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Abstract. Adversarial data can lead to malfunction of deep learning 
applications. It is essential to develop deep learning models that are 
resilient to adversarial data while accurate on standard, clean data. In 
this study, we focus on building safe breast cancer diagnosis models 
against mammographic adversarial samples. We proposed a novel adver-
sarially robust feature learning (ARFL) method to facilitate adversarial 
training using both standard data and adversarial data, where a feature 
correlation measure is incorporated as an objective function to encourage 
learning of robust features and restrain spurious features. To show the 
efficacy of ARFL for robust breast cancer diagnosis, we built and evalu-
ated deep learning diagnosis models using two independent clinically col-
lected breast imaging datasets, comprising a total of 9,548 mammogram 
images. We performed extensive experiments showing that the ARFL 
method outperformed several state-of-the-art methods. ARFL can serve 
as an effective method to enhance adversarial training, towards building 
safe breast cancer diagnosis against adversarial attacks in clinical set-
tings. The code repository of this study is publicly available at GitHub: 
https://github.com/usernamesafeai/ARFL. 

Keywords: Breast cancer diagnosis · Adversarial defense · 
Mammogram · Safe AI 

1 Introduction 

Adversarial samples can fool a deep learning classification model, where small 
and intentional perturbations may lead to unexpected results [ 24]. Adversarial 
attacking methods, such as projected gradient descent (PGD) [ 14], have shown 
success on attacking classification of natural view images. Adversarial attacks 
also pose threats to deep learning-based medical applications, such as inducing 
unsafe diagnosis, fraudulent insurance claims, biased clinical trial outcomes, etc. 
[ 6]. In the medical imaging domain, previous studies showed adversarial sam-
ples may downgrade a model’s performance, as observed in image classification, 
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detection, and segmentation [ 16, 18]. It is critical to develop deep learning models 
that are resistant to adversarial samples/attacks in order to deliver safe artificial 
intelligence (AI)-enabled medical applications. 

Adversarial training, which trains a model by using a set of adversarially 
generated samples, is one of the few approaches to defend adversarial attacks 
[ 20]. Studies showed that by using the minimax optimization, adversarial training 
can improve a model’s adversarial robustness [ 14]. Adversarial samples may also 
serve as a special type of data augmentation to increase a model’s performance 
on the standard data (i.e., original clean data without adversarial perturbations) 
[ 26]. In the medical imaging domain, adversarial training-based methods have 
shown improved image diagnosis performance on either standard data [ 8] or  
adversarial data [ 10]. However, it remains challenging for a model to maintain 
stable performance simultaneously on both the standard data and adversarial 
data [ 9, 17, 19, 25, 28]. A previous study [ 12] indicated that the lack of exploiting 
the underlying manifold of data may be a key reason for this challenge. 

While adversarial training has the benefits of resisting adversarial attacks, 
previous theoretical studies [ 19, 25] showed that adversarial training at the same 
time may lower a model’s performance on standard data, which is undesirable, as 
it is equally important to maintain the model performance on both standard data 
and adversarial data [ 17, 28]. A recent study showed that adversarial training 
could result in even worse results when training with limited data [ 3]. To ensure 
stable model performance on both standard and adversarial data, a common 
approach is to merge the datasets for training [ 24], though this may fail when 
their distributions significantly differ. Researchers have considered standard data 
and adversarial data as two different domains to learn domain-invariant repre-
sentations [ 22]. Another approach, as proposed in a recent work [ 1], is to perform 
training with separated batch normalization layers for standard data and adver-
sarial data. Since the testing data’s distribution is usually unknown in priori, 
it is difficult for this approach to choose which batch normalization layer to 
use. Another method, TRADES [ 28], demonstrates there may be a theoretical 
trade-off of the performance between standard and adversarial data. Overall, it 
remains an open research question in developing effective training methods to 
reconcile model performance on standard data and adversarial data. 

In this study, we proposed a novel regularization method to build a breast 
cancer diagnosis model that is adversarially robust on both standard data and 
adversarial data. Our approach incorporates a feature correlation measure as an 
objective function, promoting robust features and reducing spurious ones when 
training on a mix of standard and adversarial mammogram images. We name our 
method ARFL (Adversarially Robust Feature Learning). Implemented on two 
real-world mammogram datasets (9,548 images total), ARFL’s performance was 
compared with and without its integration, as well as against domain-specifi 
batch normalization (DSBN) method [ 1], TRADES [ 28], and multi-instance 
robust self-training (MIRST) [ 23]. Extensive experiment results on the two 
datasets showed the clear benefits of ARFL in maintaining the model’s per-
formance on both the standard data and adversarial data, and that our method 
outperformed the compared methods.



