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Power Flow Approximations
Paprapee Buason, Sidhant Misra, Daniel K. Molzahn

Abstract—The power flow equations are central to many prob-
lems in power system planning, analysis, and control. However,
their inherent non-linearity and non-convexity present substan-
tial challenges during problem-solving processes, especially for
optimization problems. Accordingly, linear approximations are
commonly employed to streamline computations, although this
can often entail compromises in accuracy and feasibility. This
paper proposes an approach termed Conservative Bias Linear
Approximations (CBLA) for addressing these limitations. By min-
imizing approximation errors across a specified operating range
while incorporating conservativeness (over- or under-estimating
quantities of interest), CBLA strikes a balance between accuracy
and tractability by maintaining linear constraints. By allowing
users to design loss functions tailored to the specific approximated
function, the bias approximation approach significantly enhances
approximation accuracy. We illustrate the effectiveness of our
proposed approach through several test cases.

Index Terms—Conservative bias linear approximation; power
flow approximation

I. INTRODUCTION

The power flow equations play a central role in the operation

and analysis of electrical power systems. These equations are

essential for evaluating the behavior of power networks, mak-

ing them key to various optimization problems such as resilient

infrastructure planning [1]–[3], AC unit commitment [4], [5],

and bilevel problems [6], [7]. However, the nonlinearity of

the power flow equations induces non-convexities in these

problems that pose significant computational challenges.

To address these challenges, researchers have developed

various linear approximations such as DC power flow [8],

LinDistFlow [9], first-order Taylor expansions of the power

flow equations, and other approximations [10]. These methods

offer simplified representations of power flow, which improve

the tractability of power systems optimization problems. How-

ever, these linearizations often depend on broad assumptions

such as maintaining voltages at 1 per unit and keeping voltage

angle differences small between neighboring buses, as in

DC power flow. These assumptions may not be valid across

all operating conditions, potentially resulting in inaccuracies

in the approximations. Consequently, the solutions derived

from these linearized models may not closely align with

the actual optimal solutions in real-world scenarios. This
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trade-off between simplicity and accuracy necessitates careful

consideration when applying these linearizations in practice.

In response to these challenges, various studies have ex-

plored adaptive power flow approximations tailored to specific

systems and operating ranges to enhance approximation accu-

racy (e.g., optimization-based approaches in [11] and sample-

based approaches in [12]–[14]); see [15]–[17] for recent survey

papers on this concept. For sample-based approaches, samples

of operating points computed by repeatedly solving the power

flow equations at various points within an operating range

(e.g., a specified range of power injections) are leveraged to

compute the approximations. By capturing complex nonlinear

relationships directly from these samples, the resulting linear

approximations can be more accurate as they are formulated by

minimizing deviations from the solutions provided by the AC

power flow equations for a particular system and operating

range of interest. These adaptive power flow linearizations

spend computational effort in computing the linearization

coefficients in order to improve accuracy and tractability when

applied in optimization problems. By trading up-front com-

putational time for increased accuracy when applied, adaptive

power flow approximations are particularly valuable in settings

with both offline and online aspects where the linearization

coefficients can be computed offline in advance of a real-time

problem as well as settings where explicitly modeling power

flow nonlinearities would lead to intractability, e.g., [1]–[7].

Extending the concept of sample-based adaptive power flow

linearizations, the conservative linear approximation (CLA)

approach in [12], [13] incorporates the concept of conserva-

tiveness. In other words, the CLAs are computed to minimize

approximation errors with respect to the AC power flow

equations while consistently over- or under-estimating quan-

tities of interest over the set of drawn samples. The resulting

approximations are particularly well suited for settings with

an asymmetry in the implications of overestimating a quantity

like voltage magnitude or current flow as opposed to underesti-

mating that quantity. This is particularly relevant in power sys-

tem optimization problems where feasibility is of paramount

importance. For instance, when used in the bound on the

magnitude of current flow through a line, a linearization that

erroneously underestimates the amount of current flow risks

predicting feasibility when the constraint is actually violated

with respect to the nonlinear AC power flow equations. This is

a more problematic linearization error than an overestimate of

the current flow for use in this constraint. Thus, conservative

linearizations that avoid errors in a particular direction (i.e.,

avoid either overestimates or underestimates of some quantity)

are valuable in many power system optimization contexts.
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However, maintaining conservativeness can sometimes lead to

reduced accuracy.

In this paper, we introduce an approach to approximating

power flow equations called conservative bias linear approx-

imation (CBLA). The CBLA approach seeks to balance the

trade-off between conservativeness and accuracy, particularly

in scenarios where certain samples are challenging to ap-

proximate accurately. To construct CBLAs, the process shares

similarities with CLAs by beginning with drawing samples

from within the operational range. These samples form the

basis of a regression problem, which is solved to compute an

approximated function representing the power flow equations.

However, unlike CLA, CBLA does not explicitly enforce con-

servativeness in its approximated function as a hard constraint.

