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Vanishing lines in chromatic homotopy theory
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We show that at the prime 2, for any height /2 and any finite subgroup G C Gy, of the Morava stabilizer
group, the RO(G)-graded homotopy fixed point spectral sequence for the Lubin—Tate spectrum E} has
a strong horizontal vanishing line of filtration N ¢, a specific number depending on /z and G. It is a
consequence of the nilpotence theorem that such homotopy fixed point spectral sequences all admit strong
horizontal vanishing lines at some finite filtration. Here, we establish specific bounds for them. Our
bounds are sharp for all the known computations of E Z’G.

Our approach involves investigating the effect of the Hill-Hopkins—Ravenel norm functor on the slice dif-
ferentials. As a result, we also show that the RO(G)-graded slice spectral sequence for (X, CG2 v;,) "' BP(®)
shares the same horizontal vanishing line at filtration Ny . As an application, we utilize this vanishing
line to establish a bound on the orientation order ® (%, G), the smallest number such that the ® (%, G)-fold
direct sum of any real vector bundle is £ ZG—orientable.
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1 Introduction

1.1 Motivation and main theorem

Chromatic homotopy theory originated with Quillen’s groundbreaking observation [1969] of the relation-
ship between the homotopy groups of the complex cobordism spectrum and the Lazard ring. Subsequently,
the work of Miller, Ravenel and Wilson [Miller et al. 1977] on periodic phenomena in the stable homotopy
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904 Zhipeng Duan, Guchuan Li and XiaoLin Danny Shi

groups of spheres and Ravenel’s conjectures gave rise to what is now called the chromatic point of view.
This approach is a powerful tool for studying periodic phenomena in the stable homotopy category by
analyzing the algebraic geometry of smooth one-parameter formal groups. The moduli stack of formal
groups has a stratification by height, and this stratification serves as an organizing framework for exploring
large-scale phenomena in stable homotopy theory.

Consider the Lubin-Tate spectrum E (k, I},) associated with a formal group law I}, of height 4 > 1 over
a finite field k of characteristic p. Up to an étale extension, these theories depend only on the height.
For the sake of clarity, we will implicitly choose a formal group law I, defined over I, (ie the height-/
Honda formal group law) and a field k, and write E;, = E(k, I},).

The chromatic convergence theorem of Hopkins and Ravenel [1992] shows that the p-local sphere
spectrum S (Op) is the homotopy inverse limit of the chromatic tower

---—>LEhSO—>~--—>LE1S0—>LEOSO.

At each stage of this tower, Lg, S 0 is the Bousfield localization of the sphere spectrum with respect
to Ej. These localizations can be inductively computed via the chromatic fracture square, which is the

homotopy pullback square
LEhSO EE— LK(;,)SO

! |

Lg,,S® — Lg,_ LkwS°
Here, K(h) is the height-4 Morava K-theory and L g )S 0 is the K(/)-local sphere.

Let S, = Autg (I},), and define G, = Sy, x Gal(k/IFp) to be the (big) Morava stabilizer group. The
continuous action of Gy, on w4« E}, can be refined to a unique Eqo-action of Gy on Ej; see [Rezk 1998;
Goerss and Hopkins 2004; Lurie 2018]. Devinatz and Hopkins [2004] showed that L g)S 0~ EZGh.
Furthermore, the K(/)-local Ej-based Adams spectral sequence for L g 1) S 0 can be identified with the
Gp-homotopy fixed point spectral sequence for Ej:

%;’t = HCS(Gh, JTtEh) = JTt_sLK(h)SO.

Henn [2007] proposed that the K(/)-local sphere L g )S 0 can be built up from spectra of the form E gG,
where G is a finite subgroup of G. This construction has been explicitly realized at heights 1 and 2; see
[Goerss et al. 2005; Henn 2007; Beaudry 2015; Bobkova and Goerss 2018; Henn 2019].

From this point of view, the spectra £ 2G serve as the fundamental building blocks of the p-local stable
homotopy category. The homotopy groups 7w« E ZG also play a crucial role in detecting important families
of elements in the stable homotopy groups of spheres [Ravenel 1978; Hill et al. 2016; Li et al. 2019;
Behrens et al. 2023]. Computation of these homotopy groups and understanding their Hurewicz images
are central topics in chromatic homotopy theory.
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Vanishing lines in chromatic homotopy theory 905

In this paper, we focus our attention at the prime p = 2. Historically, describing the explicit action of Gy,
on Ej has been challenging. This limited our computations to heights 1 and 2 until the recent equivariant
computational techniques introduced by Hill, Hopkins, and Ravenel [Hill et al. 2016] (norms of Real
bordism and the equivariant slice spectral sequence) and by Hahn and Shi [2020] (Real orientation).
These new techniques allowed us to compute EZCz for all heights 2 > 1 [Hahn and Shi 2020] and E fc“

at height 4 [Hill et al. 2023].

The finite subgroups of Sy, and G, have been classified by Hewett [1995; 1999] and Bujard [2012]. To
summarize this classification at the prime 2, let & = 2"~ 1 where m is an odd number. If n # 2, the
maximal finite 2-subgroups of Sy, are isomorphic to Cyx, the cyclic group of order 2. When n = 2, the
maximal finite 2-subgroups of Sy, are isomorphic to the quaternion group Qg. Furthermore, the group Gy,
contains a subgroup of order two, corresponding to the automorphism [—1]r;, (x) of Ij,. This C,-subgroup
is central in Gy,. All the finite subgroups G C Gj we consider in this paper will contain this central
C,-subgroup.

To state our main result, note that based on the classification provided above, for any G C Gy, a finite
subgroup, a 2-Sylow subgroup H of G N Sy, is isomorphic to either Cyn or QOg.

Definition 1.1 For /> 0 and G C Gy, a finite subgroup, let H be a 2-Sylow subgroup of K = G N Sy,.
Define N, g to be the positive integer Ny, g, where

Nhcon 1= 2h*tm_o" 41 and Ni,gg = 237,
The main result of this paper is the following:

Theorem A (horizontal vanishing line) For any height h and any finite subgroup G C Gy, there is a
strong horizontal vanishing line of filtration Ny ¢ in the RO(G)-graded homotopy fixed point spectral
sequence for Ej,.

Recall that having a strong horizontal vanishing line of filtration N, ¢ means that the spectral sequence
collapses after the €, -page, with no surviving elements of filtration greater than or equal to N, ¢ at
the €~o-page.

The motivation behind Theorem A is as follows: classically, the nilpotence theorem of Devinatz, Hopkins
and Smith [Devinatz et al. 1988; Hopkins and Smith 1998] ensures that the homotopy fixed point spectral
sequences of the Lubin-Tate theories E, all have strong horizontal vanishing lines at some finite filtration;
see [Devinatz and Hopkins 2004, Section 5] and [Beaudry et al. 2022, Section 2.3]. While theoretically
valuable, this existence result alone cannot be used for computations. Without knowledge of the specific
location of the vanishing line, it cannot aid in proving specific differentials.

The recent computations by Hill, Shi, Wang and Xu [Hill et al. 2023] have demonstrated the utility of
having a bound for the strong horizontal vanishing line in equivariant computations of Lubin—Tate theories.

Geometry & Topology, Volume 29 (2025)
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In their work, they first reanalyzed the slice spectral sequence for BP((C“))(I) (a connective model of E,
with a C4-action), and established a horizontal vanishing line of filtration 16. They also proved [Hill et al.
2023, Theorem 3.17] that every class on or above this line must vanish on or before the €;3-page. This
result allowed them to provide a more concise proof of all the Hill-Hopkins—Ravenel slice differentials
presented in [Hill et al. 2017].

In the subsequent case, when studying the slice spectral sequence for Bp(Ca) (2) (a connective model of
E 4 with a Cy4-action), a similar phenomenon was observed. There exists a horizontal vanishing line at
filtration 96, and every class situated on or above this line must vanish on or before the €¢1-page. This
theorem is referred to as the vanishing theorem [Hill et al. 2023, Theorem 9.2], and it serves as a crucial
tool in establishing many of the higher slice differentials.

