
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 46 pages.

https://doi.org/10.62056/a3w7tr-10k

HELP: Everlasting Privacy through Server-Aided

Randomness

Yevgeniy Dodis1 , Jiaxin Guan1 , Peter Hall1
 and Alison Lin2

1 New York University, New York, USA
2 Independent Contributor, USA

Abstract. Everlasting (EL) privacy offers an attractive solution to the Store-Now-
Decrypt-Later (SNDL) problem, where future increases in the attacker’s capability
could break systems which are believed to be secure today. Instead of requiring
full information-theoretic security, everlasting privacy allows computationally-secure
transmissions of ephemeral secrets, which are only “effective” for a limited periods of
time, after which their compromise is provably useless for the SNDL attacker.

In this work we revisit such everlasting privacy model of Dodis and Yeo [DY21]
(ITC’21), which we call Hypervisor EverLasting Privacy (HELP). HELP is a novel
architecture for generating shared randomness using a network of semi-trusted servers
(or “hypervisors”), trading the need to store/distribute large shared secrets with the
assumptions that it is hard to: (a) simultaneously compromise too many publicly
accessible ad-hoc servers; and (b) break a computationally-secure encryption scheme
very quickly. While Dodis and Yeo [DY21] presented good HELP solutions in the
asymptotic sense, their solutions were concretely expensive and used heavy tools (like
large finite fields or gigantic Toeplitz matrices).

We abstract and generalize the HELP architecture to allow for more efficient
instantiations, and construct several concretely efficient HELP solutions. Our solutions
use elementary cryptographic operations, such as hashing and message authentication.
We also prove a very strong composition theorem showing that our EL architecture
can use any message transmission method which is computationally-secure in the
Universal Composability (UC) framework. This is the first positive composition
result for everlasting privacy, which was otherwise known to suffer from many “non-
composition” results (Müller-Quade and Unruh [MU10]; J of Cryptology).

1 Introduction

Public-key cryptography has come a long way from theory to practice, allowing people
to securely communicate without expensive key distribution. Unfortunately, public-
key cryptography comes at the cost of requiring unproven computational assumptions,
which may be falsified some day or broken by more powerful computing in the future.
This is especially important in light of the famous Store-Now-Decrypt-Later (SNDL)
attack [BMV06, MVZJ18], where a computationally bounded attacker can passively store
sensitive ciphertexts that it cannot decrypt at the moment. Later, when the power of the
attacker increases (through novel cryptanalysis, or say, running Shor’s algorithm [Sho94]
or Grover’s algorithm [Gro96] on a quantum computer), the attacker can then decrypt
the stored messages. Indeed, traditional public-key encryption schemes are ill-equipped to
combat the SNDL attack, and a lot of attention is given to finding alternative solutions.
Post-quantum cryptography (PQC) is a step in this direction, in that it directly addresses

E-mail: dodis@cs.nyu.edu (Yevgeniy Dodis), jiaxin@guan.io (Jiaxin Guan), pf2184@nyu.edu (Peter
Hall), colorfly@gmail.com (Alison Lin)

This work is licensed under a “CC BY 4.0” license.

Received: 2024-07-09 Accepted: 2024-12-03

Check for updates

https://doi.org/10.62056/a3w7tr-10k
mailto:dodis@cs.nyu.edu
mailto:jiaxin@guan.io
mailto:pf2184@nyu.edu
mailto:colorfly@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0003-1013-6318
https://orcid.org/0000-0003-1823-8845
https://orcid.org/0000-0003-1013-6318
https://crossmark.crossref.org/dialog/?doi=10.62056/a3w7tr-10k&domain=pdf&date_stamp=2025-01-11
https://crossmark.crossref.org/dialog/?doi=10.62056/a3w7tr-10k&domain=pdf&date_stamp=2025-01-11
https://crossmark.crossref.org/dialog/?doi=10.62056/a3w7tr-10k&domain=pdf&date_stamp=2025-01-11
https://crossmark.crossref.org/dialog/?doi=10.62056/a3w7tr-10k&domain=pdf&date_stamp=2025-01-11
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 HELP: Everlasting Privacy through Server-Aided Randomness

the threat of quantum computers. Unfortunately, PQC is still in its infancy, and the
community does not have very high confidence in traditional post-quantum assumptions.
For example, the SIKE [FJP14, JF11] public-key encryption was originally selected as
one of the finalists to the NIST PQC competition [CCH+22] only to be broken almost
immediately after [CD23, MMP+23]. More recently, Chen announced [Che24] a ground-
breaking attack on the famous Learning-with-Errors problem [Reg10]. If correct, the attack
would likely have devastating consequences to the existing PQC candidates. Fortunately,
the community have found a mistake in the proposal (see [Che24]). This mistake took
weeks to find, though, and many experts were clearly concerned by the potential break.

While PQC solutions form an important line of defense against SNDL attacks, there is
also a need for solutions which offer stronger security and/or confidence to the system’s
users, even against unforeseen (and even believed to be unlikely) future cryptanalysis.
From this perspective, Information-Theoretic (IT) security would be much preferable,
as these do not rely on any computational assumption. As a result, IT-security resists
advances in computational power, novel cryptanalysis, and the threat of future quantum
computers.

Unfortunately, the famous impossibility result of Shannon [Sha49, Dod12] states that
IT-security comes at a price: The secret must be at least as large as the message. To
encrypt large amounts of data, then, it appears that users must pre-share large amounts
of randomness, which is often very onerous and impractical.

Everlasting Privacy. Several communication models have emerged over the years
which overcome this limitation, by settling on a novel type of security called everlasting
privacy [ADR02, DR02, HN06], which lies between the traditional computational and the
full IT privacy. First, these models require some type of “outsourcing” of large amounts
of shared randomness to one or more semi-trusted entities. We call these hypervisors,
or just servers, in this work. The hypervisors will help communicating parties agree on
effectively arbitrary amount of shared randomness — which can be used as a one-time pad,
for example, — without the parties needing to pre-share this randomness. We will assume
the minimal level of trust from the servers. Concretely, if malicious servers are modeled as
active attackers, we need an honest majority (as otherwise users cannot tell which half of
the servers is “for real”). And for passive/failing servers, we assume only 1 honest server
(clearly optimal). In particular, if all the hypervisors are distrusted, the IT models for key
distribution will not offer additional benefits beyond computational security (offered by
public-key cryptography).

Second, these models assume some realistic, temporary limitations on the attacker
during the phase that the hypervisors have not erased all the randomness which is no longer
needed. Once this temporary phase is over, the attacker can be completely unbounded.
However, at this point, this powerful adversary will be unable to break the privacy of
the system, because the randomness required for this task has already been erased. To
state this directly, we can separate into two customizable timelines: (1) “short/medium”,
where the generated one-time pads need to be reproducible by good parties; (2) “long”, by
which the pads should not be reconstructible by attackers, provided servers properly erased
randomness. In practice, it is not hard to set these thresholds for concrete applications;
e.g. (1) could be hours/days, while (2) likely years/decades.

Everlasting privacy serves as a perfect compromise between computational and IT
privacy in combating SNDL-style attacks. During a reasonably short window, which is
often under the control of the application,1 one could make realistic assumptions about
the attacker’s limitations. By bounding how long they must hold, these assumptions are
firmly based in reality and can take into account the current state of quantum computers,
classical computing capabilities, geographic considerations (e.g., when the servers are well

1This could be as short as minutes or even seconds; certainly, less than months or years.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 3

separated), or existing cryptanalysis. And once this short window is gone, no (foreseen or
unforeseen) development in any of these dimensions will harm the privacy of the system.

Real-World Considerations. The introduction of the hypervisors overcomes the
limitations of public-key cryptography, without the need to pre-share huge keys. However,
it is a non-trivial new component, so extra care needs to be taken to ensure that the
particular everlasting privacy model is interesting. For starters, Shannon’s impossibility
result [Sha49] implies that preventing SNDL attacks (and hence achieving everlasting
privacy) is impossible without pre-shared keys, if the attacker can always observe the
communication channels between the user and all of the hypervisors. Thus, in all meaningful
everlasting privacy models it is essential that some of these communication channels are
assumed (perfectly) secure. While this assumption is (necessarily!) strong, it seems
reasonable in many real-world situations. In essence, performing SDNL attacks against
users and several hypervisors is often exponentially harder than simply dumping encrypted
traffic onto hard disk on a single Alice-to-Bob channel, as we explain below.

First, the attacker needs to actually monitor (or “break into”) multiple channels instead
of a single channel. Second, if servers can come and go in an ad hoc fashion (which our
model will easily allow), it might be hard for the attacker to never miss the introduction of
a new server. Third, instead of dumping traffic only corresponding to the single channel of
interest, now the attacks need to store the traffic from the sender to all the servers, making
it more expensive. Fourth, in our model the users can try to disguise, delay, or spread their
access to the servers over time, making it extremely hard for the attacker to even figure out
which “ciphertext chunks” are relevant for a given target conversation/ciphertext. And,
finally, even if everything fails, the users can always use conventional public-key crypto on
top of our model, meaning that we did not make things worse for the user, but only harder
for the SNDL attacks.

Of course, while we want to make the life of the attacker harder, a given model of
hypervisor-assisted everlasting privacy should be convenient/cheap to use. Indeed, to
prevent trivial (but very impractical) solutions, hypervisors have to be extremely simple,
and cannot keep growing amount of state which depends on the number of generated keys.
For example, in our models we will not allow trivial solution where a user Alice will actively
“route” the message to Bob through a trusted hypervisor — or secret shared with multiple
hypervisors.2 Indeed, this would require each hypervisor to keep the message/share until
Bob comes on-line, making its state balloon over time. Additionally, it would require
a possibly expensive authentication mechanism between the user and the hypervisors.
Instead, we want each server to be either stateless, or “minimally stateful” (see below),
and not introduce any expensive setup routines between the user and the servers, so that
new servers can be added/removed at will.

Motivated by the above considerations, in this work we primarily focus on a particular
model of everlasting privacy from Dodis and Yeo [DY21], which is the only model we know
to satisfy the requirements mentioned above, and is arguably the most convenient model for
practical deployment. (We survey several everlasting privacy proposals in Section 1.3.) As
the authors did not give a catchy name to their model, we term it Hypervisor EverLasting
Privacy (HELP).

1.1 HELP Model for Everlasting Privacy

HELP is a novel architecture for generating shared randomness using a network of semi-
trusted servers (or “hypervisors”), trading the need to store/distribute large shared secrets
with the assumptions that it is hard to: (a) simultaneously compromise too many publicly

2For example, this rules out solutions based on Secure Message Transmission (SMT) techniques
[DDWY93].

4 HELP: Everlasting Privacy through Server-Aided Randomness

accessible ad-hoc servers; and (b) break a computationally-secure message transmission
scheme very quickly. Below we describe the single-server variant first. As we will see,
definition and constructions from the one server setting usually generalize quite easily
to the multi-server scenario, while providing more realistic trust assumptions about the
servers.

Single-Server HELP [DY21]. In this setting, a single server S is assumed to be trusted.
Moreover, somewhat unrealistically it is assumed that S has private channel with all the
users of the system (an assumption which will be significantly relaxed in the multi-server
setting). The server does not have any explicit authentication mechanism for the users,
and arbitrary users (including the adversary!) can communicate with S.

In the original model of [DY21], the server was truly stateless: its state consists of
a single long-and-random string X, and nothing beside X is remembered between the
calls. Imagine now that the user Alice wants to transmit a message m to user Bob. Alice
would choose a random seed S, and send it to S. S will apply a particular primitive called
doubly-affine extractor to its string X and the seed S, and obtain a random one-time
pad R, which it returned to Alice. Moreover, since R was really extracted from X, it is
statistically independent from the seed S. Alice will then use any computationally secure
mechanism — e.g., public-key encryption, — to send the tuple (S, m ⊕ R) to Bob. Bob
would go to the server with the same string S to recover the one-time pad R, and finally
get the message.

In the meanwhile, the attacker Eve can come to the server with her own seeds S1, . . . , Sq,
and get its own pads R1, . . . , Rq. However, since Eve is assumed to be unable to decrypt S

from the computationally-secure channel, doubly-affine extractors have a property that all
these pads R1, . . . , Rq are statistically independent from R (as long as q is not too large).
Moreover, after some reasonable amount of time — enough for Bob to contact the server
after Alice’s initial request — the server is assumed to erase its randomness X forever.
Once that happens, even if Eve were to become computationally unbounded, it would be
too late to break the privacy of m. All Eve could do is maybe get the correct seed S and
the one-time pad m ⊕ R. But the string X is long gone, and R is independent from the
seed S, as well as previously obtained pads R1, . . . , Rq. Hence, we get everlasting privacy.

Some Limitations of the Model. While the work of [DY21] achieved great asymptotic
parameters, their model and solution suffered from a number of drawbacks:

(a) Trade-off between Access Efficiency and Entropy Waste. The model had an inherent
trade-off between the number of bits (called probe complexity) read from the randomizer
X, and the total length of one-time pads requested by all users. For example, if |m| = ℓ
and |X| = N , in order to read at most ℓ/β bits from X to derive R, one had to “waste” at
least βN bits from X; namely, the sum of all the one-time pads R returned by the server
could not be more than (1 − β)N . Moreover, the ℓ/β bits read are randomly dispersed
over X.3

(b) Computational Efficiency. The doubly-affine extractors from Dodis and Yeo [DY21],
while elegant and “polynomial-time”, required pretty heavy computation, and non-standard
libraries. Concretely, to extract a 1Mb secret (say, to encrypt a low-resolution picture),
one would either need a finite field multiplication of size several megabytes (depending on
β and other efficiency parameters), or a Toeplitz matrix-vector multiplication of similar
size. Both of which can hardly be done efficiently by the server, especially at scale.

(c) Restricted Everlasting Privacy. [DY21] first defined an information-theoretically
(IT) secure version of doubly-affine extractors, which effectively corresponds to an ideal

3And the concrete number were worse; for example, to derive a 512-bit pad, while sacrificing half of
the 10Gb randomizer X (so β = 0.5, and only 5Gb of randomness can be derived overall), the scheme of
[DY21] has to access 1527 individual bits of X, which is ∼ 50% worse than reading 512/0.5 = 1024 bits.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 5

channel between Alice and Bob to transmit (S, m ⊕ R). Of course, this is not directly
interesting for everlasting privacy, as then Alice could have simply send m over this ideal
channel. Nevertheless, [DY21] showed a limited type of composition theorem, which implies
a restrictive type of everlasting privacy. Concretely, instead of being transmitted over a
computationally secure channel, together with m ⊕ R, the seed S for their IT-solution
could be generated by a computationally secure key agreement protocol run before the
HELP instance is even initialized. Moreover, no additional computational leakage about
S could happen afterwards. While interesting conceptually, this is not very practical,
as it forces Alice and Bob either run a lot of such key agreement protocols beforehand
(defeating the desire not to pre-share a long secret), or have the server generate a fresh
string X after each such agreement.

(d) Lack of User Integrity. While the framework of [DY21] provided some security
against malicious server (or servers, in the distributed variant below), this protection was
limited to privacy. Concretely, even if the server kept the randomizer X, the one-time
pad m ⊕ R could be encrypted over a computationally secure channel. Thus, we lose
everlasting privacy, but at least maintain computational privacy. On the other hand, there
is no built-in integrity against malicious server, even when the computational channel has
such integrity (i.e., Bob gets correct S and the ciphertext m ⊕ R). For example, S could
return non-matching one-time pads R ̸= R′ to Alice and Bob, causing Bob to output a
wrong message m′ = m ⊕ (R ⊕ R′).

(e) Lack of Server Authentication. The model of [DY21] did not explicitly separate pad
generation requests of Alice from the pad retrieval requests on Bob. For example, imagine
that Alice sends a message to a group of people, or if Bob want to decrypt the ciphertexts
multiple times. It seems reasonable that multiple retrieval of “old pads” should be allowed,
and not “count” towards using up the limited randomness from the randomizer X. But it
is unclear how to implement this effectively in the model of [DY21]. First, if the server is
truly stateless, this seems impossible. Second, even if we allow for some small state (as
we will do in our model below), it would force the server to track the number of distinct
seed requests, which is possible (e.g., using “hyperloglog” method [HNH13]) but somewhat
cumbersome and imprecise. More generally, one could imagine other situations where
retrieval requests should be treated differently than generation requests (e.g., users only
pay for generation, and subsequent multiple retrievals are free). For such scenarios, servers
might want to have an additional security which we call server authentication: one should
be able to only retrieve previously generated pads. Once again, the model of [DY21] does
not have this property.

1.2 Our Results

We first highlight the main results of this work, which are elaborated upon in the remainder
of this subsection.

• Formalizing HELP: We eliminate several inherent shortcomings of the existing

HELP framework by introducing a relaxed, generalized syntax that allows for a short,
dynamic server state. This new framework allows us to eliminate the shortcomings
(a)-(e) as mentioned above.

• Single-Server Construction: We propose a simple single-server HELP construction
that achieves nearly zero entropy waste and ensures strong security properties,
including server authentication, user integrity and privacy. Our construction leverages
a computational MAC scheme and introduces the notion of an extractor-hash for
statistical randomness extraction, which we show how to build from collision-resistant
hash functions.

6 HELP: Everlasting Privacy through Server-Aided Randomness

• General Composition: We present one of the first successful composition theorems

for everlasting privacy within the HELP framework. This enables clean, modular
design of information-theoretic schemes with guaranteed everlasting privacy when
combined with computationally secure channels.