Instead, the CBLA approach introduces an error function

that penalizes linearization errors for samples that violate

conservativeness to enable more accurate approximations.

CBLA offers the advantage of flexibility in designing cus-

tomized error functions that quantify the penalty for deviating

from actual values. User-defined error functions enable the

approach to be tailored to particular quantities of interest and

system characteristics, thus computing a linearization special-

ized for a specific problem. This flexibility can be particularly

beneficial in scenarios where some violations are permissible,

such as in chance-constrained optimization problems.

In summary, the main contributions of this paper are:

(i) A CBLA formulation that is tailored to the specific sys-

tem and operating range, optimal with respect to an error

metric, and strikes a balance between conservativeness

and accuracy.

(ii) A discussion on choosing an error function for computing

the CBLA.

(iii) Numerical benchmarking of CBLAs for a variety of test

cases.

The remainder of this paper is organized as follows: Sec-

tion II covers background material on the power flow equations

as well as sample-based conservative linear approximations.

Section III introduces the conservative bias linear approxima-

tion approach. Section IV provides numerical results of our

approach. Section V concludes the paper along with directions

for our future work.

II. BACKGROUND

In this section, we provide background information about

the AC power flow equations and present the recently devel-

oped conservative linear approximations of these equations.

A. The Power Flow Equations

Consider a power system where a reference bus has the

voltage angle set to 0. Let V (θ) denote the voltage magni-

tude (phasor). Let P (Q) denote the active (reactive) power

injection. We use the subscript (·)i to represent a quantity at

bus i and the subscript (·)ik to represent a quantity from or

connecting bus i to k. Let j =
√
−1. The AC power flow

equations at bus i are:

Pi = V 2
i Gii +

∑

k∈Bi

ViVk(Gik cos θik +Bik sin θik), (1a)

Qi = −V 2
i Bii +

∑

k∈Bi

ViVk(Gik sin θik −Bik cos θik), (1b)

where θik := θi − θk, G(B) is a real (imaginary) part of

the admittance matrix associated with the system, and Bi

represents the set of all neighboring buses to bus i including

bus i itself.

B. Conservative linear approximations

The nonlinearity of the power flow equations in (1) con-

tribute to the complexity encountered in solving optimization

problems. To address this challenge, we previously introduced

a sample-based conservative linear approximation (CLA) ap-

proach aimed at either over- or under-estimating specified

quantities of interest, such as the magnitudes of voltages

and current flows (as illustrated in Fig. 1) [12]. Moreover,

CLAs facilitate parallel computation by enabling concurrent

computation of the CLA for each quantity of interest. The

construction of a CLA entails sampling power injections

across an operational range of interest, such as a range of

loads and power generated by Distributed Energy Resources

(DERs), followed by computing power flow solutions for each

sample and solving a constrained-regression problem.

For instance, samples for load demands are acquired utiliz-

ing a predefined probability distribution PS over a specified

operational range S . This range could be defined as S =
{Pmin

Ld
≤ PLd

≤ Pmax
Ld

, Qmin
Ld

≤ QLd
≤ Qmax

Ld
for all d ∈ ND}

where ( · )Ld
, where ( · )Ld

denotes the load demand, PS

represents the uniform distribution, and the superscripts max

(min) indicate upper (lower) limits.

Fig. 1. An illustration showcasing a comparison between a conventional linear
approximation (on the left) and CLAs (on the right). In this visual represen-
tation, the solid line signifies the nonlinear function under consideration. In
the figure on the left, the dotted line represents a traditional first-order Taylor
approximation centered at point ×, while in the figure on the right, the dotted
line above (below) corresponds to an over- (under-)estimating approximation.

The utilization of CLAs allows for the customization of the

approximation to fit a specific operating range and the targeted

system. Additionally, the sample-based approach enables inte-

grating the behavior of complicated devices like tap-changing

transformers and smart inverters into the approximation, as

discussed in our prior work [6]. In the realm of optimization,

CLAs offer a crucial advantage: they enable the satisfaction of

nonlinear constraints while enforcing only linear inequalities,
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assuming the CLAs maintain conservativeness. Consequently,

CLAs streamline optimization problems, rendering them suit-

able for commercial optimization solvers.

Consider a quantity of interest denoted as γ, which could

represent variables such as the voltage magnitude at a specific

bus or the magnitude of current flow along a particular line. In

this context, bold quantities signify matrices and vectors. Let

superscript T denote the transpose. An overestimating CLA

can be expressed as follows:

a0 + aT
1

[

P

Q

]

(2)

where a0 is a scalar and a1 is a vector, both serving as decision

variables in the regression problem later described in (4). This

CLA is constructed to ensure the fulfillment of the following

relationship for power injections P and Q within a specified

range:

γ ≤ a0 + aT
1

[

P

Q

]

. (3)

Assuming that (3) is indeed satisfied, we can ensure that

the constraint γ ≤ γmax is also satisfied by instead enforcing

a linear constraint a0 + aT
1

[

P

Q

]

≤ γmax. This approach

allows us to meet the upper bound requirement γmax without

introducing the implicit system of nonlinear AC power flow

equations in (1). Importantly, by employing the CLA, we are

able to satisfy the nonlinear equations while maintaining a

linear formulation, thus enhancing computational tractability

without sacrificing feasibility in the resulting solution.