The strong vanishing lines established in Theorem A will significantly facilitate future computations
involving Lubin—-Tate theories and norms of Real bordism theories.

1.2 Main results and outline of the paper

We will now give a more detailed summary of our results and describe the contents of this paper.

In Section 2, we recall some basic facts of our spectral sequences of interest. The classical Tate diagram
induces a Tate diagram of spectral sequences

HOSS(X) — SliceSS(X) — LSliceSS(X)

| | |

HOSS(X) —— HFPSS(X) —— TateSS(X)
The interactions between these spectral sequences will be crucial for proving our main theorem.

We will also recall the spectrum BPU®) s slice filtration, and some special classes on the €,-page of
its slice spectral sequence. We prove all the differentials in the C,-slice spectral sequence for i éZBP((G))
when G = Cyn and Qg (Theorem 2.3). While not stated elsewhere, this is a straightforward consequence
of [Hill et al. 2016, Theorem 9.9].

In Section 3, we prove comparison theorems between the slice spectral sequence, the homotopy fixed
point spectral sequence, and the Tate spectral sequence. These comparisons are based on the maps

SliceSS(X) — HFPSS(X) — TateSS(X)

extracted from the Tate diagram of spectral sequences above. It is worth noting that prior works by
Ullman [2013] and Bockstedt and Madsen [1994] have shown that both maps induce isomorphisms within
specific ranges in the integer-graded spectral sequence. For our purposes, we extend these isomorphism
regions to the RO(G)-graded pages.

Geometry & Topology, Volume 29 (2025)
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Theorem B (Definition 3.1 and Theorem 3.3) For V € RO(G), let
t(V):= min |H|-dimV¥H,
{eySHCG
The map from the RO(G)-graded slice spectral sequence to the RO(G)-graded homotopy fixed point
spectral sequence induces an isomorphism on the €,-page for pairs (V, s) that satisty the inequality

(V—-s=1)>|V]|.
This map induces a one-to-one correspondence between the differentials within this isomorphism region.

The proof of Theorem B relies on the main result of Hill and Yarnall [2018, Theorem A], which
establishes a relationship between the slice connectivity of an equivariant spectrum and the connectivity
of its geometric fixed points.

As for the map from the homotopy fixed point spectral sequence to the Tate spectral sequence, the classical
analysis almost generalizes immediately to give an RO(G)-graded isomorphism region.

Theorem C (Theorem 3.6) The map from the RO(G)-graded homotopy fixed point spectral sequence to
the RO(G)-graded Tate spectral sequence induces an isomorphism on the €,-page for classes in filtrations
s > 0, and a surjection for classes in filtration s = 0. Furthermore, there is a one-to-one correspondence
between differentials whose sources are of nonnegative filtration.

In Section 4, we give a brief summary of the norm structure in equivariant spectral sequences. This structure
plays a pivotal role in deducing the fate of specific classes in the G-equivariant spectral sequence based
on information from the H-equivariant spectral sequence, where H C G is a subgroup (Proposition 4.1).

In Section 5, we analyze the Tate spectral sequence for E} and prove the following theorem.

Theorem D (Tate vanishing, Theorem 5.1) For any height h and any finite subgroup G C Gy, all the
classes in the RO(G)-graded Tate spectral sequence for E}, vanish after the €y, -page. Here, Ny g is
defined as in Definition 1.1.

Note that at any prime p, Mathew and Meier [2015, Example 6.2] have shown that the map £ Z’G — Ej is
a faithful G-Galois extension whenever G C Gy, is a finite subgroup. This implies that the Tate spectrum
E ;lG is contractible [Rognes 2008, Proposition 6.3.3]. Consequently, all the classes in the Tate spectral
sequence for Ej must eventually vanish. Theorem D provides a concrete bound for the page number at
which this vanishing occurs when p = 2.

To prove Theorem D, we use the G-equivariant orientation from BP(@) o E ., as given by [Hahn and
Shi 2020]. This orientation map factors through (N, gz Uh)_lBP«G»:

Bp@ . F,

|

(N& op)~'BP(Y

Geometry & Topology, Volume 29 (2025)
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This induces a map of the corresponding Tate spectral sequences:
G- TateSS((N& v3) ' BP(®Y) — G- TateSS(E),).

Equipped with the results of the previous sections, we first transport the differentials from the C,-slice
spectral sequence for i ’C'iz (N, gz Uh)_lBP((G» to the C,-Tate spectral sequence for i éz (Ng2 Eh)_lBP((G))
using the one-to-one correspondences established in Section 3. We then use the norm structure to deduce
that the unit class in the G-Tate spectral sequence for (Ng2 Uh)_lBP((G)) must be killed on or before
the €, ;-page. By naturality, the unit class in the G'-Tate spectral sequence for Ej; must also be killed
on or before the €y, ;-page. This leads to the vanishing of all other classes beyond this point by the
multiplicative structure.

Our proof of Theorem D applies in general to give a similar vanishing theorem for any (NCG2 v,) "' BPUG).
module.

Corollary 1.2 (Remark 5.4) Let M be an (NS 54)~'BPY“)-module. All the classes in the RO(G)-
graded Tate spectral sequence for M vanish after the €y, . -page.

In Section 6, we analyze the homotopy fixed point spectral sequence for Ej; and prove Theorem A
(Theorem 6.1). The proof of Theorem A is by using the comparison theorem (Theorem C) between
the homotopy fixed point spectral sequence and the Tate spectral sequence, combined with the Tate
vanishing theorem (Theorem D) in the Tate spectral sequence. Our proof also applies to show that
the same strong horizontal vanishing line exists in the homotopy fixed point spectral sequence for any
(NCGZUh)_lBP((G))—module.

Corollary 1.3 (Corollary 6.3) For any (NCG2 Eh)_lBP«G)) -module M, there is a strong horizontal
vanishing line of filtration Ny, ¢ in the RO(G)-graded homotopy fixed point spectral sequence for M.

Corollary 1.4 (uniform vanishing, Corollary 6.4) For any K(h)-local finite spectrum Z, the homotopy

fixed point spectral sequence
HY(G,E;Z) = m—s(E" A Z)

has a strong horizontal vanishing line of filtration Ny, ¢ .
In Section 7, we prove the existence of horizontal vanishing lines in the slice spectral sequence.

Theorem E (Theorem 7.1) When G = Cyn or Qg, the RO(G)-graded slice spectral sequence for any
(Ng2 ) " BPUG) _module M admits a horizontal vanishing line of filtration Np.G-

In particular, Theorem E implies that there will be a horizontal vanishing line of filtration 121 in the
Cg-slice spectral sequence for 2p, the detection spectrum of Hill, Hopkins and Ravenel [Hill et al. 2016]
that detects all the Kervaire invariant-one elements.

It is interesting to note that when G = Qg, even though there is no knowledge of the slice filtration of
Bp(@s) yet, Theorem E still applies to show that the slice spectral sequences of (NCQ28 ﬁh)_lBP((Qg))—
modules all have horizontal vanishing lines of filtration Ny .

Geometry & Topology, Volume 29 (2025)
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Finally, in Section 8, we present an application of Theorem A in the study of E;:G-orientations of
real vector bundles. For 4 > 1 and G € Gy, a finite subgroup, let ® (%, G) be the smallest number d
such that the d-fold direct sum of any real vector bundle is £ gG—orientable. At the prime p =2 and
G = (5, Kitchloo and Wilson [2015] have studied EZCZ-orientations. When G = C,, Bhattacharya and

Chatham [2022] have studied Ezgf_l)—orientations at all primes.

Theorem F (Theorem 8.4) For any height h and any finite subgroup G C Gy, let K = G NSy, H be a
2-Sylow subgroup of K, and define d = 2-|K|-|H|™n.z=D/2 Then the d-fold direct sum of any real
vector bundle is E ;I’G -orientable.