234 D. Hao et al.

Fig. 1. Overview of the Adversarially Robust Feature Learning (ARFL) framework for 
breast cancer diagnosis. This figure shows the ARFL architecture using both standard 
and adversarial mammographic data as inputs. The adversarial training with ARFL 
focuses on extracting robust features .f (θ, x) for computing the robust loss .Lrobust. 

2 Related Work 

AI has shown promise and early success in enhancing various tasks for medical 
image analysis, including detection, classification, segmentation, reconstruction, 
registration, etc. [ 2]. AI-based breast cancer diagnosis models are under active 
development and clinical translation [ 13]. It is imperative to ensure the deploy-
ment of such AI models are safe to patients, secure to clinical environments, and 
resilient to adversarial samples/attacks. 

Adversarial security of AI models has attracted attention in the medical 
domain [ 8, 15, 27]. Such studies on breast cancer/imaging is scarce, but more 
challenging, as malignancy information in breast imaging may be more sub-
tle and heterogeneous [ 11]. Researchers showed that adversarial mammogram 
images produced by generative adversarial networks can fool both breast cancer 
diagnosis models and experienced radiologists [ 29]. MIRST was introduced to 
defend adversarial attacks on breast ultrasound images [ 23]. 

3 Methods 

3.1 Adversarially Robust Feature Learning (ARFL) 

When training a classification model with both standard and adversarial data, 
the model simultaneously fits two potentially different distributions. As shown 
in Fig. 1, to encourage the learning of useful features from the mixed input 
and to reduce the chances the model learns from spurious correlations between 
the training data and truth labels, we introduced a regularization term, called 
adversarially robust feature learning (thus the name ARFL). As pointed by a 
previous work [ 9], a feature’s usefulness can be measured by the expectation 
of feature-label multiplication, i.e., .E(x,y)∼D(fi,j(θ, x) · y)), and the feature is 
called .ρ-useful if the expectation is greater than . ρ. Inspired by such a correlation 
measurement, we designed a new loss function, named robust loss (denoted by 
.Lrobust), to characterize the feature-label correlation. .Lrobust is calculated by
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summing up the absolute values of the product of each feature and label over 
the feature map, as shown in Eq. 1. 

.Lrobust(θ, x, y) = − 1
HW

H∑

i=1

W∑

j=1

σ(abs(fi,j(θ, x) · y)) (1) 

where input . x can be either a standard input with an underlying distribution of 
. D; or an adversarial input from distribution . D′; .H and .W respectively denote 
the width and height of a feature map of input . x; .abs(·) denotes the absolute 
value function; .σ(·) denotes the sigmoid function that scales the feature-label 
correlation; . y denotes a positive or negative label .{±1}; . θ denotes the model 
parameters; .fi,j(θ, x) denotes the value of the feature map at position .(i, j). 
Considering that features near the output of a classification model contain more 
high-level information, we obtain the feature map from the last convolutional 
layer. .Lrobust encourages the model to learn features that are highly correlated 
with the labels. Different from the original method in [ 9], we revised the method 
to measure useful features by adding an absolute-value operation to consider 
both positive and negative correlations, and we also incorporated a sigmoid 
function to squash extreme loss values. Our method is appropriate as features 
showing either low positive correlations (yielding .ρ > fi,j(θ, x) · y > 0) or low  
negative correlations (yielding .−ρ < fi,j(θ, x) · y < 0) tend to be potentially less 
robust, leading to higher .Lrobust values. Then we integrate the adversarial loss 
and the robust loss as an overall loss for standard data as expressed in Eq. 2. 

.Loverall(θ, x, y) = Lcls(θ, x, y) + λ · Lrobust(θ, x, y) (2) 

where .Lcls denotes the binary cross entropy loss for binary classification tasks 
and . λ is a weighting factor controlling the two objectives, i.e., the cross-entropy 
loss .Lcls and the robust loss .Lrobust. 

3.2 Integrating ARFL Into Minimax Optimization 

To construct adversarial data, we introduced some degree of adversarial pertur-
bation generated by PGD [ 14] to standard data (. x). PGD generates adversarial 
perturbations by iteratively maximizing the perturbation towards the direction 
of changing the predicted output. To defend the adversarial attacks, adversarial 
training minimizes the loss of fitting the adversarial data while maximizing the 
same loss for the generated adversarial samples, as shown in Eq. 3. 

