IsllZ2c)

Above all essential suprema and infima are under the joint distribution of (A, X) implied by P. The
fraction above is finite by the strong positivity assumption and the assumed bound on the conditional
second moment of Y. Hence, np is a bounded operator. By Lemma 2, v is pathwise differentiable at

P relative to Py with vp = np. In the same way as was done in (S4) for Example la, this pathwise
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differentiability over P, can be extended to show that v is pathwise differentiable over the locally

nonparametric model P.

B.3.2 [Efficient influence operator

Take any s € L§(P). Let syja x(y | a,z) := s(z,a,y) — Ep[s(X,AY) | A= a,X = z] and sx(z) :=
Ep[s(X,A,Y) | X = x]. To compute the adjoint of p, note that, for any h € L?*(\a),

(hyip(8)) 200y = / / / {y— up(a,2)}sypax (9, @ 2)h(a) Py ax (dy | a.2) Py (de)Aa(da)
+ [ barte.2) = P)@ha)sx (2) P (do)ra (o)

The first term may be rearranged as follows:

// {y —up(a,z)}syia,x(y,a,2)h(a)Pyia,x(dy | a,z)Px(dz)\a(da)

y— pup(a, )
_/Wh( )syax(y | a,x)P(dz)

_ / Y= Re(@T) ) Pldz).

gr(a|z)

For the second term:
[ barte.2) ~ P @Iha)sxc ()P (do)ra ()
_ / { / up(a, o) — (P)(a)]h(a))\A(da)] sx () Px (da)
= [ [rtaso) - er@ e st | sty pra).

Thus,

75 (1) (s a,z) = W’““> + [l (@) (P @) dra ).

B.3.3 Study of regularized one-step estimator

Since there is no EIF in this example, we study a regularized one-step estimator 72». This estimator is
defined based on an orthonormal basis (hy)72; — guidance for selecting this basis is given in Section 5.3.
We study the regularized remainder, regularized drift, and bias terms appearing in Theorem 5 and
establish a rate of convergence of 72~ for an appropriately chosen sequence of regularization parameters
Brn- In what follows, C' denotes a generic finite constant whose value may differ from display to display.

We begin by bounding the regularized remainder terms. We use Lemma 5 to derive our bound. To
this end, we note that, for any P € P and k € N,

<V(P) —v(P), hk>H + Pyvp(hy)

mhk(A) + / [p(a, X) — V(P0)<a)]hk(@))\A(da)]

[po(A, X) — pp(A, X)
gr(A| X)

o PR GRS N e At
= o /[1 gp(a|X)][“P( , X) = po(a, X)]hi(a)Aa(d )]

:EO

:EO

mA)+ [l X) - m(a’X)}hk(a)mda)}

From here, different bounds are possible, depending on the basis (hy)32,. If the functions in hy are
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uniformly bounded — that is, Sup,e 4 xen | (a)| < 0o — then the strong positivity assumption and the
Cauchy-Schwarz inequality together show that there is a finite constant C' that does not depend on P € P
or k € N such that

|(V(P) = v(Po), hie)y + Povp(hi)| < Cllgp — goll L2 (aaxpox)l1tp — ol L2 (3a x Po.x)»

where, for f : (a,2) = Rand ¢ > 1, [f[I7a(, xp, <) = JJ f(a,2)? Aa(da) Po,x (dx) and gp — go denotes
the function (a,z) — gp(a | ) — go(a | ). Requiring functions in (hy)32; to be uniformly bounded is
not such a strong condition, with this condition being satisfied by both the trigonometric and cosine
bases for L%(]0,1]). If a basis is used that does not satisfy this assumption, then the following alternative
bound can be derived by twice applying Cauchy-Schwarz, using Jensen’s inequality, invoking the strong
positivity assumption, and leveraging the fact that all elements of (hy)$2, have unit length in L?([0, 1]):
there exists a C that does not depend on P € P or k € N such that

[(v(P) = v(Po), hi)gy + Povp(hi)| < Cllgp = gollLs(xaxpro o P = pollLa(raxry x)-

Plugging the above bounds into Lemma 5 shows that, depending on whether or not the functions in

(hi)g2, are uniformly bounded (¢ = 2) or not (¢ = 4), there exists a C' < oo such that

IR% N2 < ClBllezlgp — goll Lacrax pox) 16 — 10l La(rs x Pox)-

Hence, for each j € {1,2}, RLF» .= R%} will be O, (||Bnlle2/n'/?) provided the product of the rates of
-1/2

n

convergence in probability of gs; and pp; to go and o under the L4(Ag x Py x) norm is at least n
We now turn to the regularized drift terms. We will bound them via Lemma 4. We begin by noting
that, for any P € P and 3 € £2,

. . 2
165 = 60172 cpoy = D Br17p (hie) — oo (hae) 172y
k=1

< 118117 sup [[7p (i) = 2o (hi) 72y -
keN

It can further be shown that there exists a constant C' < oo that does not depend on P € P or k € N
such that

7P (hi) = 20 (ha) || g2 pyy < C (Il9p — GollL2(xaxpox) + 1t = B0l L2 (A4 x Po x)) -

Combining the preceding two displays shows that

165 — 05 I 2(posrty < CllBllex (l9p = gollz2(vax Pox) + 1P — HollL2(3nx Po.x)) -

Hence, for each j € {1,2}, |50 — d)gn”LZ(}DD;H) = 0p([|Bnlle2) provided gp; and pp; converge in
probability to go and po under the L?(A4 x Py x) norm. Since no requirement is made on the rate of
convergence and the L*(A4 x Py x) is stronger than the L?(A4 x Py x) norm, this condition will typically
be weaker than the condition required above to make the regularized remainder term negligible. In any
case, under this consistency condition, Lemma 4 shows that DJ%» is 0,(||8,]¢2/n'/?), as desired.

The analysis of the bias term is nearly identical to the one given for Example la in the main
text. In particular, if the first K, entries of 8, are one and all the others are zero, then, provided
suppep |[V(P)|lu < oo, Lemma 6 shows that ||BLA |y < ¢/(K, + 1)*. Hence, if K, is of the order
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n'/u+1) and the regularized remainder and drift terms are O, (||3,|¢2/n'/?), then

it~ v(By) = Oy (n™/ G0

B.4 Example 3: counterfactual kernel mean embedding
B.4.1 Pathwise differentiability

We now show that v is pathwise differentiable relative to a locally nonparametric model P at any P € P.
To do this, we follow similar arguments to those used in Appendix B.1.1. In particular, first we use
Lemma 2 to establish that v is pathwise differentiable relative to the same model P, considered in
Appendix B.1.1. Second, we use the fact that v does not depend on the propensity to receive treatment
to extend this pathwise differentiability result to the locally nonparametric model P.

Let g be such that g = gps for some fixed P’ € P. We first show that v is Lipschitz over P,. Fix
P Pec Py. For each a € A, let P, and P, denote the distributions on R defined so that, for any Borel set
B, Pi(B) = [, [5 Priax(dy | 1,2)Px(dz) and Pi(B) = [, [5 Py|a x(dy| 1,2)Px(dz). Observe that

lv(P) — v(P)II3,

2

// &(Y1, Y2) l 1 Pl)(dyi)

2

-J/+ yl’lengwzm(P Pd=)

2

= [ rtnem I s VPR + b [ VPG - far )

i=1

< (//KQ(yl,yg)i por 1|xz {\/mﬂ/ﬁ] )1/2
(-] )

where the inequality holds by Cauchy-Schwarz. The latter of the two terms in the product on the
right-hand side is equal to H?(P, P). Using the inequality (b+¢)? < 2(b +¢?) and then applying Holder’s

inequality with exponents (p, ¢) = (1, 00), the square of the former term in this product bounds as follows:

// (y1,92) Ixz [\/m-l-m}

<2// (1, 12) g(azlwz)(P+P)(dzl)

8supy1,yz€y“ <y1711/2)
~ infprepessinf, g2, (1] z)

The right-hand side above is finite by the strong positivity assumption and the fact that x is bounded.
Hence, v is Lipschitz over P,. Combining the preceding two displays establishes (ii) of Lemma 2 when
the model is P4, where g is an arbitrary value of the propensity to receive treatment for which there
exists some P’ € P such that g = gp.

Hereafter we fix P € P and suppose that ¢ = gp. We now establish (i) of Lemma 2 at P for
the model P, with np(s) as defined on the right-hand side of (19). To do this, we use the following
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model: {P. : € € [0,0)}, where dij;’xx () = 1+ esx(x), d;;;j‘xx (a | ) =1, and %(y | a,7) =
1+ esyja,x(y | a,x), where sx and sy|4 x are bounded in [-07'/2,671/2] and Ep[sx(X)] = 0 and
Ep[syjax(Y | A, X) | A, X] =0 P-almost surely. As in Appendix B.1.1, we assume that {P, : € € [0,9)}
is a submodel of P, without loss of generality. This submodel has score s(z,a,y) = sx () +sy|a,x(y | a, )
at € = 0 and the L?(P)-closure of the set containing such scores corresponds to the tangent space of Py

at P. It holds that

[V(P.) — v(P) — enp(s)|l3,
= 64

/ Kysyiax(y | a,2)sx(x) Py ax(dy | 1,7) Py (dz)
H
2

264

[ s Foviaxty lenisx@pa)|

The right-hand side is certainly o(e?) if the squared H-norm on that side is finite. To see that this is
the case, note first that, by the strong positivity assumption and the fact that s, sy |4 x, and sx are

all bounded functions, (z,a,y) — Kysyia,x(y | a,z)sx(z) belongs to L?(P;H). Hence, that term

ar (e
satisfies the following:

H/ mK@JSYlA,X(y | a,z)sx (x)P(dz) i

H

~ || S e v aa)sx@)Pl) ) < .

where 2’ = (2/,a’,y’). This establishes that ||v(P.) — v(P) — enp(s)|l% = o(e).

We now verify that np is a bounded operator. When combined with the linearity of np, this will then
show that (i) of Lemma 2 holds at P for the model P,. Take any s in the tangent space of P, at P. Let
syjax(y | a,z) == s(x,a,y) — Ep[s(X,A)Y) | A=a,X = 2] and sx(v) := Ep[s(X,AY) | X =z]. It
can be verified that, Ep[s(X,A,Y) | A, X] — Ep[s(X,A,Y) | X] =0 P-a.s., and so s = sy|4,x + 5x.
Since s is P-square integrable, sy |4, x and sx are as well. By rewriting the right-hand side of (19), we

see that np satisfies:

a

we(s) = [ — Sy sviax(y | a.2) + sx()] P(d2). (56)
gr(afa) "]

By the strong positivity assumption, the fact that x is a bounded function, and the fact that sy |4, x and

sx belong to L?(P), (z,a,y) — Totem Ky [sy|a,x(y | a,x) + sx(x)] belongs to L?(P;H). Hence,

!

e @ = [ s s n() v (v | 0.0) + sx(0)

a |z

syiax (' | 2') + sx(2')] P (dz,dz')

< || s e VR R sy (] 0.2) + ax (o)

Isyiax(y' | 2') + sx(af)] P?(dz, d2)

— [/ammﬁ“{(y | a,z) 4—8)((9?7)|P(d3)}2

gr(a|z)

< [ | e P(dz)] [ [isviaxtyl a.) +sxio)? P(dz>]
supyey |K(y, )|
~ infprepessinf, gp (1] x)

[svjax (W | a,2) + sx(2)]* P(d2)
J |
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sup,ey |5(y,y)|

2
i S7
infprepessinfy gp/ (1 | x)HSHLz(P), 7

where the first inequality holds by applying Jensen’s inequality to bring the absolute value function inside
the integral and then applying Cauchy-Schwarz to the (positive semidefinite) kernel &, the second by
Cauchy-Schwarz, and the third by Holder’s inequality with exponents (p, ¢) = (1,00). The fraction on
the right-hand side of (S7) is finite by the strong positivity assumption and the fact that x is bounded,
and so np is a bounded operator. Hence, by Lemma 2, v is pathwise differentiable relative to P, with
vp = np. In the same way as was done in (S4) for Example 1a, this pathwise differentiability over P, can

be extended to show that v is pathwise differentiable over the locally nonparametric model P.

B.4.2 Efficient influence operator

Let s € Pp and h € H, and let sy|a,x and sx be as defined above (S6). We have that

<W@ﬂm=//MMwmﬁmL@+wwm%mﬂ@HwWAw)

- /m {h(y) — EIh(Y) | A= a,X = a]} s(=) P(dz)

+ / (Eplh(Y) | A=1,X = 2] — EpEp[h(Y) | A =1, X]) s(z) P(d2).

Hence,

)
+ Eplh(Y)|A=1,X =] — EpEp[h(Y) | A=1,X].

7 (h)(2) {h(y) ~ E[h(Y) | A=1,X = 1]}

B.4.3 Efficient influence function
By Theorem 1, the EIF will take the form

o a
gp(1] )
+Ep[a(Y,y)|A=1,X =z] - EpEp[r(Y,y') | A=1,X].

op(2)(y') = vp(Ky)(2) {r(y,y") — E[r(Y,y) | A=a, X =a]}

provided we can show that this function belongs to L?(P;H). Defining 8 (z) = Ep[Ky | A=1,X = 1]

and noting that EpulS (X) = v(P), we can rewrite the above as follows:

a

¢p(2) = [Ky — up (2)] + i (2) — v(P).

~gp(l]2)
The fact that ¢p € L2(P;H) follows from the strong positivity assumption and the fact that the kernel x

is a bounded function.

B.4.4 Study of one-step estimator

The one-step estimator v, := % 23:1 [1/(?,2 )+ PJ ¢l ] that we study is a cross-fitted version of the estimator
of the counterfactual kernel mean embedding introduced in Eq. 10 of Fawkes et al. (2022). Our general
results provide several new results about this estimator that did not appear in that earlier work. First,
Theorem 2 provides a set of conditions under which this estimator converges weakly to a tight limit.
Second, when the conditions of Theorem 23 hold, (23) provides a precise sense in which 7, outperforms the

inverse probability weighted estimator that was earlier introduced in Muandet et al. (2021). The earlier
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work suggested that this estimator would be more efficient but did not provide any theoretical guarantees
establishing this. Third, Theorems 3 and 4 provide a means to construct bootstrap-based confidence
sets and hypothesis tests regarding the counterfactual mean embedding, with accompanying theoretical
guarantees. Fawkes et al. (2022) proposed using an alternative, permutation-based procedure for making
inference, but no theoretical guarantees were provided ensuring type I error control, consistency, or local
power of the resulting test.

The calculations needed to establish that the conditions of our Theorem 2 hold are similar to those
used to prove Theorem 1 in Fawkes et al. (2022) and those in our Appendix B.2.5, and therefore we only
summarize the main findings here. For the remainder term Rp := v(P) + Poo — v(Fp), it holds that, for
finite constants C; and C5 that do not depend on P € P,

1/2
IRells < Callgp( ] ) — o1 | Ylzcru ) [ [ s i ||%Po,x<dx>] ,

lop — dollL2(Pysn)
1/2
Cy <||9P(1 |-) =901 [ )llz2(pox) + [/ s _M(IJ(||%{P0,X(CZ$):| ) :

Taken together, these bounds show that the conditions of Theorem 2 will be satisfied in this example
when, for j € {1, 2}, 1371 is such that gp; and ng converge to go and p& in probability according to the

norms above and, moreover, the product of their rates of convergence is faster than n=1/2.