1.3 Open questions and further directions

Sharpness of the strong horizontal vanishing lines For all known computations, the bounds established
in Theorem A for the strong horizontal vanishing lines are sharp when the 2-Sylow subgroup of K = G NSy,
is cyclic. More specifically, when G = Cj, the strong horizontal vanishing line in the homotopy fixed
point spectral sequence for EZCZ is at filtration exactly 2"+l _ 1. When G = Cy, the strong horizontal
vanishing lines in the homotopy fixed point spectral sequences for E ézC4 and £ ZC“ are at filtrations

exactly 13 and 61.

When the 2-Sylow subgroup of K is isomorphic to g, Bauer’s computation [2008] of tmf implies
that the strong horizontal vanishing line in the Qg-homotopy fixed point spectral sequence for E; is at
filtration 23. This value is lower than the bound provided by our theorem, which is 25. In [Duan et al.
2024], the value Ny g, has been further reduced from 2813 —7 10 2A*3 _ 9. Theorem A, combined with
this new improvement, yields the sharpest bounds for the strong horizontal vanishing lines across all
known computations.

Conjecture 1.5 The bounds established in Theorem A for the strong horizontal vanishing lines are sharp.

Devinatz and Hopkins [2004] have also proved that for the big Morava stabilizer group Gy, the homotopy
fixed point spectral sequence for EZG” admits a strong vanishing line at some finite filtration.

Conjecture 1.6 The homotopy fixed point spectral sequence for EZG” admits a strong vanishing line at
filtration (h*> + N), where N := max{Ny ¢ | G C Gy, finite}.

An intuitive reason for the bound (A% + N) in Conjecture 1.6 is as follows: by the philosophy of finite
resolutions, there should be a resolution of E;’Gh built from the finite fixed points { £ ZG | G C Gy, finite},
and this resolution should have length /22 because this number is the virtual cohomological dimension
of S;. Analyzing the associated tower of spectral sequences produces the conjectural bound.

Odd primes

Question 1.7 At odd primes, what is the filtration of the strong horizontal vanishing line in the homotopy
fixed point spectral sequence for E ZG ?

Geometry & Topology, Volume 29 (2025)
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Note that, as a consequence of the classification of finite subgroups of Sj at odd primes [Hewett 1995],
when 4 = p"~1(p — 1)m, there is a cyclic subgroup of order p” in Sj. The authors believe that once
a comprehensive understanding of the C,-homotopy fixed point spectral sequence for E}, is achieved,
the arguments presented in this paper can be employed analogously to establish a bound for the strong
horizontal vanishing line in HFPSS(£ ,}Z’G) that is applicable to any height /4 and any finite subgroup
G C Gy, containing C,.

Horizontal vanishing lines for connective theories When G = C,n, the Hill-Hopkins—Ravenel quotient
(Ng2 Uh)_lBP((CZ”)) (m) is an (Ng2 ﬁh)_lBP((CZ” ))_module, and there is a horizontal vanishing line in
its RO(C,n)-graded slice spectral sequence at filtration Ny, c,, by Theorem E.

However, without inverting the class (N, CG2 vy,), there is no horizontal vanishing line in the RO(C5» )-graded
slice spectral sequence for the connective theory Bp(C21) (m). This is because we have elements of
arbitrarily high filtrations on the €,,-page. For example, the tower {alg | £ = 1} contains classes of
arbitrarily high filtrations that survive to the €,-page.

Interestingly, computations of tmf, BPg (1), BP(C4) (1), and BP(C4) (2) suggest the presence of hori-
zontal vanishing lines in the integer-graded slice spectral sequence for the connective theories [Bauer
2008; Hu and Kriz 2001; Hill et al. 2017; 2023], with filtrations matching the filtrations for the vanishing
lines of the periodic theories.

Conjecture 1.8 There is a horizontal vanishing line of filtration Ny c,, in the integer-graded slice
spectral sequence for Bp(C21) (m).
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2 Preliminaries

In this section, we will discuss the spectral sequences that are of interest to us. We will also collect certain
facts about these spectral sequences that we will need in the later sections.
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Let X be a G-spectrum, and let P*X be the slice tower of X. The Tate diagram

EGLAX X EGAX
EG{AF(EGy,X) —— F(EG4,X) —— EGAF(EG4,X)
induces a diagram of towers

EGyAPX —— s PX—— LEGAP'X

I | |

EG4 AF(EGy,P*X) — F(EG4, P*X) — EG A F(EG4, P*X)
This diagram of towers further induces a Tate diagram of spectral sequences

HOSS(X) —— SliceSS(XX') —— LSliceSS(X)

k]

HOSS(X) —— HFPSS(X) & TateSS(X)

All the spectral sequences in (2-1) are RO(G)-graded spectral sequences. We pause to briefly discuss
notation:

(1) The spectral sequence associated with the tower { EG4+ A P* X} is the homotopy orbit spectral
sequence (HOSS) of X. It is a third and fourth quadrant spectral sequence, and it converges to
w+EG4 A X. In the integer-graded page at the (G/ G)-level, the spectral sequence converges to
S EGL AN X =1 Xy

(2) The spectral sequence associated with the tower { P* X'} is the slice spectral sequence (SliceSS)
of X. Itis a first and third quadrant spectral sequence, and it converges to m . X . In the integer
graded page at the (G/G)-level, the spectral sequence converges to nf X =m.XO.

(3) Following the treatment of [Meier et al. 2023], the spectral sequence associated with the tower
{E G A P* X} is called the localized slice spectral sequence for X and is denoted by LSliceSS(X).
It converges to E*E GAX.

(4) The spectral sequence associated with the tower { F(EG4, P*X)} is the homotopy fixed point
spectral sequence (HFPSS) of X. It is a first and second quadrant spectral sequence, and it
converges to 7, F(EG4+, X). In the integer-graded page at the (G/G)-level, the spectral sequence
converges to 718 F(EG4, X) = s XhG.

(5) The spectral sequence associated with the tower {E G A F(EG4, P*X)} is the Tate spectral
sequence (TateSS) of X. It has classes in all four quadrants, and converges to Z*E GAF(EG4, X).
In the integer-graded page at the (G/G)-level, the spectral sequence converges to

7CEGAF(EGy, X)=m X',
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Let p, denote the regular C,-representation. In [Beaudry et al. 2021], it is shown that there are generators

e n(C;_l)pZBP“Cz")) such that 752 BPUC2) = 7,5 [Con -1y, Con - 12, ... ].

For a precise definition of these generators, see formula (1.3) in [Beaudry et al. 2021] (also see [Hill et al.
2016, Section 5] for analogous generators in n*c szU((CZ" ))). For BPR, we will denote the 7;-generators
as v;, as their restrictions give a set of generators v; € 7, (,i_1)BP for 7« BP.

Similar to the treatment of MU€2") in [Hill et al. 2016], we can build an equivariant refinement
SO[Con 71, Con - T . . .] — BPUC21)

from which we can apply the slice theorem [Hill et al. 2016, Theorem 6.1] to show that the slice associated
graded of BP(€2) is the graded spectrum

HZ[Czn -t_l,Czn -t_2, . ]

Here, the degree of a summand corresponding to a monomial in the 7;-generators and their conjugates is
the underlying degree.

As a consequence, the slice spectral sequence for the RO(Cyn)-graded homotopy groups of Bp(C2)
has €,-term the RO(C5n)-graded homotopy of HZ[Cyn -1y, Cayn - 15, ...]. To compute this, note that
SO[Cyn -11,Cyn -1, ...] can be decomposed into a wedge sum of slice cells of the form

C2"+ NH, S(lpl/alDﬂHp ’

where p ranges over a set of representatives for the orbits of monomials in the y/7;-generators, and
H), C Cyn is the stabilizer of p (mod 2). Therefore, it suffices to compute the equivariant homology
groups of the representations spheres SUPI/THpDPHY with coefficients in the constant Mackey functor Z.

