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Abstract. Adversarial data can lead to malfunction of deep learning
applications. It is essential to develop deep learning models that are
resilient to adversarial data while accurate on standard, clean data. In
this study, we focus on building safe breast cancer diagnosis models
against mammographic adversarial samples. We proposed a novel adver-
sarially robust feature learning (ARFL) method to facilitate adversarial
training using both standard data and adversarial data, where a feature
correlation measure is incorporated as an objective function to encourage
learning of robust features and restrain spurious features. To show the
efficacy of ARFL for robust breast cancer diagnosis, we built and evalu-
ated deep learning diagnosis models using two independent clinically col-
lected breast imaging datasets, comprising a total of 9,548 mammogram
images. We performed extensive experiments showing that the ARFL
method outperformed several state-of-the-art methods. ARFL can serve
as an effective method to enhance adversarial training, towards building
safe breast cancer diagnosis against adversarial attacks in clinical set-
tings. The code repository of this study is publicly available at GitHub:
https://github.com /usernamesafeai/ ARFL.
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1 Introduction

Adversarial samples can fool a deep learning classification model, where small
and intentional perturbations may lead to unexpected results [24]. Adversarial
attacking methods, such as projected gradient descent (PGD) [14], have shown
success on attacking classification of natural view images. Adversarial attacks
also pose threats to deep learning-based medical applications, such as inducing
unsafe diagnosis, fraudulent insurance claims, biased clinical trial outcomes, etc.
[6]. In the medical imaging domain, previous studies showed adversarial sam-
ples may downgrade a model’s performance, as observed in image classification,
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detection, and segmentation [16,18]. It is critical to develop deep learning models
that are resistant to adversarial samples/attacks in order to deliver safe artificial
intelligence (AI)-enabled medical applications.

Adversarial training, which trains a model by using a set of adversarially
generated samples, is one of the few approaches to defend adversarial attacks
[20]. Studies showed that by using the minimax optimization, adversarial training
can improve a model’s adversarial robustness [14]. Adversarial samples may also
serve as a special type of data augmentation to increase a model’s performance
on the standard data (i.e., original clean data without adversarial perturbations)
[26]. In the medical imaging domain, adversarial training-based methods have
shown improved image diagnosis performance on either standard data [8] or
adversarial data [10]. However, it remains challenging for a model to maintain
stable performance simultaneously on both the standard data and adversarial
data [9,17,19,25,28]. A previous study [12] indicated that the lack of exploiting
the underlying manifold of data may be a key reason for this challenge.

While adversarial training has the benefits of resisting adversarial attacks,
previous theoretical studies [19,25] showed that adversarial training at the same
time may lower a model’s performance on standard data, which is undesirable, as
it is equally important to maintain the model performance on both standard data
and adversarial data [17,28]. A recent study showed that adversarial training
could result in even worse results when training with limited data [3]. To ensure
stable model performance on both standard and adversarial data, a common
approach is to merge the datasets for training [24], though this may fail when
their distributions significantly differ. Researchers have considered standard data
and adversarial data as two different domains to learn domain-invariant repre-
sentations [22]. Another approach, as proposed in a recent work [1], is to perform
training with separated batch normalization layers for standard data and adver-
sarial data. Since the testing data’s distribution is usually unknown in priori,
it is difficult for this approach to choose which batch normalization layer to
use. Another method, TRADES [28], demonstrates there may be a theoretical
trade-off of the performance between standard and adversarial data. Overall, it
remains an open research question in developing effective training methods to
reconcile model performance on standard data and adversarial data.

In this study, we proposed a novel regularization method to build a breast
cancer diagnosis model that is adversarially robust on both standard data and
adversarial data. Our approach incorporates a feature correlation measure as an
objective function, promoting robust features and reducing spurious ones when
training on a mix of standard and adversarial mammogram images. We name our
method ARFL (Adversarially Robust Feature Learning). Implemented on two
real-world mammogram datasets (9,548 images total), ARFL’s performance was
compared with and without its integration, as well as against domain-specifi
batch normalization (DSBN) method [1], TRADES [28], and multi-instance
robust self-training (MIRST) [23]. Extensive experiment results on the two
datasets showed the clear benefits of ARFL in maintaining the model’s per-
formance on both the standard data and adversarial data, and that our method
outperformed the compared methods.
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Fig. 1. Overview of the Adversarially Robust Feature Learning (ARFL) framework for
breast cancer diagnosis. This figure shows the ARFL architecture using both standard
and adversarial mammographic data as inputs. The adversarial training with ARFL
focuses on extracting robust features f(6,x) for computing the robust loss Lyobust-