B.5 Example 4: root-density function

Fix a distribution P € P, score s in the tangent set of P at P, and submodel {P, : € € [0,d)} € P(P, P, s).
Since v is the square root of the density function in this example, the quadratic mean differentiability of
{P.:€€]0,6)} in (1) is, by definition, equivalent to the pathwise differentiability of v as defined in (2),
with the local parameter vp(s) equal to esv(P)/2. This local parameter is a bounded operator since, for

any s,
. 1 1
lie(s) Eacny = 5 [ (PP d = Flslaqey.

To verify the claimed form of the efficient influence operator given in Appendix A, we note that, for any
sePpand h e L2(\),

0(3) )y = 5 [ P dAG) = [ g s2)dpe)

As s and h were arbitrary, v}5(h)(z) = % —Ep [QV}(LI(J?()Z)]

B.6 Example 5: regression function
B.6.1 Pathwise differentiability

Fix a distribution P € P and suppose that d/\x is bounded Px-almost surely. We prove that v is pathwise

differentiable at P relative to a locally nonparametric model and that vp = np, where

np(s) () = / ly — v(P)(@))s(z, y) Py (dy | 2).
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Fix a score function s € L3(P). Let {P. : ¢} € P(P,P,s) and ¢, := ‘fﬁ;. Let ge x := dgg denote
the square root of the marginal density, qcy|x (- | 7) := d{Z;;,Yl\XX (- | =) the square root of the conditional

density, sx(z) = Ep[s(X,Y) | X = 2] and sy|x(y | ¥) = s(z,y) — sx(x). Observe that the following
holds for Px-almost all x:

[V (Pe) = v(P) — enp(s)](x)

— [vla vl |9~ 1= esyix(y | o) Prixdy | )
= /y {lgevix W | 2) = lgeyix (W | ) + 1] —esyx(y | )} Pyix(dy | x)
— [ el 9~ 1= Sovix(u] 9)] levix(v ] 2) + U} Prixtay | 2

€
t3 /y5Y|X(y | 2)[ge,y)x(y | 2) — 1Py x(dy | z).
For shorthand, we refer to the first term on the right as A.(x) and the second as §Bc(x). We will
show that ||Ac|lz2(xy) = o(€) and ||Bc||z2(xy) = o(1). Combining this with the triangle inequality for
the L?(Ax) norm and the relation above will then give the result. For the first term, we note that the
Cauchy-Schwarz inequality and the inequality (a + b)? < 2a% + 2b2, we have, for Px-almost all z,

€

|Ac(@)]* < ||geyix —1— 55y|X (2Ep,[Y? | X = 2]+ 2Ep[Y? | X = 1]).

L2(Py|x—z)

Integrating both sides above against Ax, applying Holder’s inequality with exponents (1, 00), and applying
Lemma S8, we find that

d\

1ALl 2 0 ) < 2esssup ———(2) (Ep.[Y? | X = 2] + Ep[Y? | X = a])
x . dPx

2 2

e o(€),

€
de,Y|X — 1- §5Y|X’

dAx :
t o B 1s bounded

where the essential supremum is over Px. Above we used (S1) and the assumption tha
with Px-probability one.

We now show that ||Be|lrz(ny) = o(1). Let Bei(z) = [|ysyx(y | =) < eV ysyx(y |
z)[qeyix(y | ) —1]Py|x(dy | x) and B 2(x) = Be(x) — Bc1(x). By the triangle inequality, it suffices
to show that || Be j|lr2(ax) = o(1), j € {1,2}. Using that y?s3 y(y | 2)L{|ysyx (v | )| < ey < et

Jensen’s inequality, Holder’s inequality with exponents (1, 00), and Lemma S8,

_ dAx
[Belaons < < esssup GX @) oo = 11y = 010,

where the essential supremum is over Px. By the Cauchy-Schwartz inequality and the inequality
(a —b)? < 2(a® + b?), the following holds for Px-almost all x:

[Bea (@) < 2(Ep [Y? | X = a] + Ep[Y? | X = z])

[ S M sy [ 2] > 2 Py dy | 2)
Integrating both sides over Ax and applying Holder’s inequality with exponents (1, 00) gives that

dAx
IBe2llfa(ay) <2 [esssup X () (Ep[Y? | X = 2]+ Ep[Y? | X = 2])

dPx
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[ Al )] > 2 aPe)
=o(1),
where the essential supremum is over Pyx. Thus, [[v(P:) — v(P) — enp(s)|[r2(x ) = o(e).

We now prove that np is a bounded operator. For any s € Pp, applying Cauchy-Schwarz followed by

Holder’s inequality with exponents (1, 00) shows that

06 a0 = [ Gt | [0 = P)@lovist | ) Pristay | 2)] Pl
< [ i avarn(r | x =) | [ vty |2 Pryx(ay | )] Pr(ae)

dA
< {esssup ﬁ(m)Varp(Y | X = x)} ||s||%2(P),

where the essential supremum is over Px. Hence,

X

Il < esssup | O o) Varp (| X = ),
T dPX

which is finite by (S1) and the assumption that fil)‘?’; is Px-a.s. bounded. Since 7np is also linear, v is

pathwise differentiable with local parameter vp = np.

B.6.2 Efficient influence operator

For any h € L?(\x) and s € 75p,

(70 (5), 1) 12y = / / by — v(P)(@)|h(x)s(z, ) Py x (dy | 2)Ax (dz)

= // Z)\TX(Z)[Z/ — v(P)(z)]h(x)s(x,y) Py x (dy | ) Px (dx)
X

— [ @y = (P @)hl)s(e) P(d) = 5(0). )12

where 75 (h)(2) = g’\T’;(m)[y — v(P)(z)]h(x). Hence, v} is the efficient influence operator.

B.7 Example 6: kernel mean embedding

The parameter considered in this example is a special case of the counterfactual kernel mean embedding
parameter considered in Example 3 when A = 1 almost surely. Consequently, the proof of the pathwise
differentiability of the parameter in this example, and also the calculation of its efficient influence operator

and EIF, follow directly from those in Appendix B.4.

B.8 Example 7: conditional average treatment effect

The proof we provide does not require a new application of Lemma 2, but instead leverages the application
of that lemma that we already worked out in Example 5. First, we establish that v is pathwise differentiable
with the claimed local parameter relative to a semiparametric model where the propensity is known. We
do this by leveraging the result from Example 5 to establish the pathwise differentiability of a regression of
a certain pseudo-outcome against the covariates. Second, we establish that working in the larger, locally
nonparametric model where this quantity is not known does not change this result: v is still pathwise

differentiable with the same local parameter. An alternative argument, which we do not give here, would
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entail directly applying Lemma 2 when establishing pathwise differentiability in the semiparametric model

considered in the first step.

Fix a distribution P in the locally nonparametric model P that is such that d%%f‘x is bounded P, x-a.s.
and let g := gp,. We will establish pathwise differentiability at Py with the claimed efficient influence
operator, and, since Py was arbitrary, this will establish the desired result. For a distribution P € P,
let P, denote the distribution of Z that has the same conditional distribution of Y | A, X and marginal
distribution of X as P, but has propensity equal to g; in other words, for all bounded, continuous functions
[:Z—=R, Eplf(Z)] = [, J f(z,a,y)Pyax(dy | a,x)g(a | )Px(dx). The semiparametric model
that we study is given by P, := {P, : P € P}. Without loss of generality, we suppose that Py, C P; if
this is not the case, then we can simply extend the definition of v to Py by letting v(Py) = v(P) for any
P € P. For any P, € Pg, it can be verified that, for Ax-almost all X,

v(Py)(z) = Ep, W[ X = 1],

where W := (24 — 1)Y/g(A | X). The above suggests that we can use our results from the regression
setting in Example 5 to derive the efficient influence operator of v relative to P,. To this end, we
define the model Py := {P, o f; ' : P, € Py}, where Py o f; ' is the pushforward measure of P, under
folz,a,y) == (z,w) := (z,[2a — 1)y/g(a | )]). We also define the parameter ¥ : P, — H so that
U(Pyo f;') = v(Py), where this definition is valid even if there are two distinct distributions P,, P, € P,
that make it so that P, o f;l =Pjo f;l since the preceding display shows that v(F;) = v(F,) in this
case. The parameter v takes as input a distribution of features X and an outcome W from a locally
nonparametric model and outputs a regression function. Consequently, the results of Example 5 imply
that, for any P, such that

with local parameter

df)\g)’:‘ is bounded, this parameter is pathwise differentiable at ]59 == Pyo f, 1

5, (9)0) = [ [w= PP @)] 5(o.0) Py(dw | 2).

We now use the pathwise differentiability of v relative to ﬁg to establish the pathwise differentiability
of v relative to P,. To this end, let {Py . : € € [0,0)} € P(P,, Py, sy), where P, € P, and s, belong to
the tangent set of P, at F,. Similar arguments to those used to establish Lemma S8 can be used to
show that {Py .o f;':e€[0,0)} € ﬂ)(ﬁg,?sg,Eg), where §,(z,w) := Ep,[s4(X,A,Y) | X =2, W = w].
Combining this with the pathwise differentiability of v relative to ﬁg and the definition of 7 shows that

HV(PQ7€) —v(Py) - 6;PQOJ‘_Jl(gg)HH

— [P 1) = 5Py 0 1) = p i G|, = ol
Since the operator ip, : Py p, — H defined by vp, (sy) = Up, (8¢) is bounded and linear, where Py.p,
denotes the tangent space of P, at Py, this shows that v is péthwise differentiable at P, relative to P,
with local parameter vp,.

We now use the pathwise differentiability of v relative to P, to establish its pathwise differentiability
at Py relative to P. Let {P. : € € [0,6)} € P(Py, P, s), where s is the tangent set of P at Py. Letting
P, ¢ be the distribution that has the same conditional distribution of Y | A, X and marginal distribution
of X as under P. but with propensity g, it can be shown that {P, . : € € [0,9)} € P(Py, Py, s¢), where
sq(2) = s(2) — Eo[s(Z) | A= a,X = x|+ Ey[s(Z) | X = z]. Combining this with the facts that P, o = Py

and v is invariant to changes in the propensity of its input, we find that

[v(Pe) = v(Fo) = ev0(sg)lly, = [[v(Py.e) — v(Py) = €bu(sg)ll3, = ole)-
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The above establishes that v is pathwise differentiable at Py relative to P, with local parameter

s> Dp(sg) = ;Poofg—l(gg)
= / [w —v(Po)(x)] Bolsg(X, A,Y) | X =2, W = w] (Pyo f; ) (dw | z)
[ Po)(X)] Eolsg(X, AY) | X, W]| X =z}
[ Po)(X)] sg(X, AY) [ X =}
=Eo{[W - E(W | A, X)+ Eq(W | X) —v(Po)(X)] s4(X, A, Y) [ X =z}
= Ey {[W_ EO(W ‘ AvX)] Sg(X,A,Y) |X = '75}
[ (W] AX)s(X,AY)| X =xa}

~m{ [ 2 a0y seea v x =}

I
s
S
|
~— /i

which matches the claimed form of the local parameter from (S2). To verify that the efficient influence
operator takes the form in (S3), it can be directly established that (&5 (h), s)2(p,) = (h, 2(s))2 for all
h € H and s € L3(P). The calculations to establish this are straightforward and so are omitted.

C Proofs of results from the main text, and supporting lemmas

C.1 Proofs for Section 2
C.1.1 Proofs for Section 2.3

Lemma S2. Suppose Hp is an RKHS, v : P — H is pathwise differentiable at P, and ¢p as defined
in (5) is P-Bochner square integrable. For all h € H, define <<;~Sp, h)y : Z = R so that <¢~)p, hyu(z) =
(pp(2), h)s. Then, <§Z§P,h>y € Pp and (pp, h)y = U5 (h) P-almost surely.

Proof. Fix h € H. The fact that (¢p,h)y € L*(P) follows from Cauchy-Schwarz and the fact that

¢p € L?(P;H). In particular,
[ 1460 B Pde) < W10 o) <
Let s~ be an element of the orthogonal complement of the tangent space Pp. Then,
[(Gr @bt ()P() = [t 7K ) Rus ()P (2)
- <t - / (K (2)5* (2) P(d2), h>

=t Wp(KL), s ) r2(py, h)u = 0,

H

where we use the P-Bochner square integrability of gz~5 p to interchange the integral and the inner product
and use that 75 (K;) € Pp for all t € T. Note also that (5(h), st r2(py = 0 since 05 (h) € Pp. Hence,

for any s in the orthogonal complement of Pp,

((Op By = ip(h),s*) =0, (S8)

L2(P)
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Let s € Pp. Then, following some of the same calculations as earlier,

/ (60 (), Bys(2)P(d2) = (t > (75 (D), 8)z2(p)s B

Furthermore, for any t € T, (05(Ky),s)r2(p)y = (K¢, 7p(s))3. Since vp(s) belongs to the RKHS Hp,
(Ky,vp(s))n = vp(s)(t). Plugging these observations into the above shows that the right-hand side is
equal to (p(s), h)y = (Vp(h), s)L2(p), and so

(@rohhse = oph)5) =0

As the above holds for all s in the tangent space Pp and (S8) holds for all s* in its orthogonal complement,
(¢p, h)3 = U5 (h) P-almost surely. O

Lemma S3. In the setting of Lemma S2, it is P-a.s. true that supjcq |(¢p, h)y — U5 (h)| = 0. Hence,
for P-almost all z, 75(-)(2) : H — R is a bounded linear functional with Riesz representation ¢p(z). In
other words, ¢p is the EIF of v at P.

Proof. Since we have assumed throughout that a separable version of the efficient influence process is
used, there exists a countable dense subset H’ of H and a P-probability one subset Z’ of Z such that,
for all h € H and z € Z’, there exists an H'-valued sequence (h})32; that converges to h and satisfies
vp(h)(2) = vp(h)(2) as j — oco. For each h € H', we let

Zil ={z € 2" (¢p(2), hyn — Up(h)(2) = 0},

and we define Z” := Npey Z;. By Lemma S2 and the fact that Z’ is a P-probability one set, P(Z;/) =1
for each h € H' and, as H’ is countable, P(Z”) = 1 as well. In what follows we will show that, for all
z€ 2", suppey [(dp(2), h)3 — 75(R)(2)] = 0. To this end, fix z € 2 and € > 0 and let h, € H be such
that

(Gpe)u e = (1) )] 2 50D [(Gr (), Wb = 7 (1) ()] = e
€

By the separability of the efficient influence process, there exists an H'-valued sequence (h ;) that converges

to h. that is such that v} (ke ;)(2) = Pp(he)(2) as j — oco. By the continuity of the inner product

(@p(2), - )3, it also holds that (pp(2), he j)u — (Pp(2), he)n as j — oo. Consequently, [(pp(2), he j)n —

U5 (he j)(2)] converges to the left-hand side above as j — oo, and so there exists a sufficiently large j such

that

(6p (). e = 7 (he) ()] 2 sup [(Gp (), My = 75 () (2)] 26

As zisin 2", z is in Z}] . as well. Hence, the left-hand side above is zero, which shows that

sup ]@sp(z), hya — D}(h)(z)‘ < 2.
heH

As e > 0 was arbitrary, the left-hand side above is equal to zero. This proves the first claim of the lemma.
The second claim follows directly from the fact that h — (¢p(z), ) is a bounded linear functional and

by the definition of the Riesz representation of such a functional. O

Lemma S4. Let v: P — H be pathwise differentiable at P and suppose that Hp is an RKHS. If v has
EIF ¢p at P, then ¢p = ¢p P-a.s., where dp is as defined in (5).
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Proof. Since ¢p is the EIF of v at P, there exists a P-probability-one set Z’ such that, for all z € Z’,
v5(-)(2) : H — R is a bounded linear functional with Riesz representation ¢p. In other words, for all
ze Z,

sup (0 (=), W) = 73] = 0.
heH

Fix z € Z'. Since Hp C H, the above shows that (¢pp(2), Ki)u — v5(K)(2) = 0 for all t € T. Since
op(2) € Hp, op(2)(t) = (¢pp(2), K;)y forall t € T. Combining this with the fact that ¢p(t) := 75 (K;)(2),
this shows that ¢p(z) = ) p(z). As z is an arbitrary element of the P-probability one set Z’, this shows
that ¢p = (ZNSP P-almost surely. O

Proof of Theorem 1. The first statement, (i), was established in Lemma S4. The second statement, (ii),

was established in Lemma S3. O

Lemma S5. Let P be a statistical model of distributions that are equivalent in that, for all Py, P, € P,
Py < Py and Po < Py. Let {P. : €€ [0,0)} € P(P,P,s) be a quadratic mean differentiable submodel. Let
v: P — H be pathwise differentiable at P € P with a P-almost surely bounded EIF ¢p, in the sense that

lop(Z)||% is a bounded random variable when Z ~ P. Under these conditions,
(P. — P)pp — evp(s) = o(e). (S9)

The above lemma requires that ||¢pp(Z)|3 be a bounded random variable in order to show that (S9)
holds. Lemma S6 will provide an alternative condition under which (S9) holds. In particular, rather than
impose a boundedness condition on the EIF, that lemma will require that the submodel be approximately

linear, in the sense that ‘ZIID; ~ 1 + €s in an appropriate sense.