.min
θ

E(x,y)∼D

[
max

δ∈Δ(X)
Lcls(θ, x + δ, y)

]
(3) 

where . δ denotes the perturbation imposed to . x within the specified set of valid 
perturbations . Δ, and  . y denotes the truth label. 

With both standard data and adversarial data in each training batch, we 
minimize the empirical loss by fitting both the standard data and adversarial
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data. We introduce Eq. 4 to implement the minimax optimization process. 

.

min
θ

E(x,y)∼D

[
(1− r) · max

δ∈Δ(X)
Lcls(θ, x + δ, y)

+ r · Lcls(θ, x, y)
] (4) 

where . r denotes the ratio of the amount of standard data relative to the total 
amount of the data (standard data plus adversarial data) in each training batch. 
After integrating ARFL into adversarial training, we propose Eq. 5 for the min-
imax optimization on both standard and adversarial data. 

.

min
θ

E(x,y)∼D

[
(1− r)

(
max

δ∈Δ(X)
Lcls(θ, x + δ, y)

+ λ · Lrobust(θ, x + δ, y)
)

+ r · Loverall(θ, x, y)
]

(5) 

where . r can take various values in the range .[0, 1] to define different training 
schemes. The term .Loverall is defined in Eq. 2. 

4 Experiments and Results 
4.1 Datasets 
Our study was approved by the Institutional Review Board. We examined the 
effects of our method on two real-world mammogram imaging datasets for breast 
cancer diagnosis. The first dataset is from University of Pittsburgh Medical 
Center (UPMC) and the second is the publicly available Chinese Mammography 
Database (CMMD) [ 4]. The UPMC dataset was collected from a cohort of 1,284 
women who underwent full field digital mammography screening. Each patient 
had one digital mammogram exam with up to four images of the two breasts (left 
craniocaudal [CC] view, left mediolateral oblique [MLO] view, right CC view, and 
right MLO view). Based on biopsy results, there are 366 patients diagnosed with 
breast cancer and 918 benign/negative cases. There are a total of 4,346 images. 
The images were acquired by a Hologic Lorad Selenia mammography system. The 
UPMC dataset is an internal private dataset and may be available to interested 
users upon request, after an approval from the institution along with a signed 
data use agreement and/or a material transfer agreement. The CMMD dataset 
was collected from a cohort of 1,775 patients who underwent mammography 
examination with both CC and MLO views. Based on biopsy, 1,310 patients are 
diagnosed with breast cancer and 465 patients are benign/negative, and there 
are a total of 5,202 images. The images were acquired by a GE Senographe DS 
mammography system. Using the two independent datasets, our target task is to 
perform computer-aided diagnosis of classifying breast cancer (i.e., malignancy) 
vs. benign/negative findings at patient level. The CMMD dataset is publicly 
available and can be downloaded from https://www.cancerimagingarchive.net/ 
collection/cmmd/.

https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
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4.2 Experiment Settings 

Model Structure and Training Settings: We used the VGG16 model [ 21] 
pre-trained on ImageNet [ 5] as the backbone. We fine-tuned the fully connected 
and last convolutional layers for binary classification of breast cancer. We imple-
mented three training settings with parameter . r: 1) standard training (. r = 1), 2) 
adversarial training (. r = 0) [  14], and 3) dual adversarial training (. r = 0.5) [  10]. 
We trained with and without ARFL, setting .Lrobust’s weight . λ to 10.0. Each 
model was trained for 100 epochs on both datasets. 

Adversarial Sample Generation: We used PGD for adversarial attacks, with 
7 iterative steps and an adversarial perturbation budget .ε1 of 0.01. The attacking 
perturbation budget .ε2 was set to 1e. −4 to be visually imperceptible. 

Comparison with Related Methods: We compared our method to three 
related methods, including DSBN [ 1], TRADES [ 28], and MIRST [ 23]. DSBN 
is a domain adaptation technique that allocates domain-specific affine parame-
ters for data from different domains. DSBN was tested for adversarial training 
with standard data and adversarial data perturbed by the FGSM algorithm 
[ 8]. We replaced FGSM [ 7] with PGD [ 14], aiming to measure our method’s 
resilience against this more threatening challenge. TRADES is an adversarial 
defense method that balances model performance on adversarial data and stan-
dard data using KL-divergence for regularization. MIRST uses different levels 
of perturbations to generate adversarial examples as additional data for self-
training. 