• Distributed Setting: We generalize the single-server HELP framework to a dis-
tributed multi-server setting, significantly reducing the reliance on secure channels
between servers and users. By introducing syndrome-resilient functions (SRFs), we
achieve robust error correction and extraction properties, enabling us to extend the
single-server construction to the distributed setting with near-optimal parameters.
We make the same assumptions about server trustworthiness as in [DY21].

Our Formalization of HELP. In this work we eliminate these shortcoming (a)-(e). As
some of the limitations are inherent in “doubly-affine extractor” restriction on the HELP

framework, we do it by first relaxing the framework itself, without significantly affecting
its usefulness and practicality.

Our key observation comes from the fact that the restriction on S to be fully stateless
seems both restrictive, and likely not realizable anyway. Indeed, since Eve has direct access
to the server, and the length of the randomizer X is a-priori bounded, with a stateless
server everlasting security is impossible, unless Eve asks a bounded number of questions to
the server. Indeed, the total number of one-time pads obtained by Bob has to be bounded
by (1 − β)|X| in the framework of [DY21], where β ∈ (0, 1) was the “waste” parameter
mentioned earlier. In practice, of course, a motivated attacker Eve can spam the server
with many more requests than it is allowed. And while we can implement some indirect
counter-measures (like slow sequential responses), by far the easiest solution is to allow the
server to maintain some small state; at the minimum, to count the number of (distinct)
requests. Moreover, since all the requests to a particular server could be serialized, it
seems that allowing for short state should not be a big deal in practice.4

This is precisely what we do: in addition to storing a long randomizer X, which is
static, we allow a short amount (say, security parameter number of bits) of state µ which
the server is allowed to change. As we will see, it will immediately allow us to solve
efficiency issues (a)+(b). In fact, our solutions will have almost no entropy waste, and will
read ∼ |m| bits from X. Moreover, state allows us to not limit the number of queries Eve
can make. If too many queries are made, the server simply shuts down, which in the worst
case corresponds to the denial of service to legitimate users.

Once we have this, we also generalize the fact that server access should happen by
necessarily sending a random seed S. (Indeed, the latter seems like the artifact of the
stateless server.) And once we allow this more general syntax, we can explicitly replace
the computational key-agreement step to generate S, with a more general “computational
channel” allowing Alice to transmit whatever information she wants to Bob. As a side
benefit, it will allow us to state and prove a much more general composition theorem in
our (generalized) HELP framework, solving issue (c). Namely, like [DY21], we will define
an information-theoretic version of our model (at least for privacy), which will focus on
generating the one-time value R in the HELP framework (and will abstract out the message
m, for now). This will roughly correspond to Alice transmitting certain values over an
ideal channel to Bob. Then, we show that our scheme generically implies (formally defined)
everlasting privacy (where now we introduce the message m), if the ideal channel is replaced
by any computationally secure channel, formalized in the UC-Framework of [Can01], and
this channel additionally transmits m ⊕ R.

4This should be contrasted with trivial solutions, where the server state can grow with the number of
keys, which seem much harder to implement, especially for heavy concurrent access. Our solutions will
prohibit such non-constant dynamic state.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 7

Next, to address limitation (d), we will explicitly require user-integrity properties

against malicious HELP server(s), which will ensure that the most integrity harm caused
by this server will be denial-of-service (which is inevitable). Finally, to address limitation
(e), we will require server authentication property, which will separate pad generation
requests from pad retrieval, and ensure that such retrieval is only possible for previously
generated pads. As a side benefit, it will allow unbounded number of pad retrieval requests
for previously generated pads. Namely, the server will only reject, if too many fresh pad
generation requests are made, but retrieving old pads by legitimate users should always be
possible, as long as they happen before the server erases its randomness.

The resulting framework is presented in Figure 1, where the missing notation, and other
forms of “leakage” to Eve will be explained in Section 3 (for the information-theoretic
part of generating R) and Section 5 (for UC-part, which also introduces the message m).
Instead, we only mention some key parts: (a) everlasting privacy (and SNDL-resistance) is
modeled by Eve being computationally bounded while having access to the HELP instance,
and later computationally unbounded (represented by a “quantum computer” Uri on the

right); (b) the computational message transmission protocol 3 could be interactive (e.g.,
TLS), and could happen at any time during the experiment; for example, after Eve has
made many HELP queries.

Single-Server Construction. Having defined HELP syntax, we carefully define
correctness and security for HELP, including server-correctness, user-correctness, server
authentication, user integrity and privacy. (These properties were either undefined or only
sketched by [DY21], since HELP was mainly one of the applications of their doubly-affine
extractor primitive.) We then show an extremely simple single-server HELP primitive
meeting our definition. In essence, the server splits X into a short key k for a computational
MAC, and a long string Xpad. Upon request to produce n-bit pad Y , it simply reads Y

from the unused portion of Xpad, keeping track of the starting index i of Y (which is part
of its short state µ). It authenticated Y by simply tagging the corresponding tuple (i, n)
with k, and returns the tag σ to Alice. Later, when Bob asks (i, n, σ) to the server, it only
responds with Y if the tag value matches. By the unforgeability of the MAC, this means
user can only request values previously returned by the server. In particular, the scheme
is super efficient, and has (almost) no entropy waste.

The only interesting subtlety is the new user integrity property, protecting Alice and
Bob for malicious server. Concretely, Alice wants to extract a value R from the pad Y

together with the value z, so that z prevents the server from returning any Y ′ ̸= Y . The
naive way is to set z to be a collision-resistant hash of Y . But now we have a tricky problem
of ensuring that R is statistically random even conditioned on z (which will be leaked to the
unbounded attacker later). One can use a general randomness extractor [NZ96] to Y , since
Y has a lot of entropy given z. But this requires an additional pass over Y , as well as extra
seed. And is overall inelegant. Instead, we use the fact that Y is random (when the server
is honest). As a result, we can set Y = (R∥W), for a short suffix W , and use the iterative
nature of existing hash functions to observe that Hash(R∥W) = Hash′(Hash(Y)∥W).
Moreover, the function Hash′(v, W) is likely a statistically hiding commitment to v (and
hence R), when W is random and sufficiently long. Hence, we can effectively do the naive
thing of setting z = Hash(Y), but our extractor is trivial: it takes a big prefix R or Y

as its final key. More generally, in Section 4.1 we formalize the notion of extractor-hash,
which abstracts the properties of this concrete construction, and show that such functions
can be efficiently build from collision-resistant hash functions.

General Composition. We mention that there were several unsuccessful composition
attempts for various everlasting privacy models. For example, the Bounded Storage Model
(BSM) [Mau92, ADR02] achieves everlasting privacy assuming the attacker has limited

8 HELP: Everlasting Privacy through Server-Aided Randomness

Figure 1: HELP Framework for Everlasting Privacy (we omit security parameter λ).

Alice receives a message m to send to Bob, and computes how many bits she should

request, n ← PadLength(|m|), based on the length of m.

Alice sends Gen(n) query to the HELP instance, requesting n random bits.

The HELP instance responds with (σ, y), where σ is a tag and y is the pad.

Alice runs (z, r) ← Auth(σ, y) to get the randomness r and helper z. Then, Alice runs
UC-secure message transmission protocol to send (m ⊕ r, σ, z) to Bob.

Upon receipt of (c, σ, z), Bob sends Rep(σ) query to the HELP instance.

The HELP instance responds with y.

Bob runs r ← Ver(z, y) and outputs the decrypted message m = c ⊕ r.

Computationally bounded Eve outputs its view to a computationally-unbounded Uri,
but only after the HELP instance becomes offline.

∞ Uri (unsuccessfully) tries to obtain information about the message m.

Eve also has the following additional information A , B , C , which will be passed to Uri:

Eve may interact with the HELP instance like a normal user, making Gen or Rep queries.
Notice that Eve may make such queries at arbitrary times.

Partial leakage (compromise of several HELP servers) from the channels in steps 1 ,

2 , 4 , and 5 .

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 9

space, but Alice and Bob start with a short secret key S. A natural suggestion would
be to replace S with a computationally secure key agreement protocol. Unfortunately,
Dziembowski and Maurer [DM04] showed that such composition is flawed, by giving a
convincing counter-example, and a black-box barrier to this was proved later by Harnik
and Naor [HN06]. In other related settings of the streaming BSM [DQW23, GZ21] or
incompressible cryptography [Dzi06, GWZ22, GWZ23], the question of building secure
schemes against hybrid attackers was left open by [BCEQ24]. In general, Müller-Quade and
Unruh [MU10] defined a general UC-type notion of everlasting security (termed “long-term
security”), and showed that it suffers from severe non-composition issues.

Thus, it is non-trivial to have successful composition theorems for everlasting privacy.
Nevertheless, in Section 5 we give one of the first such theorems, albeit in the HELP model.
This shows that one can design clean and simple-to-analyze HELP schemes according to our
information-theoretic (for privacy) notion in Section 3, and automatically get everlasting
privacy when the idealized computation channel transmitting the tag/helper-tuple from
Alice to Bob is replaced by any UC-secure message transmission (see 3 in Figure 1). The
idea why this was successful was that our IT-notion has an efficiently verifiable relation
under which is was clear whether the adversary broke the scheme.

Distributed Setting. Finally, in Section 7 , similar to [DY21], we generalize the
single-server HELP to the distributed setting, with the goal to significantly weaken the
unrealistic secure channel assumption between the server and all the users. Instead, as
it is done in all paper in IT-secure multiparty computation (MPC) [BGW88], we assume
that the adversary Eve can compromise at most tp < t channels between the honest user
and the t servers. Additionally, we also want to protect Bob against a small number tf

servers being unavailable, and up to ta servers giving inconsistent answers to Alice and
Bob. Namely, Bob should still be able to decrypt Alice’s message (or get her key R) using
appropriate error-correcting techniques.

However, the simplicity of the HELP framework allows us to go much further than
traditional MPC. The t servers can operate completely independently, without any knowl-
edge about the other servers! In fact, each of these servers has the same syntax as in
single-server HELP. This also means the servers never need to communicate with (or know
about!) each other, and do not need any coordination about when they need to erase their
randomness. Instead, each server should just independently keep it long enough for the
honest users to access. And even if a small number of servers happened to accidentally
erase their randomness too soon, users can overcome it by conservatively setting the value
tf corresponding to the number of “unavailable” servers.

We also use a simple coding-theory technique to effectively generalize our single-server
tools to the multi-server setting. Since this technique is of independent interest, in Section 6,
we abstract the resulting primitive, which we call syndrome-resilient function (SRF).
Intuitively, SRFs simultaneously has error-correcting properties (similar to “syndrome
decoding“ [HJR06]), and extraction properties akin those of resilient functions [CGH+85].
Using SRFs, we show how our single-server construction can be extended to distributed
HELP with nearly optimal parameters: roughly, to extract ℓ-bit secret, each server has to
send approximately ℓ/(t − tp − tf − 2ta) bits.

1.3 Related Work

The Bounded Storage Model [Mau92] is one of the first models for everlasting privacy, where
the attacker was assumed to be space-bounded for a short period of time. Unfortunately,
this beautiful model has some limitations. First, we already mentioned it cannot withstand
hybrid attackers, where the initial key between Alice and Bob comes from a computationally
secure key agreement protocol [DM04, HN06]. Second, space is often cheap, so it might

10 HELP: Everlasting Privacy through Server-Aided Randomness

be hard to justify the space restriction on the attacker. Motivated by this, Rabin [Rab05]
semi-formally defined the Limited Access Model (LAM), where Alice and Bob contact a
dynamically-changing sequence of servers who also continuously change their data over
time. LAM could be viewed as a precursor of HELP, except the server were assumed to be
ad hoc, had possibly non-random data, and not guaranteed to erase their data in a timely
manner (the inspiration came from the World-Wide Web, where it is hard to monitor
giant amount of constantly changing data). In contrast, the HELP servers are specifically
designed to help users derive randomness, and have well defined syntax, security and data
erasure policies, making this model more scalable, and amendable to formal analysis.

Another related model is that of (Perfectly) Secure Message Transmission (SMT),
pioneered by [DDWY93]. In this model there are several “disjoint communication paths”
between Alice and Bob, and the attacker is assumed to monitor a bounded number of
such paths. While similar to our distributed HELP modeling, SMT requires that Bob is
on-line when Alice sent her message. Which is inconvenient, as Alice and Bob need to
a-priori agree on which channels to use, but also rules out application where Bob is “Alice
in the future”.5 Moreover, the on-line assumption makes it easier to perform a coordinated
SNDL attack, as compared to our setting.

Yet another related topic is Quantum Key Distribution (QKD) [BB14, Ren08], which
distributes an information-theoretically secure key through quantum channels. Specifically,
there is a line of work [Ell02, BPP05, ARML06, LBD07b, LBD07a, LBD08, ABB+14,
CZL+21, FYLW+22, BZG+23, VM24, MW24] in QKD that achieves this by utilizing a
number of trusted, untrusted or semi-trusted QKD relays. Furthermore, the syndrome-
resilient functions developed in Section 6 of this work, which address both error correction
and randomness extraction, bear strong connections to the error-correction/reconciliation
and privacy amplification phases of QKD. However, while the QKD setting also achieves
information-theoretic security (assuming authenticated channels), the HELP setting studied
in this paper is purely classical. This means all our results can be implemented today, and
do not require the power of quantum computers.

Finally, our new technical tools of extractor-hash and syndrome-resilient functions, can
be viewed as highly optimized special cases of randomness extractors [NZ96] and fuzzy
extractors [DORS08], respectively, where one starts with the uniform distribution, and
knows precisely the type of “leakage” one needs to withstand.

Paper Organization. The rest of the paper is organized as follows. In Section 2, we
present the relevant preliminaries for the paper. In Section 3, we define HELP for the single
server setting. In Section 4, we construct HELP that satisfies our definition (along the way
defining and constructing extractor-hash). Then in Section 5, we show how to compose
the HELP instance with a UC-secure message transmission scheme to obtain everlasting
privacy. In Section 6, we define and construct Syndrome Resilient Function, which we use
to construct HELP in the distributed setting. The actual distributed HELP definition and
construction are discussed in Section 7.

2 Preliminaries

For a natural number n ∈ N, we use the notation [n] = {1, . . . , n}. In general, lower-case
letters will represent values and vectors of values, while upper-case letters will represent
random variables — the exception to this is the servers’ internal randomness, which we
denote by X even after it is sampled. A tilde over a letter will usually represent a recovered
value whose correctness may not be trusted. For universe U , we will denote by x ∼ U or

5Alternatively, each channel can buffer the message until Bob comes on-line, making its storage grow
with the number of uses, and would require some kind of user authentication solution. Both of these
deficiencies are not needed in our model.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 11

$

2

I

x ← U drawing x from U uniformly at random. PPT stands for “Probabilistic Polynomial
Time”.

Definition 1 (Negligible Function). A function f : N → R is negligible, denoted negl(n),
if for all c > 0, there exists a value n0 such that for every n > n0, |f (n)| < 1/nc.

Definition 2 (Statistical Distance). Let D1 and D2 be two distributions with support in

X. The statistical distance between D1 and D2 is

∆(D1, D2) =
1 

|Pr [D1 = x] − Pr [D2 = x]|.
x∈X

We will later use the following Lemma in the proof for Theorem 5.

Lemma 1. Let A0, A1, B0, B1 be random boolean variables, then we have

|Pr[A0] − Pr[A1]| ≤ Pr[¬B0] + Pr[¬B1] + |Pr[A0 ∧ B0] − Pr[A1 ∧ B1]|.

Proof.

|Pr[A0] − Pr[A1]| = |Pr[A0 ∧ B0] + Pr[A0 ∧ ¬B0] − Pr[A1 ∧ B1] − Pr[A1 ∧ ¬B1]|

≤ |Pr[A0 ∧ ¬B0] − Pr[A1 ∧ ¬B1]| + |Pr[A0 ∧ B0] − Pr[A1 ∧ B1]|

≤ Pr[A0 ∧ ¬B0] + Pr[A1 ∧ ¬B1] + |Pr[A0 ∧ B0] − Pr[A1 ∧ B1]|

≤ Pr[¬B0] + Pr[¬B1] + |Pr[A0 ∧ B0] − Pr[A1 ∧ B1]|

This work is concerned with authenticating randomness to users querying a server. We

will use message authentication codes (MACs) throughout. Our primary tool in particular
are computational MACs, which we define below.

Definition 3 (Message Authentication Code). Let λ be a security parameter, and let
ℓMAC, ℓtag ∈ N. Let (Mac.Gen, Mac.Tag, Mac.Ver) be a tuple of algorithms with the following
syntax:

• Mac.Gen(1λ) → k: takes in the security parameter and outputs a MAC key k.

• Mac.Tagk(m) → t: takes in a MAC key k and a message m of maximum length ℓMAC

and outputs an associated tag t of length ℓtag.

• Mac.Ver(k, m, t) → 0/1: verifies whether the tag t is a valid tag on the message m

using the MAC key k.

We say that (Mac.Gen, Mac.Tag, Mac.Ver) is a (computational) message authentication
code if the following are true:

1. Correctness: For all messages m and keys k, we have

Pr[Mac.Ver(k, m, Mac.Tagk(m)) = 1] = 1.

2. Unforgeability: For all PPT A, there exists a negligible function ε such that

Pr

s

Mac Ver() = 1 k ← Mac.Gen(1λ), I
. k, m, t ∧ m ∉ {m1, . . . , mq} (m, t) ← A Mac.Tag k (1λ)

≤ ε,

 where m1, . . . , mq are the queries made by the adversary to Mac.Tagk.