Proof of Lemma S5. Fix a quadratic mean differentiable submodel {P. : € € [0,9)} € P(P,P,s). For
€ €10,9), let he := (P. — P)¢p — evp(s). We will show that ||h||y = o(€). Let ge := he/||hell2, where we

use the convention that g = 0 when h. = 0. Observe that

el = ((Pe = P)op — evp(s), he)r = (Pe = P)op, ge)n — €(s,7p(9e)) L2(p)- (S10)

We now study the inner product ((P. — P)¢p, hc)3 that appears above. Since ¢p(Z) is bounded under
sampling from P and P. < P, ¢p : Z — H is Bochner integrable both under sampling from P and P..
Consequently, (P — P)¢p, ge)u = [(¢p(2), ge)nd(P- — P)(z). Adding and subtracting terms from this
identity and letting q. := pr/? and ¢ := p'/2 yields that

(Pe = P)pp, ge)n

= [t6r()ndan(a) + @i (2) - a(=)aNG)
= ¢ [(6r(),0ms(2)a (A=) + e [ 6002, gdmlan(s) — a)s()a2)dN2)
[ (60r().00dae) + a0 [ae) - o) - gestohaa)| aree

By the definition of the EIF, (¢p(2), ge)n = Up(ge)(z) P-almost surely. Hence, the first term on the
right-hand side above is equal to €(s, 75(ge)) L2(py, and so (S10) shows that

1

[Pellae = §€/<¢P(z)7ge>7~£[qe<z) — q(2)]s(2)q(2)dA(2)
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1
+ /<¢P(z)7ge>7{[(k(z) +4q(2)] |:QG(Z) —q(z) - 268(2)(1(2)} dA(2).
By Jensen’s inequality and Cauchy-Schwarz, this yields that

el < gelgeln / lép(2)llnlae(z) — a(2)ls(2)a(2)dA(2)

+ ”geHH/||¢P(Z)||H[q6(2)+Q(Z)] qe(2) —q(2) - %68(2)(1(2) dA(2). (St1)

Since ||gell3 is either equal to 1, if he # 0, or is equal to zero otherwise, we can establish that ||h¢||% = o(e)
by showing that the first integral above is o(1) and the second is o(e). To show that the first integral is
o(1), we use (i) Cauchy-Schwarz, (ii) the fact that ¢p is essentially bounded, (iii) s € L?(P), and (iv)
the fact that the quadratic mean differentiability of { P, : € € [0,0)} implies that [lgc — ql[z2(x) = O(e).
Combining these observations yields the display

/||¢P(Z)||H\qe(2) —q(2)|s(2)q(2)dA(2)
< loplaes()aC) | 2 llge = allzzn) = O(e) = o(1).

For the second integral in (S11), (i), (ii), and (iii), together with the inequality (a + b)? < 2(a? + b?) and
the quadratic mean differentiability of {P. : € € [0, )}, yield that

1
/||¢P(Z)||H[q6(z) +a(2)] |ae(2) — a(2) = Ses(2)a(2)| dA(2)
1
< H||¢P()||H(Qe + Q)HLz(/\) qe —q — 568(1 L
M)

1/2 1
< 21/2 5d(P.+ P —q-=
< lop ()l d(Pe + P)(2)|  llge +dll 2z ||de — a = 559

L2(N)
= o(e).
Plugging the preceding two displays into (S11) completes the proof. O

Lemma S6. Fiz a score s in the tangent set of P at P and let {P. : € € [0,6)} € P(P,P,s) be such that
|dPe/dP — 1 — es||2(p) = o(e). (512)
If v is pathwise differentiable at P, then

sup |Pvp(h) 4+ (v(P) — v(Pe), h)u| = sup [Pvp(h) + €(vp(s), h)u| + o(e) = o(e), (513)
heHy heHy

where Hy denotes the unit ball in H. Moreover, if v has P-Bochner square integrable EIF ¢p at P, then
(P. — P)¢p + evp(s) = o(e).

When s is bounded and P is nonparametric, there is a quadratic mean differentiable submodel {P. :

€ €[0,6)} € P(P,P,s) that is such that %% = 1 + es. The condition in (S12) holds trivially for this

submodel, since [|[dP./dP — 1 — es|[z2(py = 0. This condition will generally also hold for many other

quadratic mean differentiable submodels.

Proof of Lemma S6. Suppose that s and {P, : € € [0,0)} are as in the statement of the lemma and that

54



v is pathwise differentiable at P. For any h € H, the fact that Pr}(g) = 0 implies that

Prp0) = el () ey + P [ (5~ 1= es) 0]

Combining this with the fact that (s, 75 (h))r2(p)y = (?p(s), h)3 shows that

Pel/;;(h) + <V(P) - V(PE)v h>'H

= (v(P) —v(Pe) — evp(s),h)u + P [(ZI; —1- 65) p;(h)] .

Taking an absolute value and then a supremum over h € H; and subsequently applying the triangle
inequality and Cauchy-Schwarz yields that

sup |P.vp(h) + (v(P) — v(Pe), h)x|
heH

< sup [(v(P) —v(F) — evp(s), h)| + sup
heH, heH,

< |[U(P) — v(Pe) — evp(s)||,, + H _

175 lop
L>(P)

The first term on the right-hand side is o(e) by the pathwise differentiability of v, and the second is o(e)

by (S12) and the fact that v} is a bounded operator. Eq. S13 follows by combining the above with the
fact that, by the pathwise differentiability of v,

sup |Pvp(h) + (v(P) — v(Pe),h)y| = sup |Pop(h) + e(@p(s), h)n| + o(e).
heH, h€H

Now suppose that v has a P-Bochner square integrable EIF ¢p at P. We have that
|(Pe = P)op + evp(s)|n

= [[(Pe = P)pp + v(Fe) = v(P)|ln + o(e)
= sup [(Pedp +v(P.) — v(P),h)n] + o(e)

heH .
< sup [(Pegp, h)y — Pevp(h)| + sup [(v(Fe) — v(P), h)y + Pevp(h)| + o(e).
heHt, heH,

The second term on the right is o(€) by (S13), and so it remains to show that the leading term is also

o(e). In fact, we will have shown that the leading term is zero if we can show that ¢p is P.-Bochner

integrable, since that would imply that (P.¢p, h)y = Pe(¢p, h)y = Pvp(h). To see that ¢p is indeed
P.-Bochner integrable, note that

[16r@larda) = [1orln'y

<| [1or |5 ) - 1] pra)

dP,
-1
dP

(2)P(dz)

+ / 165 (=) 12 P(d2)

<llopllL2(pm) H ot lopllLz(pm)
L2(P)
dP,
< l¢rllr2pm) <H qp L1

+ 6||8|L2(p)> + |opll L2 (i) s
L2(P)

where the first inequality holds by the triangle inequality, the second by Cauchy Schwarz and Jensen’s
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inequality, and the third by the triangle inequality. The right-hand side is finite since ¢p is P-Bochner
square integrable and (S12) holds. O
Proofs for Section 2.4

Proof of Lemma 1. We begin by showing that Y ;- | B2Pvp(hi)? < oo and that (Bx0p(hy)(2))52, is

P-a.s. a square summable sequence. To see why this is the case, note that, by the monotone convergence

theorem,
00 K
Ep ZﬂkVP :1<h—r>nooEP Zﬂ,fz)};(hk)(Z) = hm Zﬂk 125 () ||L2
=1 B k=1
< I}gnw;ﬂillbfnllip\\hk\li <752 Iggnmgﬂi < o0, (S14)

where the final inequality holds because v} : H — L?(P) is a bounded operator and (8x)%2, is square
summable. The above implies that >_p , 825 (hy)(2)? is finite on a P-probability one set Z°. Hence,
d)IBD( ) € H P-a.s. To see that gZ)P € L%(P;H), note that, by the continuity and linearity of inner products
and the orthonormality of (hy)32 ,

[@h@. 6 @uraz)
/ <Klgf10025kVp () (2) P, Jim Zﬁk”/P hk’)(z)hk’> P(dz)
H

k’l

k'=1

-
- /Z R <,§ Bz (i) (), D ﬁk/v;<hkf><z>hk,>ﬂ P(dz)

K K’
:/ lim  Jim Y Beip () (2) Bervp (A ) (2) (s T )5y P(d2)
z8 K—>ooK—)ook 1 b1
/ZB Iggnooz/ﬁkl/p (hi)(2)?P(dz) = Ep lz Bevp(h)(2)?]
k=1

which is finite by (S14). It remains to show that, for all z € 2% and h € H, r}’i(h)(z) = ((bi,(z),h)%
This can be seen by noting that, for any z € Z# and h € H,

= qﬁg( ) Z<h hk/ ’}-Lhk’> <Z BkVP hk hk, Z<h, hk’>7{hk’>
H H

k=1 k=1

(s b 1 Brvp (hi) (2) = () (2).

NE

=30 (b by B (i) (2) (s )5y =

S
I
N
X
Il
=
S
I

1

As h € H and z € ZP were arbitrary, 1"1’83()(2) is a bounded linear functional with Riesz representation
qﬁ?,(z) for all z € ZP. O

Lemma S7. Fiz a score s in the tangent set of P at P and let {P, : € € [0,9)} € P(P,P,s) satisfy (S12).
If v is pathwise differentiable at P, then

oo

v(P) = v(P) + Pedlp = (1= B)(w(P) = v(P.), hi)shy

k=1

H
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= (14 193 llz2pa0) ) - 0le),
where the o(€) terms do not depend on the choice of (.

Proof of Lemma S7. Suppose that s and {P. : € € [0,d)} are as in the statement of the lemma and
that v is pathwise differentiable at P. Let #; denote the unit ball of H. Since v(P.) — v(Fp) =
S (W(P.) — v(P), hi)ahi, it holds that

v(P) = v(P) + P — > (1= Bi)(w(P) — v(P.), hiyah
k=1
= P.gp — Zﬁk (P), he) 3P

The remainder of our analysis bounds the terms on the right of the following decomposition, which holds

by the triangle inequality:

P.¢P — Z/Bk (P), hi)rhi (515)
M
<|Pgt -« / 5(2)6% (=) P(d2)
H
+ell [ s(z ) Zﬂk vp(s), hi)rhi
H
(8), P )rhi — Zﬁk<V(Pe) — v(P), hi)achi
k=1 H

To bound the leading term, we use that (b?,, € L%*(P;H) by Lemma 1 and that P(i)g = 0, which give that

| LS (G m1-e@)deran),
= sup / (CZ; (2) —1— es(z)) <¢‘;(z), h>u P(dz).

By twice applying Cauchy-Schwarz, once in H and once in L?(P), and recalling (S12) and that H; is the

Pl — / 5(2)6% (=) P(dz)

unit ball of A, the right-hand side can be seen to be upper bounded by |‘¢€>HL2(P) - 0(€), where the o(e)
term denotes the behavior of the term on the left-hand side of (S12), which does not depend on S.

We will show that the second term on the right of (S15) is zero. To do this, we recall that (i)
qﬁ, € L2(P; ) by Lemma 1, (ii) ¢ := vy Betp(hi)(2)hy, (iii) inner products are continuous, (iv)
(hi)72, is an orthonormal basis of Hy, and (v) v} is the adjoint of ¥p. Applying these facts in sequence

justifies the following for any basis element hy:

{/ s<z>¢i<z>P<dz>,hk>H

= / s(2) (05 (2), hi)ynP(dz) = / <Z B 7 (b ) (2) g, hk> P(dz)
k'=1 H
/ [Z Brvp(hir ) (2) (R s hie) gy

k'=1

P(dz)

= 5k<hkvhk>ﬂ/S(Z)I?F(hk)(z)P(dZ) = Br (ks i) w (PP (s), hi)u
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= < Z Brr (Up(8), hir Y3 hk>

k'=1 H

As hy was an arbitrary element of an orthonormal basis of H, this shows that the second term on the
right of (S15) is zero.
We will show that the third term on the right of (S15) is o(e). We begin by noting that

8)s )ahi = > Br(w(Pe) = v(P), hi)ahi

= H
= Zﬁ (P) — evp(s), hi)whi
k=1 H
= sup < —v(P) - 5’)P(3)ahk>7ihk7h>
heH, o
= sup > Bu(v(Pe) — v(P) = eirp(s), hiya (h, By
heH, k=1

Combining the above with the fact that all 3, belong to [0, 1], the Cauchy-Schwarz inequality in ¢?, and

Parseval’s identity, the above shows that

Zﬁk<€7)P(3)ahk>Hhk =Y Br(w(Pe) = v(P), hye) sl

k=1

< sup Z |(v (P) — evp(8), hie)r (i, )|

heH1 k=1

H

IN

S 1/2 0 1/2
<Z<V(Pe) —v(P) —evp(s), hk>3-z> (SHP > <hk>h>3{>

k=1 heH1 b—1
= |lv(Pe) —v(P) — evp(s)lly -

The right-hand side does not depend on § and, by the pathwise differentiability of v, is o(e). This
completes the proof. O

C.2 Proofs for Section 3

We now prove the sufficient condition for pathwise differentiability that we presented in the main text.
We refer the interested reader to Remark 2 in Appendix A.5 of Bickel et al. (1993) for an alternative

characterization of pathwise differentiability that may also be useful in some contexts.