Performance Metric and Statistical Significance: We evaluated perfor-
mance using the Area Under the Curve (AUC) and the standard deviation under 
five-fold cross-validation, where at each fold, 70% of the data for training, 10% 
for validation, and 20% for testing. Statistical significance was determined using 
the Mann-Whitney U test. 

Visual Assessment: To visually assess feature learning effects using ARFL, we 
plotted feature saliency maps of mammogram images, calculated as gradients of 
loss with respect to the input. 

4.3 Robustness Analyses of Hyperparameters 

We analyzed the effects of the standard data mixing ratio (. r), the weighting 
factor (. λ), and the adversarial perturbation budget (. ε1) on model performance. 

Effects of Mixing Ratio (. r). We examined the effects of mixing standard data 
with adversarial data at varying ratios (i.e., robustness analysis of parameter . r
in Eq. 5). While in dual adversarial training where . r is set to 0.5, it is interesting 
to examine whether other values of this ratio may lead to different performance. 
In this experiment, we measured the diagnosis model’s performance additionally 
at .r = 0.25 and .r = 0.75 and compared to the effects when .r = 0.5. 

Effects of Weighting Factor (. λ). The weighting factor . λ, which controls 
the influence of .Lcls and .Lrobust in the model, was varied from 0.1 to 100.0.
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We applied ARFL in the context of dual adversarial training to determine the 
optimal balance point, where the model efficiently learns robust features without 
compromising classification performance. 

Effects of Adversarial Perturbation Budget (. ε1). We investigated the 
impact of varying the adversarial perturbation budget .ε1 within the range of 
0.005 to 0.1. We used 0.1 as the upper bound considering literatures and charac-
teristics of mammogram images. Using the PGD method, we generated adversar-
ial data constrained by this budget and incorporated the data into the adversar-
ial training process. The aim was to observe how different levels of adversarial 
perturbation during adversarial training influence the model’s defense against 
adversarial attacks. 

5 Results 

Table 1 and Table 2 show the mean AUC values and standard deviations on the 
test set of standard data and the test set of adversarial data, when using the 
UPMC dataset and CMMD dataset, respectively. As can be seen in Table 1, 
adversarial test had a substantially dropped performance under standard train-
ing (row A), which is the expected behavior for a standard model when facing 
adversarial attacks. When the model is trained by adversarial training (row C), 
adversarial test performance increased but at the same time the model down-
graded in standard test - this sacrifice is undesirable for the slight benefit of 
adversarial robustness. When using dual adversarial training (row F), model 
performance largely increased in both standard test and adversarial test, show-
ing the efficacy of this training method. 

Table 1. Model performance comparisons on the UPMC dataset. 

Training Method Standard AUC Adversarial AUC 
A. Standard training 69.2 (1.1) 58.8 (1.4) 
B. Standard training + ARFL 70.0 (1.9) 58.3 (3.5) 
C. Adversarial training 61.7 (4.0) 56.9 (5.3) 
D. Adversarial training + ARFL 62.5 (4.3) 59.2 (4.0) 
E. Dual adversarial training 65.7 (5.9) 59.6 (9.4) 
F. Dual adversarial training + ARFL 69.3 (2.3) 67.8 (2.4) 
G. DSBN [ 1] 54.1 (8.5) 54.7 (9.0) 
H. TRADES [ 28] 63.7 (3.5) 63.2 (3.5) 
I. MIRST [ 23] 63.0 (1.9) 63.6 (1.7) 

In terms of the benefits of ARFL, as shown in rows B, D, and F, while 
ARFL did not make a change in standard training (this is expected as ARFL 
is designed to mainly account for the mix of standard and adversarial data),
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it largely improved the performance for adversarial training (row D) and dual 
adversarial training (row F; here the benefits are the highest), showing the use-
fulness of our proposed method, in not only resisting adversarial attacks but 
also maintaining the performance in the original standard data. In the compar-
ison, DSBN (row G), TRADES (row H), and MIRST (row I) exhibited lower 
performance compared to dual adversarial training with ARFL (row F). The 
underperformance of DSBN can be attributed to its limitation in selecting spe-
cific batch normalizations for test sets. Furthermore, this comparison highlights 
that ARFL’s approach of regularizing through feature-label correlation is more 
robust than TRADES, which regularizes with prediction-label correlation. It also 
demonstrates ARFL can learn robust features without using multiple instances 
as MIRST does. 

