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Abstract—Homelessness is a condition that not only deprives 
individuals of a place to live but also exposes them to various 
risks, including malnutrition. Personalized cooking recipe 
recommendation systems have the potential to guide homeless 
individuals or those recently out of homelessness towards 
making informed dietary choices. However, a significant gap in 
current systems is their failure to cater to individuals with 
minimal cooking experience, offering little to no guidance on the 
actual cooking process. Addressing this critical gap, the present 
work introduces an innovative system designed to function as a 
smart cooking assistant. This system is not merely a passive 
repository of recipes but an active participant in the cooking 
process. It is built on the premise of observing users as they cook, 
utilizing a combination of hardware and advanced machine 
learning software to guide them through each step of the recipe 
meticulously. The system's hardware infrastructure is centered 
around the Raspberry Pi mini-computer, a compact yet 
powerful device capable of integrating various sensors, 
including a standard camera, an infrared thermal camera, and 
a humidity and temperature sensor. These components are 
strategically mounted above the cooking area, specifically 
focusing on the stovetop where the cooking vessel is placed. This 
setup enables the system to continuously monitor the cooking 
process. The core of the system's software is a deep learning 
image classification model that is generated using Google Vertex 
AI’s Transfer learning functionality and trained on a dataset of 
330 images collected from cooking pasta, captured through a 
smartphone camera and custom-designed hardware. By 
applying this method, the algorithm efficiently interprets the 
series of images to precisely identify the current stage of cooking 
and offer timely and automated suggestions. By offering a 
personalized, interactive, and educational cooking experience, 
the system not only aims to improve the nutritional intake of 
homeless individuals but also empowers them with the skills and 
confidence needed to cook healthy meals.  

Keywords—IoT, machine learning, Smart Home, supportive 
housing 

I. INTRODUCTION 
People who have only recently escaped homelessness and 

are beginning to live in supportive housing can benefit from 
personalized knowledge of nutrition and cooking due to 
factors including low income, limited cooking skills, and 
access to affordable food [1, 2]. Recently, personalized 
cooking recipe recommendation systems have been developed 
that attempt to provide guidance on nutrition [3, 4]. Such 

systems can also be based on emerging Artificial Intelligence 
(AI) technologies [5]. 

One important shortcoming of current recipe 
recommendation systems is that they cannot provide feedback 
on the actual process of cooking. We describe a hardware-
software system that acts as a smart “cooking assistant”. The 
proposed system observes a resident attempt to follow a 
particular recipe, using a camera, infrared thermal camera, and 
temperature sensor. The sensor data is classified to identify the 
specific step of the recipe that has been completed so that the 
resident can be prompted to continue to the next step (or 
complete the current step). The sensors are integrated into a 
Raspberry Pi 4 mini-computer. The system is mounted over a 
cooking range to continuously monitor the cooking area. The 
software component consists of image classification 
algorithms that translate the images from the cameras to a 
specific cooking step.  

In prior work [6], we described the overall system with a 
particular focus on the hardware design. In this paper, we 
provide more details of the image classification approach used 
to identify the cooking stages. The contributions of this work 
are: (1) the design of both hardware and software components 
of a cooking assistant system, (2) steps to facilitate training of 
the image classifier using annotations, and (3) use of the 
Vertex AI algorithm suite to perform machine learning and its 
demonstration for detecting the sequence of stages for a 
cooking a simple pasta dish. 

II. RELATED WORK 
AI techniques, notably machine vision and image 

processing, have been applied in multiple aspects of food 
processing. These techniques are primarily used to identify the 
type and quality of food, grade food products, and detect 
defective spots or foreign objects [7]. The dataset including 
Chinese recipes is presented in the paper with several photos 
representing different stages of cooking. Various models are 
trained independently for distinct images in distinct 
categories, such as initial, intermediate, and advanced 
stages[8].  