L

12 HELP: Everlasting Privacy through Server-Aided Randomness

m

In many cases, Mac.Gen will be simply to sample a random key from a set (such as

binary strings of the key length). In addition, for many MACs, the verification algorithm
Mac.Ver is simply to run the MAC with the input and check that it matches the tag (i.e.,
Mac.Ver(k, m, t) = 1 if and only if Mac.Tagk(m) = t). For ease of reading, we will restrict
our view to such cases through the rest of the paper. In this case, we may simply describe
the signing algorithm Mac.Tag as the MAC.

While we will primarily prove our results using a computational MAC, we note our
constructions can also be instantiated using one-time message authentication. Below, we
provide the unforgeability for one-time MACs.

Definition 4 (One-Time MAC Unforgeability). Let λ be the security parameter, ℓMAC, ℓtag
∈ N, and let (Mac.Gen, Mac.Tag, Mac.Ver) be algorithms with syntax above. We say that
(Mac.Gen, Mac.Tag, Mac.Ver) is a one-time MAC if it satisfies MAC correctness and for all
(computationally unbounded) A, there exists some ε = negl(λ) such that

Pr

s

Mac Ver(′) = 1 ′ = I k ← Mac.Gen(1λ), m ← A(1λ);
L

. k, m , t ∧ m ̸ ≤ ε.
I (m′, t) ← A(Mac.Tagk(m))

One-time MACs have the advantage of being more light weight and information
theoretic (from, e.g., pairwise independent hashing) at the cost of needing to resample a
key each time. In our applications, this will involve the server having to store more internal
randomness for each query (as only a single key will need to be stored for all queries in the
computational MAC variant). As such, we present our results with computational MACs
and include discussion on the differences in parameters when relevant.

3 Defining Single Server HELP

3.1 Syntax and Correctness

The HELP scheme consists of a tuple (Init, PadLength, Auth, Ver, Gen, Rep) of algorithms,
where (Init, Gen, Rep) are run by the server, while (PadLength, Auth, Ver) are run by the
users.

Syntax. The server-based algorithms have the following syntax:

• Init(N, 1λ) → (X, µ). The initialization algorithm run by the server S, where:

- N is the total length of all pads ever requested by the users, and λ is the security
parameter .

- X is a truly random string of some length |X| = Ñ ≥ N , which will stay static
throughout the life-time of the system.

- µ is the initial state of the server, which is meant to be compact, but can vary
by future calls to Gen (but not Rep; see below).

• Gen(n, (X, µ)) → (σ, y, µ). Pad generation algorithm run by server S(X, µ), which
returns a sample y of length |y| = n, its tag σ, and updates the server state µ.

• Rep(σ̃ , (X, µ)) → y˜. Pad reproduction algorithm run by the server S(X, µ), which
takes tag σ̃ , and returns the pad y˜ corresponding to σ̃ .

The user-based algorithms have the following syntax:

• PadLength(ℓ, 1λ) → n. Length calculation algorithm run by the user A, which
outputs how many bits n the user should request from S, if A wants to derive an
ℓ-bit key.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 13

i=1

i=1

i=1

• Auth(σ, y, 1λ) → (z, r). Transforms n-bit pad y returned by S into an ℓ-bit key r,

and helper z.

• Ver(z, y˜) → r˜. Checks helper z against pad y˜, and outputs a key r˜ ∈ {0, 1}ℓ ∪ {⊥}.

Correctness. We split the correctness into two parts. First, server correctness states
that calls to Gen and Rep always return the same value, if Rep uses the tag σ returned by
Gen. More formally,

Definition 5. Let λ, N ∈ N. Assume n1, . . . , nq are integers such that
Lq

ni ≤ N .

Let us denote the initial state of the server (X, µ0) ← Init(N, 1λ). Then HELP satisfies

server-correctness if, for all 1 ≤ i ≤ q, we have:

Pr
[

y˜i = yi I (σi, yi, µi) ← Gen(ni, (X, µi−1)), y˜i ← Rep(σi, (X, µi))
]

= 1.

Similarly, for user-correctness we require that the value R produced by Auth is always
recovered by Ver when used with the correct value z. More formally,

Definition 6. HELP satisfies user-correctness if, for all y ∈ {0, 1}n, and all σ we have:

Pr
[

r˜ = r I (z, r) ← Auth(σ, y, 1λ), r˜ ← Ver(z, y)
]

= 1.

It is immediately clear that server-correctness and user-correctness imply the overall
correctness of the HELP scheme, which states that users should recover the same keys by
Auth and Ver when using correct tag and helper values σ̃ = σ and z˜ = z.

Definition 7. Let λ, L ∈ N. Assume ℓ1, . . . , ℓq are integers such that
Lq

ℓi ≤ L,

ni = PadLength(ℓi, 1λ), and N is an integer such that
Lq

ni ≤ N . Let us denote

the initial state of the server (X, µ0) ← Init(N, 1λ). Then HELP satisfies server-aided

correctness if, for all for all 1 ≤ i ≤ q, we have:

Pr

s

r˜i = ri
I (σi, yi, µi) ← Gen(ni, (X, µi−1)), (zi, ri) ← Auth(σi, yi, 1λ),

L

= 1
I y˜i ← Rep(σi, (X, µi)), r˜i ← Ver(zi, y ĩ)

Before proceeding to security, we will make a notational convention, which will make
our definition easier to parse. Namely, we will often omit explicit reference to server state
(X, µ), and simply write Gen(n) → (σ, y) and Rep(σ̃) → y˜. With the understanding that:

(1) X always stays the same;

(2) µ is correctly updated by every call to Gen.

For example, the Correctness condition in Definition 7 becomes easier to parse with this
convention:

Pr

s

r˜i = ri
I (σi, yi) ← Gen(ni), (zi, ri) ← Auth(σi, yi, 1λ),

L

= 1
I ỹ i ← Rep(σi), r˜i ← Ver(zi, y˜i)

Further, in some of our notions we will give the attacker various oracles related to Gen

and Rep procedures. As we are omitting explicit reference to the server’s state (X, µ), it
should be understood that in these oracles the attacker can only supply “user-specified”
inputs, but not any part of the server’s state (X, µ). For example, in the Gen(·) oracle the
attacker can only choose the pad length n (but the state µ will update after the call), and
in the Rep(·) oracle the attacker can only choose a tag σ̃ .

.

.

14 HELP: Everlasting Privacy through Server-Aided Randomness

q I

Remark 1. In most natural schemes, Auth() will sample some “reusable object” h (such
as a hash function), which can be safely used by future calls to Auth(). To minimize the
number of algorithms, in the current formalization the Auth() algorithm will sample a
fresh value of h for each call, and include it in the helper value z. In practice, we expect
the “reusable part” h will be sampled only once, and not included in the value of z. Both
versions are equally secure, but the second one is obviously preferable. When clear from
the context, we will slightly abuse the notation, and not include the “reusable part” h in
the helper value z.

3.2 Security

The security of HELP = (Init, PadLength, Auth, Ver, Gen, Rep) will consist of three compo-
nents:

(a) Server Authentication, protecting the server from malicious users;

(b) User Integrity, protecting honest users from malicious server; and

(c) Privacy, protecting honest users from eavesdroppers who have (partial) access to
honest server.

Server Authentication. Intuitively, the server S wants to ensure that the only way
to call the reproduction function Rep(σ∗) successfully, is to use some value σ∗ returned by
a previous call to Gen.

Definition 8. Let λ be the security parameter. We say that HELP satisfies {bounded,
unbounded} ε-server authentication for ε = negl(λ) if, for all {PPT , unbounded} A with
oracle access to Gen, Rep, Gen∗, and any value of N , after we run Init(N, 1λ) to initialize
(X, µ), we have

Pr
I

Rep(σ∗) ̸=⊥ ∧ σ∗ ∉ {σ1, . . . , σ } σ∗ ← AGen,Rep,Gen
∗

(N, 1λ)
1

≤ ε,

where Gen, Rep are defined as before, Gen∗(n) calls (σ, y) ← Gen(n) but only returns y,
and {σ1, . . . , σq} denotes the set of tags returned in response to the adversary’s queries to
Gen.

Note, calls to Gen∗ are used to model queries made to Gen by other honest users, where
the attacker is not allowed to see the tag σ returned by such a call (but might be able to
get some information about the pad y by other means).6 Moreover, we allow A’s forged
tag σ∗ to be equal to such “erased” tag σ, meaning it should be hard for the attacker to
compute any such “erased” tag. Because doing so will make the attacker successful in
breaking the server authentication game, by outputting σ∗ = σ. Thus, the attacker can
only succeed in making a Rep call, by explicitly using a tag σ returned by a prior call to
Gen.

Looking ahead, also notice that we will be able to satisfy bounded server authentication
with Ñ = |X| ≈ N , while for unbounded authentication we will use slightly longer

Ñ = |X| ≈ O(N). Interestingly, when compiling our notion to a more realistic server
authentication notion in Section 5.3, we will always end up with computational security,
irrespective on whether we start with bounded or unbounded server authentication. Thus,

6While in the current definition the attacker does not get any information about tags σ produced by Gen∗

calls, in Section 5.3 we will make a more realistic definition where the attacker gets some “computational
information” about such tags. And also show how our current definition of server authentication implies
this more realistic definition.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 15

Pr  b ′ = b
I

(σ, y
$

) ← Gen(n); (z, r0) ← Auth(σ, y, 1λ);  ≤
2

+ ξ.

in practice there might be little reason to strive for unbounded server authentication, other
than minimizing complexity assumptions.

User Integrity. Notice, in our main application, the user performing authorization
Auth(σ, Y) → (z, r) might either be different from the user calling Ver(z˜, y˜) → r˜, or
otherwise not have the correct values z˜ = z and y˜ = y. In such cases there could be a real
danger for the r˜ ̸= r. In particular, a malicious server could potentially return inconsistent
values y and y˜ on the two corresponding calls to Gen and Rep. User integrity ensures that
such malicious server is limited to the denial of service attack, provided that the helper
values are correct (i.e., z˜ = z). This means that, as long as the server S is computationally
bounded, either r˜ = r (correctness still holds), or r˜ = ⊥ (denial of service).

Thus, as long as authenticity of the helper value z is ensured, server cannot cause
the user to output inconsistent keys. Put differently, authenticating the helper value z is
implicitly authenticating the derived key r. Point being that authenticating z is easier than
r for our application, as z does not need to be secret, while we aim for r to be everlastingly
private.

Definition 9. Let λ be the security parameter. We say that HELP satisfies δ-user integrity

with δ = negl(λ), if for all PPT servers S, we have

Pr

s

r˜ ∉ {r, ⊥} I
(st, σ, y) ← S(1λ); (z, r) ← Auth(σ, y, 1λ);

L

≤ δ
I y˜ ← S(st, z, r); r ̃= Ver(z, y˜)

Note, in this game we do not even require S to maintain any (random) database X, or
follow any rules that the honest server would follow.

Privacy. Now we define our notion of privacy for a HELP scheme. Intuitively, it states
that randomness R generated with the help of the honest server is unconditionally secure,
even against attacker who made many pad generation queries Gen to the server, and knows
the authentication values σ and z associated with R. Notice, such (surprisingly) strong
security is only possible because the attacker is not given access to the pad reproduction
oracle Rep, which would have trivially rendered this notion impossible. Nevertheless, we
will later lift this restriction in Section 5.5, where we will show that our notion of Privacy,
coupled with Server Authentication,7 will imply the notion of Everlasting Privacy discussed
in the Introduction. Where the attacker is initially computationally bounded and has
access to Rep, but can become unbounded after losing access to Rep, and potentially
learning the challenge values (σ, z).

Definition 10. Let λ be the security parameter. We say that HELP satisfies ξ-privacy for
ξ = negl(λ), if for all unbounded adversaries A with oracle access to Gen, and any value of

N , after we run Init(N, 1λ) to initialize (X, µ), and sample a random bit
have

$
b ← { 0, 1}, we


I

(ℓ, st) ← AGen(N, 1λ); n ← PadLength(ℓ, 1λ);


1
I r1 ← {0, 1}ℓ; b′ ← AGen(st, σ, z, rb)

4 Constructing Single Server HELP

We will now construct single server-aided HELP from message authentication codes (MAC)
and collision-resistant hash functions (CRHF).

7Plus a “message transmission functionality” which we will define later.

16 HELP: Everlasting Privacy through Server-Aided Randomness

I

4.1 Extractor-Hash

In order to realize HELP in the single server setting, we introduce the new notion of
an extractor-hash. Intuitively, when the user gets the pad value y from the server, she
has to extract a random key r and the helper value z, s.t.: (a) z is commitment to r;
but (b) r is information-theoretically secure given z. This is easy to do theoretically,
by setting z to be a collision-resistant hash function (CRHF) h applied to y, and then
extracting randomness r from the source y conditioned on “leakage” z. While this approach
works, it is practically inefficient for two reasons. First, this requires scanning the input y

twice — once for hashing, and once for extracting. Second, provably secure randomness
extractors (e.g., given by the Leftover Hash Lemma [ILL89]) require an extra random seed,
and have non-trivial entropy loss. Instead, by abstracting the security properties of our
extractor-hash primitive, we take advantage of the fact that the initial source y is truly
random, and achieve a much more efficient solution. Details follow.

For security parameter λ ∈ N, let Eλ = {EH : {0, 1}∗ → {0, 1}ℓhelp × {0, 1}∗} be a
family of efficient functions, where ℓhelp = ℓhelp(λ), and let EH ← Eλ be a randomly chosen
member of such a family. Given y ∈ {0, 1}n, we denote the outputs of EH by (z, r) = EH(y),
where z ∈ {0, 1}ℓhelp and r ∈ {0, 1}ℓ for some ℓ = ℓ(n, λ). We call the helper length ℓhelp
the compactness of Eλ and the value (n − ℓ) as the entropy loss of Eλ.

Definition 11. The family Eλ = {EH : {0, 1}∗ → {0, 1}ℓhelp × {0, 1}∗} is an extractor-hash
family if for a randomly chosen EH ← Eλ, we have:

1. Collision-Resistance. For all PPT adversaries A,

Pr

s

=
= I (y1, y2) ← A(EH, 1λ);

L

negl()
z1 z2 ∧ r1 ̸ r2 (z1, r1) = EH(y1), (z2, r2) = EH(y2)

≤ λ .

2. Extraction. There exists some function δ = negl(λ) such that, for any n and a
randomly sampled $ 0, 1}n, if (Z, R) = EH(Y), then

Y ← {

∆((Z, R), (Z, Uℓ)) ≤ δ,

where ℓ = |R|, and Uℓ denotes the uniform distribution of ℓ-bit strings.

Notice that the first property is exactly collision resistance on the extracted key r,
while the second is a statistical hiding property on the extracted key r. Moreover, we only
need the extraction property to hold for a randomly sampled value y, which will allow for
a super-efficient construction below.

Remark. Similar to collision-resistant hash function families, we define a family of function
for extractor-hashes. In our application to HELP, we will want to select one of these
uniformly from the set Eλ and use it throughout. One way to ensure this is to add the
description of EH to Auth, Ver. Users could also agree upon the choice of EH ← Eλ in a
preprocessing step. We will not write either of these choices explicitly, though we note
here that neither poses any issue to the above properties of EH.

Construction. We will now show how to construct an extractor-hash from any family of
collision-resistant hash functions (CRHF) and any statistically hiding commitment (SHC)
scheme on short messages, which we define below.

Definition 12 (Collision-Resistant Hash Function (CRHF)). We say Hλ = {h : {0, 1}∗ →
{0, 1}ℓhash } is a family of collision-resistant hash functions with output length ℓhash =
ℓhash(λ), if for a randomly sampled h ← Hλ and for every PPT A, we have

Pr[h(x) = h(x′) ∧ x ̸= x′ | (x, x′) ← A(h, 1λ)] ≤ negl(λ).

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 17

[]

Next we define the notion of SHCs. Notice, we only needs SHCs on short messages (of

length ℓhash, which is the CHRF output).

Definition 13 (Statistically Hiding Commitments). We say Cλ = {Com : {0, 1}ℓhash ×
{0, 1}ℓrand → {0, 1}ℓSHC } is a family of statistically-hiding commitments (SHCs) for input
length ℓhash = ℓhash(λ) and randomness length ℓrand = ℓrand(λ) if for a randomly chosen
Com ← Cλ, we have the following two properties:

1. Computationally Binding: For all PPT A, we have

Pr Com(v; w) = Com(v′; w′) ∧ v ̸= v′ | (w′, w, v′, v) ← A(Com, 1λ) ≤ negl(λ).

2. Statistically Hiding: There exists δ = negl(λ) such that for any messages v, v′ ∈
{0, 1}ℓhash , we have

∆(Com(v; Uℓrand), Com(v′; Uℓrand)) ≤ δ

With these in mind, we present our construction.

Construction 4.1. Let H = {h} be a CRHF with output length ℓhash, and let C = {Com}
be a SHC for input length ℓhash and randomness length ℓrand. Then these families define
a family E = {EH : {0, 1}∗ → {0, 1}ℓSHC × {0, 1}∗} with compactness ℓSHC and entropy loss
ℓrand, as follows.

• Given input y ∈ {0, 1}n, parse it as y = (r||w), where w ∈ {0, 1}ℓrand and r ∈ {0, 1}ℓ

with ℓ = n − ℓrand. Then define helper string z = Com(h(r); w), and output

EH(y) := (z, r)

Theorem 1. Assuming CRHF and SHC satisfy Definitions 12 and 13, respectively, then
Construction 4.1 is a secure Extractor-Hash family.

Proof. To prove collision-resistance, suppose we have an efficient algorithm A that outputs
(with non-negligible probability) y1, y2, for which r1 ≠ r2, but z1 = z2, where (z1, r1) =
EH(y1) and (z2, r2) = EH(y2). Since zi = Com(h(ri); wi), the binding property of SHCs
implies that we must have h(r1) = h(r2). But then the collision-resistance of h further
implies r1 = r2, which is a contradiction to our assumption. In short, if such an A exists,
it would break either the binding property of the SHC, or the collision-resistance of h.