Proof of Lemma 2. Suppose that (i) and (ii) hold. Let {P. : € € [0,6)} € P(P,P,s) for some s in the
tangent set of P at P. Since S(P) is dense in Pp, there exists a S(P)-valued sequence (s,)%, such
that s, — s in L?(P). For each n, let {Pe[n] : €} be the element of P(P,P,s,) satisfying ||U(P€[n]) -
v(P) —enp(s)|li = o(e) that is guaranteed to exist by (i). Observe that, for any ¢ > 0 and any map
N :(0,0] — N, the triangle inequality and the linearity of np show that

e [(Pe) = v(P)] = np(s)|l,

< et (20 - o1P)] = et

|| — u(P)

o, e (s = 8)lly, - (S16)
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Our argument will be based on the above with a map N : (0,d] — N that we construct to satisfy all of

the following properties as € — 0:
a) N(e) = oo;
b) e[\ dPM ) — VAP — Lsn(o VPl — 0;

o) e PNy —u(P)] — np(sne)ll — 0.

We will first establish that such a map exists, and then show that, when combined with (S16), this
establishes that v is pathwise differentiable at P with local parameter rp = np.

Now, for any fixed n € N, the quadratic mean differentiability of {PE["] : €} paired with the fact that
(P — v(P) — enp(s)|ls = o(e) implies that lim,_q f,(€) = 0, where

fule) :=

e { ap — \/dp} - %sn\/dP

L2(XN)

+

! PP — ()] = np(sn)||,

We use this fact to define N : (0,6] — N via a recursive formulation. For a strictly decreasing positive
sequence (€7)9°, that we will define momentarily, we let N(¢) := max{f € N : € < ¢¢}. This sequence
will be constructed so that e, | 0 as £ T oo, which ensures that the maximum used to define N(e) is
well-defined and that N(e) — oo as € — 0 or, in other words, condition a) holds. The construction of the
sequence will also ensure that fx(c)(€) — 0 as € — 0, which will guarantee that conditions b) and c) hold
as well. We now construct this sequence. We first let €; := §. Then, recursively from £ =1,2,..., we let
€e41 := 5 sup{e € (0, ¢ : SUPer¢(0,¢ fr4+1(€) < 2~ since fri1(e) — 0 as € — 0, epyq is well-defined
and positive. Also, by its definition, e, 1 < €;/2 and fo11(e) < 27D for all € < e/41. As a consequence,
Inee(e) < 27N for all € < €;. Since N(€) — co as € — 0, this implies that Inee(e) = 0 as e — 0,
which implies that b) and c) hold.

Having now defined N : (0,d] — N, we return to (S16). Because s was an arbitrary element of the
tangent set, we will have established that v is pathwise differentiable at P with local parameter vp = np
if we can show that the right-hand side of that display converges to zero as € — 0. Since the choice of
N ensured that ¢) holds, the first term on the right-hand side of that display goes to zero as ¢ — 0.
Since np : Pp — H is a bounded linear operator by (i) and lime 0 sy () = s by virtue of the fact that
lim,, o 8, = s and and N(e) — oo as € — 0, the third term on the right-hand side of that display goes
to zero as € — 0. It remains to study the second term. For this term, we will first show that the Hellinger

[N ()]

distance between Pe¢ and P, is o(¢), and then we will leverage the local Lipschitz property of v that

holds by (ii). Beginning by studying the Hellinger distance, we use the triangle inequality to show that

H (PN, P, H dpN el

2(N)

< H\/dPe—vdP—2es dP

L2(N)

H dpN el \/dP—fesN(E dP

*EHSN SHL?(P)'

The first term on the right is o(e) by the quadratic mean differentiability of {P. : € € [0,d)}, the second
is o(€) by b), and the third is o(e) by the fact that sy() — s in L?(P). Hence, H(PG[N(e)], P,) is o(e).
Letting ¢ be the constant from (ii), this implies that, for all ¢ small enough, the second term in (S16)

bounds as follows:

— HV(PG[NW) - V(PE)HH < e LeH(PNE P = o(1).
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We now establish a lemma concerning the preservation of quadratic mean differentiability, which we

used several times in the derivations for the examples provided in Appendix B.

Lemma S8. Let P be a statistical model of distributions of Z = (X,Y) that are equivalent in that, for
all Po,P, € P, PL < Py and P, < Py. Let {P.:e€[0,0)} € P(P,P,s), where s is in the tangent set
of P at P. Let q. = \/% and qe x, qe,y|x be the square root of the marginal density and conditional
density of Pe relative to P, respectively. Let sx(v) = Ep[s(Z) | X = z] and sy|x(y | ©) = s(z) — sx(x).
Then, both of the following hold:

Proof of Lemma S8. Applying Proposition A.5.5 in Bickel et al. (1993) and taking (z,y) — x as the
statistic, we have the first inequality, namely that [lge x — 1 — §sx||r2(p) = o(e).

We now establish the second equality. Let s := sx1{|sx| < ¢~1/2} and f(e) := lgeyix —1—
%sY‘XHQLz(P). We have that

= 0(6)7 ‘

= o(e).

€
Qeyix —1— *SY\X‘
L2(P)

€
qe,X—l—*SX‘ 5

2 L2(P)

fle) = / (qe,Y|X[1 —Qex]t g —1- %snX)z dP

€ (e € .
= / <QE,Y|X |:1 —Qe,x T+ 58‘()():| +q—1— i[SY‘X + Sg()]

2
€ € € 62 €
— 5 |:qG,Y|X —1- 78Y\X:| Sg(—) — 4Sy|XSg(—)> dP

2
€ 1) € @)
< _ e 1 =
<t [ (i [1=aox + 559]) dPa [ (o= 1= Slovix +50)) ap
€ 2 (e et ¢
+ 62/ [qe’yp( —1- §SY‘X} (sg())QdP + i /sfle(sf,())2dP, (S17)

where the final inequality uses that (a + b+ ¢ + d)? < 4(a® + b? + % + d?). We consider each of the four
terms above separately, showing that the first two are o(e?), the third is no more than ef(¢) and the last
is O(e3). Subtracting the third term from both sides and dividing both sides by 1 — ¢ will then show that
f(€) = o(€?). For the first term, note that

4/ (qmX {1 —Gex + gsgy})z P

_ 4// (1 gex(@) + gsg?(x))z P.yix(dy | ©)Px(dz)

2
S 8/ (1 — (e, X + 55}() dPX +8€2/8§(1{|8x| > 6_1/2}dp,

where we used that (a + b)? < 2(a® + b?). The first term on the right is o(¢?) since quadratic mean

differentiability is preserved under marginalization as proved earlier, and the second is o(e?) by the

dominated convergence theorem. For the second term in (S17), similar arguments show that

€ -\ 2
4/ (qE —1- §[Sy|X + sg()]) dP = o(€?).
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For the third integral in (S17),

) c 2 (o ¢ 2
€ [QC,Y\X -1- §5Y|X} (sx')7dP < e |:q€,Y|X —-1- §3Y\X} dP = ef(e)

and, for the final term in (S17),

e 2 (€)y2 € 2
1 yix(sx)7dP < a1 sy|xdP.

This completes the proof. O

C.3 Proofs for Section 4
C.3.1 Proofs for Section 4.1

Proof of Lemma 3. Fix 6 > 0. Suppose that [|¢}, — ¢o |l £2(py;n) = 0p(1). We will show that
lim PP{|D}|ly > n~Y/26} = 0. (S18)
n—oo

As § was arbitrary, this will show that D} = 0,(n~*/2). An analogous argument can be used to show
that [|¢2 — ¢ollz2(py;) = 0p(1) implies that D2 = o0, (n~1/2).
Let 1g, denote the indicator that the event &, that ||¢L — ¢0||%2(P0,H) < 2/2 and let £¢ denote the

complement of &,. We will leverage the following decomposition when showing (S18):

Py{IDA Il > n~"/25} < B (DIl > 026} N EL) + Py (E5)

— Ep [1gnpgl {||D;||H >n~l2 ‘ T zn/g}] +o(1), (S19)

where E denotes an expectation under sampling from the n-fold product measure P} and o(1) denotes a
deterministic term that goes to zero as n — co. The equality above holds by the law of total probability,
the fact that &, is measurable with respect to the o-field generated by Z1,. .., Z, /2, and the assumption
that [|¢y, — ¢ollL2(py;m) = 0p(1) implies that P;(£5) = o(1). To show (S18), the above shows that it
suffices to show that the first term on the right-hand side is o(1). To this end, note that Chebyshev’s
inequality for Hilbert-valued random variables (Grenander, 1963) and the bilinearity of inner products
shows that

16, P {ID s > n7128| Z,.., Zopa ) ($20)
Epp[(Py — Po)(¢n — ¢o)lI3, | Z1,-- -, Zuyo
<lIe T
" n=162
. (/2) ' ERp [Pyl = Po)(¢n — do)l3 | Zus- -, Znyo]
— n-152
i 14‘5"% Z EP(;L[((I—Po)(¢}L—¢o)(zi)7(;ifgg(¢3l—¢0)(Zlc)>n|Z17~~,Zn/2]’

(i,§)€{n/241,...,n}?:i#j

where (I — Py)(¢L — ¢o) denotes the map z — (¢L — ¢0)(2) — Po(¢L — ¢o) and each expectation in
the summand on the right-hand side above is well-defined since (¢L — ¢o) € L%(Py;H) implies that
(I — Py)(¢L — ¢o) € L?(Py;H) as well. In fact, each expectation in the summand on the right-hand side
is zero since, by the fact that (I — Py)(dL — ¢o) € L?(Py;H) and Fubini’s theorem,

Epn[{(I = Po)(¢y, — $0)(Z:), (I — Po)(y, — ¢0)(Zi)ya | Z1,- - Znyo)
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= /<(I — Py) (o), — ¢0)(21), (I — Po) (9, — ¢0)(22)) 0 Pg (dz1, dz)
- / / (T — Po) (% — ¢0)(z1). (I — Po) (8", — 60)(2)) Po(dz1) Po(dzs)
-/ < [~ PG = d0)(an) Pulazn). (- Pl - ¢0)(22)> Po(dzs)

H

= / (0, (1 = Po)(p, — ¢0)(22)), Poldzz) = 0.

Returning to (520) and simplifying the first term on the right-hand side of that expression, this shows
that

2||(1 = Po)(én — ¢0) 12 (pyney
62 '

157LP0n {||D711,||H > n_1/26 ‘ Zla' . 'aZn/Q} < 1£,L

Using that Py(¢L — ¢o) is a minimizer over h € H of ||¢L — ¢og — hH%Z(P‘H) and subsequently leveraging
the definition of the event &,, this shows that

16, B {IDklle > 01125 | 21, 2o}

2l1¢7, = doll72(p,. 2|16, — doll72 (.
<l H 502|L (Po;H) <min? 1, || 602L (PosH) .

Note that the right-hand side above is no larger than 1. Taking an expectation of both sides over
VATRR A iid Py and recalling that ||l — bollz2(py;2) = 0p(1), the dominated convergence theorem
shows that the first term on the right-hand side of (S19) is o(1). This completes the proof. O

Proof of Theorem 2. In this argument, we will let H denote the Hilbert space of elements (h,r) € H x R
that is equipped with inner product ((hy,r1), (h2,7"2)>ﬁ = (hy,ha)y +r1re. Fix s € Pp. Since RI =
op(n~?) and DJ = op(n~'/2) for j € {1,2}, (21) shows that

Un —v(P)\ [ Pago on(n=1/2) — Po) L -1
() eseron

Moreover, H(cﬁo,s)Hiz(P;ﬁ) = ||¢0||2L2(P;H) + ||5H%2(P) < oo. Hence, by Slutsky’s lemma and a central

limit theorem for Hilbert-valued random variables (see Examples 1.4.7 and 1.8.5 in van der Vaart and

Wellner, 1996), it holds that
/2 (Vn PV(P0)> s (g) , (S22)
S

where (H, S) is a tight H-valued Gaussian random variable that is such that

(), (B, $)) 5 ~ N (0, Eo [{{60(2), By +5(2)}’] ).

Marginalizing the P, s term on the left-hand side of (S21) shows that (S36) holds.

We will use (S22) along with Theorem 3 in Chapter 5.2 of Bickel et al. (1993) to establish the
regularity of 7,. To use this result, it suffices to show that E[SH] = vp(s). We will establish this
by showing that (h, E[SH])y; = (h,vp(s))s for all h € H. To see that this holds, first note that
(h, E[SH])» = E[S(h,H)] since

E[||SH|3,] = E[S*(H|j3,] < E[S*]"*E[|[H]3]"/* < oo,
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where the first inequality holds by Cauchy-Schwarz and the second by Fernique’s theorem (Fernique,
1970). Hence, it suffices to show that E[S(h,H)s] = (h,7p(s))3. To show that this is the case, we
let f, : H — R2 be defined so that fu(h1,r1) = ((h1,h)s,71). For any (a,b) € R2, the dot product
(a,b)- frn(H, S) is equal to a(h, H)# +bS = ((ah,b), (H, S)) 5, which follows a mean-zero normal distribution

with variance

By [{a(60(2), B +b5(2)}?] = (a,) 7 (a,b),
where

2;:( By [(60(2). 03] By [s<Z><¢o<z>,h>H1>.
Bols(2)(00(2)h)n]  Eols(2))

As (a,b) € R? was arbitrary, it follows that ((h,H)s,S) ~ N((0,0),). Hence, E[S(h,H)3] is equal to
Eo [s(Z)(¢o(Z), h)y]. Finally, note that (¢o(Z), h)y = v5(h)(Z) P-a.s. since ¢g is the EIF of v, and so

Eo [s(2)(¢0(2), hyu] = Eo [s(Z)vp(h)(Z)] = (s, 7p(h)) L2(p) = (R, Vp(8))n-

Proofs for Section 4.2

Proof of Theorem 3. Suppose the conditions of Theorem 2 hold and that [|¢ol|z2(p,;x) is strictly positive,
Q, € 0, Q € O, and ||, — Qllop = 0p(1). For brevity, we will let w,,(-) := w(-;€,) and wo(-) :=
w( ;) in this proof. By Theorem 2, n'/%[7, — v(Py)] ~ H, where H is as defined in that theorem.
Slutsky’s lemma and the continuous mapping theorem can further be used to show that n-wy,[7, —v(Py)] ~
wo(H). To see this, first note that

n - wy [y — v(Py)] = n - wolvn — v(Po)] +n - wvg, — v(Po); 2y — Qo (S23)

The first of the two terms on the right converges weakly to wo(H) by the continuous mapping theorem,
where we have used that, by virtue of belonging to O, )y is a continuous operator, and therefore
wp : H — R is a continuous functional. The second term on the right is o, (1), since, by Cauchy-Schwarz,

the definition of the operator norm, and the continuous mapping theorem,

In - wlvn, — v(Py); L — Qol| < nf|(Qn — Qo) [Pn — v(Po)lllac||7n — v(FPo)lln
<190 — QollopIn'2[7n — v(Po)][[3; = 0p(1)Op(1) = 0p(1).

Plugging this into (S23) and applying Slutsky’s lemma shows that n - wy, [, — v(Py)] ~ wo(H).