However, these tasks do not align with the primary steps 
of home cooking for personal use. There has been relatively 
little research on assistive cooking systems. The Cognitive 
Orthosis for coOKing (COOK) is a smart tablet application 
connected to a stove, designed to assist individuals with 



cognitive impairments during meal preparation[9,10]. 
Monitoring and tracking objects during cooking is done using 
real-time detection and tracking techniques such as YOLO 
(You Only Look Once) and KCF (Kernelized Correlation 
Filter). A variety of challenges are discussed in the paper, 
including object disappearance and appearance, occlusion, 
and motion blur.  An evaluation of the system's performance 
shows that the ability to trace and identify kitchen utensils is 
greatly enhanced by combining detection and tracking data 
[11]. 

The study by Jelodar et al. [12] created a dataset of 
cooking-related images containing 11 states that represent the 
most frequently used cooking objects. In order to identify 
objects, they used a deep model based on Resnet. To detect 
cooking-specific items, such systems require retraining their 
object detection models. 

Another popular object detection model is YOLO, which 
is also similar to Resnet. An individual network is used to 
detect objects in the YOLO model instead of conventional 
object identification methods. When compared with 
traditional methods, the YOLO framework simplifies 
detection and classification tasks [13]. MobileNets [14] is 
used as the model for image detection in our work from the 
perspective of embedding it in an embedded system. 

III. SYSTEM DESIGN 

A. Hardware Design 
a) Sensors 

The MLX90614, an infrared thermometer, operates in a -
70°C to 382.2°C range, suitable for cooking applications, with 
tested accuracy and ease of use. Replacing the DHT11, the 
system introduces the AHT21. Utilizing a I2C communication 
protocol, the sensor measures humidity, crucial for 
distinguishing cooking stages like boiling, and complements 
other sensor data for enhanced system functionality. 

b) Cameras 
The OV5647 Mini Camera Module, designed for 

Raspberry Pi, captures images (2592x1944) and 720P videos 
at 60FPS, essential for a cooking recognition ML model. The 
MLX90640 Infrared Camera develops a matrix that  tracks 
temperature changes from -40°C to 300°C with ±2°C 
accuracy, ideal for monitoring changes in the ingredients. 

c) Processing Unit 
Initially utilizing an ESP32, the system required more 

computational power for image recognition and use of 
multiple sensors, leading to the adoption of the Raspberry Pi 
4. This platform efficiently handles multiple sensor control 
scripts and runs ML image detection models. 

d) Display 
A 5-inch LCD display, coupled with a PCB, offers 

portability and facilitates testing of camera and sensor data. 
The PCB ensures a tidy arrangement and effective use of 
GPIO pins, compatible with the LCD's pin requirements. The 
setup is detailed in Fig. 1. 

   

 
Fig. 1. Hardware Layout 

e) Physical Design 
The physical design of the hardware was constructed using 

SOLIDWORKS and printed on ABS material for sturdiness 
and protection against heat and cooking elements. It uses the 
base of the Raspberry Pi with a bracket for sensors. For testing 
purposes, multiple camera mounts was used for easy adjusting 
and sturdiness.A photograph of the prototype setup is shown 
in Fig. 3. 

 
Fig. 2.  Prototype hardware 

B. Image Processing 
The process flow illustrated in Fig 3 for the cooking 

assistance system emphasizes data collection and processing. 
The system integrates temperature data from the MLX90614 
infrared sensor, humidity data from the AHT21 sensor, and 
visual data from the OV5647 Mini Camera Module and 
MLX90640 Infrared Camera. This collected data is 
subsequently processed by a Raspberry Pi, which employs an 
AutoML model for image classification. The processed 
information is then displayed on an LCD screen, offering real-
time cooking guidance. The integration of multiple sensors 
and processing units constitutes the core of the cooking 
assistance application. 