To show the extraction property, notice that when Y = (R, W) is truly random, R by
itself is perfectly random, and independent of W . Let us sample another value R′ ← Uℓ.
For any particular fixing of values (r, r′) ∼ (R, R′), which in turn fixes values v = h(r) and
v′ = h(r′), statistically hiding property of SHCs on (v, v′) implies that

∆(Com(h(r); W), (Com(h(r′); W)) ≤ δ = negl(λ)

Taking the average over (R, R′), we then get

∆((Com(h(R); W), R, R′), (Com(h(R′); W), R, R′)) ≤ δ

Applying a truncation of R′ operation to both sides, we get

∆((Com(h(R); W), R), (Com(h(R′); W), R)) ≤ δ

But now we rename R and R′ on the right-hand side, and get

∆((Com(h(R); W), R), (Com(h(R); W), R′)) ≤ δ

which is exactly ∆((Z, R), (Z, R′)) ≤ δ we needed, since Z = Com(h(R); W).

18 HELP: Everlasting Privacy through Server-Aided Randomness

Instantiating Extractor-Hash. Notice, the existence of CRHFs with output length
O(λ) implies the existence of SHCs [DPP94] with randomness O(λ) for committing to
O(λ)-bit length messages. Thus, we get:

Corollary 1. Assuming the existence of CRHFs with output length O(λ), there exists an
efficient Extractor-Hash family with compactness and entropy loss O(λ).

In practice, however, one can instantiate our construction even more efficiently, via a
single call to an existing CHRF, such as SHA-2, SHA-3, or SHA-256.

That is, consider a CRHF which is an iterative process like the Merkle-Dåmgard
transform [Dam89] applied to an appropriate compression function h, so that hash-
ing an input x = (x1, x2, . . . , xn) of n blocks is represented by iteratively hashing
h(h(. . . (h(h(0n, x1), x2), . . .), xn), possibly with some other finalization process. In Con-
struction 4.1, we would then apply some CRHF-based SHC to the output of this process.
If we instead are able to:

1. Pull out a finalizing function Finalize from the hash which heuristically satisfies the
properties of SHC (say, the last hash or two of the above Merkle-Dåmgard-based
process) when xn is random, and

2. Show the first steps of the hash when this finalization is removed is still collision-
resistant,

we could simplify our construction of EH to be just a single call to the iterative hash
function, say SHA-2. This would in effect save us the cost of running this finalization
procedure twice.

We show this is feasible when the CRHF used is of the SHA family (i.e., SHA-2, SHA-3,
SHA-256, SHA-512). In particular, the first property is satisfied if the function Finalize is
collision-resistant and its output are close to uniform. If we assume these, though, then we
see from prior work that the second property follows for the SHA family of hash functions.
This follows from Corollary 1 and Lemma 2 of [DP08], which state that if h is collision
resistant and its outputs are regular, then the overall Merkle-Dåmgard composition is
also collision resistant, as well as Merkle-Dåmgard with truncation on the compression
function. So, using a heuristic assumption that a (few Merkle-Dåmgard rounds of) SHA
compression function is close to random, and assuming the inputs to the EH are variable
length, we see that a single call to a SHA hash is sufficient for an extractor-hash.

4.2 Main Single-Server Scheme

Construction 4.2. For security parameter λ, Eλ = {EH : {0, 1}∗ → {0, 1}ℓhelp × {0, 1}∗}
an extractor-hash, and let Mac.Tag : {0, 1}∗ × {0, 1}ℓMAC → {0, 1}ℓtag be a computational
MAC. We define HELP = (Init, Gen, Rep, PadLength, Auth, Ver) as so, starting first with the
initialization and length:

• Init(N, 1λ): On input N , set Ñ = N + ℓMAC and sample X ← {0, 1}N ̃

random. Parse X = (k, Xpad), where |k| = ℓMAC. Set µ = (1, N).

• PadLength(ℓ, 1λ): On input (ℓ, 1λ), output n = ℓ + ℓhelp.

uniformly at

With these in mind, we can now define how the server accepts and responds to Gen, Rep

queries:

• Gen(n): Let µ = (index, N). If index + n > N , return ⊥. Otherwise, define
y = Xpad[index, . . . , index + n − 1]. Set σ = (Mac.Tagk(index, n), index, n). Then,
output (y, σ) and set µ = (index + n, N).

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 19

q
p(λ)

• Rep(σ): Parse σ = (t, index, n). Then, if t = Mac.Tagk(index, n), return y˜ =

Xpad[index, . . . , index + n − 1]. Otherwise, return y˜ = ⊥.

Finally, to parse these queries for pads, we define:

• Auth(σ, y) : On input (σ, y), output (z, r) ← EH(y).

• Ver(z, y˜): On input (z, y˜), set (z˜, r˜) ← EH(y˜). If z = z ,̃ output r .̃ Otherwise, output

⊥.

Theorem 2. For security parameter λ, if Eλ is an extractor-hash and Mac.Tag is a
computational MAC, then Construction 4.2 is a HELP. Under standard assumptions about

CHRFs and MACs, this gives nearly optimal randomizer length Ñ = N + O(λ), and server
overhead n = ℓ + O(λ) per ℓ-bit extraction.

Proof. Correctness follows from direct inspection of Gen, Rep and Ver. Below we prove
bounded server authentication, user integrity, and privacy separately.

Server Authentication: Suppose for some λ, N there exists a PPT adversary A with
oracle access to Gen, Rep, Gen∗ and some polynomial p(λ) such that

Pr
I
Rep(σ∗) ̸=⊥ ∧σ∗ ∉ {σ1, . . . , σ }|σ∗ ← AGen,Rep,Gen

∗

(N, 1λ)
1

>
 1

,

where σ1, . . . , σq are the query response tags from Gen. We show how to use A to construct
B that forges message authentication codes for Mac.Tag. B plays the role of the challenger
in the server authentication game for A as follows. Notice that B has access to the
Mac.Tagk procedure.

• B initializes a HELP server by directly sampling Xpad
$

0, 1}N , and setting
← {

µ = (index = 1, N). It additionally samples a uniform MAC key k∗.

• Whenever A makes a Gen(n) query, B first checks if index + n > N . If so, return
⊥. Otherwise, B queries Mac.Tagk with (index, n), receiving a tag t. B sets y =
Xpad[index, . . . , index + n −1] and σ = (t, index, n), updates index = index + n, returns
and stores (y, σ).

• Whenever A makes a Gen∗(n) query, B completes the same process as above, but
querying Mac.Tagk∗ instead and only returning y.

• Whenever A makes a Rep(σ̃) query, B simply checks if there exists an entry (y, σ) in
its storage with σ = σ̃ . If so, return y˜ = y. Otherwise, return y˜ = ⊥.

• At the end of the experiment, A outputs σ∗ = (t∗, index∗, n∗). B simply outputs

m = (index∗, n∗) and t = t∗ as the forged tag.

Now we quickly argue that if A wins the server authentication game, B wins the
MAC forgery game. Notice that A winning the server authentication game yields that
t∗ = Mac.Tagk(index∗, n∗) and that (t∗, index∗, n∗) isn’t part of the response of a Gen query.
We now have that t∗ is a valid tag for (index∗, n∗), so what is left is to show that B never
queried Mac.Tagk on (index∗, n∗). Notice that B queries Mac.Tagk only when answering
Gen queries. So if B had queried Mac.Tagk on (index∗, n∗) during some Gen query, then
it would have responded with (Mac.Tagk(index∗, n∗), index∗, n∗) = (t∗, index∗, n∗), which
contradicts with the tuple never returned by a Gen query. Therefore, t∗ is a valid tag
on the tuple (index∗, n∗) that has never been queried before, and hence B wins the MAC
forgery game.

20 HELP: Everlasting Privacy through Server-Aided Randomness

User Integrity: Suppose for some λ there exists a PPT adversarial server S which wins
the user integrity game with advantage p(λ) for some polynomial p. We use this to break
the collision resistance property of EH as so: To construct A, simply run S(1λ), receiving
((st, σ, y), y˜) from S satisfying (z, r) ← Auth(σ, y, 1λ) and r˜ = Ver(z, y˜). Finally, A outputs
(y, y˜).

By construction, we have (z, r) ← EH(y) and (z, r˜) ← EH(y˜), but r ̸= r˜. We see then
that for y1 = y, y2 = y˜, (z1, r1) = EH(y1) and (z2, r2) = EH(y2), we have z1 = z = z2 yet
r1 ̸= r2. So when S breaks user integrity, A breaks collision resistance of EH. We conclude
that S must not exist.

Privacy: Privacy comes directly from the extraction property of EH. In the privacy game,
notice that the only difference between b = 0 and b = 1 is whether the adversary receives
r0 or r1. Therefore, for an adversary to win the privacy game, it needs to distinguish
the distribution of (st, σ, z, r0) from the distribution of (st, σ, z, r1). Since st and σ are
independent from y, z, r0, and r1, effectively the adversary needs to distinguish between
the distributions of (z, r0) and (z, r1). Notice that these two distributions are exactly
(Z, R) = EH(Y) and (Z, Uℓ). By the extraction property of EH, since y ∼ {0, 1}n, they are
statistically close and hence no adversary can distinguish between them with non-negligible
probability.

Unbounded Server Authentication. The above construction uses a computational
MAC (as in Definition 3) in order to create the randomness tags. This allows the
construction to achieve Ñ = N + ℓMAC at the cost of only satisfying bounded server

authentication. If instead we use an information-theoretic one-time MAC [GN94] (as in
Definition 4), we can achieve unbounded server authentication. However, in this case, the

length Ñ of randomness needed for N bits of transmitted randomness will be Ñ = O(N),
where the constant factor in front of N can be made smaller and smaller, by placing a
lower bound on the minimal value ℓ = Ω(λ) allowed for Gen(ℓ).

In more detail, the server string X will consist of two parts Xpad and Xmac, where
Xmac will contain the one-time MAC keys (k1, k2, . . .) uses for successive calls to Gen.
And the dynamic server state µ will also contain the index j of the current Gen query, in
addition to values index, n. The j-th call to Gen will use the one-time MAC key kj to tag
the tuple (index, n), and increment j (to ensure each kj is only used at most once).

To argue that Ñ = O(N), we only need to argue that |Xmac| = O(N) = O(|Xpad|). To
see this, recall that unconditional one-time MACs use a key of size O(λ) to authenticate
messages of length up to exponential in λ, where λ is the security parameter [GN94]. In
our case we only tag a couple of indices (index, n), which certainly has size O(λ). Thus,
the claim follows if we ensure that the length n of each pad Y is Ω(λ). More generally, we
only need the overall length N of all pads (say, T of them) requested by all users to satisfy
N = Ω(T λ). This is a reasonable requirement, and likely true for most uses.

Using Dictionaries instead of MACs. Yet another possible trade-off for the main
construction is to go one step further, and replace MACs (either a single computational,
or many one-time) with “zero-time” time IT-MACs, where the key k is the tag of every
message. Namely, one needs k to tag any message, but there is no distinctions between
different messages. This presents a viable option if we do not want to use any cryptography
at all, which could be attractive for low-powered devices or ease of implementation and
deployment.

However, this optimization comes at a cost in a different dimension: off-loading static
storage of mac keys k1, k2 . . . (or as a single computational MAC key k) from the static

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 21

server storage X to the dynamic server storage µ. Concretely, the server will use a
fresh “zero-time” key kj for each call to Gen, but then store the mapping from kj to
the authenticated message Vj = (index, n) in some dynamically growing dictionary D.
Moreover, if the server has a fresh source of randomness, it does not need to store all
one-time keys kj in Xmac, but can sample them on the spot, only adding the map from kj

to Vj to the dictionary D.

When Bob provides a value kj in Rep, the server will look for a record Vj = (index, n)
in D. If found, it proceeds as before. Otherwise, it returns ⊥. Thus, since each kj is used
only once and the messages is remembered in the dictionary, the attacker cannot fool the
server from retrieving the wrong index index or message length n. Overall, this variant is
extremely simple to implement, but forces the server to store an extra dictionary whose
size grows with the number of Gen calls. This trade-off may or may not be preferable in
various settings.

As another pragmatic option, the server can even accept the key kj from the user Alice
making the Gen request, although this slightly deviates from our syntax, and puts the
burden on users to generate good randomness for “zero-time” MAC key. On a positive,
this option gives more flexibility for Alice to distribute MAC keys in advance, so the
recipient Bob can make the Rep call even before Alice sent her ciphertext. Additionally,
using a single master key k∗ shared in advance, Alice and Bob can derive the required
“zero-time” keys kj pseudorandomly from k∗, and only transmit the nonces needed to
derive kj from k∗ over a public (but authenticated) computational channel. Such extra
flexibility could be attractive in some scenarios, and might justify the need for the server
to store a dynamically growing dictionary mapping kj to Vj.

5 Composing with Message Transmission

Recall that in Figure 1, we imagined running an HELP instance in composition with a
Message Transmission protocol. The single-server HELP construction that we present
in Section 4 (and also the distributed HELP construction later in Section 7) satisfy the
properties defined in Section 3 (and Section 7), but not quite what we promised in Figure 1.
For starters, the HELP instance did not explicitly process messages m to be sent/received,
but instead focused on generating proper one-time pads r. Of course, Figure 1 takes care
of this by using the simple one-time pad encryption, and also sending Bob the values
σ, z needed for the pad reconstruction. More importantly, though, HELP definitions in
Section 3 (and later in Section 7) completely ignored the computational leakage in step

3), due to the transmission of values (m ⊕ r, σ, z) to Bob over (only) computationally
secure channel. For example, server authentication Definition 8 in Section 3 allowed the
attacker to make Gen∗ calls, and obtain no leakage of the corresponding tag value σ (which
corresponded to honest users using the scheme). In reality, however, the value σ will be
sent over channel 3 in Figure 1, which could leak some computational leakage about σ.
Similarly, in the privacy Definition 10 in Section 3 the attacker was not allowed to make

any Rep queries, which is allowed in step A in Figure 1.

In this section, we fill those modeling gaps, and show how composing a HELP instance
with a computationally secure Message Transmission protocol achieves the promised
everlasting security guarantees we desire from Figure 1. To achieve this goal, in this section
we define stronger variants of user integrity, server authentication, and, most importantly,
everlasting privacy of our compiler illustrated in Figure 1. These stronger properties
will fill the gaps in the single-server definitions from Section 3. Crucially, we will show
that the stronger properties are always implied by the seemingly weaker properties from
Section 3, provided the computationally secure Message Transmission scheme satisfies the
widely accepted notion of Universal Composability (UC) security [Can01]. Concretely, we

22 HELP: Everlasting Privacy through Server-Aided Randomness

show that given a (computationally-secure) Message Transmission scheme with Universal

Composability (UC) security, we can compose it with any HELP scheme satisfying security
properties from Section 3, to obtain a Message Transmission scheme with everlasting
privacy (and correspondingly stronger forms of user integrity and server authentication).

We start by refreshing the minimal UC security background needed to define the
Message Transmission functionality. This allows us to formalize our composition in
Figure 1, from any HELP instance and UC-secure Message transmission. Then, for each of
the security properties (server authentication, user integrity, and privacy), we present their
corresponding stronger definitions for our composed scheme (including everlasting privacy
as opposed to privacy), and show that HELP security from Section 3 and UC-security of

message transmission generically satisfy these new security definitions.

5.1 Universal Composability

The central components of our composition is a HELP instance and a UC-secure message
transmission protocol, so we first provide a very brief overview of the UC framework below
to remind the reader of the related concepts.

In the Universal Composability (UC) framework [Can01], the goal is to model real-
world protocols Π as ideal functionalities F. Towards this end, we consider real-world
processes and ideal processes. A protocol Π is said to UC-realize an ideal functionality
F if the real-world process of running the protocol “emulates” the ideal process for the
corresponding ideal functionality. In both processes, we use a PPT Interactive Turing
Machine (ITM) to represent the program run by one of the parties. An ITM has 4 different
tapes: the input and output tapes model the inputs and outputs that the machine receives
or sends to other programs on the same machine, while the incoming and outgoing message
tapes model the messages received and sent over the network. Below, we (very briefly)
describe the two processes (also illustrated in Figure 2) following the high-level description
presented in [CF01]. For a full and formal treatment of the UC framework, we refer the
readers to Canetti’s original paper [Can01].

Real-World Process. In both the real-world and ideal processes, we consider a
computational environment E, which can be thought of as a PPT distinguisher trying to
distinguish between the real-world and the ideal process. In the real-world process, we
consider some honest parties P1, P2, . . . executing the protocol Π with some adversary A
and the environment E. All of the participants are in PPT of some security parameter λ.

The execution of the process proceeds through a sequence of activations, where one
participant (A, E, or one of the Pi’s) is activated each time. The activated participant may
read from its own input and incoming message tape, execute its code, and then possibly
write on its own output or outgoing message tape. The environment E and the adversary A
have additional capabilities. Additionally, the environment E can write on the input tapes
of the honest parties or the adversary and read from their output tapes. The adversary A
can read messages from the outgoing message tapes of the honest parties and copy them
to the incoming message tapes of the recipient party. Notice that the adversary A is not

allowed to modify or duplicate the messages – only the original messages produced by the
honest parties are allowed. The adversary may also corrupt honest parties, gaining full

control of the party, as well as its internal information.
In the execution of the process, the environment E is activated first with the input

x on its input tape. Once activated, the environment may write onto the input tape of
either one of the honest parties or the adversary. Then, that participant is activated
next. If no input tape is written onto, then the execution halts. Every time an honest
party finishes activation, the environment is activated automatically. When the adversary
delivers a message to some honest party Pi during activation, Pi will be activated next. If

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 23

Figure 2: Illustration of the real-world process vs. the ideal process in the UC framework.

the adversary does not write onto any incoming message tape during activation, then the
environment is activated right after. Notice this allows the environment and the adversary
to freely exchange information using the adversary’s input and output tape. The output
of the experiment is a single bit output by E, which we denote as RealΠ,A,E (λ, x).