2 Related Work

AT has shown promise and early success in enhancing various tasks for medical
image analysis, including detection, classification, segmentation, reconstruction,
registration, etc. [2]. Al-based breast cancer diagnosis models are under active
development and clinical translation [13]. It is imperative to ensure the deploy-
ment of such Al models are safe to patients, secure to clinical environments, and
resilient to adversarial samples/attacks.

Adversarial security of AI models has attracted attention in the medical
domain [8,15,27]. Such studies on breast cancer/imaging is scarce, but more
challenging, as malignancy information in breast imaging may be more sub-
tle and heterogeneous [11]. Researchers showed that adversarial mammogram
images produced by generative adversarial networks can fool both breast cancer
diagnosis models and experienced radiologists [29]. MIRST was introduced to
defend adversarial attacks on breast ultrasound images [23].

3 Methods
3.1 Adversarially Robust Feature Learning (ARFL)

When training a classification model with both standard and adversarial data,
the model simultaneously fits two potentially different distributions. As shown
in Fig.1, to encourage the learning of useful features from the mixed input
and to reduce the chances the model learns from spurious correlations between
the training data and truth labels, we introduced a regularization term, called
adversarially robust feature learning (thus the name ARFL). As pointed by a
previous work [9], a feature’s usefulness can be measured by the expectation
of feature-label multiplication, i.e., Eg )~p(fi (0, 2) - y)), and the feature is
called p-useful if the expectation is greater than p. Inspired by such a correlation
measurement, we designed a new loss function, named robust loss (denoted by
Lyobust); to characterize the feature-label correlation. Lyopust iS calculated by
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summing up the absolute values of the product of each feature and label over
the feature map, as shown in Eq. 1.

1 H W
Leobust (6, ,) ’TVZZ o(abs(fi; (6, ) -y)) (1)

where input z can be either a standard input with an underlying distribution of
D; or an adversarial input from distribution D’'; H and W respectively denote
the width and height of a feature map of input x; abs(:) denotes the absolute
value function; o(:) denotes the sigmoid function that scales the feature-label
correlation; y denotes a positive or negative label {+1}; 6 denotes the model
parameters; f; ;j(6,x) denotes the value of the feature map at position (i, j).
Considering that features near the output of a classification model contain more
high-level information, we obtain the feature map from the last convolutional
layer. L,opust encourages the model to learn features that are highly correlated
with the labels. Different from the original method in [9], we revised the method
to measure useful features by adding an absolute-value operation to consider
both positive and negative correlations, and we also incorporated a sigmoid
function to squash extreme loss values. Our method is appropriate as features
showing either low positive correlations (yielding p > f; ;(6,z) -y > 0) or low
negative correlations (yielding —p < f; ;(0,x) -y < 0) tend to be potentially less
robust, leading to higher L.opust values. Then we integrate the adversarial loss
and the robust loss as an overall loss for standard data as expressed in Eq. 2.

Loverall(aa z, y) = Lcls (07 x, y) + A Lrobust (97 xz, y) (2)

where L.s denotes the binary cross entropy loss for binary classification tasks
and ) is a weighting factor controlling the two objectives, i.e., the cross-entropy
loss L and the robust loss Liobust-

3.2 Integrating ARFL Into Minimax Optimization

To construct adversarial data, we introduced some degree of adversarial pertur-
bation generated by PGD [14] to standard data (x). PGD generates adversarial
perturbations by iteratively maximizing the perturbation towards the direction
of changing the predicted output. To defend the adversarial attacks, adversarial
training minimizes the loss of fitting the adversarial data while maximizing the
same loss for the generated adversarial samples, as shown in Eq. 3.

Ineln]E(w,y)N'D 5€H23(‘}){() Las (9, T+ 57 y) (3)

where § denotes the perturbation imposed to x within the specified set of valid
perturbations A, and y denotes the truth label.