In this study, we utilize "AutoML," a pre-trained model 
from Google Vertex AI, to tackle the challenge of cooking 
stage identification, a subset of image classification problem. 
Google Vertex AI is a machine learning platform designed for 
deploying and generating machine learning models and 
monitoring their performance. As part of the Google Cloud 
ecosystem, AutoML (Automated Machine Learning) within 
Google Vertex AI automates many of the complex and 
repetitive tasks involved in building machine learning models. 
It offers pre-trained models, supports transfer learning, and 
allows us to leverage existing models and adapt them to our 
real-time food image dataset. The model's efficacy is tested on 
a simplified culinary task—cooking pasta. We categorize the 



cooking process into six distinct stages, each characterized by 
specific items observable on the stovetop, ranging from an 
"Empty burner" to a "Pot with cooked pasta." 

 
Fig. 3. Process Flow For the cooking assistance system 

a) Image Collection 
The collection and labeling of images for the dataset is a 

non-trivial task, requiring consideration of the model's 
scalability for future use. In this study, we aimed to detect 
various stages of cooking pasta and created labels for the 
collected images accordingly. As our research focuses on 
developing an image classification for supportive housing, the 
images were collected from a video recording demonstrating 
how to cook pasta. Parameters such as camera orientation and 
the type of pans used were kept identical to those in supportive 
housing to better emulate the desired conditions. Frames were 
extracted using a Python script. The dataset comprises 330 
images, categorized based on the stages of cooking pasta and 
the corresponding camera view at each instance, specifically: 
“Empty burner,” “Empty pot,” “Pot with water,” “Pot with 
boiling water,” “Pot with pasta,” and “Pot with cooked pasta.” 
Sample images from these classes are presented in Fig 4. 

 
Fig. 4.  Sample collected images for Empty burner, Pot with boiling water, 
Pot with Cooked pasta, Empty pot, Pot with pasta, Pot with water. 

b) Image Augmentation 
For the model to generalize effectively, it is crucial for our 

dataset to exhibit a wide variation of images. To create a larger 
and more diverse dataset, image augmentation was employed. 
RoboFlow was utilized to streamline the image preprocessing 
and augmentation phases of our project, as illustrated in Fig 5. 
This ensured that our model was trained on high-quality, 
consistently formatted, and diversified images. The 
uniformity and augmentation facilitated by RoboFlow 
prepared our dataset for effective model training, enhancing 
its ability to generalize across new, unseen images in practical 
applications. The augmentations applied included 
transformations such as rotating, flipping, and adjusting image 
color and brightness. Specifically, the augmentations included 
horizontal and vertical flipping, 90° rotation (clockwise, 
counter-clockwise, and upside down), rotation between -15° 
and +15°, shear ±10° (horizontal and vertical), hue adjustment 
between -15° and +15°, saturation adjustment between -29% 
and +29%, brightness adjustment between -15% and +15%, 
exposure adjustment between -13% and +13%, blur up to 2.5 
pixels, and noise up to 0.58% of pixels. Below are the 
augmented images of an empty burner, a pot with cooked 
pasta, a pot with pasta, and a pot with boiling water. 

 

 
Fig. 5. Augmented images used for training the image classification 
models.  

c) Labeling Images 
The augmented images are subsequently uploaded into a 

storage bucket and classified according to their respective 
categories on the Vertex AI portal. These classified images are 
then used to train the model. One significant advantage of 
using Vertex AI is its ability to streamline tasks such as 
labeling, thereby enhancing the overall efficiency of the model 
training process. 

 
Fig. 6.  Image depicting the labeling interface on VertexAI 



d) Transfer Learning 
Transfer learning leverages pre-trained models to address 

new tasks with limited datasets, thereby accelerating the 
training process and enhancing performance. AutoML 
facilitates the utilization of this feature and additionally 
employs Neural Architecture Search (NAS), which automates 
the design of neural networks. NAS optimizes network 
architecture by evaluating multiple configurations, leading to 
improved performance. 