Ideal Process. We now describe the ideal process, which centers around an ideal
functionality F that captures the desired functionality. This F is modeled as another ITM
that interacts with the environment E, an ideal process adversary S, and a set of dummy

parties P̃ 1 , P̃ 2 , The dummy parties have a very simple fixed behavior: upon activation
with an input, it simply forwards the input to F by copying the input to its own outgoing
message tape; upon activation with an incoming message from F, it simply copies the
message to its own output tape. F receives the messages from the dummy parties by
directly reading from their outgoing message tapes and sends messages to them by directly
writing on their incoming message tapes. The ideal process adversary S behaves similarly
to a real-world adversary A, except that it cannot read the incoming and outgoing message
tapes of F and the dummy parties. Here instead, F is in charge of delivering the messages
between F and the dummy parties. As in the real-world process, S can also corrupt
dummy parties.

The execution of the idea process is similar to that of a real-world process. Notice that
there is no direct communication between the dummy parties – all communications are
achieved through the ideal functionality F. The output of the experiment is also a bit by
E, which we denote as IdealF,S,E (λ, x).

Definition 14 (Universal Composability [Can01]). Let F be an ideal functionality, and
let Π be an implementation. We say that Π γ-UC-realizes F if, for any security parameter
λ and any real-world adversary A there exists an ideal-process adversary S such that for
any environment E and any input x we have

|Pr[RealΠ,A,E (λ, x) = 1] − Pr[IdealF,S,E (λ, x) = 1]| ≤ γ.

The above definition can be simplified with a dummy adversary Adummy. A dummy
adversary’s behavior is very simple: it just forwards messages from the environment to the
designated parties, and also from the parties back to the environment. With this dummy
adversary, the environment has almost full control of the protocol, and hence simulating
this dummy adversary will be the hardest, therefore capturing the “for all” quantifier on
the real-world adversaries.

Definition 15 (Universal Composability (UC) with Adummy). Let F be an ideal func-
tionality and let Π be an implementation. We say Π γ-UC-realizes F if for any security
parameter λ, there exists an ideal-process adversary S such that for any environment E

24 HELP: Everlasting Privacy through Server-Aided Randomness

I I

Functionality FMT

FMT proceeds as follows, running with parties P1, . . . , Pn and an adversary S.

1. Upon receiving a tuple (Send, m, Pj) from Pi, leak (Pi, Pj, |m|) to S.

2. When S returns OK, output (Sent, m) to Pj.

and any input x we have

Pr[RealΠ,Adummy ,E (λ, x) = 1] − Pr[IdealF,S,E (λ, x) = 1] ≤ γ.

5.2 A Compiler for Secure Message Transmission

Now we show how to augment a UC-secure Message Transmission protocol Π to obtain a
message transmission Π′ with everlasting privacy using a HELP.

We first define the ideal functionality for secure message transmission FMT.

We next show how to construct a message transmission protocol Π′ with everlasting
privacy, by using a message transmission protocol Π that UC-realizes FMT and a HELP
instance HELP as ingredients.

Construction 5.1. Let λ be the security parameter. Let Π be a message transmission
protocol, and HELP be a HELP instance. We construct message transmission protocol Π′

as follows:

• To send a message m to Pj:

1. Compute n ← PadLength(|m|, 1λ);

2. Send a Gen(n) query to HELP, and receive (σ, y);

3. Compute (z, r) ← Auth(σ, y, 1λ);

4. Run protocol Π to send the tuple (m ⊕ r, σ, z) to Pj.

• Upon receiving m̃ from Π:

1. Parse m̃ = (x, σ̃ , z˜);

2. Send a Rep(σ̃) query to HELP, and receive y˜;

3. Compute r˜ ← Ver(z˜, y˜);

4. If r˜ = ⊥, abort and output ⊥;

5. Output m′ = x ⊕ r˜.

Correctness requires that m′ = m and follows trivially from the correctness of Π and
HELP. We discuss the three desired security properties for this construction in the following
three subsections.

5.3 Server Authentication

5.3.1 Definition

First, let us recall the original definition of server authentication.

Definition 8. Let λ be the security parameter. We say that HELP satisfies {bounded,
unbounded} ε-server authentication for ε = negl(λ) if, for all {PPT , unbounded} A with
oracle access to Gen, Rep, Gen∗, and any value of N , after we run Init(N, 1λ) to initialize
(X, µ), we have

Pr
I

Rep(σ∗) ̸=⊥ ∧ σ∗ ∉ {σ1, . . . , σq} I σ∗ ← AGen,Rep,Gen
∗

(N, 1λ)
1

≤ ε,

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 25

C,A

where Gen, Rep are defined as before, Gen∗(n) calls (σ, y) ← Gen(n) but only returns y, and

{σ1, . . . , σq} denotes the set of tags returned in response to the adversary’s queries to Gen.

Notice that this definition has a slight mismatch from Figure 1. In the definition above,
the adversary with access to the Gen∗ oracles (recall that these are used to model queries
made to Gen by honest users) can only get the y values, not the σ’s. However, in Figure 1
and Construction 5.1, when the honest users make Gen queries, σ is sent through the
message transmission protocol. In this case, the adversary does receive computational
leakage of σ from the message transmission protocol, which is not captured by the definition
above.

With that in mind, we modify the server authentication definition as follows to fit into
the composed protocol.

Definition 16. Let λ be the security parameter. We say a HELP-aided message transmis-
sion protocol MT has ε-server authentication for ε = negl(λ) if for all PPT adversaries A
and choices of N (the parameter in HELP), we have

Pr
I
ExptSvrAuthHELP,MT(N, λ) = 1

1
≤ ε,

where ExptSvrAuth is specified in Figure 3.

The key difference is in Step 2c, the challenger runs MT to send mi, which could
potentially leak information about the HELP tag σ used by the challenger.

5.3.2 Proving Server Authentication

We first prove that our construction satisfies server authentication after the composition.

Theorem 3. If HELP has ε-server authentication, and Π γ-UC-realizes FMT, then the
HELP-aided message transmission protocol Π′ in Construction 5.1 has (ε + γ)-server
authentication.

Proof. The intuition behind the proof is that we want to reduce this to the server au-
thentication of HELP, but notice that in the ExptSvrAuth experiment, A can potentially
get some additional information from step 2c than in the original server authentication
definition (Definition 8. Therefore, we take one extra step by invoking the UC-security
of Π and replacing the leakage with just the length. Formally, we prove this through the
following hybrids.

• H : The same as ExptSvrAuthHELP,Π
′

.
1 C,A

• H2: Now we replace the message transmission protocol Π with the ideal functionality

FMT. Specifically, we change step 2(c)iv to the following:

2(c)iv. Send the tuple (Send, (mi ⊕ r∗, σ∗, z∗), ·) to FMT.
i i i

In the rest of the proof, we first bound the probability that any PPT adversary A can
distinguish between H1 and H2, and then bound the probability of the adversary winning
the game in H2, denoted as PrH

2
[BREAK].

First, we show that if a PPT adversary A can distinguish between H1 and H2 with
probability γ′, then for all ideal-process adversary S, there exists an environment machine
E that can distinguish between (F, S) and (Π, Adummy) with probability γ = γ′. The
high-level idea is that the environment machine E will simulate either H1 or H2 for A and
construct its own output based on the output of A. Specifically, given A, we construct E as
follows by simulating the view for A. Most of the steps are directly simulating ExptSvrAuth,
so we highlight the main differences in red.

26 HELP: Everlasting Privacy through Server-Aided Randomness

i

Figure 3: Security experiment ExptSvrAuth.

1. Run (X, µ) ← Init(N, 1λ).

2. To answer A’s queries:

(a) Whenever A submits a Gen(ni) query, compute (σi, yi) ← Gen(ni), and respond
with (σi, yi).

(b) Whenever A submits a Rep(σ̃i) query, compute y˜i ← Rep (σ̃ i), and respond
with y˜i.

(c) Whenever A submits a message query mi, compute n∗ ← PadLength(|mi|, 1λ),
(σ∗, y∗) ← Gen(n∗), (z∗, r∗) ← Auth(σ∗, y∗, 1λ). Invoke either Adummy or S to i i i i i i i
have an honest party send (mi ⊕ r∗, σ∗, z∗), Adummy or S will receive a leakage

i i i

τi which is also forwarded back to the environment. Send τi to A.

3. At the end of the experiment, if A outputs it is in H1, output that E is in the
real-world process interacting with Adummy. Otherwise, output that it is in the ideal
process interacting with S.

Notice that if E were in the ideal process, then τi = |(mi ⊕ r∗, σ∗, z∗)|, which matches
i i i

what A expects from step 2c. On the other hand, if E were in the real-world process,

ExptSvrAuth

For a polynomial number of rounds i = 1, 2, . . . , q, the adversary A may choose
one of the following:

C computes (σi, yi) ← Gen (ni), and responds with (σi, yi).

C computes y˜i ← Rep and responds with y˜i.

C runs MT to send mi, and A receives the corresponding leakage from MT.
Specifically, C computes the following:

i. n ← PadLength(|m |, 1);

 σ , y) ← Gen(

 σ , y , 1);

iv. Run the underlying message transmission protocol Π to send the tuple
 m ⊕ r , σ , z).

3. A wins the game (the experiment outputs 1) if and only if A submits some
query and receives a non-⊥ response, but is not a tag returned by a

previous Gen query, i.e. A forges the tag Put formally, A wins the game if
and only if

queries asynchronously during the execution of Π.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 27

C,A

C,S

then τi is whatever is leaked to the adversary through the execution of Π, which also
matched what A expects. Therefore, the view is simulated correctly for A. If A successfully
distinguishes between H1 and H2, E also successfully distinguishes between real and ideal.
Since for PPT E, the real process and the ideal process are γ-close, H1 and H2 are also γ

close for PPT A.
Next we finish the proof by showing that in H2 the probability of the adversary winning

is just ε. This is by direct reduction to the server authentication of HELP. Specifically, we
show that an adversary A that wins H2 implies an adversary A′ that breaks the server
authentication of HELP. A′ simulates the view for A by simply forwarding all the Gen

and Rep queries made by A to the oracles that A′ has access to and correspondingly
forwarding the oracle responses. Upon receiving mi from A, simply leak (Sent, |mi|) to A.
By the end of the experiment, A has won the game by querying σ̃ that is not returned by
a previous Gen query and has a non-⊥ response. A′ simply outputs σ̃ and wins the game.
Therefore, the probability of A breaking H2 is at most the probability that A′ can break
server authentication, i.e. PrH

2
[BREAK] ≤ ε.

Combining the previous two parts, we have Pr
I
ExptSvrAuthHELP,MT(N, λ) = 1

1
≤ γ + ε

as desired.

5.4 User Integrity

5.4.1 Definition

Similar to server authentication, the notion of user integrity would also need to be adjusted
accordingly for the composed setting. On a high level, the original user integrity definition
dictates that a malicious server cannot fool the user into producing a different yet valid
random key r. In the composed setting, we would like to modify the definition to capture the
user integrity for messages, as opposed to keys. Namely, we want that an adversarial HELP

server cannot cause a transmitted message to be received as a different one. Specifically,
we define it as below.

Definition 17. Let λ be the security parameter. We say that HELP satisfies δ-user
integrity with δ = negl(λ), if for all PPT servers S and choices of N , we have

Pr
I
ExptUsrIntHELP,MT(N, λ) = 1

1
≤ δ,

where ExptUsrInt is specified in Figure 4.

5.4.2 Proving User Integrity

We prove user integrity of our Construction 5.1 through the following theorem.

Theorem 4. If HELP has δ-server authentication, and Π γ-UC-realizes FMT, then the

HELP-aided message transmission protocol Π′ in Construction 5.1 has (δ +γ)-user integrity.

Proof. The first step, similar to the proof of Server Authentication for Theorem 3, is to
invoke the UC-security of the underlying message transmission protocol Π to replace it
with the ideal functionality FMT. This step introduces an error of γ.

Once we have the ideal functionality FMT, it is guaranteed that the tuple (m ⊕ r, σ, z)
is received as is, and therefore we have x = m ⊕ r, σ̃ = σ, and z˜ = z8.

Then, we can reduce to the user integrity of the HELP instance. Specifically, if an
adversary S is able to win the composed user integrity game with ideal message transmission

8Notice that in fact, only integrity of m ⊕ r and z are necessary for the proof. So practically, σ can be
sent through some message transmission protocol with no integrity guarantees (secrecy is still needed for
the server authentication property though).

28 HELP: Everlasting Privacy through Server-Aided Randomness

Figure 4: Security experiment ExptUsrInt.

functionality, then we can build an adversary S′ that wins the original user integrity game.
S′ will use S as a subroutine by playing the role of the challenger in the ExptUsrInt game
as follow:

1. S′ receives the security parameter 1λ, which it uses to initialize S.

2. S′ samples message m, computes n ← PadLength(|m|, 1λ), and submits the Gen(n)
query to S.

3. The adversary S responds with (σ, y), which S′ also outputs. Additionally, S′ outputs
a state st = σ.

4. S′ receives z, r together with st = σ. It submits the Rep(σ) query to S.

5. The adversary S responds with y˜, which S′ also outputs.

Now we briefly argue that if S wins the ExptUsrInt game, then S′ wins the original
user integrity game. S wins the game only if r˜ ̸= ⊥ and r˜ ̸= m ⊕ x = r for r˜ ← Ver(z, y˜).
This immediately gives r˜ ∉ {r, ⊥} as desired.

Therefore, bringing the two parts together, Construction 5.1 has (δ + γ)-user integrity.

5.5 Everlasting Privacy

5.5.1 Definition

The overall idea behind everlasting privacy is to capture the security model illustrated in
Figure 1 using an indistinguishability-based game definition. We define the security game
as a two-stage experiment. First, the adversary A1 is PPT but has access to the HELP
instance. To capture A1’s ability to communicate with the HELP instance arbitrarily, we
allow A1 arbitrary adaptive Gen and Rep queries, before and after the challenge. In the

ExptUsrInt

The adversary S is initialized with the security parameter 1λ.

The challenger C samples message m, and computes n ← PadLength(|m|, 1λ).

The challenger C submits the Gen(n) query.

The adversary S on input n produces the response (σ, y), which the challenger

C receives.

The challenger computes (z, r) ← Auth(σ, y, 1λ), and runs the underlying mes-
sage transmission protocol Π to send (m ⊕ r, σ, z), which will be received as
(x, z˜).

The challenger C submits the query.

The adversary S on input produces the response y˜, which the challenger C

receives.

The challenger C computes r˜ ← Ver(z˜, y˜). The adversary wins the game (and

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 29

I I

C,A,b

C,A,b

! "

I I

C,A,1

where ExptEvltPriv is specified in Figure 5.

C,A,0

C,A,1 C,A,0

1

first stage, A1 also chooses two challenge messages of equal length. The challenger picks
a random one to send using the message transmission protocol. At the end of the first
stage, A1 outputs its own view, which is then passed to the second-stage adversary A2.
The adversary A2 is computationally unbounded but no longer has access to the HELP
instance. The goal is for A2 to successfully guess which of the two challenge messages
were sent in the first stage by solely depending on the view of A1 in the first stage. Put
formally, we define everlasting privacy as follows.

Definition 18. Let λ be the security parameter. We say a HELP-aided message trans-
mission protocol MT has ω-everlasting privacy for ω = negl(λ) if for all adversaries
A = (A1, A2) with PPT A1 and unbounded A2, and choices of N (the parameter in
HELP), we have

Pr[ExptEvltPrivHELP,MT(N, λ) = 1] − Pr[ExptEvltPrivHELP,MT(N, λ) = 1] ≤ ω,

5.5.2 Proving Everlasting Security

Now we formally prove that our construction of Π′ in Construction 5.1 has everlasting
privacy.

Theorem 5. If HELP has ε-server authentication and ξ-privacy, and Π γ-UC-realizes
FMT, then the HELP-aided message transmission protocol Π′ in Construction 5.1 has
(2ε + 2γ + 4ξ)-everlasting privacy.

Proof. We structure the proof around an invocation of Lemma 1.

We first define a BREAK(ExptEvltPrivHELP,Π
′

) predicate to indicate whether A has bro-

ken server authentication in experiment ExptEvltPrivHELP,Π
′

. For simplicity, we shorthand

it as just BREAKb. Specifically, we have

BREAKb := ∃ i ∈ [q2]. σ̃ i ∉ {σj}j∈[i] ∧ y˜i ̸= ⊥ .

Notice that Pr[BREAK0] and Pr[BREAK1] are both bounded by the server authentication
error. And by Theorem 3, since HELP has ε-server authentication and Π γ-UC-realizes FMT,
Π′ has (ε + γ)-server authentication. Hence, we have Pr[BREAK0] = Pr[BREAK1] ≤ ε + γ.

Invoking Lemma 1, let A be the event that ExptEvltPrivHELP,Π
′

(N, λ) = 1, and B be
b

simply ¬BREAKb. Then by Lemma 1,
C,A,b b

≤ Pr[BREAK0] + Pr[BREAK1] + |Pr[A0 ∧ ¬BREAK0] − Pr[A1 ∧ ¬BREAK1]|

Since we already have Pr[BREAK0], Pr[BREAK1] ≤ ε + γ from server authentication,
we just need to show that |Pr[A0 ∧ ¬BREAK0] − Pr[A1 ∧ ¬BREAK1]| is negligible through
the following Lemma.