We recall some distinguished elements in the RO(G)-graded homotopy groups that we will need in
order to name the relevant classes on the €,-page of the slice spectral sequence; see [Hill et al. 2016,
Section 3.4; 2023, Section 2.2].

Definition 2.1 Let V be a G-representation. We will use ay: S® — SV to denote its Euler class. This
is an element in anS 0. We will also denote its Hurewicz image in n_GVH Z by ay.

If the representation V' has nontrivial fixed points (ie V¢ # {0}), then apr = 0. Moreover, for any two
G-representations V' and W, we have the relation apgw = apaw in an_W(S 0).

Definition 2.2 Let V' be an oriented G-representation. Then the orientation for V' gives an isomorphism
H|CI;/| (SV:Z) =~ Z. In particular, the restriction map

HE (S”.2) — Hy (", z)

is an isomorphism. Let uy € HI?/‘(SV; Z) be the generator that maps to 1 under this restriction isomor-
phism. The class uy is called the orientation class of V.

Geometry & Topology, Volume 29 (2025)
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The orientation class u is stable in V. More precisely, if 1 is the trivial representation, then uy g, = uy.
Moreover, if V and W are two oriented G-representations, then V' @ W is also oriented, and up gy =
Uyiuw.

The Euler class ap and the orientation class uy behave well with respect to the Hill-Hopkins—Ravenel
norm functor. More precisely, for H C G a subgroup and V' a H-representation, we have the equalities

(2-2) Ng(ay) = amay.
(2-3) AT T 2
where Ind V = Indg V is the induced representation.

When G = Cyn, let Aj, 1 <i < n denote the 2-dimensional real C,»-representation corresponding to
rotation by (277/2%). In particular, when i = 1, the representation A; corresponds to rotation by 7 and
thus equals to 20, where o is the real sign representation of Cp». When localized at 2, the representations
that will be relevant to us are 1,0, Ay, A3, ..., Ay,

When G = Qg, we have RO(Qg) = Z{1, 0;, 0,01, H}. The representations o;, oj, and o} are one-
dimensional representations whose kernels are (i), (/) and (k), respectively. The representation H is
a four-dimensional irreducible representation, obtained by the action of Qg on the quaternion algebra
H =R & Ri ®R;j &Rk by left multiplication.

Forh>1,letv, en BP(©) denote the images of vj-generators under the map

C
2"—1)p2
BPg — i¢ BP(®),

which is inclusion into the first factor. The following theorem describes all the differentials in the slice
spectral sequence for i aBP«G».

Theorem 2.3 Let G = Cyn or Qg. In the Cy-slice spectral sequence for i éZBP((G)), the differentials are
generated under multiplicative structures by the differentials

d2h+1_1(u§z,;1) = Uha(ZIZH_I for h > 1.
Proof When G = (5, the claim is immediate from the slice differential theorem of Hill, Hopkins and
Ravenel [Hill et al. 2016, Theorem 9.9]. When G is Cy» or Qg for n > 2, the C,-restriction of Bp(@)
is a smash product of (]G|/2)-copies of BPgr. In this case, we have a complete understanding of its
C,-slices and the €,-page of its C,-slice spectral sequence.

The unit map BPR — i éZBP((G)) induces a map
(2-4) SliceSS(BPR) — SliceSS(i&; BP())

of C,-slice spectral sequences. We will proceed by using induction on /. For the base case, when /1 = 1,
we have the d3-differential
d3(u2s,) = D14,
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in SliceSS(BPR). Under the map (2-4), the source is mapped to 1,4, and the target is mapped to v; af, 5

3

By naturality, vja;,

must be killed by a differential of length at most 3. Since the lowest possible
differential length is 3 by degree reasons, the d3-differential

d3(uzg,) = 5161?,2

must occur in SliceSS (i ézBP((G»). Multiplying this differential by permanent cycles determines the rest
of the d;-differentials. For degree reasons, these are all the d5-differentials.

Suppose now that the induction hypothesis holds for all 1 < k < h — 1. For degree reasons, after the
d,n_,-differentials, the next possible differential is of length d,n+1_;. In SliceSS(BPR), consider the
differential
h—1 _ h+1_
d2h+1_1(“%02 ) = ag.z 1.
The map (2-4) sends both the source and the target of this differential to nonzero classes of the same name
in SliceSS(i EZBP((G))). By naturality, the image of the target, v, af,zﬂ_l, must be killed by a differential
of length at most 2h+1 _ 1. For degree reasons, it is impossible for this class to be killed by a differential
of length smaller than 2h+1 _ 1. It follows that the differential
h—1 _ h+1_
dpn1_y (U3, ) =TVpag, '
exists in SliceSS(iézBP((G))). The rest of the d,n+1_,-differentials are determined by multiplying
this differential with permanent cycles. After these differentials, there is no room for other dyn+1_;-

differentials by degree reasons. This completes the induction step. |

Remark 2.4 We are grateful to Mike Hill for sharing the following argument, which directly shows that
SliceSS(ig, MU(@)) —and thus SliceSS(ig BP(?)) —is completely determined by SliceSS(BPg).
This offers an alternative and shorter proof for Theorem 2.3. The Thom isomorphism provides an

equivalence
iézMU((G)) ~ MUR A (BUR+)A(|G|/2_1),

where BUR is the C,-space BU equipped with the complex conjugation action. Since MUy is Real
oriented, the right-hand side splits as MUr A 4, where A is a wedge of suspensions of regular representation
spheres. Therefore, SliceSS(i éZMU((G») also splits as a wedge of suspensions of SliceSS(MUpR) by
regular representations. When localized at 2, SliceSS(MUR) further splits as a wedge of suspensions of
SliceSS(BPR). It follows that the differentials in SliceSS(BPR) completely determine the differentials in
SliceSS(i 2.2 MUY and consequently, the differentials in SliceSS(i éZBP((G))).

3 Comparison of spectral sequences

In [Ullman 2013; Bokstedt and Madsen 1994], it is shown that the maps (D and @) in (2-1) induce
isomorphisms in a certain range in the integer-graded page. For our purposes, we will extend their
integral-graded isomorphism ranges to RO(G)-graded isomorphism ranges.
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Definition 3.1 For V € RO(G), let
7(V):= min |H| -dimVH,
{e}SHC

=

Lemma 3.2 For V € RO(G), the spectrum S¥ A EG is of slice > (V).

Proof By [Hill and Yarnall 2018, Theorem 2.5], S¥ A EG is of slice > n if and only if the geometric
fixed points ®H (SV A EG)e rios/tl H forall H C G. For EG, its underlying space is contractible and
its H-fixed point is S® whenever H is a nontrivial subgroup of G. Since ®7 SV = § Vi e fi‘ési;n VH>

SV A EG is of slice > (V). O

Theorem 3.3 The map from the RO(G)-graded slice spectral sequence to the RO(G)-graded homotopy
fixed point spectral sequence

sV G V| s,V_ G |V|
e =nG_ PyIx — €V=x8_ F(EG.. Pl|X)

1 J

S X » 75 F(EG4,X)

induces an isomorphism on the €, -page for pairs (V, s) that satisty the inequality
t(V—s=1)>|V|.
Furthermore, this map induces a one-to-one correspondence between the differentials in this isomorphism

region.

Proof Applying the functor F(— P||II// |‘ X)) to the cofiber sequence

EG+—>SO—>EG

produces the cofiber sequence

5 pl v 14
F(EG, Pl x)— P\ x — F(EG,, Pl X).

The long exact sequence in homotopy groups implies that the map

Jrg_stX — S F(EGy, Plx)

Vi 14
is an isomorphism when both ”V F(EG P||V||X) and ng_s_lF(EG, P||II,/||X) are trivial. Since
nSF(EG, P||II,/|| X)=n, GF(S*AEG, P||V||X) and P||V||X is a |V |-slice, it suffices to find pairs (V, s)

such that S¥~5~1 A EG is of slice greater than |V |. By Lemma 3.2, this is equivalent to (V, s) satisfying
the inequality t(V —s—1) > |V]|.