In our study, we generated two image classification 
models, leveraging these features, and trained them using 
different approaches to determine which method yields better 
results. For the first model, Smart_Pot_Dataset_V2,we trained 
it exclusively on the newer dataset. For the second model, 
Smart_Pot_Dataset_V2_Incremental, we performed 
incremental training by pretraining it on a previously collected 
dataset of cooking pasta (Fig 7), which had poorer image 
quality, and then fine-tuning it on a newer dataset with better 
image variation.  

 
Fig. 7.  Sample collected images for Empty burner, Pot with boiling water, 
Pot with Cooked pasta, Empty pot, Pot with pasta, Pot with water from the 
previous dataset. 

IV. RESULTS AND DISCUSSIONS 
The evaluation of two models using the Vertex AI 

platform yielded notable results. The first model, 
Smart_Pot_Dataset_V2, achieved an average precision of 
0.978, with a precision of 96.8% and a recall of 90.9%. The 
second model, Smart_Pot_Dataset_V2_Incremental, 
achieved an average precision of 0.999, with a precision of 
89.2% and a perfect recall of 100%. Both models used the 
same dataset distribution: 330 images, with 264 for training, 
33 for validation, and 33 for testing. 

 
Fig. 8. Precision and Recall curves for Smart_Pot_Dataset_V2 

 
Fig. 9. Precision and Recall curves for Smart_Pot_Dataset_V2_Incremental 

The first model demonstrated higher precision, while the 
incremental model showed superior recall, indicating a trade-
off between precision and recall. The incremental training 
approach allowed the model to leverage prior knowledge from 
a less diverse dataset and fine-tune it with high-quality data, 
resulting in nearly perfect recall. Both models exhibited strong 
generalization capabilities, suggesting robustness and the 
ability to handle data variations. 

 
Fig. 10. Confusion Matrix for Smart_Pot_Dataset_V2 

 
Fig. 11. Confusion Matrix for Smart_Pot_Dataset_V2_Incremental 

The evaluation metrics for both models were validated 
when deployed and tested on actual images collected from the 
designed apparatus. The models demonstrated proper 
generalization across a wide variety of images. Fig. 12-15 
illustrate some of the predictions made by the models.  



 
Fig. 12.  Smart_Pot_Dataset_V2 prediction on actual image of ‘Pot with 
Pasta’ from the apparatus with 99% accuracy. 

 
Fig. 13. Smart_Pot_Dataset_V2 prediction on actual image of  ‘Empty pot’ 
from the apparatus with 92% accuracy. 

 
Fig. 14. Smart_Pot_Dataset_V2_Incremental prediction on image of  ‘Pot 
with pasta’ which was out of the trained variety  from the apparatus with 
43% accuracy. 

 
Fig. 15. Smart_Pot_Dataset_V2 prediction of ‘Pot with boiling water’ 
image from the internet with 94% accuracy. 

V. CONCLUSION AND FUTURE WORK 
The hardware prototype is created for swift development 

and testing. Its physical design and classification model will 
be revamped to endure more challenging environments. 
Specifically, the following issues will be investigated. 

One issue to address is the device's power supply. During 
testing, a wall outlet near the stove was used, as a battery pack 
did not last long enough to complete a cooking recipe. 

We utilized the image classification method in Google 
Cloud Vertex AI AutoML to develop our model. This 
approach has significantly enhanced the model’s accuracy and 
precision in making predictions. It effectively distinguishes 
between various classes, such as "boiling water." However, 
despite these advancements, the model still requires additional 
data to accurately differentiate between closely related 
classes, specifically "empty pot" and "pot with water." 

Integrating temperature metadata with temperature images 
can greatly improve the model's ability to distinguish between 
an empty burner and a pan with water. By combining these 
two data sources, the model can more accurately identify the 
presence of water based on the heat patterns and temperature 
readings, leading to more precise classifications. 

It is observed that when the camera is placed directly 
above the pot the steam generated by the boiling water 
obstructs the vision and may fail in properly detecting the 
stage. This problem can be solved by also including the 
temperature and the humidity data.  
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