With both standard data and adversarial data in each training batch, we
minimize the empirical loss by fitting both the standard data and adversarial
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data. We introduce Eq. 4 to implement the minimax optimization process.

minE, o |(1=7)- s Les (0,2 +6,y)

(4)
+ 7 Las(0,2,y)

where r denotes the ratio of the amount of standard data relative to the total
amount of the data (standard data plus adversarial data) in each training batch.
After integrating ARFL into adversarial training, we propose Eq. 5 for the min-
imax optimization on both standard and adversarial data.

inlE 1-— L
Hbll’l (z,y)~D ( T) ( 6323(');() c15(07 T+ 5; y)

+ A Lrobust (97 T+ 6a y)) (5)
+r- Loverall(ea x, y)

where 7 can take various values in the range [0,1] to define different training
schemes. The term Lgyeran is defined in Eq. 2.

4 Experiments and Results
4.1 Datasets

Our study was approved by the Institutional Review Board. We examined the
effects of our method on two real-world mammogram imaging datasets for breast
cancer diagnosis. The first dataset is from University of Pittsburgh Medical
Center (UPMC) and the second is the publicly available Chinese Mammography
Database (CMMD) [4]. The UPMC dataset was collected from a cohort of 1,284
women who underwent full field digital mammography screening. Each patient
had one digital mammogram exam with up to four images of the two breasts (left
craniocaudal [CC] view, left mediolateral oblique [MLO] view, right CC view, and
right MLO view). Based on biopsy results, there are 366 patients diagnosed with
breast cancer and 918 benign/negative cases. There are a total of 4,346 images.
The images were acquired by a Hologic Lorad Selenia mammography system. The
UPMC dataset is an internal private dataset and may be available to interested
users upon request, after an approval from the institution along with a signed
data use agreement and/or a material transfer agreement. The CMMD dataset
was collected from a cohort of 1,775 patients who underwent mammography
examination with both CC and MLO views. Based on biopsy, 1,310 patients are
diagnosed with breast cancer and 465 patients are benign/negative, and there
are a total of 5,202 images. The images were acquired by a GE Senographe DS
mammography system. Using the two independent datasets, our target task is to
perform computer-aided diagnosis of classifying breast cancer (i.e., malignancy)
vs. benign/negative findings at patient level. The CMMD dataset is publicly
available and can be downloaded from https://www.cancerimagingarchive.net/
collection/cmmd// .


https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/
https://www.cancerimagingarchive.net/collection/cmmd/

Safe Breast Cancer Diagnosis Resilient to Adversarial Samples 237

4.2 Experiment Settings

Model Structure and Training Settings: We used the VGG16 model [21]
pre-trained on ImageNet [5] as the backbone. We fine-tuned the fully connected
and last convolutional layers for binary classification of breast cancer. We imple-
mented three training settings with parameter r: 1) standard training (r = 1), 2)
adversarial training (r = 0) [14], and 3) dual adversarial training (r = 0.5) [10].
We trained with and without ARFL, setting Lopust’s weight A to 10.0. Each
model was trained for 100 epochs on both datasets.

Adversarial Sample Generation: We used PGD for adversarial attacks, with
7 iterative steps and an adversarial perturbation budget 1 of 0.01. The attacking
perturbation budget 5 was set to le—4 to be visually imperceptible.

Comparison with Related Methods: We compared our method to three
related methods, including DSBN [1], TRADES [28], and MIRST [23]. DSBN
is a domain adaptation technique that allocates domain-specific affine parame-
ters for data from different domains. DSBN was tested for adversarial training
with standard data and adversarial data perturbed by the FGSM algorithm
[8]. We replaced FGSM [7] with PGD [14], aiming to measure our method’s
resilience against this more threatening challenge. TRADES is an adversarial
defense method that balances model performance on adversarial data and stan-
dard data using KL-divergence for regularization. MIRST uses different levels
of perturbations to generate adversarial examples as additional data for self-
training.

Performance Metric and Statistical Significance: We evaluated perfor-
mance using the Area Under the Curve (AUC) and the standard deviation under
five-fold cross-validation, where at each fold, 70% of the data for training, 10%
for validation, and 20% for testing. Statistical significance was determined using
the Mann-Whitney U test.