We will now use induction on r to show that the map of spectral sequences induces a one-to-one
correspondence between all the d,-differentials whose source and target are both in the isomorphism
region. The base case of the induction, when r = 1, is trivial.
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For the induction step, suppose that the map induces a one-to-one correspondence between all the d,-
differentials in the isomorphism region for all ’ < r. Let d,(x) = y be a d,-differential in SliceSS(X)
such that both x and y are in the isomorphism region. By naturality, y’ (the image of y) must be killed
by a differential of length at most » in HFPSS(X). If the length of this differential is r, then the source
must be x’ (the image of x) and we are done. If the length of this differential is smaller than r, then the
induction hypothesis implies that the same differential must appear in SliceSS(X'). This would mean
that y is killed by a differential of length smaller than r, which is a contradiction. Therefore all the
d,-differentials in SliceSS(X') that are in the isomorphism region appear in HFPSS(X).

On the other hand, let d,(x") = )’ be a d,-differential in HFPSS(X) such that both x’ and )’ are in the
isomorphism region. Let x be the preimage of x’. By naturality, x must support a differential of length at
most r. If this differential is of length exactly r, then naturality implies that the target must be y, the
unique preimage of y’. If the length is smaller than r, then by the induction hypothesis, x’ must support
a differential of length smaller than r as well. This is a contradiction. Therefore all the d, -differentials
in HFPSS(X) that are in the isomorphism region appear in SliceSS(X'). This completes the induction
step. m|

Remark 3.4 In the integer-graded page, let V =1 € Z. Let m(G) be the order of the smallest nontrivial
subgroup of G. When ¢ —s > 1, it holds that t(t —s — 1) = m(G)(t —s — 1), and the isomorphism region
in Theorem 3.3 is defined by the inequality

m(G)(t—s—1)>1t.

This recovers Theorem 1.9.4 in [Ullman 2013].

Example 3.5 When G = Cyn, RO(G) is generated by {1,0,X,,...,A,}. The representations A; are
rotations and have no H-fixed points when H is a nontrivial subgroup of G. Therefore, if we fix an
element V € RO(G) of the form

V=ci-o+cy-Ay+cz-Az+---+cp-Ay, with ¢; €7,

then VH = (c;0) for all nontrivial subgroups H C G. When ¢t —s — 1 > |c;|, we have the equality
t(V+t—s—1)=2(c;+t—s5—1). On the (V+t—s,s)-graded page, the isomorphism region in
Theorem 3.3 contains pairs (7, s) that satisfy the inequality

21 +t—s—1)>|V]|+¢,
or, equivalently,

s<(t—s8)+2c1—=2—|V]|.

In particular, the last inequality shows that on any of the (V +¢—s, 5)-graded pages, the isomorphism
region is bounded above by a line of slope 1 when t —s > 0.
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Theorem 3.6 The map from the RO(G)-graded homotopy fixed point spectral sequence to the RO(G)-
graded Tate spectral sequence induces an isomorphism on the ‘€, -page for classes in filtrations s > 0, and
a surjection for classes in filtration s = 0. Furthermore, there is a one-to-one correspondence between

differentials whose source is of nonnegative filtration.

Proof The €,-page of the Tate spectral sequence for X is
€V = H (G, no(S™V A X)) = 78 EG A F(EGy, X),
and the €,-page of the homotopy fixed point spectral sequence is
€V = H (G, no(S™V A X)) = 78 F(EG4, X).

By the definition of Tate cohomology, H® = H* when s > 0. Furthermore, the map H® — H° is a
surjection whose kernel is the image of the norm map. This proves the claim about the €;-page. The proof
for the one-to-one correspondence of differentials is exactly the same as the proof in Theorem 3.3. O

We end this section by discussing the invertibility of certain Euler classes in the Tate spectral sequence.
Recall that if V is a G-representation such that the fixed point set V# is trivial whenever H C G is
nontrivial, then S(coV) is a geometric model for E£G, and S oV isa geometric model for EG. Therefore,
for any G-spectrum X,
EGAX =S¥V AX =a}' X,

Specialized to the case when G = Cyn and Qg, we see that E Con >~ § ohn and E QOg~S ooH Moreover,
if X is a G-spectrum, then the Tate spectral sequence for X is the spectral sequence associated to the
tower {E G AF(EG4, P*X)}. This implies that the class a;,, is invertible in all the C,»-Tate spectral
sequences, and the class apy is invertible in all the Qg-Tate spectral sequences.

4 The norm structure

In this section, we give a brief summary of results for the norm structure in equivariant spectral sequences.
For more detailed discussions, see [Ullman 2013, Chapter 1.5; Hill et al. 2017, Section 4; Meier et al.
2023, Section 3.4].
Consider a tower

v pitl L pt s pitl
of G-spectra and let €3’* be the associated spectral sequence. Set P/ = fib(P™ — P"~!) and P, = P°.
The towers that will be relevant to us in this paper are the towers for the slice spectral sequence, the

homotopy fixed point spectral sequence, and the Tate spectral sequence.

Let H C G be a subgroup. Suppose we have maps Ng Py — P\Gg/Hn and Ng Pl — P||g//gl|: that are

(up to homotopy) compatible with the maps P, — P,y and P, — P;!. This is called the norm structure.

It induces norm maps
|G/H |s,Ind$, V+|G/H s

G.ws,V+s
NG €Vt e

2
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If X is a commutative G-spectrum, then its slice spectral sequence, homotopy fixed point spectral
sequence, and Tate spectral sequence all have the norm structure that is induced from the multiplication
on X; for the Tate spectral sequence, the norm structure exists as long as H # e, as discussed in [Meier
et al. 2023, Example 3.9].

The following proposition is a restatement of [Ullman 2013, Proposition 1.5.17] and [Hill et al. 2017,
Theorem 4.7]. It describes the behavior of differentials under the norm structure.

Proposition 4.1 [Meier et al. 2023, Proposition 3.7] Let x € €,(G/H) be an element representing zero
in€,4+1(G/H). Then Ng (x) represents zero in €,/ H|r—1)+2(G/ G).

In other words, Proposmon 4.1 states that, if x € %s Vs (G/H) is killed by a d,-differential, then
Ng (x) e %IG/Hls Indfy V+1G/Hls (G/G) must be killed by a differential of length at most |G/ H|(r—1)+1.

Let 0, be the sign representation of C,. As an immediate consequence of equations (2-2) and (2-3), we
have the following proposition.

Proposition 4.2 The following equalities hold:

2
Czn (aaz) _ a2" i NQS (aaz) = ag,
C in 1 Q uz
H
2n (Uzaz) = " 1_[ = 2, T NC28 (U202) = m
20 i= 2 )‘t [of] aj O

Proof The equalities follow from (2-2), (2-3), and the following facts about induced representations:

n—1
de2" () = 1+0+ Y 2724, Wd2¥(1) = 1 +0; + 05 + 0%
i=2
Ind2" (03) = 2", 1ndZ2% () = H. a

"2kt .

Theorem 4.3 (1) The class N Con (vn)a; in the Cyn -slice spectral sequence for Bp(C2n)

is killed on or before the %2h+n_2n+1 -page.

(2) The class NCQZS (ﬁh)afH}f =1 in the Qg -slice spectral sequence for BP(28) js killed on or before
the €,n+3_7-page.

Proof By Theorem 2.3, we have the differential

h+1_
d2h+1_1(u202 Y= vpaz,
in the C;-slice spectral sequence for i, BP(C21) and i BPU(28) Our claims follow by applying
Proposition 4.1 and the equations in Proposmon 4.2 to (H G,x,r) = (Cy, Cyn, vha o1 ght1
and (Cs, Qg TpaZs ' 1,20+ 1), O
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5 Vanishing in the Tate spectral sequence

By the work of Hahn and Shi [2020], the Lubin—Tate theory E; admits an equivariant orientation. More
specifically, for G C Gy, a finite subgroup, there is a G-equivariant map from BP(®) o E 1. Furthermore,
this G-equivariant map factors through (NCG2 up) "' BPUG):

BP@ . E,

|

(N& vp)~'BP()
This equivariant orientation induces the following diagram of spectral sequences:

SliceSS(BP((G))) - HFPSS(BP((G))) SN TateSS(BP((G)))

| |

HFPSS(E),) — TateSS(Ey)

Theorem 5.1 For any height h and any finite subgroup G C Gy, all the classes in the RO(G)-graded
Tate spectral sequence for Ey, vanish after the €, ,-page. Here, Ny, ¢ is defined as in Definition 1.1.