We apply Corollary 3.3 of Bogachev (1996) to show that wq(H) is absolutely continuous. To apply
this corollary, it suffices to show that wy : H — R is locally Lipschitz and that the image of the
Gateaux derivative dwg(h; -) is P-a.s. equal to R, where PP is the distribution of H. For the Gateaux
derivative condition, we note that, for any g € H, dwo(h;g) = Fw(h + eg;Q) = (Qolg), h)u +
(Qo(h), gy = 2(Q0(g), h)x, where the latter equality used that g is self-adoint. Since g is positive
definite, (Qo(h), h)3 > 0 for all h € H. Hence, for any h € H\{0}, the image of dwy(h;-) is equal to
R; this can be seen by considering dwg(h;ch) with ¢ varying over R. As ||¢o||r2(py) > 0, H\{0} is a
P-probability one set. The locally Lipschitz property follows from the fact that, for all A € H and all g;
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and gs in the unit ball H; of H,

|wo(h + g1) — wo(h + g2)|

1 1
/ [dwo(h; eg1) — dwo(h;ega)]de| < / |dwo (h; eg1) — dwg(h; ega)]| de
0 0

1
= 2|(Qo(g fgz),hﬂtl/ ede = [{Qo(g1 = g2), Wul < [1Q0(91 — g2)lI2l|P]l%
0

< [1€0llopllgr = gall2lPll2 = [1Q0lloplI(P + g1) = (h + g2)lla [l

Hence, wq is ||Q0||op| 7] %-Lipschitz continuous in the radius-one ball centered at h. As h was arbitrary, wo
is locally Lipschitz. Corollary 3.3 of Bogachev (1996) thus shows that wq(H) is an absolutely continuous
random variable.

Because convergence in distribution implies convergence of cumulative distribution functions at

continuity points, n - wy[7y, — v(FPy)] ~ wo(H) implies that

n—oo

P {n - wy[vn —v(Ry)] < CG—a + 0} — F(Ci—a +96) (524)

for all 6 € R, where F is the cumulative distribution function of wg(H). In what follows, we will use this

fact twice when establishing the asymptotic validity of the (1 — «)-confidence sets Cn(zn) When doing

so, we will also use that the event {v(Py) € Cn(Cn)} is the same as the event {n - wy[7, — v(P)] < Cu}-
We now establish (ii). To do this, we use that, for any § > 0,

Br {n wp [P — v(Py)] > En}
<Py {n [P — (Po)] > Coy G — Cloa > —5} + P {En —(a < —5}

< P(;Z{n'wn[pn _V(PO)] > (i—a —5}+P61 {Zn —(1-a < —5}
Subtracting both sides from 1 yields that

P} {n Wy [y — v(Py)] < Zn}

> P {n - wp|n — (Py)] < Cioa — 8} — PT {En —(a < —5} .

Taking n — oo, applying (S24), and then taking ¢ | 0 shows that, if En is an asymptotically conservative

estimator of {;_, in the sense stated in (ii), then
lim inf P {n w7 — v(Py)] < Zn} > F(Cioa) = 1 — .

This establishes (ii).
We now establish (i). To do this, we use that, for any § > 0,

Py {n cwy [Ty — v(Py)] < En}
< Py {n WP — V(Po)] < Cuy G — Cloa < 5} + Py {En (e > 5}

< B {n - wali = v(Po)) < Gioa + 0} 4+ B {Gu — Gioa > 0.

Taking n — oo, applying (S24), and then taking § | 0 shows that, if Zn is a consistent estimator of (1_q,
then limsup,, P {n - wy[7n — 1(Py)] < Cu} < F(C1—a) = 1 — a. Combining this with (ii) gives (i). O
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In the following result, we write 0, (1) to denote a term that converges to zero in probability marginally

over the randomness both in the original sample (Z1, ..., Z,) and the bootstrap sample (Zfﬁ, e T,

n

Lemma S9. If ||¢), — ¢ollr2(pm) = 0p(1) for each j € {1,2}, then |[HF — H? nolli = 0p(1), where
HY = n'/?3 325, (Pi# — Pl)do.

Proof of Lemma S9. This proof bears resemblance to that of Lemma 3. In what follows we use Z7* as
shorthand for the sample (71, Zs, ..., Z,). Note that, for any § > 0,

2
1 A o B .
52(1)%’#*3{)[%*%] >n12%5| 73

Pr{HH# —

‘H>6‘Z{’}:Pr

H

2
<SP {||(Pi# = PDI6L - oolll,, >0 V25| 20}
j=1
Taking an expectation of both sides over Z;, Zs, ..., Z, id Py,

Pr {HHff —m#,

,>0)= XQ:Pr{H(Pg# = P19} — dolll,, > n 26}
j=1

In what follows we show that Pr {||(P3# — PJ)[¢], — o] ||H >n~1/25} = o(1) when j = 1. An analogous
argument holds for j = 2. As 6 > 0 was arbitrary, this will complete the proof.
We begin by noting that

Pr{[|(PA# = PIoh — dolll,, > n~ /%8| 21}
< ﬁE [lIP# = P (@L = o0)ll5, | 21]
Zp[P* - P&, - o)l | 21]

52
_plyal # _plyial # n
44 > E[((I—P})(¢},—$0)(Z] LU=y =002 it

(i) €{n/2+1,....n}21i

where (I — P1)(¢L — ¢o) denotes the map z + (¢L — ¢0)(2) — P}(pL — ¢p). Because Zi# and Z;f are
independent draws from P} conditional on ZJ* when i # k, each term in the summand on the right-hand
side is exactly equal to zero. Since P1# is the empirical distribution of an iid sample from P}, the first
term on the right rewrites as (2/6%)||(I — P})(¢L — 9250)”%2(31;7{)' As PH(pL — ¢o) is a minimizer over
h € H of ||¢L — ¢o — h”%%ﬂ{;ﬂ)’ this term upper bounds by (2/6%)[|¢L — d)OH%?(P%;’H)' Plugging this
bound into the above yields that

2
PY{H (Py# — P)én — ¢o] HH >n 1/25‘Zn} 5*||¢’1 ¢0||L2(P1 H)
Taking the mean of both sides over the sample Z,, /541, Zy /242, - - - , Zn 14 Py used to define P} shows that

_ 2
PT{H(Pﬁ’# — P))[¢y, — ¢oll|,, >n 1% ’ Zlv'”vZn/Q} < 57”% — dollZ2(pos)

Using the trivial bound that probabilities are no more than 1 and subsequently taking an expectation on
both sides over Z1, Za, ..., Z, /2 iid Py yields that

2
{H P1 # Pl Q’)O}HH > 77,71/26} S E |:Hlln {1, 57”@5% - ¢0||%2(P0;’H)}:| .
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Using that ||¢;, — ¢dol|r2(p,:2) = 0p(1) by assumption and applying the dominated convergence theorem
shows that the right-hand side is o(1), which gives the result. O

Proof of Theorem 4. By Lemma S9, ||H# — H? wolla = 0p(1). By Remark 2.5 of Giné and Zinn (1990)
and the fact that ¢g € L?(Py;H), Hf,o ~ H weakly a.s., that is, weakly conditionally on the iid
sequence (Z;)2, with Py-probability one. By the continuous mapping theorem, this implies that
w(HﬁO; Qo) ~ w(H; Q) weakly a.s. as well. In what follows we will use these facts, along with the fact
that |2, — Qollop = 0,(1), to show that w(H¥;Q,,) ~ w(H; Q) weakly, conditionally on (Z;)2,, in
probability, in the sense defined in Chapter 23.2.1 of van der Vaart (2000). To show this, we begin by
noting that, as {2, and €y belong to O,

w(HF; Q) — w53 Qo) = w(HF —HF 5; Qo) + w(HF; Q, — Q). (S25)

n,0’

We now show that each of the terms on the right are marginally o,(1). For the first, this follows from the fact
that |w(H — HfO,QO)\ = |{Qo(HF — Hfo) H# — ]HI# o)l < |H# —H* 7ol €% lop, and this upper bound is
0p(1) by Lemma S9. For the second, this follows from the fact that [w(HZ; Q, —Qo)| < [HZ[I3,]]20 — Q0] op
combined with the fact that [|€2, — Qollop = 0,(1), by assumption, and |H¥ ||2, = O,(1), by virtue of the
fact that ||H# — H#OH’H = 0p(1) and Hf,o ~» H weakly almost surely.

We now derive a form of Slutsky’s lemma to show that w(H;Qq) ~ w(H; ) weakly, conditionally
on (Z;)2,, in probability. In particular, taking f : R — [—1,1] to be a bounded, 1-Lipschitz function,
letting Z7" := (Z;)_,, and recalling (S25), we see that

|E [f (w[H;Q0]) | 27] = ELf (w[H; Q)]

<[o sttt 2] - £ [ st ]
+ |B [ (w0l | 22 - ELf (wl: Qo))

[mm{ w(HH — HfO,QO)er(H#;anQO)‘}’Z{l}

+@[QmﬁmmDVﬂ—Ewwmﬁmw

Taking a supremum over all 1-Lipschitz f : R — [~1,1] on both sides and using that w[H? ;; Qo] ~
w[H; Q] weakly a.s. is equivalent to the supremum over such f of the latter term on the right being

Py-a.s. o(1) (Chapter 23.2.1 of van der Vaart, 2000), we see that it is Py-a.s. true that

n07

Sup |E [f (wlH; )) | Z7] - Elf (w[H; Qo))
<FE [mln{2 )w (H# — Hno,Qo) + w(H#; Q,, — Qo)‘} ‘ Zﬂ +o(1).

Taking an expectation of the first term on the right over Zy, Zs, ..., Z, id Py, recalling that w(H7 —
vao; Qo) + w(H#; Q, — Q) is marginally o,(1), and applying the dominated convergence theorem shows
that this nonnegative conditional expectation converges to zero in mean, and therefore also in probability.
Hence, the above shows that w(H#;(2,,) converges weakly to w(H; o), given (Z;)$2,, in probability. This
implies that the (1 — ) quantile of w(H*;2,) conditional on Z?, namely va converges in probability to
the (1 — a)-quantile of w(H; Qg), namely (1_q. O
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C.4 Proofs for Section 5

Proofs for Section 5.1

Recall that the (squared) Hilbert-Schmidt norm is defined as ||Up||%g == Y pey |\1'/}’;(hk)||%2(P).
Lemma S10. Suppose v is pathwise differentiable at P with EIF ¢p. Then, ||¢pH%2(P;H) = |p]Es-

Proof of Lemma S10. Suppose that v has EIF ¢p. Using that (i) since ¢p is the EIF, it is P-a.s. true
that 5 (h)(2) = (¢p(2), hi)w for all k € N, and (ii) for any h € H, ||h||3, = 5=, (h, hi)3,, We see that

Ep

S i (hi)(2)?

::Eh>l§:<¢p(Z)Ju)%] = Ep [lop(Z)I3] = l6p 17220 (526)

k=1
O
In the following lemma, the little-oh and big-Omega notation both denote behavior as n — oc.

Lemma S11 (No tight, non-zero weak limit for a scaling of the the regularized one-step estimator when
Sore Potg (hi)? = +00). Suppose that v is pathwise differentiable at Py. Let (8,)5%; be an ¢*-valued
sequence that grows to (1,1,...) pointwise as n — 0o and let (¢,)22 be a nonnegative real-valued sequence.
All of the following hold:

(i) if cn = o[n'/2 /o0 (Ba)], then ¢, Py 5 0;

(i) if ¢, = o(n'/?), then either cnPn%B" does not converge weakly in H to a tight random element or
cnPugy" = 0;

(iii) if cn = QUn?) and 332, Poirg(hy)? = +oo, then cnPnQSg" does not converge weakly in H to a

tight random element.

Before giving the proof, we note that the condition that > p-; Py (hi)? = 400 holds in all of the
examples we exhibit in this work for which there does not exist an EIF. Moreover, if there does exist
an EIF ¢, then Lemma S10 shows that >, Porg(hi)? < +oc if and only if ¢ is Py-Bochner square

integrable.
Proof of Lemma S11. Let v and (8,)52; be as in the statement of the lemma.
We first prove (i). Suppose that ¢, = o[n'/2/a¢(3,)]. By the definition of 03(f3,), we have that

Epél Hnl/QPMﬁon/UO(ﬁn)H%{

= Bry | = 35" 52005 () (207 | [08(50) = 03 (603 () = 1.

i=1 k=1

As ¢, = o0[n'/?/oo(8y)], this implies that Epp o N 3, = o(1), which in turn implies that l[en Pl 12,

is 0p(1), as desired.

We now prove (ii). Suppose that ¢, = o(n'/2) and ¢, P,¢y" converges weakly in H to a tight
random element Hy. We will show that this can only be true if Hy is equal to the zero element of
‘H almost surely. By Theorem 1.8.4 of van der Vaart and Wellner (1996), ¢, P,¢y" ~» Hp implies
that <cnPn¢€",hk>H ~ (Hp, hi)y for all k& € N. Moreover, since (cnPn¢€",hk>H = cnPn(ng",hk)H =
B klen/n' 2|02 P, s (hy)], this shows that B, x[c,/n'/?][nY/2 P, (hy)] ~ (Ho, hi)s for all k € N.
Since ¢, /n'/? = o(1), Bu.k "% 1, and, by the central limit theorem, n'/2P, i (hi) = O,(1), it holds
that B k[cn/n/?][n'/2 P, (hy)] 2 0. As weak limits must share the same distribution, this shows that

(Hp, hi )3 is degenerate at zero for all k. Hence, Hj is almost surely equal to the zero element of H.
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We now prove (iii). It suffices to show that ¢, P, g"

1/2

does not converge weakly to a tight random
element when ¢, = n'/<. We argue this by contradiction. To this end, suppose that there exists a tight
random element Hy such that n'/2P,¢5" ~ Hy. By Lemma 1.8.4 of van der Vaart and Wellner (1996),
Hy is then such that (n'/2P, gn, hi)# ~» (Ho, hi)% for all & € N. Combining this with the fact that
<n1/2Pn g",hk>y = Bn’knlﬂPan (hie)s Bnk kif 1, and a univariate central limit theorem, this shows
that Hy is such that (Ho, hg)y ~ N0, g (hi)?] for all k € N. Hence, Hy is a Gaussian random element.
Also, by Fernique’s theorem (Fernique, 1970), Hy € L?(Py; H). But ||H0H%2(P0;H) = E[} o, (Hy, hy)3,] =
oo, Porg (hi)?, which is equal to +oc by assumption. Contradiction. O

Proof of Theorem 5. By the definitions of 75, gn, R:Pn and DB,

NJM—\

7P — v(Py) — Pudy" —

2 oo
Zzl_ﬂnk P])—I/(P()) hk>7—[hk

2
ZRJﬁn +’DJ Bn]

j=1

I\D\H

Taking an H-norm of both sides, applying the triangle inequality on the right, and upper bounding
averages by maxima yields
12
var = v(Po) = P = 5 3 B || < max[RE e + max [ DL

Jj=1 H

which bears resemblance to (21) but contains an extra bias term Z?Zl B7:P». Plugging in the assumption
that |R%A7||3 and || D3Py are O,(||Bnle/n'/?) for each j € {1,2} gives (25). Combining this
with the assumption that BZ5» = O,[||Bn|le2/n'/?] for each j € {1,2} and the fact that P,¢y" is
Oplo0(Bn)/n?] = O,]||8nllez/n'/?] by Chebyshev’s inequality (Grenander, 1963) and Lemma 1 then
gives (27). O

Proof of Lemma 4. This proof is similar to that of Lemma 3. Fix § > 0 and an /?-valued sequence
(Bn)S2, that is such that ||¢L o — (ngn”lﬁ(po;q.[) = 0p(ry) holds. We will show that

lim P {[[ Dy |5 > ran='/26} = 0. (S27)

As § was arbitrary, this will show that D}%» = 0, (r,,/n'/?). This will establish the stated result in the
case where j = 1, and an analogous argument can be used to handle the case where j = 2.
Let 1¢, denote the indicator that the event &, that ||¢Lf» — @5~ ||L2 (Post) = r262/2 and let £ denote

the complement of &,. We will leverage the following decomposition when showing (S27):