Visual Assessment: To visually assess feature learning effects using ARFL, we
plotted feature saliency maps of mammogram images, calculated as gradients of
loss with respect to the input.

4.3 Robustness Analyses of Hyperparameters

We analyzed the effects of the standard data mixing ratio (r), the weighting
factor (\), and the adversarial perturbation budget (¢1) on model performance.

Effects of Mixing Ratio (r). We examined the effects of mixing standard data
with adversarial data at varying ratios (i.e., robustness analysis of parameter r
in Eq.5). While in dual adversarial training where r is set to 0.5, it is interesting
to examine whether other values of this ratio may lead to different performance.
In this experiment, we measured the diagnosis model’s performance additionally
at r = 0.25 and r = 0.75 and compared to the effects when r = 0.5.

Effects of Weighting Factor (\). The weighting factor A, which controls
the influence of L. and L.opust in the model, was varied from 0.1 to 100.0.
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We applied ARFL in the context of dual adversarial training to determine the
optimal balance point, where the model efficiently learns robust features without
compromising classification performance.

Effects of Adversarial Perturbation Budget (¢1). We investigated the
impact of varying the adversarial perturbation budget £; within the range of
0.005 to 0.1. We used 0.1 as the upper bound considering literatures and charac-
teristics of mammogram images. Using the PGD method, we generated adversar-
ial data constrained by this budget and incorporated the data into the adversar-
ial training process. The aim was to observe how different levels of adversarial
perturbation during adversarial training influence the model’s defense against
adversarial attacks.

5 Results

Table 1 and Table 2 show the mean AUC values and standard deviations on the
test set of standard data and the test set of adversarial data, when using the
UPMC dataset and CMMD dataset, respectively. As can be seen in Tablel,
adversarial test had a substantially dropped performance under standard train-
ing (row A), which is the expected behavior for a standard model when facing
adversarial attacks. When the model is trained by adversarial training (row C),
adversarial test performance increased but at the same time the model down-
graded in standard test - this sacrifice is undesirable for the slight benefit of
adversarial robustness. When using dual adversarial training (row F), model
performance largely increased in both standard test and adversarial test, show-
ing the efficacy of this training method.

Table 1. Model performance comparisons on the UPMC dataset.

Training Method Standard AUC|Adversarial AUC
A. Standard training 69.2 (1.1) 58.8 (1.4)
B. Standard training + ARFL 70.0 (1.9) 58.3 (3.5)
C. Adversarial training 61.7 (4.0) 56.9 (5.3)
D. Adversarial training + ARFL  62.5 (4.3) 59.2 (4.0)
E. Dual adversarial training 65.7 (5.9) 59.6 (9.4)
F. Dual adversarial training + ARFL69.3 (2.3) 67.8 (2.4)
G. DSBN [1] 54.1 (8.5)  [54.7 (9.0)
H. TRADES [28] 63.7 (3.5) 63.2 (3.5)
I. MIRST [23] 63.0 (1.9) 63.6 (1.7)

In terms of the benefits of ARFL, as shown in rows B, D, and F, while
ARFL did not make a change in standard training (this is expected as ARFL
is designed to mainly account for the mix of standard and adversarial data),
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it largely improved the performance for adversarial training (row D) and dual
adversarial training (row F; here the benefits are the highest), showing the use-
fulness of our proposed method, in not only resisting adversarial attacks but
also maintaining the performance in the original standard data. In the compar-
ison, DSBN (row G), TRADES (row H), and MIRST (row I) exhibited lower
performance compared to dual adversarial training with ARFL (row F). The
underperformance of DSBN can be attributed to its limitation in selecting spe-
cific batch normalizations for test sets. Furthermore, this comparison highlights
that ARFL’s approach of regularizing through feature-label correlation is more
robust than TRADES, which regularizes with prediction-label correlation. It also
demonstrates ARFL can learn robust features without using multiple instances
as MIRST does.

Table 2. Model performance comparisons on the CMMD dataset.