In order to prove Theorem 5.1, we will first prove the following lemmas.

Lemma 5.2 Let K be a finite group and H C K a 2-Sylow subgroup. For a 2-local K -spectrum X, if
all the classes in the RO(H )-graded Tate spectral sequence for X vanish after the €, -page, then all the
classes in the RO(K)-graded homotopy fixed point spectral sequence for X will also vanish after the
é,-page.

Proof The restriction and transfer maps induce the following maps of spectral sequences:
K- TateSS(X) 2> H- TateSS(X) = K- TateSS(X).

The composition map tr o res is the degree-| K /H| map. Since |K/H| is coprime to 2 and X is 2-local,
the composition trores is an isomorphism. This exhibits the RO(K)-grated Tate spectral sequence as a
retract of the RO(H)-graded Tate spectral sequence. The statement of the lemma follows. O

Lemma 53 (1) Atheight h = 2"~ 'm, the unit class in the RO(Cyn)-graded Tate spectral sequence
for (NG2"5) ™' BPUC2") must be killed on or before the & yn+n_n 11 -page.

(2) At height h = 4k — 2, the unit class in the RO(Qg)-graded Tate spectral sequence for
(NCQZSEh)—lBP((QS))
must be killed on or before the €,n+3_;-page.

Geometry & Topology, Volume 29 (2025)



920 Zhipeng Duan, Guchuan Li and XiaoLin Danny Shi

Proof For G = C,» and Qg, consider the map from the C,-slice spectral sequence for i éZBP((G)) to the
C,-Tate spectral sequence for i éZBP((G)). Theorem 2.3, combined with the isomorphisms in Theorem 3.3

and Theorem 3.6, shows that we have the differential

2]1+1 1
d2h+1 1(”202 )— ha

in the C,-Tate spectral sequence for 7, BPU9)_ Since dg, 1s invertible, after further inverting vy, we
2
have the differential o it
dyn1 1 (U 36, ag, > ) =1
in the C,-Tate spectral sequence for i E‘}Z (N, gz Eh)_lBP((G)). Our claims follow by applying Proposition 4.1
to (H,G,x,r) = (Cy, Can, 1,211 — 1) and (C,, 03, 1,211 —1). o

Proof of Theorem 5.1 Let K =GNSy, and let H be a 2-Sylow subgroup of K. By the classification of the
finite subgroups of Sy, H is isomorphic to either Co» or Q5. We have the equality Ny g = Np xk = Np g
by Definition 1.1. The H-equivariant map

(NEvp~'BPE) -
induces a map of the corresponding Tate spectral sequences. By naturality and Lemma 5.3, the unit class
in the H-Tate spectral sequence for Ey, is killed on or before the ‘€, ,,-page. The multiplicative structure
implies that all the classes in the H-graded Tate spectral sequence for £}, vanish after the €y, ,,-page.
By Lemma 5.2, the same statement holds for K since H is a 2-Sylow subgroup of K.
To extend this from K to G, note that the quotient group G/ K can be identified as a subgroup of the
Galois group Gal(k /IF,) through the inclusion G — G. Let k’ = k%/X. The arguments shown in
[Bobkova and Goerss 2018, Lemmas 1.32 and 1.37, and Remark 1.39] imply that the G-Tate spectral
sequence for E}, is a base change from W (k”) to W (k) of the K-Tate spectral sequence for TateSS(E}).
This means there is an isomorphism

W (k) @wxy H* (G, Epy) —> H*(K, Ep,)

on the €,-page, and all the differentials in the K-Tate spectral sequence are the W (k)-linear extensions
of those in the G-Tate spectral sequence. Consequently, the theorem statement also holds for G. |

Remark 5.4 If M is an (Ng ¢ vh) IBPUO) _module, its Tate spectral sequence will also be a module
over the Tate spectral sequence for (N g G vh) IBPUG) | The same proof as the one used in Theorem 5.1
will apply to show the same vanishing results in the Tate spectral sequence for M.

6 Horizontal vanishing lines in the homotopy fixed point spectral sequence

The vanishing of the Tate spectral sequence (Theorem 5.1) leads to the existence of strong horizontal
vanishing lines in the homotopy fixed point spectral sequences of Lubin—Tate theories.

Theorem 6.1 For any height h and any finite subgroup G C Gy, there is a strong horizontal vanishing
line of filtration Ny, g in the RO(G)-graded homotopy fixed point spectral sequence for Ej,.
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Lemma 6.2 Let K be a finite group and H C K a 2-Sylow subgroup. For a 2-local K-spectrum X,
if the RO(H)-graded homotopy fixed point spectral sequence for X has a vanishing line g, then the
RO(K)-graded homotopy fixed point spectral sequence for X will also have ¥ as a vanishing line.

Proof The proof is analogous to that of Lemma 5.2. The restriction and transfer maps induce the
following maps of spectral sequences:

K-HFPSS(X) -2 H-HFPSS(X) - K-HFPSS(X).

The composition map tr ores is the degree-| K/H| map. Since |K/H| is coprime to 2 and X is 2-local,
the composition trores is an isomorphism. This implies that K- HFPSS(X) is a retract of H- HFPSS(X).
It follows that the vanishing line in H-HFPSS(X') will force the same vanishing line in K-HFPSS(X). O

Proof of Theorem 6.1 Let K = G NSy, and let H be a 2-Sylow subgroup of K. By Definition 1.1,
Ny, = Np,g- By Lemma 6.2 and [Bobkova and Goerss 2018, Lemmas 1.32 and 1.37, and Remark 1.39],
it suffices to prove the that the statement holds for H.

Consider the map
H-HFPSS(E}) — H-TateSS(E}).

By Theorem 3.6, this map induces an isomorphism of classes above filtration 0 and a one-to-one
correspondence of differentials whose sources are in nonnegative filtrations.

By Theorem 5.1, all the classes in the Tate spectral sequence vanish after the €y, ,,-page. In particular,
this implies that the longest differential is of length at most Ny, g, and any class of filtration at least N g
must die from a differential whose source and target both have nonnegative filtrations. Combined with
the isomorphism in Theorem 3.6, this implies that the homotopy fixed point spectral sequence collapses
after the €, ., -page, and there is a strong horizontal vanishing line of filtration Nj_ g . |

Corollary 6.3 For any (NCG2 Eh)_lBP«G» -module M, there is a strong horizontal vanishing line of
filtration Ny, g in the RO(G)-graded homotopy fixed point spectral sequence for M.

Proof By Remark 5.4, the proof is the same as the proof of Theorem 6.1. |

Corollary 6.4 For any K (h)-local finite spectrum Z, the homotopy fixed point spectral sequence
H*(G.E:Z) = m_s(E" A Z)

has a strong horizontal vanishing line of filtration Ny, ¢ .

Remark 6.5 The existence of concrete strong horizontal vanishing lines (as given by Theorem 6.1) is

very useful for equivariant computations (see discussion after Theorem A in Section 1.1). In [Duan et al.

2024], Theorem 6.1, combined with the equivariant structures present in the homotopy fixed point spectral

sequence, is utilized to compute E ;’ G24 The authors also believe that Theorem 6.1 can be employed to
establish new RO(G)-graded periodicities for Ey.
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Example 6.6 When G = C, and at all heights £, there is a d,n+1_,-differential in the C,-homotopy fixed
point spectral sequence for Ej, and there is a nonzero class Eia§h+l_2 in bidegree (2811 —2, 2ht1 _ 2).
Thus the vanishing line in Theorem 6.1 is sharp for E]];CZ.