Lemma 2. If HELP has ξ-privacy, then

|Pr[A0 ∧ ¬BREAK0] − Pr[A1 ∧ ¬BREAK1]| ≤ 4ξ.

On a high level, we want to reduce this to the privacy of the underlying HELP scheme.
But the challenge is that in the everlasting privacy game the adversary A1 is allowed
Rep queries, while the adversary A in the privacy game is not. We handle this through
a sequence of hybrid. In all of the hybrids, we have the outputs of the experiments set

Pr[ExptEvltPrivHELP,Π
′

(N, λ) = 1] − Pr[ExptEvltPrivHELP,Π
′

(N, λ) = 1]

30 HELP: Everlasting Privacy through Server-Aided Randomness

HELP,MT

C,A=(A1 ,A2),b (N, λ):

1. The challenger C runs (X, µ) ← Init(N, 1λ).

2. For a polynomial number of rounds i = 1, 2, . . . , q1, the adversary A1 may
choose one of the following:

(a) Submit a Gen(ni) query to C:

C computes (σi, yi) ← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃ i) query to C:

C computes y˜i ← Rep (σ̃ i), and responds with y˜i.

3. A1 chooses two messages m0, m1 with |m0| = |m1| and sends m0, m1 to C.

4. The challenger C runs MT to send mb, and A1 receives the corresponding leakage
from MT.
Specifically, C computes the following:

(a) n ← PadLength(|mb|, 1λ);

(b) (σ, y) ← Gen(n∗);

(c) (z, r) ← Auth(σ, y, 1λ);

(d) Run the underlying message transmission protocol Π to send the tuple
(mb ⊕ r, σ, z). a

5. Again, for a polynomial number of rounds i = q1 +1, q1 +2, . . . , q2, the adversary

A1 may choose one of the following:

(a) Submit a Gen(ni) query to C:

C computes (σi, yi) ← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃ i) query to C:

C computes y˜i ← Rep (σ̃ i), and responds with y˜i.

6. A2 takes as input view(A1) and outputs a bit, the output of the experiment.

aSimilar to server authentication, in the case where Π is interactive, the adversary A is also
allowed to make other Gen and Rep queries asynchronously during the execution of Π.

Figure 5: Security experiment ExptEvltPriv.

ExptEvltPriv

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 31

For a polynomial number of rounds i = 1, 2, . . . , q1, the adversary A1 may

C computes (σi, yi) ← Gen (ni), and responds with (σi, yi).

C computes y˜i ← Rep and responds with y˜i.

The challenger C runs the following:

n ← PadLength(|m0|, 1λ);

(z, r) ← Auth(σ, y, 1λ);

Run the message transmission protocol Π to send the tuple (m0 ⊕

r, σ, z).

C computes (σi, yi) ← Gen (ni), and responds with (σi, yi).

C computes y˜i ← Rep and responds with y˜i.

b′ ∧ ¬BREAK as the output of the experiment.

 ⊥ , and outputs

"

to be the logical AND of the adversary’s output and the BREAK predicate. First of all,
we modify the experiment so that Rep queries simply return ⊥ on all σ̃ ’ s that are not
the result of previous Gen queries, but when we calculate the BREAK predicate, we still
calculate it based on the old query responses. We argue that this change results in identical
output distributions of the experiments. Then, we can reduce to the privacy game, as now
the Rep queries do not provide any useful information, and thus can be easily simulated
by the adversary in the privacy game.

Proof. We prove this through a sequence of hybrids. As an overview, in H1, we have
ExptEvltPrivHELP,Π

′

except that we adjust the output to reflect the ¬BREAK predicate.
C,A,0 0

In H2, we reply ⊥ to the Rep queries that would lead to BREAK0. In H3, we switch from
sending m0 to random. In H4, we switch from random back to m1. In H5, we revert
the changes made in H and get back ExptEvltPrivHELP,Π

′

with the ¬BREAK adjusted
2 C,A,1 1

into the output. We will show that the outputs of H1 and H2, H4 and H5 are identically
distributed, while the outputs of H2 and H3, H3 and H4 are statistically close. We detail
the hybrids below:

• H : The same as ExptEvltPrivHELP,Π
′

, except that the output of experiment is
1 C,A,0

adjusted to reflect ExptEvltPrivHELP,Π
′

∧ ¬BREAK . Concretely, it is as below, with
C,A,0 0

the adjustment highlighted in red:

• H2: The same as H1, except for the following changes in steps 2 and 5.

32 HELP: Everlasting Privacy through Server-Aided Randomness

• H3: The same as H2, except that in step 4d, instead of sending (m0 ⊕ r, σ, z), now
send (u, σ, z), where u is a uniform |m0|-bit string.

• H4: The same as H3, except that in step 4d, revert back to sending (m1 ⊕ r, σ, z).

• H : Revert the changes made in H . This is the same as ExptEvltPrivHELP,Π
′

apart
5 2 C,A,1

from the same adjustments highlighted in H1.

First, we show that the outputs of H1 and H2 (W.L.O.G. also H4 and H5) are identically
distributed. First, note that the only differences between H2 and H1 are how Rep queries
are answered. Further, for a Rep query on σ̃ i , notice that the answer is yi in both hybrids
if there exists some j < i such that σ̃ i = σj. In the other case, if σ̃ i ̸= σj for all j < i, then
in H2, C always responds ⊥ (though it does compute y˜i anyway). In H1, the response
may or may not be ⊥. If for all such Rep queries (σ̃ i ̸= σj for all j < i) in H1, the answers
are all ⊥, then the adversary’s view in H1 and H2 are identical, and hence outputs the
same bit b′. If there exists such a Rep query with non-⊥ answer in H1, the adversary’s
view might be different, causing b′ to have a different distribution. But notice that in that
case, BREAK is 1, so the output of the experiment is always 0 regardless of the adversary’s
output b′. Therefore, the outputs of H1 and H2 are identically distributed.

Next, we show that, the outputs of H2 and H3 are statistically close (and similarly H3
and H4). Concretely, we show that no unbounded distinguisher D can distinguish between
the outputs of H2 and H3 with probability more than ξ. We argue this by reduction to
ξ-privacy. We show how to use such a distinguisher D to build an adversary B for the
privacy game. Notice that B needs to simulate the interactions between A = (A1, A2) and
C for H2 and H3 in order to produce the outputs of H2 and H3. B performs the simulation
in the following manner, by running A = (A1, A2) “in its head” and pretending to be the
challenger C:

1. Runs the code of A1:

(a) Whenever A1 submits a Gen(ni) query to C, forward it to the Gen(·) oracle, and
correspondingly the response back to A1.

(b) Whenever A1 submits a Rep(σ̃ i) query to C, check if there exists j < i such
that σ̃ i = σj. If exists, respond with y˜i = yj. Otherwise, respond with ⊥.

Changes in H2:

2. For a polynomial number of rounds i = 1, 2, . . . , q1, the adversary A1 may
choose one of the following:

(a) Submit a Gen(ni) query to C:

C computes (σi, yi) ← Gen (ni), and responds with (σi, yi).

(b) Submit a Rep(σ̃ i) query to C:
C computes y˜i ← Rep (σ̃ i) . If σ̃ i = σj for some j < i, return y˜i = yj.
Otherwise, return ⊥.

5. Again, for a polynomial number of rounds i = q1 + 1, q1 + 2, . . . , q2, the
adversary A1 may choose one of the following:

(a) Submit a Gen(ni) query to C:

C computes (σi, yi) ← Gen (ni), and responds with (σi, ri).

(b) Submit a Rep(σ̃ i) query to C:
C computes y˜i ← Rep (σ̃ i) . If σ̃ i = σj for some j < i, return y˜i = yj.
Otherwise, return ⊥.

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 33

2

C,A,0 0

C,A,1
− Pr

I
ExptEvltPrivHELP,Π

′

(N, λ) = 1 ∧ ¬BREAK
1
I

IPr
I
ExptEvltPrivHELP,Π

′

(N, λ) = 1 ∧ ¬BREAK
1

1

(c) When A1 sends the challenge messages m0 and m1 to C, B outputs |m0| and

its current state in the privacy game. It then gets reactivated with the same
state and receives rb, σ, z. Then B run the message transmission protocol Π′ to
send (rb ⊕ m0, σ, z), which causes a certain leakage to A1.

2. Runs the code of A2 on view(A1) as input, when A2 outputs the bit b′, produce the
output of the experiment as just b′. Notice the difference from b′ ∧ ¬BREAK, as B
cannot compute BREAK without access to the Rep oracle.

3. Give the output of the experiment to D. If D outputs it receives the output from

H2, B output 0. Otherwise, B output 1.

Notice that the above simulated transcript by B is only correct if BREAK = 0. However,
if BREAK = 1, the outputs of H2 and H3 are always 0, hence trivially no distinguisher can
distinguish between them. In the cases where BREAK = 0, if D successfully distinguishes
H2 and H3, then the adversary B above successfully distinguishes between real or random
in the privacy game. Therefore, we have shown that no unbounded distinguisher can
distinguish between the outputs of H2 and H3 (also H3 and H4) with probability more
than 1 + Pr[¬BREAK] · ξ, i.e. |Pr[H2(·) = 1] − Pr[H3(·) = 1]| ≤ 2 · Pr[¬BREAK] · ξ ≤ 2ξ.

Bringing the five hybrids together, we have

≤ |Pr[H2(·) = 1] − Pr[H3(·) = 1]| + |Pr[H3(·) = 1] − Pr[H4(·) = 1]|

≤ 4ξ.

Combining Lemma 1, Theorem 3, and the above Lemma 2 finishes the proof for

Theorem 5.

Implications for HELP. This section showcases how one can use a HELP instance
to elevate any message transmission protocol with computational privacy to everlasting
privacy. This presents new paths towards building everlasting-secure protocols. Instead
of building the schemes directly from information-theoretic assumptions, one can build
a scheme that is secure only against computational adversaries, and then compose the
construction with HELP to obtain everlasting security. While we only proved the case of
everlasting privacy for message transmission schemes, we believe many other applications
are possible, such as key exchange protocols. We leave these directions as interesting open
questions for the reader.

6 Syndrome Resilient Functions

The goal of this section is to introduce the notion of syndrome resilient functions, which
will be helpful for the multi-server HELP setting, but could be of independent interest. At
a high level, this combines the error correction of syndrome decoding with the privacy
guarantees of so called resilient functions [CGH+85]. Note, we use the same notation for
dist as in Equation 1.

34 HELP: Everlasting Privacy through Server-Aided Randomness

i

i

x

m−1
1

m−1
2 . . . xm−1



1 2

x x t

Definition 19 (Syndrome Resilient Function). Let Σ be some alphabet, let τ = (t, ta, tf , tp)
be natural numbers, and let ∆, k ∈ N. Let SRF = (Eval, Rec) for Eval : Σt → Σ∆ × Σk

and Rec : (Σ ∪ ⊥)t × Σ∆ → (Σk ∪ ⊥) for failure symbol ⊥. Let SRF = (Eval, Rec), and
denote Eval(y) = (z, w), Rec(y˜, z) = w̃ for y ∈ Σt, y˜ ∈ (Σ ∪ ⊥)t. We say SRF is a
(τ, ∆, k)-syndrome resilient function if:

1. If dist(y, y˜) ≤ (ta, tf), then Rec(z, y˜) = w for Eval(y) = (z, w).

2. For all subsets BAD ⊆ [t] such that |BAD| = tp, and all values y∗ for i ∈ BAD,

define random variable Yi for all i ∈ [t] as follows:

y∗ i ∈ BAD
Yi

UΣ i ∉ BAD

Then, if (Z, W) = Eval(Y1, . . . , Yt), we require that (Z, W) ≡ (Z, (UΣ)k).

Essentially, the first requirement of SRFs require that the recovery is error-correcting for
all codewords with at most ta adversarially-chosen points and at most tf points returning
⊥. The second ensures perfect secrecy for the recovered word even given tp known points
and the helper word z.

Construction. We will show that a Vandermonde matrix suffices for building an
SRF. This is natural, as the notion of SRFs draws inspiration from syndrome decoding of
Reed-Solomon codes [RS60]. For the sake of brevity, we introduce the minimal amount of
terminology for this that we need to describe SRFs and our construction.

Definition 20 (Codes, Minimum Distance, Generator Matrix). Let Σ be a finite alphabet,
and let C be a subset of Σn (that is, a set of length n words in the alphabet). Then, we say
C is a code over Σ, and the minimum distance of C is defined as the minimum Hamming
distance between elements of C.

Further, if we let M be some message space, then we call A : M → C an encoding of
M for code C. When A is a matrix, we may also call it the generator matrix of the code
C.

The Vandermonde matrix is a well-known generator matrix. We describe it below,
along with the useful properties it possesses for us.

Definition 21 (Vandermonde Matrix). Let F be a field, and let t, m ∈ N. Let x1, . . . , xt ∈
F be arbitrary distinct field elements. Then, we define the m × t Vandermonde matrix,
denoted Vm = Vm(x1, . . . , xt), as:

1 1 . . . 1
 x1 x2 . . . xt 

Vm = 2


2 . . . x2


 

The Vandermonde matrix allows us to do polynomial interpolation on the points
x1, . . . , xt by multiplying a given coefficient (row) vector by Vm. This allows the Vander-
monde matrix to have some incredibly useful properties in coding theory. In particular,
we will take advantage of two well-known properties of the Vandermonde matrix:

1. It is a generator matrix of a Reed-Solomon code [RS60].

2. It is a parity check matrix for the generalized Reed-Solomon code.

x t .

=

I

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 35

r

i

r

i

In particular, the former property give us a simple encoding procedure for our SRF
construction. The second property will give us the needed error correction for our decoding
procedure. That is, given y, y˜ ∈ Ft where y˜ and y have distance less than the minimum
distance of the implicit Reed-Solomon code, there is a procedure Decode(y˜, Vmy) which
returns y. Importantly, this minimum distance plays nicely with our notion of distance
before; that is, this minimum distance is exactly dist(y, y˜) in Equation 1.

As an aside, Vmy here is called the syndrome of y, and this process is known as
syndrome decoding, owing to the name SRF. With all this in mind, we are ready to present
our construction of SRF.

Construction 6.1. Let Σ = F, |F| ≥ t, ∆ = 2ta +tf , and let Vm be the m×t Vandermonde
matrix, where m = t − tp. Define Eval, Rec as follows:

• Eval(y): Let Vmy = z||w, where z is the first ∆ entries of Vmy and w is the remaining

t − tp − ∆ entries. Output (z, w).

• Rec(y˜, z): Run Decode(y˜, z) as above, receiving y ∈ {0, 1}n ∪ ⊥. If y ̸= ⊥, let

Vmy = z||w as in Eval, and output w.

The notion of SRFs also draws on a primitive known as resilient functions (and their
relaxations, exposure-resilient functions [CDH+00]). The notion of resilience is as such
relevant to the proof of our SRF construction, so we include it here.

Definition 22 (Resilient Function). A deterministic polynomial time computable function
rf : {0, 1}t → {0, 1}k is said to be an ℓ-resilient function if for all subsets L ⊆ [t] such that
|L| = t − ℓ and all r ∈ {0, 1}t−k, we have

⟨rf(U |t:L|)⟩ = ⟨Uk⟩,

where U |t:L| denotes the uniform distribution over t-bit strings where the L-th positions

are equal to r.

We now have the vocabulary needed to prove that Construction 6.1 is an SRF.

Theorem 6. For τ = (t, ta, tf , tp) satisfying |Σ| ≥ t, t − tp ≥ 2ta + tf , define ∆ = 2ta + tf .
Then, Construction 6.1 is a (τ, ∆, (t − tp − ∆))-SRF.

Proof. We prove each property separately.

Property 1. Let Y, Y˜ ∈ Ft such that dist(Y, Ỹ) ≤ (ta, tf). By definition, this means Y˜

has at most tf erasures and otherwise differs from Y in at most ta positions. Because
the minimum distance of the Reed Solomon code which Vm generates is ∆ = 2ta + tf , we
see Decode can correct the errors and erasures. This yields the first property, as Rec(y˜, z)
simply runs Decode.

Property 2. Let BAD ⊆ [t] be a subset of size tp, and let y∗ ∈ F be arbitrary for
i ∈ BAD. We define the random variable Y = (Y1, . . . , Yt) where each Yi = y∗ if i ∈ BAD

and is uniformly sampled from F otherwise. We see from Theorem 1 of [CGH+85] that,
since t ≤ 2n − 1, there exists a (t, tp)-perfect exposure resilient function. In particular,
Theorem 2 of [CGH+85] gives us that the generator matrix of the generalized Reed-
Solomon with minimum distance t − tp + 1 is this exposure resilient function. So, as long
as t − tp ≥ 2ta + tf , Vm perfectly hides t − tp points from tp exposures, satisfying the
second property.

36 HELP: Everlasting Privacy through Server-Aided Randomness

Instantiating SRF. In the following section, we will use SRFs to process the received
random bits received from each server. This will intuitively allow us to retrieve some
certified (Definition 19 Property 1), private (Property 2) randomness from the n-bit
samples provided by the t servers. Using Construction 6.1 with F = {0, 1}n in this setting
will work, but the multiplications needed for the resulting Eval, Rec will be over a very
large field.

To make this more efficient, we note that we can make this more efficient by separating
the retrieved n-bit samples into n/ log t blocks of length log t, applying Construction 6.1
to each of these. While we elide this discussion to Section 7.3, our practical construction
will take this into account.