Training Method Standard AUC|Adversarial AUC
A. Standard training 64.9 (4.2) 41.5 (3.7)
B. Standard training + ARFL 64.9 (4.4) 41.5 (4.2)
C. Adversarial training 45.5 (4.6) 43.7 (4.7)
D. Adversarial training + ARFL 48.6 (4.5) 45.7 (4.7)
E. Dual adversarial training 67.8 (3.3) 66.3 (3.3)
F. Dual adversarial training + ARFL|68.8 (3.3) 67.3 (3.4)
G. DSBN [1] 54.7 (6.9) 555 (2.7)
H. TRADES [28] 64.8 (5.0)  61.9 (5.1)
I. MIRST [23] 64.4 (2.6) 64.8 (2.8)

When examining the results of CMMD shown in Table 2, a very similar overall
performance pattern is observed as seen in Table 2, which further verifies the
efficacy and generalizability of our proposed method on an independent dataset.
The dual adversarial training with ARFL also outperformed DSBN, TRADES,
and MIRST. In addition, on both datasets, the AUCs of the dual adversarial
training with ARFL are significantly higher (all p < 0.05) than the AUCs of the
adversarial training with ARFL.

It is worth mentioning that in Table 2 we noticed the adversarial training (row
C) did not improve adversarial AUC compared to standard training (row A),
though the standard deviation of the AUCs is also larger in row C compared to
row A, showing the data heterogeneity may be higher in the CMMD dataset and
that may lead to what we observed. Also note that the improvement resulted
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from adversarial training is also modest under adversarial test on the UPMC
dataset (Tablel, row C vs. row A). Previous studies showed that adversarial
training may only improve adversarial AUCs under the use of a very large dataset
[3]. This may partly explain the slight improvement observed in our study as our
data scale is relatively small compared to large datasets.

Figure 2 illustrates on example mammogram images and the feature saliency
maps for models trained with dual adversarial training with and without ARFL.
In these maps, regions with sharp intensity contrast indicate important features,
where higher gradients suggest stronger influence on the classification perfor-
mance [25]. The comparison shows that incorporating ARFL results in a greater
number of sharply contrasted regions, suggesting that ARFL enhances the learn-
ing of discriminative imaging features for the diagnosis purposes. Note that we
demonstrate the saliency maps mainly on standard data as these clean data are
better cases to illustrate and perceive the effects.

Standard data ~ Without ARFL. ~ With ARFL Standard data ~ Without ARFL With ARFL

Example 1 Example 2

0.00 0.25 0.50 0.75 1.00

Fig. 2. Feature saliency maps of mammogram images from models trained using dual
adversarial training with and without the integration of ARFL. The color bar represents
the scaled gradients between zero and one. More regions with sharp contrast indicate
more important features. (Color figure online)

Figures 3 shows the robustness analysis results. The sub figures in the left
column shows model performance for varying r. In the UPMC dataset, r = 0.5
achieved the highest performance, while in the CMMD dataset, » = 0.75 was
optimal. For consistency, results with » = 0.5 were reported to fairly compare
with previous studies [10,24]. The sub figures in the middle column shows the
effects of adjusting . The highest test AUC was achieved at A = 10.0. The right
sub figure shows the model’s test AUCs for varying ;. As €; increased, AUC
initially increased, then stabilized at 0.01 and beyond. This suggests an optimal
range for €7 in adversarial training for our study/data. These experiments sup-
ported the use of optimal parameter values in our main experiments. Note that
optimal values may differ for other datasets or tasks.
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A. UPMC dataset
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Fig. 3. Robustness analysis of hyperparameters: standard data mixing ratio (r), weight-
ing factor (\), and adversarial perturbation budget (1). Shown are AUC values with
varying values of hyperparameters. Error bars represent standard deviations.

6 Conclusion

In this work, we designed a novel method, ARFL, to facilitate adversarially
robust adversarial training for safe breast cancer diagnosis. ARFL facilitates the
learning process towards identifying features that are strongly correlated with
true labels. On the two breast mammogram datasets, ARFL showed benefits in
resisting adversarial samples and maintaining stable diagnosis performance on
standard data. Our extensive experiments on the two datasets from different
sources showed similar efficacy and the generalizability of our method. ARFL
also outperformed the compared methods. For future work, we will extend the
evaluation of our method on other imaging data and other types of adversarial
attacks.
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