Example 6.7 The computations in [Hill et al. 2017] imply that in the RO(C,)-homotopy fixed point
spectral sequence for E,, there exists a d3-differential

4515 4,418
di3(Ny (11) uspuacayas) = Ny (t1) uggas).,

where we let A = A, and N24 (-) = NCC24 (—) for convenience. Moreover, the class N24 (1) Pugpuiosasy,
in bidegree (28, 12) (representing «2) that survives to the €so-page. Therefore, our vanishing line is sharp
hC.
for E5 4.
2

Example 6.8 The computations in [Hill et al. 2023] implies that in the RO(C4)-homotopy fixed point
spectral sequence for E4, there is a dg;-differential

de1 (N3 (22) " u160u320a170.00) = Ny (1) Cutagoassy.-
Moreover, the class N24(t_2)24N24 (t1)u44ptt745a30y in bidegree (236, 60) survives to the € ,-page. There-

L. . . hCy
fore, our vanishing line is sharp for £, .

Example 6.9 Consider the RO(Qg)-homotopy fixed point spectral sequence for E,. Theorem 6.1
implies that there is a strong horizontal vanishing line of filtration 25. However, the actual vanishing line
is of filtration 23. More specifically, by Bauer’s computation [2008], there is a d;3-differential

dr3(nA°) =&,

where K is represented by the class g in [Bauer 2008]. This implies that in the Tate spectral sequence,

there is a d,3-differential
dy3 (1A’ = 1.

By the same argument as the one given in the proof of Theorem 6.1, the sharpest vanishing line in the
homotopy fixed point spectral sequence is of filtration 23. The bounds given in Theorem 6.1 for Qg has
been improved in [Duan et al. 2024] to account for the sharpness in this case.

7 Horizontal vanishing lines in the slice spectral sequence

We will now prove explicit horizontal vanishing lines for the slice spectral sequences of (N, gz vp,) ! BP(@).
modules.

Theorem 7.1 Suppose that G = Cyn or Qg. Then the RO(G)-graded slice spectral sequence for any
(Ng2 Uh)_lBP((G)) -module M admits a horizontal vanishing line of filtration Ny, ¢ .

Lemma 7.2 When G = Cyn or Qg, any (NCGth)_lBP«G)) -module is cofree.
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Proof By [Hill et al. 2016, Corollary 10.6], we need to show that & (NCG2 v) "' BPU®) is contractible
for all nontrivial H C G. To do so, it suffices to check that & (N, CG2 vp) = 0 for all nontrivial H C G.

Recall that vy, € n(czi_l)szP((G)) is defined to be the composition

S(Zh—l)ﬂz N BPr — iézBP((G))-

The claim now follows from the fact that ®€2(v,) = 0 for the class U, € n(czi_l)szPR, and therefore
o (N ) = @(Th) = 0

for all nontrivial H C G. O

Proof of Theorem 7.1 Since the spectrum M is cofree by Lemma 7.2, both the slice spectral sequence
and the homotopy fixed point spectral sequence converge to the same homotopy groups:

SliceSS(M) ——— HFPSS(M)

l !

7OM ———= 78 F(EG4, M)

Consider a class x on the €,-page of the slice spectral sequence. We claim that if the filtration of x is at
least Ny g, then x cannot survive to the €o-page. This is because if x survives to represent an element
in 7% M, then there must be a class y on the €,-page of the homotopy fixed point spectral sequence that
also survives to represent the same element in

7S F(EGL, M)=7%M.

Moreover, the filtration of y must be at least the filtration of x, which is > N}, . This is a contradiction
because by Corollary 6.3, there is a strong horizontal vanishing line of filtration N} g in the homotopy
fixed point spectral sequence. |

8 E ,f’G -orientation of real vector bundles

In this section, we will use the strong vanishing lines established in Theorem 6.1 to give an upper
bound for (%, G), the smallest number d such that the d-fold direct sum of any real vector bundle is
E ﬁG -orientable.

Definition 8.1 Let E be a multiplicative cohomology theory with multiplication ug: EA E — E, and
& a virtual k-dimensional real vector bundle over a space X . Denote the Thom spectrum of £ by M &. An
E-orientation for £ is a class u: M &€ — XX E (also called a Thom class) such that for any map f:Y — X,
the pullback uys«gy: M f*(§) > M§ — ¥X E induces an equivalence

(8-1) F(2%Y4, E) = F(Mf*(§), E),
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where (8-1) is defined by sending a map g: Tk Y+ — E to the composition

id/\llf* (&) Aid
_—

MFFE) = SOAMF*E) LS EaAMprE) LA EAMfE) AT, EASFEAY,

Aid idA
BES Ensky, XS EAEES E.

Here, A: M f*(&) — M f*(&) A Y4 is the Thom diagonal map.

Remark 8.2 If £ is E-oriented, then the equivalence (8-1) induces a Thom isomorphism
E*H(Yy) = EX(M[*(©)

for any map /. In particular, when f is the identity map, there is a Thom isomorphism

E*k(x1) = E*(Mé).

Note that it follows immediately from Definition 8.1 that for any E-oriented bundle £, its pullback bundle
f*(&) is also E-oriented. Our definition also recovers the classical definition of orientations. More
precisely, if we take Y to be a point, then the Thom space of the pullback is S, and the restriction of the
Thom class # under the map

EX(Th(¢)) - E*(5%)
is an E*-module generator for the free rank-one module E*(S¥).

For X a nonequivariant spectrum, we can treat it as a G-spectrum equipped with the trivial G-action. We
have the equivalence

F(EGy, F(X, Ep))® ~ F(X, F(EG+, ;)% ~ F(X, F(EG, Ep)%) = F(X, E;©).

This equivalence allows us to use the homotopy fixed point spectral sequence to compute (£ ZG)*(X ).
The €,-page of this homotopy fixed point spectral sequence is

€' = H (G EX) = (Ep%)' ™ (X).

Let y be the universal bundle on BO (of virtual dimension zero). The direct sum operation on bundles over
BO induces a multiplication map #1,: BO x BO — BO, which can be extended to form an E.-structure.
Following the approach in [May 1972, Lemma 1.9], we recursively define mj = m, o (id X mj_1).
Moreover, we will define A, to be the diagonal map BO — BO x - -- x BO (n copies), and denote the
composition map n, o A,: BO — BO by [n].

Let ny denote the pullback bundle [#]*y. Following Kitchloo and Wilson [2015], we will denote the
Thom spectrum of ny by MO[n]. We set MO[0] = S° and define

MO := \/ MO[2k].
k>0

Lemma 8.3 The homotopy fixed point spectral sequence for (E ZG)* (TIMO) is a multiplicative spectral
sequence whose multiplication is commutative.
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Proof In order to ensure that the homotopy fixed point spectral sequence has a multiplicative structure,
it suffices to construct a G-equivariant map

¢: F(TIMO, Ej) A F(TIMO, Ej,) — F(IIMO, Ej,).

We will first construct a map A: [IMO — ITMO A IIMO. Once we have constructed A, the desired
map ¢ will be induced from A by the composition
F(IIMO, E}) A F(TIMO, Ej) — F(IIMO A TIMO, Ej, A Ej,) £ F(IIMO A TIMO, Ej)

A% F(TIMO, Ej,).
Here, u: Ey A Ej — Ej is the multiplication map. Consider the maps

[2i]x[2/]
—

BO -22, BOxBO BO x BO -2, BO.