7 Distributed HELP

We generalize our model to the distributed setting, where now A and B may communicate
with one of t servers S1, . . . , St. As we will see, this setting will be very similar to the
single-server setting, but with minor changes to correctness and security. Crucially, we
will rely on SRFs (Section 6) to achieve our strong correctness and distributed privacy
guarantees. By satisfying these, though, all our results conveniently generalize, including
everlasting privacy (Section 5).

7.1 Redefining Distributed Syntax and Correctness

In our generalization to t ≥ 1 servers, we will allow some of the servers to be failing,
adversarial, or non-private. While users will not know which of the servers will be faulty
in some way, we assume we know reasonable upper bounds on each type of servers. These
are defined below. We will use the following parameters for bounds on these faulty servers:

• t — the total number of servers;

• ta — the number of adversarially chosen servers, which may reproduce arbitrarily
different values from the original generated randomness;

• tf — the number of failing servers, which may return ⊥ upon calling Rep, even for a
valid tag;

• tp — the number of public servers, which the adversary has full view on (which may
be distinct from the previous categories).

Additionally, we will use the notation tg = t − tp to represent the “good” servers which
the users have private channels with. We will also use the following notation to simplify
definitions, as the above are used as parameters for many of the distributed syntax:

τ := (t, ta, tf , tp).

Syntax. In this setting, Init, Gen and Rep are unchanged, since we want our servers
to act independently. In fact, the servers need not know of how many other servers are
participating, their identities, etc. However, to simplify the notation, we will use a subscript
to differentiate servers from each other. We stress this is only done when describing the
correctness and security of the system, but each server is not aware of this index. Moreover,
servers need not care about the tuple τ described above, as this is only relevant for the
users of the system. Thus, new server syntax is as follows:

• Initi(N, 1λ) → (Xi, µi): The initialization algorithm run by server Si. We denote

|Xi| =: Ñ ≥ N . When initializing all the servers, we use the shortcut Init(N, 1λ) :=

{Initi(N, 1λ)}i∈[t].

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 37

• Geni(n, (Xi, µi)) → (σi, yi, µi): The pad generation query for server Si for n bits of

randomness yi and tag σi.

• Repi(σ̃i, (Xi, µi)) → y˜i: The pad reproduction query for server Si, which reproduces

y˜i from tag σ̃ i .

As in the single server setting, we will elide mentions of Xi and µi in Geni and Repi, when
obvious.

Turning to the user, they also run the same algorithms PadLength, Auth and Ver, but
now these algorithms also take the tuple τ = (t, ta, tf , tp) above. For example, the length
calculation algorithm becomes:

• PadLength(ℓ, τ, 1λ) → n.

Intuitively, since the user will get n bits of randomness from t servers, we could hope
to extract close to ℓ ≈ tn bit. However, since only tg out of t servers provide private
randomness, the correct expectation is to have ℓ ≈ tgn. Equivalently, if our randomness
extraction procedure is good, we will manage to set n ≈ ℓ/tg. But the exact formula will
also depend on the security parameter to ensure user integrity later.

Algorithms Auth and Ver are also similar. First, instead of taking a single n-bit pad y,
now they take t such pads y1, . . . , yt. To simplify notation, we will still denote the vector
of these pads by y := (y1, . . . , yt). And similarly for the vector of tags σ := (σ1, . . . , σt)
returned by t called to Gen. With these conventions, the new syntax is very similar to the
earlier syntax:

• Auth(σ, y, τ, 1λ) → (z, r). Transforms the tags σ = (σ1, . . . , σt) and the pads y =
(y1, . . . , yt) to a (single) ℓ-bit key r and a (single) helper string z.

• Ver(z, y˜, τ) → r˜. Checks the helper string z against (recovered) pads y˜ = (y˜1, . . . , y˜t),
and outputs a key r˜ ∈ {0, 1}ℓ ∪ {⊥}.

• When the value τ is clear from context, we will sometimes omit it as an explicit
input to Auth, Ver.

The only additional twist, required by our new distributed Correctness below, comes
from the fact that some tf servers might be unavailable when the user calls Rep for these
servers. Thus, in the verification algorithm Ver we allow up to tf values y˜i to be equal to
⊥.

Correctness. Recall, in the single-server case, we separately defined server-correctness
(Definition 5) and user-correctness (Definition 6), which immediately implied overall
correctness of the HELP scheme. We do the same here. First, server-correctness does not
change, as each server runs independently without knowing about the other servers.

For user-correctness, we need the following definition. Given a t-value vector y =
(y1, . . . , yt) over alphabet {0, 1}n (so each yi ∈ {0, 1}n), and a t-value vector y˜ = (y˜1, . . . , y˜t)
over alphabet {0, 1}n ∪ {⊥} (so each y˜i ∈ {0, 1}n ∪ {⊥}), we say that

dist(y, y˜) ≤ (ta, tf) (1)

if (a) |{j : y˜j ∉ {yj, ⊥}| ≤ ta; and (b) |{j : y˜j = ⊥}| ≤ tf . With this in mind, the
user-correctness is defined below:

Definition 23. HELP satisfies user-correctness for a given τ = (t, ta, tf , tp) if, for all
y ∈ ({0, 1}n)t and y˜ ∈ ({0, 1}n ∪ {⊥})t with dist(y, y˜) ≤ (ta, tf), and all t-value vectors σ

we have:

Pr
[

r˜ = r I (z, r) ← Auth(σ, y, τ, 1λ), r̃ ← Ver(z, y ,̃ τ)
]

= 1.

38 HELP: Everlasting Privacy through Server-Aided Randomness

I
L

I


′ ∀i ∈

I

i∈ t] b ← {



 i  2

We can also show that server-correctness and (distributed) user-correctness imply

the overall (distributed) correctness of the scheme. However, we will need to explicitly
introduce a (potentially unbounded) attacker A which is allowed to arbitrarily modify the
correct t-tuple y of Rep-responses, into a corrupted t-tuple y˜ satisfying dist(y, y˜) ≤ (ta, tf).
The overall correctness will still ensure that the users output correct derived key r˜ = r.
For simplicity of notation, we omit this straightforward implication.

7.2 Redefining Distributed Security

Recall, security of HELP consists of three components: server authentication, user integrity
and privacy. We now show how to extend them from the single-server setting (see
Section 3.2) to the distributed setting.

Distributed Server Authentication. Since each of the servers run independently,
and have the same syntax, we simply require that the (single-server) server authentication
given in Definition 8 must hold for all t servers.9

Distributed User Integrity. We make only a couple of syntactic changes to single-
server User integrity in Definition 9. Instead, we model a single adversary controlling all t
servers.

Definition 24. Let λ be the security parameter. We say that HELP satisfies δ-user
integrity with δ = negl(λ) for a given τ = (t, ta, tf , tp), if for all PPT attackers S, we have

Pr

s

r˜ ∉ {r, ⊥}
(st, σ, y) ← S(1λ); (z, r) ← Auth(σ, y, τ, 1λ);

I y ̃← S(st, z, r); r˜ = Ver(z, y˜, τ)

≤ δ.

Notice, σ, y and y˜ are now t-element vectors, and further y˜ may contain ⊥ at some
points (up to tf). Intuitively, this models the attacker acting on behalf of the as the entire
collective of the t servers, as Auth and Ver are over the entirety of the server responses. Of
course, this also implies integrity when only some of the servers are malicious, and others
are honest.

Distributed Privacy. This property involves the main difference from the single-server
case (see Definition 10), as this time we deal with an attacker who compromised a certain
number tp of the servers, unbeknownst to the users. For simplicity of definition, we will
assume a static attacker — i.e., the tp bad servers are chosen at setup — but we believe
that our results should work for active attackers as well.

For notation, let BAD be this set of compromised servers, so |BAD| ≤ tp. Finally, for
a t-valued vector X = (X1, . . . , Xt), we let X |BAD= ∪i∈BADXi.

Definition 25. Let λ be the security parameter, and let τ = (t, ta, tf , tp). We say that
HELP satisfies ξ-privacy for ξ = negl(λ), if for all subsets BAD ⊆ [t] such that |BAD| ≤ tp,
all unbounded adversaries A with oracle access to {Geni}i∈[t], any value of N , after we run

Init(N, τ, 1λ) to initialize {(Xi, µi)} [and sample a random bit $ 0, 1}, we have

(ℓ, st) ← AGen(X |BAD, N, 1λ); n ← PadLength(ℓ, τ, 1λ);
[t], (σi, yi) ← Geni(n); 1

Pr  b = b I = = {σ }, (z, r) ← Auth(σ, y, τ, 1λ);  ≤ + ξ.
y {y }, σ

I $

r1 ← {0, 1}ℓ; b′ ← AGen(st, σ, z, rb)
9Technically, we can let the attacker interact with all t servers, and dynamically choose the one to

attack. But a simple hybrid argument shows that this definition is easily implied by satisfying t individual
server authentication definitions.

i 0

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 39

i

Essentially, the adversary is assumed to have complete knowledge of all of the tp

compromised servers, including their internal randomness X |BAD.

Remark. For simplicity of exposition, in our privacy definition above we assumed that the
tp compromised servers are acting honestly otherwise. We could have considered them
fully byzantine, by allowing the attacker A to also control the oracle Geni for i ∈ BAD,
used by the challenger to compute the values yi. Indeed, it is not hard to see that our
subsequent scheme in Section 7.3 would satisfy this notion. But we decided to stay with a
simpler-to-define privacy notion instead.

7.3 Distributed HELP Construction

We present our construction of HELP with t servers. At a high level, we will use an SRF to
process the communication with the t servers in order to approximate the communication
of single-server HELP. In this way, the error correcting of SRFs will allow the user to
reconstruct even given ta incorrect server responses and tf failures, and the perfect secrecy
of the SRF will allow us to achieve privacy even when the adversary sees some of the
servers’ communications.

Construction 7.1. For security parameter λ and parameters τ = (t, ta, tf , tp), let SRF =
(Eval, Rec) be a (τ, 2ta + tf , n)-SRF, let Eλ = {EH} be an extractor-hash family with helper
length ℓhelp, and let Mac.Tag : {0, 1}∗ × {0, 1}ℓMAC → {0, 1}ℓtag be a computational MAC.
Then, we will define

HELP = ({Initi, Geni, Repi}i∈[t], PadLength, Auth, Ver)

as so, starting first with the initialization and length:

• Initi(N, τ, 1λ): On input N , set Ñ = N + ℓMAC and sample Xi ← {0, 1}N˜ uniformly
at random. Parse Xi = (ki, Xi,pad), where |k| = ℓMAC. Set µi = (1, N).

• PadLength(ℓ, τ, 1λ): On input (ℓ, τ, 1λ), output n = (ℓ + ℓhelp)/(t − tp − 2ta − tf).

With these in mind, we define how each server accepts and responds to Gen, Rep queries:

• Geni(n): Let µi = (index, N). If index + n > N , return ⊥. Else, define yi =
Xi,pad[index, . . . , index + n − 1]. Set σi = (Mac.Tagk (index, n), index, n). Then,

output (yi, σi) and set µ = (index + n, N).

• Repi(σ) : Parse σ = (tag, index, n). Then, return y˜i = Xi,pad[index, . . . , index + n − 1]

if and only if tag = Mac.Tagk (index, n).

Finally, to parse these queries for pads, we define:

• Auth(σ, y, τ) : On input (σ, y), compute Eval(y) = (zsrf , w) and EH(w) = (zEH, r).
Set z = (zsrf , zEH) and output (z, r).

• Ver(z, y˜, τ) : On input (z, y˜), parse z = (zsrf , zEH). Set w̃ = Rec(y˜, zsrf), and set

(z̃EH , r˜) ← EH(w̃). Output r˜ if and only if zEH = z˜EH .

As mentioned when describing the syntax, we note the above construction is for
ultimately extracting t × ℓ bits of randomness from the servers.

Theorem 7. Let t, tp, tf , ta ∈ N such that t − tp > tf + 2ta, and let λ be the security
parameter. If SRF is a (τ, 2ta + tf , n)-SRF, Eλ is an extractor-hash and Mac.Tag is a
computational MAC, then Construction 7.1 is a distributed HELP.

Proof. Server-Correctness follows from Theorem 2, as Initi, Geni, Repi are unchanged from
the single-server construction. We prove user-correctness, server authentication, user
integrity, and privacy.

i

40 HELP: Everlasting Privacy through Server-Aided Randomness

i

i

j

j
i i

p(λ)

User-Correctness: Let y = (y1, . . . , yt) and y˜ = (y˜1, . . . , y˜t) be arbitrary satisfy-

ing dist(y, y˜) ≤ (ta, tf). By construction, we have that Auth(σ, y, τ) = (z, r) satisfying
Eval(y) = (zsrf , w), EH(w) = (zEH, r), and z = (zsrf , zEH). We also have by construction
that Ver(z, y˜, τ) = r˜ satisfying z = (zsrf , zEH), w̃ = Rec(y˜, zsrf), (z̃EH , r˜) = EH(w̃), and
r = r˜ if and only if zEH = z˜EH .

By the first property of SRF, we have that w̃ = Rec(zsrf , y˜) = w. So, we have that

(z̃EH , r˜) = EH(w̃) = EH(w) = (zEH, r).

We conclude that this implies that Ver(z, y˜, τ) = r˜ = r always.

Server Authentication: Note that server authentication only relies on queries which
are the same as in Construction 4.2. Unsurprisingly, then, the proof here will follow
straightforwardly from as in the single server case. Suppose for some λ, N there exists a
PPT adversary A with oracle access to Geni, Repi, Gen∗ for all i ∈ [t] and some polynomial

p(λ) such that:

Pr
I

Rep (σ∗) ̸= ⊥ I (j, σ∗) ← AGeni,Rep ,Gen∗

(N, 1λ)
1

>
1

,

where σ∗ was not queried by A. We construct B that can forge message authentication
codes for Mac.Tag. At the start, BMac.Tagk will choose a random point i ∈ [t], which will
serve as the server index for which it injects Mac.Tagk. For all points j ∈ [t] \ {i}, B will
act as in the regular challenge, running Initj(N, τ, 1λ) and responding to Genj, Repj, and
Gen∗ queries normally. For server i, though, B will run instead as in the single-server case,
sampling Xpad ← {0, 1}N uniformly at random and setting index = 1. With all this setup
done, B will begin running A, responding to Gen, Rep, Gen∗ queries to servers in [t] \ {i}
normally.

For server i, B will perform essentially as in the reduction proof for single-server
authentication, which we reproduce below (with minor syntactical changes):

• For Geni(n) queries, B will first check if index + n > N . If so, return ⊥ right
away. Otherwise, B queries Mac.Tagk with (index, n), receiving a tag tag. B sets
y = X[index, . . . , index + n − 1] and σ = (tag, index, n), updates index = index + n,
returns and stores (y, σ).

• For Gen∗(n) queries, B completes the same process as above, except that it now
queries/computes Mac.Tagk∗ instead, where k∗ is a MAC key sampled by B itself. B
also only returns y as the response.

• For Rep i(σ̃) queries, B will simply respond with one of the stored y if and only if σ̃
is equal to the corresponding σ stored.

When A completes and outputs (j, σ∗), B aborts if j ̸= i. Otherwise, B parses σ∗ =
(tag, index, n) and outputs that tag is a valid Mac.Tag tag for (index, n).

As argued in the single-server case, B wins the MAC forgery game if A wins the server
authentication game and j = i. Notice that since i is sampled uniformly and independent
from the view of A, j = i with probability 1/t. So if A succeeds with probability
1/p(λ), B would succeed with probability 1/tp(λ), which is more than negligible. Hence,
construction 7.1 satisfies server authentication.

User Integrity: As before, we will rely on the collision resistance property of extractor-
hash to ensure user integrity. Suppose for some λ there exists a PPT adversarial server
ensemble S and some polynomial p(λ) such that

Pr

s

r˜ ∉ {r, ⊥} I
(st, σ, y) ← S(1λ); (z, r) ← Auth(σ, y, τ, 1λ);

y ̃← S(st, z, r); r˜ = Ver(z, y˜, τ)

1

p(λ)
.

L

>

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 41

We will use this to break the collision resistance property of EH as so: To construct A,
simply run S(1λ), receiving (st, σ, y), y˜ from S satisfying (z, r) ← Auth(σ, y, τ, 1λ) and
r˜ = Ver(z, y˜, τ). Now, as A computes and returns Auth(σ, y, τ, 1λ), it parses z = (zsrf , zEH).
Let w = Rec(y, zsrf) and w̃ = Rec(y˜, zsrf). From this, A outputs (w, w̃) .

Notice that since S wins the user integrity game, we have r˜ ∉ {r, ⊥}. This means for
(z̃EH , r˜) ← EH(w̃), we have z˜EH = zEH and r˜ ̸= r, where as (zEH, r) ← EH(w). So (w, w̃)
is indeed a collision for the extractor-hash.

Distributed Privacy: It suffices to show the distribution of b′ is the same for b = 0, 1.
We will prove this via a series of (short) hybrid arguments.

H1 : The game as described above when b = 0. So, A is initially given X |BAD and
outputs (ℓ, st). Then, A is given (z, r0) ← Auth(σ, y, τ, 1λ) alongside st and tag σ and
outputs bit b′. By construction, Auth(σ, y, τ, 1λ) is defined as computing Eval(y) = (zsrf , w)
and EH(w) = (zEH, r), and outputting (z = (zsrf , zEH), r).

H2 : The same game as H1, but replace w with a uniformly sampled w̃ ∼ {0, 1}n.
H3 : The same game as H2, but replace r0 with a uniformly sampled r˜ ∼ {0, 1}ℓ.
H4 : The original game when b = 1.