Table 2. Model performance comparisons on the CMMD dataset. 

Training Method Standard AUC Adversarial AUC 
A. Standard training 64.9 (4.2) 41.5 (3.7) 
B. Standard training + ARFL 64.9 (4.4) 41.5 (4.2) 
C. Adversarial training 45.5 (4.6) 43.7 (4.7) 
D. Adversarial training + ARFL 48.6 (4.5) 45.7 (4.7) 
E. Dual adversarial training 67.8 (3.3) 66.3 (3.3) 
F. Dual adversarial training + ARFL 68.8 (3.3) 67.3 (3.4) 
G. DSBN [ 1] 54.7 (6.9) 55.5 (2.7) 
H. TRADES [ 28] 64.8 (5.0) 61.9 (5.1) 
I. MIRST [ 23] 64.4 (2.6) 64.8 (2.8) 

When examining the results of CMMD shown in Table 2, a very similar overall 
performance pattern is observed as seen in Table 2, which further verifies the 
efficacy and generalizability of our proposed method on an independent dataset. 
The dual adversarial training with ARFL also outperformed DSBN, TRADES, 
and MIRST. In addition, on both datasets, the AUCs of the dual adversarial 
training with ARFL are significantly higher (all .p < 0.05) than the AUCs of the 
adversarial training with ARFL. 

It is worth mentioning that in Table 2 we noticed the adversarial training (row 
C) did not improve adversarial AUC compared to standard training (row A), 
though the standard deviation of the AUCs is also larger in row C compared to 
row A, showing the data heterogeneity may be higher in the CMMD dataset and 
that may lead to what we observed. Also note that the improvement resulted
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from adversarial training is also modest under adversarial test on the UPMC 
dataset (Table 1, row C vs. row A). Previous studies showed that adversarial 
training may only improve adversarial AUCs under the use of a very large dataset 
[ 3]. This may partly explain the slight improvement observed in our study as our 
data scale is relatively small compared to large datasets. 

Figure 2 illustrates on example mammogram images and the feature saliency 
maps for models trained with dual adversarial training with and without ARFL. 
In these maps, regions with sharp intensity contrast indicate important features, 
where higher gradients suggest stronger influence on the classification perfor-
mance [ 25]. The comparison shows that incorporating ARFL results in a greater 
number of sharply contrasted regions, suggesting that ARFL enhances the learn-
ing of discriminative imaging features for the diagnosis purposes. Note that we 
demonstrate the saliency maps mainly on standard data as these clean data are 
better cases to illustrate and perceive the effects. 

Fig. 2. Feature saliency maps of mammogram images from models trained using dual 
adversarial training with and without the integration of ARFL. The color bar represents 
the scaled gradients between zero and one. More regions with sharp contrast indicate 
more important features. (Color figure online) 

Figures 3 shows the robustness analysis results. The sub figures in the left 
column shows model performance for varying . r. In the UPMC dataset, . r = 0.5
achieved the highest performance, while in the CMMD dataset, .r = 0.75 was 
optimal. For consistency, results with .r = 0.5 were reported to fairly compare 
with previous studies [ 10, 24]. The sub figures in the middle column shows the 
effects of adjusting . λ. The  highest test AUC  was achieved at  .λ = 10.0. The right 
sub figure shows the model’s test AUCs for varying . ε1. As  .ε1 increased, AUC 
initially increased, then stabilized at 0.01 and beyond. This suggests an optimal 
range for .ε1 in adversarial training for our study/data. These experiments sup-
ported the use of optimal parameter values in our main experiments. Note that 
optimal values may differ for other datasets or tasks.
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Fig. 3. Robustness analysis of hyperparameters: standard data mixing ratio (. r), weight-
ing factor (. λ), and adversarial perturbation budget (. ε1). Shown are AUC values with 
varying values of hyperparameters. Error bars represent standard deviations. 

6 Conclusion 

In this work, we designed a novel method, ARFL, to facilitate adversarially 
robust adversarial training for safe breast cancer diagnosis. ARFL facilitates the 
learning process towards identifying features that are strongly correlated with 
true labels. On the two breast mammogram datasets, ARFL showed benefits in 
resisting adversarial samples and maintaining stable diagnosis performance on 
standard data. Our extensive experiments on the two datasets from different 
sources showed similar efficacy and the generalizability of our method. ARFL 
also outperformed the compared methods. For future work, we will extend the 
evaluation of our method on other imaging data and other types of adversarial 
attacks. 
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