These maps induce a map of the corresponding Thom spectra
Th(2i]*y @ [2/]*y) = MOJ2i] AMO|2/].
The swap map 7: BO x BO — BO x BO induces the following commutative diagram of Thom spectra:

Th(2i]*y @ [2j]*y) —— MO[2i] AMO|2/]
! l
Th([2j]*y ®[2i]*y) —— MO[2] A MOJ|2i]

Since BO is an Eo-space, there is a homotopy from my; 12 0 Ayjypj to my o (ma; Xmaj) o Ayjyaj.
This produces an equivalence from MO[2i + 2] to Th([2i]*y @ [2/]*y). Composing this with the map
of Thom spectra above, we obtain a map

MOJ2i +2j] — MOJ[2i] AMO|2/].
By fixing # and combining these maps for all pairs (i, j) such that i + j = n, we obtain a map

MOP2n]— \V  MO[2i] AMO[2/].
2i4+2j=2n

Taking the wedge sum of all such maps for all » > 0 produces the map A,

A:TIMO = \/ MO[2n] — ( v MO[2i]/\MO[2j]) — TIMO A TIMO.
n>0 n>0\2i4+2j=2n

In order to show that the multiplication on the homotopy fixed point spectral sequence is commutative,

it suffices to show that A is cocommutative up to homotopy. Since BO is an E,-space, the following
diagram commutes up to homotopy:

Mojy2j0Ngjqoj —> myo(my; Xmyj)oAyiysj

\ l

my o (myj Xmyi)oAgjta;

Geometry & Topology, Volume 29 (2025)



926 Zhipeng Duan, Guchuan Li and XiaoLin Danny Shi

Combining the induced homotopy commutative diagram of Thom spectra and diagram (8-2) produces the
following homotopy commutative diagram of Thom spectra:

MO[2i + 2] — Th(Ri]*y & [2j]*y) — MO[2i] AMO[2/]

T | |

Th(2/]*y ®[2i]*y) —— MO[2/] A MOJ2i]

It follows that the map A is homotopy cocommutative, and therefore ¢ is homotopy commutative. O

Note that since y ® C = 2y as real vector bundles, 2y is Ej-oriented, and we have a Thom isomorphism
EZ (MO[2]) = EZ (BO+) “Up.

The construction of ¢ in the proof of Lemma 8.3 shows that the composition map

k k
MO[2k] — MO[2] A - - - A MO[2] 2227142

e e
Epn---NE, L5 Ey

is u’2° in E£;(ITMO). We claim that u’z‘ is a Thom class for MO[2k]. This is because by iteratively applying
adjunction and the Thom isomorphism, we have the equivalences
FMO2]A--- AMOJ2], Ep) >~ FIMO[2] A --- AMOJ2], F(MO[2], Ep))
~ F(MO[2]A--- AMOJ2], F(BO4, Ey))
~ F(MO[2]A--- AMO[2] ABO4, Ep)

~ F(BO4 A---ABO4, Ep),

and this is given by the Thom class #5 A --- A uj. Pulling back this Thom class via the diagonal map
BO4+ - BO4+ A--- ABO4 gives u’2‘, and it induces the Thom isomorphism

E}(MO[2k])) = E; (BO4) - uk.

Theorem 8.4 For any height h and any finite subgroup G C Gy, let K = G NSy, and H be a 2-Sylow
subgroup of K. Defined =2 - |K|-|H|®n.u2=1/2 Then the d-fold direct sum of any real vector bundle
is E Z’G -orientable.

Proof It suffices to show that for the universal bundle y on BO, its d-fold direct sum dy is E ZG—

orientable. To show this, we will first show that dy is E ZK -orientable.

Let u,: MO|2] — E}, be a Thom class for the bundle 2y. For an element g € K, define gu,: MO[2] — E},
to be the composition

guy: MO[2] 2> E;, 55 Ey.
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Consider the composition
|K| |K|

ug : MO - |K|] 25 MO[2] A - - - A MO[2] S22 1EIK 2,

e ——

Epn---NEp L5 Ep,

where g1, g2,..., &k are all the elements of the group K. The map ug represents an element in
HO(K, E;(MO[2-|K1)).

For any k > 1, the class u];( e H(K, E2 (MOJ2-|K]|-k])) is a Thom class for MO[2 - | K| - k] and there
is a Thom isomorphism

uk
E;(BO1) —> E;(MO[2-|K|-k)).

If for some k, the class u’l‘( is a permanent cycle in the homotopy fixed point spectral sequence for

(E }’l’K )*(MOJ|2- | K| - k]), then the map of spectral sequences

H*(K, E}(BO4)) Mk gk, E}(MO[2-|K|-k]))

| |

(E3%)*(BO4) ——— (£,%)*(MO[2- K] -k])
will induce an isomorphism
(E3%)*(BO4) - u = (E¥)*(MO[2- K| - k])
on the €o-page by naturality. Moreover, for any map f: Y — BO, the pullback of the class ”]IC(’ f* (u’l‘()

in HY(K, E)(M f*(2-|K|-ky))), will also be a permanent cycle by naturality:

H*(K, E;(MO[2-|K]|-k])) —— H*(K,E;(Mf*Q2-|K|-ky)))

! l

(Ep%)*(MO[2- |K| k) ——— (E5)*(Mf*(2:|K|-ky))
Therefore, it will also induce a Thom isomorphism on the €.,-page of the homotopy fixed point spectral
sequence for (EZK)*(Mf*(2 | K|-ky)).
It remains to find such a k so that u’I‘( is a permanent cycle. The splitting map
E;(MO[2-|K|-k]) — E;(IIMO) — E; (MO[2- | K| - k])

shows that the homotopy fixed point spectral sequence for (£ Z’K )*(MOJ2- | K| - k]) is a retract of the
homotopy fixed point spectral sequence for (£ ;Z’K )*(IIMO). Therefore, the class u’;( is a permanent
cycle in the homotopy fixed point spectral sequence for (£ ZK )*(MO[2 - | K| - k]) if and only if it is a

permanent cycle in the homotopy fixed point spectral sequence for (£ Z’K )*(IIMO).

By Lemma 8.3, multiplication in the homotopy fixed point spectral sequence for (£ ZK )*(IIMO) is
commutative. Furthermore, only differentials of odd lengths can occur due to degree reasons, and all the
classes on the €,-page with positive filtrations are | H|-torsion. Since this spectral sequence is a module
over the homotopy fixed point spectral sequence for (£ Z’K )*(S?), it has a strong horizontal vanishing
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line of filtration Ny g = Nj, g by Theorem 6.1. It follows that for k = |H|WNna=1/2 the class uII‘(

must be a permanent cycle. This shows that if we set
d=2-|K|- |H|(Nh,H_1)/2’
then the bundle dy is E z’K -orientable.

To show that dy is also E ,}Z’G-orientable, note that G/ K can be viewed as a subgroup of the Galois group
Gal(k /IF,) through the inclusion G — Gy,. Similar to the argument in the proof of Theorem 5.1, the map
of spectral sequences
k
H*(G. E}(BO)) ~5> H*(G. E}(MO[2+|K|-k])

is a base change of the map of spectral sequences

H*(K. EL(BO4)) “5 H*(K. EX(MO[2- K| - k])).

Therefore, the class u’;( is also a permanent cycle in the homotopy fixed point spectral sequence for

(E ;l’G)*(MO[Z- |K|-k]). This finishes the proof of the theorem. a

Remark 8.5 Theorem 8.4 shows that ®(h, G) < 2-|K|- |H|Ne.zr=D/2 1t is worth noting that our
bound is by no means optimal, as it is established without any explicit computations of the homotopy
fixed point spectral sequence. In contrast, Kitchloo and Wilson [2015, Theorem 1.4] explicitly computed
(EZCZ)*(BO(q)) and established that the 2#*!-fold direct sum of any real vector bundle is E}}:CZ—

orientable. In this case, our bound becomes ® (4, Cy) < 22" 41,

Our primary goal in this section is to emphasize the existence of a concrete upper bound. It is important to
highlight that our bound is derived based on the presence of a strong horizontal vanishing line of filtration
Np, g and the fact that all classes on the €,-page with positive filtration are | H|-torsion. With more
detailed computational knowledge of the homotopy fixed point spectral sequence for (E gG)* (IIMO),
there is potential to obtain a significantly improved upper bound for ® (4, G).
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