Note that A is an unbounded adversary, so we need statistical closeness of our hybrids.
We now prove this for each pair.

H1 = H2: This comes directly from the second property of SRFs. That is, by construction
of Init, we see Xi ∼ {0, 1}N for i ∉ BAD. We also have that σ = {σi}i∈[t] is independent
of all Xi (and so all yi), so we have Eval(y) = (zsrf , w) = (zsrf , w̃) as distributions.

H2 ≈ H3: This follows analogously from the proof for single-server privacy that utilizes the
extraction property of EH, with the addition that zsrf can just be sampled independently
as a subroutine.

H3 = H4: Note that in H3 the view of the adversary is now X |BAD, st, σ = {σi}i∈[t],
z = (zsrf , z˜EH), and r˜ ∼ {0, 1}ℓ, where (z̃EH , r˜) = EH(w̃) for w̃ ∼ {0, 1}n. By the same
reasoning as in the first hybrid argument, we may replace w̃ with w as Eval(y) = (zsrf , w)
and consequently switch z˜EH back to zEH . It is clear from this that this is now exactly
distributed as in H4 (the original game).

The compilation of these hybrids shows that the output bit b′ is statistically close in
the game where the input bit b is 0 or 1, so no unbounded adversary can distinguish with
non-negligible advantage.

Extending to Everlasting Privacy. Notice that construction 5.1 for composing with
a message transmission protocol in section 5 works with distributed HELP analogously.
We highlight the key modifications needed below:

• In Definition 16, the adversary A will have access to Geni(·) and Repi(·) queries for
each of the HELP servers, and when C sends a message, it will use the distributed
HELP servers accordingly. Similar to the plain distributed server authentication
definition, A wins if it breaks server authentication of any single server.

• In the proof for Theorem 3, in the reduction for H2, A′ would forward the or-
acle queries to the corresponding server. H2 now reduces to Distributed Server
Authentication instead.

• In Definition 17, the adversarial server S would now have control of all the t HELP

servers, as similar to how distributed user integrity is defined in Definition 24.

42 HELP: Everlasting Privacy through Server-Aided Randomness

• In the proof for Theorem 4, S and S′ now correspond to all the t servers, and the

produced y and σ are now vectors. It now also reduces to Distributed User Integrity
(Definition 24).

• In Definition 18, the first stage adversary A1 will have access to Geni(·) and Repi(·)
queries for each of the HELP servers.

• In the proof for Theorem 5, the BREAK predicates now correspond to breaking server
authentication for any server. The probability of these predicates are thus bounded
by the composed distributed server authentication error.

• In Lemma 2 and the proof of it, use the definition of Distributed Privacy (Definition 25)
instead. The reduction proof should follow by reducing to Distributed Privacy,
accordingly.

References

[ABB+14] Romain Alléaume, Cyril Branciard, Jan Bouda, Thierry Debuisschert,
Mehrdad Dianati, Nicolas Gisin, Mark Godfrey, Philippe Grangier, Thomas
Länger, Norbert Lütkenhaus, et al. Using quantum key distribution for
cryptographic purposes: a survey. Theoretical Computer Science, 560:62–81,
2014. doi:10.1016/j.tcs.2014.09.018.

[ADR02] Y. Aumann, Yan Zong Ding, and M.O. Rabin. Everlasting security in
the bounded storage model. IEEE Transactions on Information Theory,
48(6):1668–1680, 2002. doi:10.1109/TIT.2002.1003845.

[ARML06] Romain Alléaume, François Roueff, Oliver Maurhart, and N Lutkenhaus.
Architecture, security and topology of a global quantum key distribution
network. In 2006 Digest of the LEOS Summer Topical Meetings, pages 38–39.
IEEE, 2006. doi:10.1109/LEOSST.2006.1694006.

[BB14] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key
distribution and coin tossing. Theoretical computer science, 560:7–11, 2014.
doi:10.1016/j.tcs.2014.05.025.

[BCEQ24] Chris Brzuska, Geoffroy Couteau, Christoph Egger, and Willy Quach. On
bounded storage key agreement and one-way functions. In Elette Boyle and
Mohammad Mahmoody, editors, TCC 2024, Part I, volume 15364 of LNCS,
pages 287–318. Springer, Cham, December 2024. doi:10.1007/978-3-031
-78011-0_10.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.
doi:10.1145/62212.62213.

[BMV06] Johannes Buchmann, Alexander May, and Ulrich Vollmer. Perspectives for
cryptographic long-term security. Communications of the ACM, 49(9):50–55,
2006. doi:10.1145/1151030.1151055.

[BPP05] H Bechmann-Pasquinucci and Andrea Pasquinucci. Quantum key distribution
with trusted quantum relay. arXiv preprint quant-ph/0505089, 2005. doi:
10.48550/arXiv.quant-ph/0505089.

https://doi.org/10.1016/j.tcs.2014.09.018
https://doi.org/10.1109/TIT.2002.1003845
https://doi.org/10.1109/LEOSST.2006.1694006
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1007/978-3-031-78011-0_10
https://doi.org/10.1007/978-3-031-78011-0_10
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/1151030.1151055
https://doi.org/10.48550/arXiv.quant-ph/0505089
https://doi.org/10.48550/arXiv.quant-ph/0505089

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 43

[BZG+23] Riccardo Bassi, Qiaolun Zhang, Alberto Gatto, Massimo Tornatore, and
Giacomo Verticale. Quantum key distribution with trusted relay using an etsi-
compliant software-defined controller. In 2023 19th International Conference
on the Design of Reliable Communication Networks (DRCN), pages 1–7. IEEE,
2023. doi:10.1109/DRCN57075.2023.10108347.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. doi:10.1109/SFCS.2001.959888.

[CCH+22] Matthew Campagna, Craig Costello, Basil Hess, Aaron Hutchinson, Amir
Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, et al. Supersingular isogeny key encapsulation, 2022. URL:
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptog
raphy/documents/round-4/submissions/SIKE-spec.pdf.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 423–447. Springer, Cham, April 2023.
doi:10.1007/978-3-031-30589-4_15.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai.
Exposure-resilient functions and all-or-nothing transforms. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 453–469. Springer,
Berlin, Heidelberg, May 2000. doi:10.1007/3-540-45539-6_33.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer,
Berlin, Heidelberg, August 2001. doi:10.1007/3-540-44647-8_2.

[CGH+85] Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich,
and Roman Smolensky. The bit extraction problem or t-resilient functions.
In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 396–407, 1985. doi:10.1109/SFCS.1985.55.

[Che24] Yilei Chen. Quantum algorithms for lattice problems. Cryptology ePrint
Archive, Report 2024/555, 2024. URL: https://eprint.iacr.org/2024/5
55.

[CZL+21] Yuan Cao, Yongli Zhao, Jun Li, Rui Lin, Jie Zhang, and Jiajia Chen. Hybrid
trusted/untrusted relay-based quantum key distribution over optical backbone
networks. IEEE Journal on Selected Areas in Communications, 39(9):2701–
2718, 2021. doi:10.1109/JSAC.2021.3064662.

[Dam89] Ivan Damgård. A design principle for hash functions. In Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume
435 of Lecture Notes in Computer Science, pages 416–427. Springer, 1989.
doi:10.1007/0-387-34805-0_39.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure
message transmission. Journal of the ACM, 40(1):17–47, January 1993.
doi:10.1145/138027.138036.

[DM04] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in
the bounded-storage model. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 126–137. Springer, Berlin,
Heidelberg, May 2004. doi:10.1007/978-3-540-24676-3_8.

https://doi.org/10.1109/DRCN57075.2023.10108347
https://doi.org/10.1109/SFCS.2001.959888
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1109/SFCS.1985.55
https://eprint.iacr.org/2024/555
https://eprint.iacr.org/2024/555
https://doi.org/10.1109/JSAC.2021.3064662
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1145/138027.138036
https://doi.org/10.1007/978-3-540-24676-3_8

44 HELP: Everlasting Privacy through Server-Aided Randomness

[Dod12] Yevgeniy Dodis. Shannon impossibility, revisited. In Adam Smith, editor,

ICITS 12, volume 7412 of LNCS, pages 100–110. Springer, Berlin, Heidelberg,
August 2012. doi:10.1007/978-3-642-32284-6_6.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
In SIAM Journal of Computing, 2008. doi:10.1137/060651380.

[DP08] Yevgeniy Dodis and Prashant Puniya. Getting the best out of existing hash
functions; or what if we are stuck with sha? In Applied Cryptography and
Network Security. ACNS 2008, volume 5037. Springer, 2008. doi:10.1007/
978-3-540-68914-0_10.

[DPP94] Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. On the existence
of statistically hiding bit commitment schemes and fail-stop signatures. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 250–265.
Springer, Berlin, Heidelberg, August 1994. doi:10.1007/3-540-48329-2_2
2.

[DQW23] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember
little: Cryptography in the bounded storage model, revisited. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part I, volume 14004
of LNCS, pages 86–116. Springer, Cham, April 2023. doi:10.1007/978-3-0
31-30545-0_4.

[DR02] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting
security. In Proceedings of the 19th Annual Symposium on Theoretical As-
pects of Computer Science, STACS ’02, page 1–26, Berlin, Heidelberg, 2002.
Springer-Verlag. doi:10.1007/3-540-45841-7_1.

[DY21] Yevgeniy Dodis and Kevin Yeo. Doubly-affine extractors, and their appli-
cations. In Stefano Tessaro, editor, ITC 2021, volume 199 of LIPIcs, pages
13:1–13:23. Schloss Dagstuhl, July 2021. doi:10.4230/LIPIcs.ITC.2021.13.

[Dzi06] Stefan Dziembowski. On forward-secure storage (extended abstract). In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 251–270.
Springer, Berlin, Heidelberg, August 2006. doi:10.1007/11818175_15.

[Ell02] Chip Elliott. Building the quantum network. New Journal of Physics, 4(1):46,
2002. doi:10.1088/1367-2630/4/1/346.

[FJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol.,
8(3):209–247, 2014. doi:10.1515/jmc-2012-0015.

[FYLW+22] Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong
He, Wei Chen, Zheng Zhou, Ze-Hao Wang, Jun Teng, Guang-Can Guo, et al.
Robust and adaptable quantum key distribution network without trusted
nodes. Optica, 9(7):812–823, 2022. doi:10.1364/OPTICA.458937.

[GN94] Peter Gemmell and Moni Naor. Codes for interactive authentication. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 355–367.
Springer, Berlin, Heidelberg, August 1994. doi:10.1007/3-540-48329-2_3
0.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In 28th ACM STOC, pages 212–219. ACM Press, May 1996. doi:10.1145/
237814.237866.

https://doi.org/10.1007/978-3-642-32284-6_6
https://doi.org/10.1137/060651380
https://doi.org/10.1007/978-3-540-68914-0_10
https://doi.org/10.1007/978-3-540-68914-0_10
https://doi.org/10.1007/3-540-48329-2_22
https://doi.org/10.1007/3-540-48329-2_22
https://doi.org/10.1007/978-3-031-30545-0_4
https://doi.org/10.1007/978-3-031-30545-0_4
https://doi.org/10.1007/3-540-45841-7_1
https://doi.org/10.4230/LIPIcs.ITC.2021.13
https://doi.org/10.1007/11818175_15
https://doi.org/10.1088/1367-2630/4/1/346
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1364/OPTICA.458937
https://doi.org/10.1007/3-540-48329-2_30
https://doi.org/10.1007/3-540-48329-2_30
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

Yevgeniy Dodis, Jiaxin Guan, Peter Hall, Alison Lin 45

[GWZ22] Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Incompressible cryptography.

In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 700–730. Springer, Cham, May / June
2022. doi:10.1007/978-3-031-06944-4_24.

[GWZ23] Jiaxin Guan, Daniel Wichs, and Mark Zhandry. Multi-instance randomness
extraction and security against bounded-storage mass surveillance. In Guy N.
Rothblum and Hoeteck Wee, editors, TCC 2023, Part III, volume 14371 of
LNCS, pages 93–122. Springer, Cham, November / December 2023. doi:
10.1007/978-3-031-48621-0_4.

[GZ21] Jiaxin Guan and Mark Zhandry. Disappearing cryptography in the bounded
storage model. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II,
volume 13043 of LNCS, pages 365–396. Springer, Cham, November 2021.
doi:10.1007/978-3-030-90453-1_13.

[HJR06] K. Harmon, S. Johnson, and L. Reyzin. An implementation of syndrome
encoding and decoding for binary bch codes, secure sketches and fuzzy
extractors, 2006. URL: https://www.cs.bu.edu/~reyzin/code/fuzzy.h
tml.

[HN06] Danny Harnik and Moni Naor. On everlasting security in the hybrid bounded
storage model. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 192–203.
Springer, Berlin, Heidelberg, July 2006. doi:10.1007/11787006_17.

[HNH13] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice:
Algorithmic engineering of a state of the art cardinality estimation algorithm.
In Proceedings of the 16th International Conference on Extending Database
Technology, pages 683–692, 2013. doi:10.1145/2452376.2452456.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random
generation from one-way functions (extended abstracts). In 21st ACM STOC,
pages 12–24. ACM Press, May 1989. doi:10.1145/73007.73009.

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In PQCrypto, volume 7071 of LNCS,
pages 19–34. Springer, 2011. doi:10.1007/978-3-642-25405-5_2.

[LBD07a] Quoc-Cuong Le, Patrick Bellot, and Akim Demaille. On the security
of quantum networks: a proposal framework and its capacity. In New
Technologies, Mobility and Security, pages 385–396. Springer, 2007. doi:
10.1007/978-1-4020-6270-4_32.

[LBD07b] Quoc-Cuong Le, Patrick Bellot, and Akim Demaille. Stochastic routing in
large grid-shaped quantum networks. In 2007 IEEE International Conference
on Research, Innovation and Vision for the Future, pages 166–174. IEEE,
2007. doi:10.1109/RIVF.2007.369152.

[LBD08] Quoc-Cuong Le, Patrick Bellot, and Akim Demaille. Towards the world-
wide quantum network. In International Conference on Information Security
Practice and Experience, pages 218–232. Springer, 2008. doi:10.1007/97
8-3-540-79104-1_16.

[Mau92] Ueli M. Maurer. A universal statistical test for random bit generators. Journal
of Cryptology, 5(2):89–105, January 1992. doi:10.1007/BF00193563.

https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-031-48621-0_4
https://doi.org/10.1007/978-3-031-48621-0_4
https://doi.org/10.1007/978-3-030-90453-1_13
https://www.cs.bu.edu/~reyzin/code/fuzzy.html
https://www.cs.bu.edu/~reyzin/code/fuzzy.html
https://doi.org/10.1007/11787006_17
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/73007.73009
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-1-4020-6270-4_32
https://doi.org/10.1007/978-1-4020-6270-4_32
https://doi.org/10.1109/RIVF.2007.369152
https://doi.org/10.1007/978-3-540-79104-1_16
https://doi.org/10.1007/978-3-540-79104-1_16
https://doi.org/10.1007/BF00193563

46 HELP: Everlasting Privacy through Server-Aided Randomness

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In Car-
mit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, vol-
ume 14008 of LNCS, pages 448–471. Springer, Cham, April 2023. doi:
10.1007/978-3-031-30589-4_16.

[MU10] Jörn Müller-Quade and Dominique Unruh. Long-term security and universal
composability. Journal of Cryptology, 23(4):594–671, October 2010. doi:
10.1007/s00145-010-9068-8.

[MVZJ18] Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun Jøsang. The
impact of quantum computing on present cryptography. International Journal
of Advanced Computer Science and Applications (IJACSA), 9(3):405–414,
2018. doi:10.14569/IJACSA.2018.090354.

[MW24] Giulio Malavolta and Michael Walter. Robust quantum public-key encryption
with applications to quantum key distribution. In Leonid Reyzin and Douglas
Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 126–
151. Springer, Cham, August 2024. doi:10.1007/978-3-031-68394-7_5.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43–52, 1996. doi:10.1006/jcss.1
996.0004.

[Rab05] Michael O Rabin. Provably unbreakable hyper-encryption in the limited
access model. In IEEE Information Theory Workshop on Theory and Practice
in Information-Theoretic Security, 2005., pages 34–37. IEEE, 2005. doi:
10.1109/ITWTPI.2005.1543953.

[Reg10] Oded Regev. The learning with errors problem. In 25th Annual IEEE
Conference on Computational Complexity, CCC 2010, pages 191–204, 2010.
doi:10.1109/CCC.2010.26.

[Ren08] Renato Renner. Security of quantum key distribution. International Journal
of Quantum Information, 6(01):1–127, 2008. doi:10.1142/S0219749908003
256.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, 1960. doi:10.1137/0108018.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. The Bell
system technical journal, 28(4):656–715, 1949. doi:10.1002/j.1538-7305.
1949.tb00928.x.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994. doi:10.1109/SFCS.1994.365700.

[VM24] Nilesh Vyas and Paulo Mendes. Relaxing trust assumptions on quantum
key distribution networks. arXiv preprint arXiv:2402.13136, 2024. doi:
10.48550/arXiv.2402.13136.

https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/s00145-010-9068-8
https://doi.org/10.1007/s00145-010-9068-8
https://doi.org/10.14569/IJACSA.2018.090354
https://doi.org/10.1007/978-3-031-68394-7_5
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1109/ITWTPI.2005.1543953
https://doi.org/10.1109/ITWTPI.2005.1543953
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1142/S0219749908003256
https://doi.org/10.1142/S0219749908003256
https://doi.org/10.1137/0108018
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.48550/arXiv.2402.13136
https://doi.org/10.48550/arXiv.2402.13136