PRIy I > ™Y/} < Bt ((IDF e > ran ™28} 010 ) + Pi(E5)

= B [1e B { 1Dy e > ran™ 28| 21, Zupp ] +0(1), (528)

where Ef denotes an expectation under sampling from the n-fold product measure P and o(1) denotes a
deterministic term that goes to zero as n — co. The equality above holds by the law of total probability,
the fact that &, is measurable with respect to the o-field generated by Z1,..., 2, 2, and the assumption
that [|¢L5 — g0 |l 2(Py;2) = 0p(rn) implies that Pg'(ES) = o(1). To show (S27), the above shows that it
suffices to show that the first term on the right-hand side is o(1). To this end, note that Chebyshev’s

inequality for Hilbert-valued random variables (Grenander, 1963) and the bilinearity of inner products
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shows that

e, Py {IDR I > ran™/28 | 21, Z o} (529)
<1, Epp[[I(P = Po)(¢LP — ¢0™ I3, | Zv .., Znyol
- r2n—142
(n/2) " Epp [P, (1 = Po) (¢ — ¢6" )3, | Z1, - -, Znje]
T om r2n—152
e % 3 Epg[<<17Po><¢i*‘*"—¢€"><zi>,g;f?3§<2¢b‘*"—¢>€"><zk>>a|zh..-,zn/21’
n it n

where (I — Py)(¢L P — ¢g") denotes the map z + (¢pLF» — g")(z) — Py(¢pLP» — ¢") and the sum is
over (i,7) € {n/2+1,...,n}? such that i # j. Each expectation in the summand on the right-hand side
above is well-defined since (¢p1%» — i) € L2(Py; H) implies that (I — Py)(¢LPr — ¢h") € L2(Py; H) as
well. In fact, each expectation in the summand on the right-hand side is zero since, by the fact that
(I — Py)(pLhPn — @) € L?(Py; H) and Fubini’s theorem,

Epp [(I = Po)(5°" — 66" )(Zi), (I = Po) (6" = 86"/ (2w | Z1s-- s Zn o]

— [4I = RO = ) 0. (1 = POY™ — 6§ o) (dor,dza)

= [[ 1= )@k - 651, (1 = PO(GY™ = 6 ea))sePo(don) Poldza)

= [ ([ = Rk - iRl (1 - PR 1)) Polaz)

H

= [0, = )@ — 6} (z2)), Poldza) =0,

Returning to (529) and simplifying the first term on the right-hand side of that expression, this shows
that

2||(I - PO)(QS}L’ﬁn - QSO”)||2L2(PO;H)

n 1,8n —-1/2
le, Py {”Dn o > ran='1% Zl""’Z"/Q} < le. 73202

Using that Py(¢L  — ¢§") is a minimizer over h € H of ||pL P — ¢y — hH%z(PO,,H) and subsequently
leveraging the definition of the event &,, this shows that

2ll¢5 %" — 0" 172

n 252
r26

, 20155 — 86" 172 (pyn0)
< min« 1, 3 .
r26

Po;H)

1571P(;L {HD}L#}W”'H > ,,,”n—1/25 Z17 EERE Z’n/Q} S 18

Note that the right-hand side above is no larger than 1. Taking an expectation of both sides over
215y Zny2 S Py and recalling that ||¢L % — qbg" |2 (Py;1) = 0p(7m), the dominated convergence theorem
shows that the first term on the right-hand side of (S28) is o(1). This completes the proof. O

Proof of Lemma 5. Since v(P),v(Py) € H and ¢Jﬁa € L*(Py; M), it holds that Rg € H. We begin by
showing that, for any ¢ € N,

(REohe), = Bel(P) = v(Po) ey + Porip(he)]. (530)

69



As { was arbitrary and (hy)7 ; is an orthonormal basis of #, this will then show that
5\ 3 "
RE =D B [W(P) = v(Po), ha)yy + Poirp(hi)] . (S31)

We now establish (S30) for a fixed ¢ € N. Note that

<R§)’ hé>7—[

= <I/(P) — V(Po) + P()Qs'fp - i(l - ﬂk)<V(P) - I/(Po), hk>7.[hk, hg>
H

P
o

It remains to show that (POQSIBD, heyy = BePovi(he). To see that this holds, note that, since v is pathwise
differentiable at P, Lemma 1 ensures that q[)’g( ) is the Riesz representation of rP( )(z) on a set Z# of
P-probability one. Since Py < P, ZP has Py-probability one as well. Hence, I ¢P ), heyy Po(dz) =
frP (he)(2)Po(dz) = PoTP(hg). Furthermore, since qbg € L*(Py;H), f(qﬁg( ), he)nPo(dz) = <P0<;SP, he),
and so (Pogb?g, he)n = Po’l“lﬁg(hg). Plugging in the definition of 7“153 shows that (Poqﬁg, he)w = BePovp(he),
as desired. This establishes (S30), which in turn establishes (S31). Using the form of R’g given in (S31)
establishes the equality in the statement of the lemma. The inequality follows by Cauchy-Schwarz. O

TMg

— V(o) hi)gy s+ Podlp — (1= Bi)(w(P) = v(Po), hi) sl hz>
M

= k=1

?Mg

—v(Py), hi) g hi + Po(bg, hz>
H

(P) = v(Po). ha)yy + (Podphe)

Proof of Lemma 6. We have that

BRI

=D (1= B> (W(P) = v(Po), )3, = D k2 (1 = Br) k> (v(P) — v(Po), hi)3,
k=1

k=1

(1_51@)2 = 2u 2 _ (1_ﬁk)2 _ 2
< [iléIN) kz“:| ;k (V(P) —v(Py), hi)z = [iléIN) k2“:| [v(P) = v(Po)lly-

Taking a square root of both sides above gives the inequality from the lemma statement for general 8. In
the special case where 8 =1 for all k < K and 8 = 0 for all £ > K, (28) follows by plugging this value
of B and then applying the triangle inequality. O

C.4.1 Proofs for Section 5.2

Proof of Lemma 7. In this proof, we will use that I's : # — H is a linear mapping, and also that
1T (Rl < bl for all h.

We now show that I'g o v is pathwise differentiable with local parameter I'g o p. To see that this
holds, fix a quadratic mean differentiable submodel {P. : € € [0,d)} € P(P, P, s). Note that

[T ov(Pe) =T ov(P)—elgovp(s)ly =T o [v(Pe) —v(P) —evp(s)ln
< [[v(Pe) = v(P) — evp(s)lla = ofe),

where the final equality holds by the pathwise differentiability of v. Hence, I'gov is pathwise differentiable
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with local parameter I'3 o vp. The efficient influence operator is equal to r?,” where this quantity is as
defined above Lemma 1. Indeed, for any s € Pp and h € H,

<S’T1€(h)>L2(P) - <S’Zﬁk<h’hk>HD;(hk)>
k=1 L2(P)

:iﬁkhhk <Vp()th—<h Zﬁk vp(8), hic)y h>

= B, haya (5,75 (i) 12y
k=1

1 H

k=
= (h,Tgovp(s))y,

where above we have used the linearity and continuity of inner products and the definition of the efficient
influence operator v of v. By Lemma 1, rf’;()(z) is P-almost surely a bounded linear operator with
Riesz representation ¢é33 € L?(P;H), and therefore (b?g is the EIF of I'g o v. O

The following is a consequence of Theorem 2, specialized to the case where the pathwise differentiable
parameter of interest takes the form v? :=T's o v. Below R%? and D%# are the regularized remainder

and drift terms for the S-regularized one-step estimator 7 of v(Py), as defined in Section 5.1.

Corollary S1 (Asymptotic linearity of 7%). Fiz 3 € £2. Suppose that v is pathwise differentiable at Py
and that R3P and DLP are both o,(n=1/?) for j € {1,2}. Under these conditions,

n

7= V(P = 62 + oy, (532)

i=1

v is reqular, and n'/?[0,, — vP(Py)] ~ H, where H is a tight H-valued Gaussian random variable that is
such that, for each h € H, the marginal distribution (H, h)y follows a N(0, E0[<¢>§(Z), h)3,]) distribution.

Since the above imposes conditions on the regularized remainder and drift terms for the regularized
one-step estimator 72, any analysis that is performed to bound these terms when studying 7 can also be
used to bound these terms when studying 7. In particular, Lemmas 4 and 5 can be used to study these

terms.

Proof of Corollary S1. We establish that the conditions of Theorem 2 are satisfied. By Lemma 7, the
EIF of ? is equal to (bg € LQ(PO;’H) at Py and ¢):f at ﬁﬂl, j € {1,2}. Hence, for each j € {1,2}, the
regularized drift term D% := (PJ — Py)(¢? ¢§ ) for the B-regularized one-step estimator 7 of v(P)

is identical to the drift term for the one-step estimator 72 of v?(Py). Moreover, since

Ry = w(B]) = v(Po) + Podl” =Y (1= Bi){(v(P)) — v(Po), ha)achu,
k=1

= v2(P}) = v (Po) + Rody,”

the regularized remainder term RJ:# for the B-regularized one-step estimator 72 of v(Pp) is also identical
to the remainder term for the one-step estimator % of v”(Py). As we have assumed that both DJ# and

REP are 0,(n~1/?), j € {1,2}, Theorem 2 implies all the claims in the statement of this corollary. [

Proof of Theorem 6. By Lemma 7, (i)g is the EIF of ? at P,. By the same arguments used to establish
Theorem 2, 7 is a regular estimator of v?(Py), and, in particular, n'/2[? — v#(P.)] ~ H? under the
sampling of n iid draws from P._,_1/>. Combining this with the pathwise differentiability of v, this
shows that n/2[78 — 18 (Py)] ~» HP + 0/ (s), where 0 := T'g o ify is the local parameter of v° at P,
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By similar arguments to those used in the proof of Theorem 3, |[H? + ) (s)||3, is a continuous random
variable. Combining this with the fact that En — (1_qo shows that

P s {ho @ T3 CHG]} ™25 Pr{IHP 4+ ()] > Gioa } -

By Corollary 2 of Lewandowski et al. (1995), the definition of ¢;_,, and the fact that ||2o(s)||% > 0 and
B > 0 entrywise together imply that || (s)|| > 0, the right-hand side above is strictly larger than a.

—1/2

To see that v(P._,-1/2) isan n -rate local alternative, note that

HV(Pe:n_l/2) - hO”’H = ||V<Pe:n_1/2) - V(PO)HH
= n"2||po(s) |13 + o(n”V?) = O(n™1/?).

Above we used that v(Py) = hg, {P. : €} is quadratic mean differentiable, and 7y is the local parameter
of v at P,. O

D A regularized inverse covariance operator and a consistent

estimator thereof

Let Xo : h — E[{h,H)%H] denote the covariance operator of the Gaussian random element H from
Theorem 2. In this appendix, we study the regularized inverse Qg = [(1 — \)X¢ + M]71, where A > 0
and I denotes the identity operator on 4. Though it would be interesting to study the behavior of
our confidence set in cases where A\ shrinks to zero with sample size, doing so may be challenging since
the inverse covariance operator ¥, ! may not exist and, even if it does, it will generally be unbounded,
which will complicate the use of the continuous mapping theorem that we use to justify the proof of the
asymptotic validity of our confidence set (Theorem 3). Hence, while studying the case where A shrinks to
zero slowly with sample size is an interesting area for future work, here we focus on the case where X is a
fixed constant that does not depend on sample size.

The regularized inverse of interest writes as Qg = fx(Xo), where, for a positive semidefinite linear
operator ¥ : H — H, fA(X) :=[(1 — A\)X + M]~!. The operator fy can be seen to be Lipschitz continuous
relative to the operator norm with Lipschitz constant (1—\)/A?, which holds since, for positive semidefinite
Y1 and Yo,

[Fx(E1) = Fa(E2) llop

= ||[(1 — N F M T o {[(T = NS+ M = [(1 =N + Mo [(1— N + )\I]*IHOP

=1 =A@ =NS1+ A" o (31 —B2) o [(1 =N + /\I]‘lﬂop

S @A =N =B+ M, 151 = Ballp 11 = A) D2 + M|,

<1 =NA?[B1 = Ball,p -
By the continuous mapping theorem, an operator-norm-consistent estimator €2, of Qg — that is,
one for which ||, — Qollop = 0p(1) — is thus given by Q,, = fi(X,), where 3, is any operator-

norm consistent estimator of ¥y. The following lemma shows that one such estimator is given by

Lemma S12. Fiz A > 0. Suppose that ||¢o||12(pyn) < 00 and ||¢d, — ¢ollr2(pym) = 0p(1) for each
JEAL2Y IS0 h 5300 Epgl(h, $1(Z2))udh(2)), then |20 — Sollop = 0p(1)-

In what follows, for a function ¢ : Z — H, we let (h, ¢)% denote the map z — (h, #(z))2. We also recall
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that H; denotes the unit ball of H. We give the proof of the above result after we prove the following

supporting lemma.

Lemma S13. In the setting of Lemma S12, {z = (h,¢o(2))3, : h € 7-[1} s Py-Gliwvenko-Cantelli. Hence,
SuphEHl(P’é — Po)(h, ¢0>%-£ = op(1).

Proof of Lemma S13. In what follows we let F := {(h, $0)3,: h € 7—[1}. We will show that this collection
of functions is Py-Glivenko-Cantelli, which is the first result in the statement of the lemma. Combining
this with the fact that P! is the empirical distribution of an iid sample from Py will then give the second
result. To establish that F is Glivenko-Cantelli, we will show that the conditions of Theorem 2.4.3 in
van der Vaart and Wellner (1996) are satisfied. These conditions follow from F having a Py-integrable
envelope function F' and, moreover, satisfying an appropriate covering number condition — we will define
this condition in the next paragraph. Before doing so, we note that F has Py-integrable envelope function
F(2) :=||¢0(2)||3,. To see that this function is indeed an envelope of F, note that, for any h € Hy, the
Cauchy-Schwarz inequality shows that (h, ¢o(2))3, < ||¢0(2)||3, = F(2). To see that F is Py-integrable,
note that PoF = H(b()”%?(Po;H)v which is finite by an assumption of Lemma S12.

In the remainder of this proof, we will establish a covering number condition on F that implies the
covering number condition from Theorem 2.4.3 in van der Vaart and Wellner (1996). In particular, in
what follows we will show that, for any € > 0, there exists an IV € N such that, with probability tending
to one, the L!(P})-covering number of F is no more than N; here we recall that, for fixed € > 0, the
corresponding L!(P}) covering number of F denotes the size of the minimal e-cover of F relative to the
LY(P}) metric. Problem 2.4.2 in van der Vaart and Wellner (1996) justifies why this condition suffices to
establish the covering number condition in Theorem 2.4.3 of that reference.

Fix € > 0 and an orthonormal basis (h;)72; of . By the monotone convergence theorem and the

Py-Bochner square integrability of ¢,

K’ [eS)
. _ _ 2
L Fo ;(hk,dﬁo =5 ; by, do) ] = ll¢ollZ2(pyip0) < 00

Hence, there exists a K < oo such that P, [Zszﬂhka%)g{} > ||¢0||2L2(P0;H) —¢/8, and so, for this K,
P, [Z;OZKH(hk, ¢0>%¢] < ¢/8. By the weak law of large numbers, we further have that

P, Z (hi, 90)3, | = Po Z (hi, d0)3 | + 0p(1).
k=K+1 k=K+1

Hereafter we work on the event &, where (i) the o,(1) term above is less than €/8, so that the left-hand
side above is no more than €/4, and (ii) H¢0H%2(P,}L;’H) < l[#0ll72(py3) + € note that f” holds with
probability tending to one as n — co. We now show that there exists a fixed subset H; of H; such
that, on this event, F, := {(h,gbO)%_L th e 7—71} is an e-cover of F. In particular, we take 7—~[1 to be
a finite d-cover of the finite-dimensional subset 7?[1 := Hy1 N span{hq,...,hx} of H; relative to the
H-norm, where § := ¢/[4(]|pol|3- (Poitt) T €)]. Such a finite d-cover is guaranteed to exist because the
unit ball in a finite-dimensional Hilbert space is necessarily totally bounded in the norm topology. To
see that F, is indeed an e-cover of F, fix h € H and let h € H; be such that ||rxh — hlj3 < &, where
wh =Ty (h | span{hy,...,hg}). Observe that

H<ha ¢O>’3{ ¢O 7—[)

L1(P})

(S33)

< s 60130 = Gmach 000l gy + [[machs b0l — (o],
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We now show each of the two terms on the right-hand side is no more than €/2. For the first term, we let
mr¢o(z) := lylpo(z) | span{hy, ..., hi}] and note that

|| <h, ¢0>%—L - <7TKha ¢0>§-L HLl(p71L)

- / [+ mch, Go(2))m (b — mach, do(2)) x| P (dz)

) U<h e %(Z)&P%(dz)] N [/<h —mxch, ¢0(z)>%¢Pﬁ(dz)} N

1/2

1/2
- [ [, ¢o<z>>%P;<dz>] [ [ = mch.0(z) - ww(z»%P;(dz)]
< Hh + ﬂ-KhHHHh - 7TKh||H||¢O - 7TK¢O||2L2(p$;H)-

The first equality holds by the definition of the L!(P}) norm, both inequalities hold by Cauchy-Schwarz,
and the second equality holds because h — wxh is orthogonal to span{hi,...,hx}. Now, since h € H;,
the triangle inequality and the fact that orthogonal projections cannot increase length show that
Ik + 7w bl ||k — T h|% < 2. Furthermore, by the choice of K and the fact that we are working on the
event &,, |0 — 7TK¢()H%2(P%;,H) < ¢/4. Hence, the first term on the right-hand side of (S33) is no more
than €/2. For the second term in (S33), two consecutive applications of the Cauchy-Schwarz inequality
yield that

H (tich, ¢o)3; — (h, ¢0>%¢‘

L1(Py)

- / ((mch + o do(2)) e (mich — B do(2) x| P (dz)

1/2

~ 1/2 )
< [ [mch 5, ¢o<z>>%P;<dz>] [ [tmch = b n(@PAE2)
< |lmgh + Allallmich — ]~7’||H||¢0||%2(P7{;7-[)'

Now, by the triangle inequality and the fact that mxh and h belong to Hq, ||Txh + f~L||H < 2. Moreover,
because we are working on the event &,, ||¢0||?:2(P}L;H) < ||¢0||%2(P0;H) + e. Combining these bounds with
the fact that |mh —hlly < 6 := 6/[4(||¢0||2L2(P0;H) +¢)] gives that [|(mxh, ¢0)3, — (h, b0)3 |l Py < €/2.
Returning to (S33), this shows that ||(h, ¢o)3, — (h, d0)3 L1y < €. As h € Hy was arbitrary and
<l~1, ¢0>%{ € F., this shows that F. is an e-cover of H; on the event &,. Since F. contains finitely many
functions, we can invoke Theorem 2.4.3 of van der Vaart and Wellner (1996) to show that F is a
Py-Glivenko Cantelli class. O

We conclude this appendix with the proof of Lemma S12.

Proof of Lemma S12. For j € {1,2}, let 33/, (h) := Ep; [(h, ¢1,(Z))n¢},(Z)]. By the triangle inequality,
1 , 1
35 = Sollop = 5222—20 S§Z||E£—Eo||

Hence, it suffices to show that ||E£L — EOHOP = 0p(1). We show this for the case where j = 1, and the case
where j = 2 follows by analogous arguments.

Because $L — X is a positive, self-adjoint operator, it holds that

IS5 = Sollop = sup (25, (h) = So(h), k). (S34)
heH,
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We will bound the right-hand side above in what follows. To do this, we will use that, for any h € H;,

(Zn(h) = So(h), hya = (Py(h, én) 1y — Polh, do)udo, h),,
= (B [(hs b)1bs, — (hy d0)mbo] + (P — Po)(h, Go)mdo, h),y,
= P, [(h, 5)5, — (hy d0)3] + (Py — Po){h, d0)3,
= Py (h, ¢y, — ¢o)#(h, &y, + d0)u + (P — Po)(h, d0)F-

Applying the triangle and Cauchy-Schwarz inequalities to the above and combining the result with (S34)
shows that

1/2

1/2
151 = Sollop < | sup Pk, 6L — M} [ sup PL(h, 61 + do),
heH, heH,

+ sup (B, = Po){(h, ¢0)3,-
heH,
Using that supeyy, P (h, )3, < H(;SHQLQ(PLH) for ¢ : Z — H and then subsequently applying the triangle
inequality in L?(P};H), we find that

155, = Sollop < lén — dollrzcpray (2lleollL2(prae) + ll6n — dollL2(pra))
+ sup (Pr — Po)(h, ¢0)3;.-
heH,

The second term is 0,(1) by Lemma S13. We now show that the first term is also 0,(1). To see this, first
note that ||¢o||L2(p1,) = Op(1) by the fact that [|¢ol|L2(py) < 0o and since, by the weak law of large
numbers, ||¢0||2L2(PA;H) = ||¢0H%2(PU;H) +0p(1). Hence, it suffices to show that [|¢}, — dol|r2(p1,2) = 0p(1).
To see that this holds, note that, for any § > 0, the probability that ||¢l — (ZSUH%?(P%;H) exceeds ¢

conditional on the data used to create the estimate ¢ of ¢ satisfies the following:

Py {I0% = dolliapya > 8| Z1s- s Zja )
< min {1,067 Ery (16 = dol3zpre | 2102 2z }

= min {1,671 6L = 6o l22(0) | -

Taking an expectation of both sides over Z1, ..., Z, 9, using that | oL — QSOH%Q(PO_H) = 0p(1), and applying
the dominated convergence theorem shows that the right-hand side is o(1). As § > 0 was arbitrary, this

shows that [|¢}, — dollL2(p1n) = 0p(1), which gives the result. O

E A conservative estimator of the threshold used to define our

confidence sets that does not require the bootstrap

We now present a conservative estimator of the threshold (;_, that is used to construct the confidence
sets described in Section 4.2. This estimator is applicable in settings where () is the identity function.
Its form is motivated by Theorem 1 in Székely and Bakirov (2003), which concerns tail probabilities for
Gaussian quadratic forms of the type Z:i1 cx N, ,f, where (Ng)52, is an iid sequence of standard normal
random variables and (cg)52 , is a sequence of nonnegative constants. This result is applicable when ) is
the identity operator since, in that case, |H||%, has the same distribution as Y, | Eo[(¢0(Z), ho k)3, NZ,
where (ho )52, are the unit eigenvectors of the covariance operator E[(H, -)yH] of H. When a < 0.2, as

it will be in most practical settings, Theorem 1 in Székely and Bakirov (2003) can be used to show that
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Pr{||H|j3, > x3_ quSOHLQ(PO )} < a, where X3_,, denotes the (1 —a)-quantile of a chi-squared distribution
with 1 degree of freedom. Hence, if s2 is a consistent estimator of ||¢o||%. (Po:)» then Theorem 3 shows
that C,(x3_,, - s2) is an asymptotically valid, albeit conservative, (1 — «)-confidence set for v(Fp). If
¢l — ¢o in probability in L?(Py;H) for j € {1,2}, then Lemma S14, given below, shows that the
cross-fitted estimator % Z _ 2 HL2(PJ 30

be taken to be equal to this estimator.

will converge in probability to ||¢0||%2(P0‘7-L)7 so that s2 can

Lemma S14. If |dol|2(p,:20) < 00 and ||¢3, — dol|2(py;m) = 0p(1) for each j € {1,2}, then || ¢, H;(PJ‘H)
converges to ||¢0||L2(P0 H) in probability for each j € {1,2} and, consequently, 5 Zj 1 |2, ||L2(P7 H)
||¢0HL2(P0.H) in probability as well.

Proof of Lemma S14. We begin by showing that ||¢7 ||
that

L2(P:H) ||¢0||L2 (PoiH fOI' fixed j € {1 2} Note

[ e T

< ] / ||¢z;<z>||%¢<Pz; ~ Rz

We study these two terms separately. The second term is 0,(1) since (i) by the reverse triangle inequality

162122 oy = 190022 r0)| -

and the assumption of this theorem, |[|¢7 || L2 py;0) — |0l L2(poi20)| < |04, — ol L2(pys) = 0p(1) and (ii) by
the continuous mapping theorem, ||¢7 (| 2(p,.2) RiS l|¢0ll L2 (py;2e) implies that ||¢ZL||%2(PO;H) LS ||¢0H%2(PO;H).
In what follows, we show that the first term above is 0,(1) as well.

Combining the fact that ||¢%(2)|l% < [|¢%(2) — ¢olla + ||¢o(2)||% with the basic inequality that
(@ +b)? < 2(a® + b?), and subsequently applying the triangle inequality, yields that

3| [ 194CI3PL -~ Poa:)
<| [ 162) = anCaI 3 + lonla) ) (7 = Poa)
<| [ 1) - anoBPit@) | + | [1646) = ente) i)

T ] / l60(2)|2(Pi — Po)(d2)]

The second term is equal to ||¢7 () — ¢o(2)||%2 (Pyyp0) @0d s0 is 0p(1) by assumption. The third term is

(S35)

op(1) by the weak law of large numbers, which is applicable since ||¢0||2L2(P0-H) < 0o by assumption.
By Markov’s inequality, the fact that PJ and 137{ are fitted on different subsamples, and the fact that
probabilities are no more than 1, the conditional probability that the first term exceeds any fixed § > 0

satisfies the following;:

7 {| [1646) - ento i

>0 ‘ Z(G—1)n/241s - s Z(j—l)n/2+n/2}
. Lo 9
< min § 1, gll% = Gollz2(pysm) ¢ -

Taking an expected value of both sides over Z(;_1y, /241, s Z(j—1)n/24n/2 iid Py and using that ||¢? () —
¢0(z)||%2(PO;H) = 0,(1), the dominated convergence theorem shows that | [ [|¢)(2) — ¢o(2)||3,P3(dz)| > 6
occurs with probability tending to zero. As § > 0 was arbitrary, this shows that the ﬁrst term on the
right-hand side of (S35) is 0, (1), which completes the proof of the fact that ||¢7 ||
for j € {1,2}.

LQ(PJ H) ||¢0||%2(P0;7-L)
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Since ||¢gl||i2(P,{;H) RS ||¢0||2L2(P0;H) for j € {1,2}, the continuous mapping theorem shows that

e |
LS O ey = 190320 =

F  Numerical considerations for computing the proposed confi-

dence sets

Evaluating whether some hy € H belongs to the confidence set in (24) requires computing the quadratic
form (2, (¥, — ho), Un, — ho)3 in a possibly infinite dimensional Hilbert space. In many cases, computing
this quadratic form will require leveraging some form of numerical approximation. One way of doing
this is to replace the computation of the quadratic form in (24) by a finite-dimensional approximation
thereof. To this end, for each m € N we let D,,, : H — R" denote a linear operator. This linear operator
should have the property that, for any hy and hy in H, (h1,ha)xn Mo D, (h1) T D,y (hy), where here
and in all subsequent calculations all vectors are taken to be equal to column vectors when involved in
matrix operations. In practice, for a given sample size n, m can be chosen to be some large constant.
One natural choice of D,, corresponds to the map from h to the vector of the first m generalized Fourier
coefficients of h with respect to some orthonormal basis (hg)32,, so that Dy, (h) = ((hg, h)yu)i,. If
H = L?(]0,1]) and it is known that D,, will only be evaluated on elements of H that have a continuous
version, as occurs if hg is continuous and 7, is continuous with probability one, then another natural
choice is to take D,,(h) to be equal to (h(ty)/m'/?){",, where t; = k/(m + 1) and h(t;) is taken to be
the evaluation of the continuous version of h at t. If instead H = L?(R) and h still has a continuous
version, then D,, can be taken equal to (h(ty)/[mp,. o (tx)]*/?)7, where, for 4 € R and o > 0, {t;}7,
are such that ®, ,(tx) = k/(m+1) with ®, , and ¢, ,» denoting the cumulative distribution function and
probability density function of a N(u,o?) distribution, respectively. In practice u and o may be selected
based on the data, which can be justified theoretically so long as their random values converge to some
limits in probability asymptotically — for example, in our simulation implementation of the bandlimited
density estimator from Example 1b, we take p and o/4 to be the empirical mean and standard deviation
of Y given A = 1, respectively.

The linear operator D,,, can be used to approximate the infinite-dimensional quadratic form in (24)
with a finite-dimensional quadratic form. In particular, (€, (7, — ho),7n — ho)u can be replaced by
D (D, — ho) T Qn,m Dy, (7, — ho), where ﬁn,m is an m-dimensional positive definite Hermitian matrix
whose value will depend on the standardization operator §2,, that it is meant to approximate. If €2, is the
identity operator, then ﬁmm can be taken to be equal to the m-dimensional identity matrix I,,,. If Q,, is
instead the estimator of the regularized covariance operator described in Appendix D, then it can instead
be approximated by a regularized empirical covariance matrix. In particular, we can let @n’m =[(1-
NS + My ™, Where Spm = 3 521 PA[Du(64(-)) Don(6,(-)) ], where (Do (84()) Dun(65() 7]
corresponds to the empirical covariance matrix of the random variable D,,(¢?(Z)) computed using the
empirical distribution PJ. Alternatively, PJ[Dy,(¢%(:)) Dy, (97 (-)) "] may be replaced by the empirical
correlation matrix of D, (¢%(Z)) under P} in the definition of ﬁn,m. Though using an empirical correlation
matrix rather than an empirical covariance matrix changes the quadratic form used to define the confidence
set, doing so can make selecting the parameter A simpler because, in that case, the matrices ¥,, ,, and I,
are on the same scale in the sense that both have trace m.

We conclude by noting that, when #H is an RKHS on 7 with feature map ¢ — K, it will be possible to
compute the quadratic form (2, (7, — ho), 7, — ho)# explicitly in some cases. One particularly interesting
case occurs when 7, and hg are both contained in the linear span of {K;, }7*; and ,, is the identity
operator, where the set { K3, }7 ; may depend on the observed data. In such cases, 7, —hg = >, ¢k Ky,
for some ¢ := (cx)7; € R™, and so, letting G denote the Gram matrix with G = Ky, (tx), it holds that
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(Un —hoy Un—ho)y = c¢"Ge. If hy = 0, which would be the key value of hg to consider when the confidence
set is being used to test the null hypothesis that v(Py) = 0 against the complementary alternative, it is
necessarily the case that hg is in the linear span of {K,, }7* , for any collection {¢;}7 ;. Hence, in these
cases, it suffices that 7, be in the linear span of {Kj, }}* , for some m. Such cases arise, for example,
when using the MMD to test for the equality of two distributions (Gretton et al., 2012); when conducting
these tests, 7, is equal to the difference of the one-step estimators of the kernel mean embeddings of two

distributions.

G Cross-validated selection of the regularization parameter

The key observation that motivates the risk we use is that, along any quadratic mean differentiable
submodel {P. : € € [0,6)} € P(P,P,s), v(P.) — v(P) should approximately be equal to erp(s) or, put

another way, should approximately be equal to

: . 1 .
argmin ||h — €Z/P(S)H3_[ = argmin [2|h||§{ —¢(h, I/P(S)>'H:|
heH heM

1L -
= argmin [2|h||3_[ - €<I/P(h),s>L2(P):| .
her

By Lemma S6 in Appendix C, e(@5(h),s)r2(py = Pep(h) + o(€) under appropriate conditions. This
suggests that v(P.) — v(P) should approximately equal argming ¢y []|h[|3, — Pep(h)]. Letting Py play
the role of P. and an estimate P of Py play the role of P suggests that v(Py) — v(P°*) should
approximately minimize £ ||h[2, — Poz'/ﬁyllm(h) over h € H. Put another way, v(Pp) should approximately
minimize Eo[L pio. (Z; h)] = L]|h —v(P)||3, = Pyt p1on [h — v(P1%%)] over h € H. This suggests using the
loss £ Ploss ’ "

is presented in Algorithm 1. We refer the reader to van der Laan and Dudoit (2003) for arguments that

when performing cross-validation to select the regularization parameter 3,. Such an approach

can be used to establish oracle guarantees for this cross-validation selector.

H Inefficient influence operators and influence functions

When H is finite-dimensional and the model is semiparametric at Py — in the sense that its tangent space
Pp, is a strict subspace of L2(Py) — there are generally many influence functions that can be used to
construct a one-step estimator of v(FPp). In our more general Hilbert-valued setting, the same can be done
by replacing the efficient influence operator that we use to construct our (regularized) one-step estimators
by an inefficient influence operator. Each inefficient influence operator is the Hermitian adjoint of a
bounded linear extension ey, p of the local parameter vp from 75p to Lg (P). All such extensions take
the form Vext,p(s) = vp (L2 (py[s | Pp]) +Ep (Hzz(pyls | P5]), where Pp is the orthogonal complement
of Pp C LZ(P) and £p : Pp — H is bounded and linear. The corresponding influence operator is the
Hermitian adjoint of Vext, p, which takes the form 7 p = vp + él*p, where 7} is the efficient influence
operator and 5}2 is the Hermitian adjoint of f p. The efficient influence operator is recovered by taking f P

to be the zero operator. If ép # 0, which we assume hereafter, then Vo, P # v} and we call ¥

ext, P an

inefficient influence operator.

In some cases, v’

oxt,p Will have an associated inefficient influence function gext,p. Concretely, this

holds if and only if 77 p(-)(2) is bounded and linear P-almost surely; in these cases, gext,p(2) is the
Riesz representation of this operator. The following result shows that an efficient influence function must
exist for an inefficient one to exist, and also provides a means to derive the form of the EIF based on

the form of an inefficient influence function. We let ® denote the L?(P;#H)-closure of the linear span of
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Algorithm 1 Cross-validated selection of the regularization parameter (3,

1: Inputs: Data 71, Zs, ..., Z,, estimator to be used to estimate the nuisance Py and a finite subset
B,, of £2 of candidate values for the regularization parameter

2: Generate folds: partition the multiset {Z;}? ; into multisets Z1, Z5, Z3, Z4 of roughly equal size

3: for all folds j =1,2,3,4 do

4:  Nuisance estimation: using only data in Z;, estimate Py as ]3,{

5: end for

6: for all permutations j = (5(1),4(2),5(3),5(4)) of {1,2,3,4} do

7:  Nuisance for regularized one-step: let I—C’TCL’S = 157];(1)

8:  Nuisance for loss function: let P,IIOSS = }5,{(2)

9: for all candidate regularization parameters 5 := (8;)32; € B, do

. : $ .S58 (D 1 B
10: Define regularized one-step estimator: v, ; 1= v(FPp®) + Zal Zzezj(g) Qﬁpﬁs(z)
11: Compute risk (j, 3)-specific risk: Rf = Wlm)\ Zzezj(4) L pross (z;ﬁij)

12:  end for

13: end for

14: for all candidate regularization parameters 3 := (8;)72; € B,, do
15:  Aggregate the risks: R° := i Zpermutmons Jof {1,2,3,4} R?
16: end for

17: return 8* € argmingc RP

{z+ s(z)h:h e H,secPp}.

Lemma S15 (Expressing the EIF in terms of an inefficient influence function). If v is pathwise dif-
ferentiable at P € P with inefficient influence function ¢ex p € L*(P;H), then v has EIF ¢p =
M 12(p3) [Pexs,p | ®] € L2(P;H).

The proof of this lemma is given at the end of this appendix.
One-step estimators can be constructed using inefficient influence operators. Beginning with cases
where an inefficient influence function exists and using notation from Section 2.5, we define a cross-

fitted one-step estimator as Ve, 1= %23:1[1/(13,{) + ngngt,n], where ¢}, ,, := ¢ . ps- Under similar
conditions to those of Theorem 2, it can be shown that Deyt , is regular and asymptotically linear with

influence function ¢exs,0 := Pext,p, and
n1/2 [ﬁCXt,n - V(PO)] ~ chta (836)

where Heyt is a tight H-valued Gaussian random variable that is such that, for each h € H, (Hext, h)3 ~
N(0, Eo[{@ext,0(Z), h)3,]). The above weak convergence facilitates the construction of confidence sets for
v(P,) using analogous methods to those used in Section 4.2. The main distinction between Dexy ,, and 7y,
is that, since dext,o is not the EIF, the conditions of the convolution theorem fail to hold (Theorem 3.11.2
and Lemma 3.11.4 of van der Vaart and Wellner, 1996), and 80 Dext,n Will not be efficient — e.g., (23)
will not generally hold.

Moving now to cases where an inefficient influence function does not exist, we define a (,-regularized
one-step estimator as Df;tyn = %Z?Zl[l/(ﬁﬂl) + P,{gbéx@c"n] with gbift"n(z) = Bn’kl):xt,ﬁﬁ (hg)(2)hy.
This regularized one-step estimator satisfies similar guarantees to those satisfied by the one based on
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1/2

the efficient influence operator: it achieves a ||B,||¢2/n'/?-rate of convergence when a drift, regular-

ized remainder, and bias terms are small; the drift term will be small if (bg)g"n is close to ¢g;t’0(z) =
> ret Bk p, (hie) (2) i in L?(Po; H); the remainder will be small if max; supy ey (P —v(Py), hi) g+
Pol):xt,ﬁ;{(hk” is 0,(n~1/2); and the bias term will be small if v(P) is sufficiently smooth for all P € P.
As for confidence sets, the same methods as described in Section 5.2 can be used once one notes that, for
any fixed 8 € £2n (0,1, v# .= I's o v is pathwise differentiable at P, with inefficient influence function

¢§xt,o- This can be used to justify, for example, the asymptotic validity of the (1 — «) confidence set
~. . 2 ~
{h SE DD [% Yo {<V(Pﬁ)7 hi)w + Pﬁl’gxt’ﬁg(hk)} — (h, hk>7—t] < Cext,n/n} :

where Z“ext,n is selected via the bootstrap. Since r* is an inefficient influence operator, the threshold

ext,ﬁi
Cext,n Will generally be asymptotically larger than the one used for the confidence set built based on the

efficient influence operator given in (30) (see Lemma 3.11.4 of van der Vaart and Wellner, 1996).

Proof of Lemma S15. Denote by vg, p the inefficient influence operator to which gext,p corresponds,
and let its Hermitian adjoint ey, p denote the extension of the local parameter ©p used to define this
inefficient influence operator. Throughout this proof we let ¢% := Il 2(p) [Pext,p | @] € L*(P;H). Our
goal is to show that v has EIF ¢p = ¢%.

Since we have assumed throughout that a separable version of the efficient influence process is used,
there exists a countable dense subset H’' of H and a P-probability one subset Z’ of Z such that, for
all h € H and z € Z', there exists an H'-valued sequence (h})32; that converges to h and satisfies
vp(h;)(2) = vp(h)(2) as j — oo. Fix € > 0 and z € Z’. Let h, be such that

75 (he)(2) = (he, 9P (2)) 5| 2 sup [7p(h)(2) = (h, 6 (2))9] — €
Fix an H'-valued sequence (he ;)52 that converges to h. and is such that 75 (he ;)(2) — vp(he)(2) as

j — o0o. By the choice of this sequence and the fact that (-, ¢%(z))y is continuous, there exists a large

enough j such that

Up(he)(2) = (heyj, 65 (2))5| = sup [0p(h)(2) = (hy 0p(2))5] — 26
Taking a supremum over A, ; € H' on the left and then recalling that e > 0 was arbitrary shows that

sup [7p(h)(2) = (h, Pp(2))yl = sup |75 (h)(z) — (A, PP (2))l-
Now, for each h € H', let Z} :={z € Z : v} (h)(2) = (h,$%(2))n }. In the remainder we shall show that
Z}! has P-probability one. Combining this with the above display then shows that v has EIF ¢p = ¢%,
since that will show that the right-hand side above is 0 on the P-probability one set Z' N [Npen 2} ].
Fix h € H' and let (h, ¢%)y denote the function z — (h, ¢$%(2)). We will show that (05 (h) —
(hy @p) 3, w) 2(py = 0 for a generic u € L?(P), which will then establish that Z;’ is a P-probability one set
and complete our proof. Writing u = s+s* with s € Pp and s belonging to the orthogonal complement of
Pp in L2(P), it suffices to show that (5 (h) — (h, ¢ ), s)r2(py = 0 and (75 (h) — (h, ¢%) 2. sT) 2Py = 0.

Beginning with the former equality and using that the restriction of ey p to Pp is equal to p,

<V73(h)7 5>L2(P) = <h7 DP(S»H = <h’ l./ext,P(S»’H = <D:xt,P(h)7 S>L2(p)

— [0 PE) = [ (00 (@D (2)P(d2)
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_ / (5(2)h, Gt (2)) 3y P(d2) = (2 8(2)h, Goxt,P) 12 piry -

Since z — s(z)h € ® and ¢% is an orthogonal projection of gey; p onto ®, the right-hand side equals
(2 5(2)h; &%) 12(p.3y)- By similar calculations to those used above, this in turn equals ((h, ¢%)2, $) L2(p)-
Hence, (75 (h) — (h,¢p)#,s)2(py = 0. To see that (vp(h) — (h,gb}é)q.[,sJ-)Lz(p) = 0, observe that

(5 (h), 5L>L2(p) = 0 since Uj has codomain Pp, and

<<ha ¢<I>3>7'l7 SL>L2(P) = <Z = SL(Z)}% ¢<}>3>L2(P;H) = 07

where we have used that all elements of ® C L?(P;H) are orthogonal to z — st (2)h by virtue of the fact
that st is orthogonal to Pp C L?(P). O

I Additional simulation results

I.1 Simulation results for Example 1b

We evaluate the coverage of our spherical L?(RR) confidence sets for a bandlimited counterfactual density of
Y (1). When doing this, we take Q(1) to be the distribution of ops S+ ppr, where (p1, po, pi3) = (=6, —2,5),
(01,092,03) = (2,3,2), and M ~ Unif{1, 2,3} is drawn independently of the random variable S, which
has density function 3sinc*(-)/(27). The density of Q(1) is depicted in the top left corner of Figure 1. Tt
is bandlimited, with the support of its Fourier transform equal to [—2,2]. We focus on the case where the
bandlimiting parameter b used to define v in Eq. 15 is equal to 2, so that the target of inference v(Fp)
coincides with the density of Q(1).

Figure S1 displays the coverage of our confidence sets at different nominal levels. At all nominal levels
larger than 75%, the confidence sets are slightly conservative at the sample sizes considered, with the
actual coverage probability approaching the nominal level as n grows. A similar improvement with n holds
across the full 0-100% range of nominal levels, which both supports our theoretical weak convergence
guarantees for the one-step estimator and their finite-sample utility. In Table S1, we also verified that,
as anticipated by our theory for cases where an EIF exists, the mean integrated squared error of the
one-step estimator decays at an n~! rate.

We conclude by comparing the size our L?(R) confidence set C, to those of a pointwise confidence
interval for the counterfactual density function at zero, namely v(P)(0). To make this comparison, we
first note that, for any y € R, including y =0, and any h € C,, :={h € H : ||h anH%z(Ay) < En/n},

Ih(y) = 2, (1)) = ' | B b - 2. v @)
<yl 2 1P = 2ol 2oy < (0Cn/ In]) 2, (S37)

where we used that H K yH 2Ow) = (b/7) /2. Consequently, our L?(R) confidence set yields an interval for
v(P)(0) of the form 7,,(0) £+ (bfn /[n7])*/2. Tn our simulation setting, this confidence interval was about
2.3 times wider than an efficient Wald-type confidence interval for the real-valued quantity v(Py)(0) when
a = 0.05. Hence, if a point evaluation of v(Py) is truly the target of inference, then there would be a
benefit to directly pursuing inference for this quantity, rather than the function as a whole. However,
if the function v(Pp) is the target of inference, then our L%(R) confidence set is likely the preferred
method for making inference. This may be especially true in this bandlimited density example since
the fact that (S37) holds for all y € R shows that a uniform confidence band for v(Fp) is given by
Cnooi=f{heH: supyer [h(y) — n(y)| < (bfn/[m])m}
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Figure S1: Actual versus nominal coverage of confidence sets for the bandlimited density function based on 5000
Monte Carlo repetitions. The inset displays nominal coverage values that are of particular interest in practice.

Sample Size (n)
250 500 1000 2000 4000
Plug-In  1.11 1.59 2.22 3.04 4.15
One-Step 3.58 3.30 3.11 297 2.84

Table S1: Performance of the plug-in and one-step estimators at different sample sizes n, where performance is
measured in terms of n times the mean integrated squared error. As would be predicted by theory, this criterion
appears to stabilize with n for the one-step estimator. In contrast, it grows with n for the plug-in estimator.

1.2 Supplemental tables and figures for simulation studies
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Figure S2: Densities Q(1) of Y (1) used in the three settings considered in the evaluation of estimators in
Example la. Each of these densities is a uniform mixture % Zi=1 Beta(ck, di), where the parameters indexing
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the beta distributions in this mixture differ across the three settings plotted in the figure.

error performance of estimators of the density of Y (1), Q(0) is set equal to Q(1).
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In particular,
{(c1,d1), (c2,d2), (c3,d3)} is equal to {(2,2), (3, 3), (4,4)} for ‘Zero on Both Sides’, {(1,1), (8,4), (4, 8)} for ‘Nonzero
on Both Sides’, and {(1,5), (5,2), (4,8)} for ‘Spike on Left Side’. When evaluating the mean integrated squared

(b) Parameter choices leading to improved power against rougher alternatives: ¢ = 10 and s = 0.5.

Figure S3: Same as Figure 4, but at different choices of the tuning parameters indexing the tests. The tests based
on Example 1a set the regularization parameter so that 8 = 1/[1 + (k/c)?] for a constant ¢ and the MMD test

selects a bandwidth equal to some constant s times median{Y1, ..
is shown as a benchmark in both subfigures.
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