To compute a CLA, we solve for the coefficients of the

affine function of power injections in (2) in the following

regression problem:

min
a0, a1

1

M

M
∑

m=1

L






γm −



a0 + aT
1

[

Pm

Qm

]










(4a)

s.t. γm −



a0 + aT
1

[

Pm

Qm

]



 ≤ 0, m = 1, . . . ,M. (4b)

The subscript ( · )m denotes the mth sample and M is

the number of samples. The function L( · ) represents a loss

function, such as the absolute value for ℓ1 loss or the square

for squared-ℓ2 loss. In this paper, our focus is on quantities

of interest denoted by γ, which correspond to the magnitudes

of voltages (V ) and current flows (I). The construction of

underestimating CLAs follows a similar process as described

in (4), with the key distinction being the reversal of the

inequality direction in (4b).

The conservativeness of the CLA computed in (4) comes

at the cost of reduced accuracy relative to the approximation

corresponding to the unconstrained regression problem result-

ing from dropping (4a) from (4). To manage this tradeoff,

the next section presents the main contribution of this paper,

namely, a linear approximation technique that achieves a

balance between conservativeness and accuracy. This approach

involves biasing the linearization towards conservativeness,

guided by a designated loss function.

III. CONSERVATIVE BIAS LINEAR APPROXIMATIONS

The CLA approach presented in Section II-B is consistently

conservative within the set of drawn samples. However, in

certain scenarios, the conservativeness property may lead to

significant errors due to specific samples. In this paper, we

present a sample-based conservative bias linear approximation

(CBLA) approach that is adaptive, meaning it can be tailored

to a specific system and operating range. The CBLA approach

is designed to be optimal, aiming to minimize a specific error

metric while retaining a tendency to be conservative in order

to enhance accuracy. This implies that the CBLA primarily

minimizes errors between the approximating function and the

samples, permitting samples to violate conservativeness at a

specified cost.

A. Formulation

Let ϵ denote the mismatch between the approximated quan-

tity and the actual quantity. The optimization problem to

compute a CBLA is formulated as follows:

min
f(ϵm(a0,a1))

1

M

M
∑

m=1

f(ϵm) (5)

where

[∀m = 1, . . . ,M ]

ϵm = γm −



a0 + aT
1

[

Pm

Qm

]



 , (6)

and

f(ϵm) =

{

g(ϵm), if ϵm ≤ 0

h(ϵm), otherwise.
(7)

The optimization problem in (5) seeks to minimize the ag-

gregated value of the error function f( · ) defined in (7) over all

samples by computing the coefficients a0 and a1 in (6). This

error function is contingent upon the error mismatch, denoted

as ϵ in (6), between the estimated quantity and the actual

quantity (γ). The error function is computed based on the sign

of the error for each sample. In cases of overestimation, the

value of h(ϵm) is designed to be high, imposing a substantial

cost for violation. Conversely, the value of g(ϵm) is intended

to be relatively low, reflecting scenarios where samples do not

violate the conservativeness. Vice-versa, the value of h(ϵm)
is designed to be relatively low and g(ϵm) to be high for an

underestimation.

B. Error function

Choosing a suitable error function in the CBLA approach

is an important consideration. The choice of error function

depends on various factors, such as the specific system re-

quirements, a quantity of interest, and the trade-off between

accuracy and conservativeness. To better understand how the
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error function works, we compare the error function used in

the CLA approach with that of the CBLA approach.

The CLA approach imposes conservativeness across the

set of sampled data in the constraints. We can rewrite the

regression problem described in (4), which utilizes the ℓ1 loss

function, as an optimization problem formulated in (5)–(7). In

this formulation, the error function is defined as follows:

f(ϵm) =

{

ϵm, if ϵm ≤ 0

∞, otherwise.
(8)
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Fig. 2. An error function of the CLA where g(ϵ) = ϵ and h(ϵ) = ∞.

The error function defined in equation (8) (see Fig. 2)

assigns an infinite cost to any violation of the overestimating

requirement. This implies that for all samples drawn, no

violation is permitted.
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Fig. 3. An example of an error function where g(ϵ) = ϵ and h(ϵ) = e2ϵ−1.

In contrast, our CBLA approach offers the flexibility to

configure an error function that accommodates violations

for specific samples, all while considering a predefined cost

associated with these violations. This ability to tailor the error

function empowers us to strike a balance between accuracy and

the acceptable level of conservativeness for the specific system

and operating range of interest. In Fig. 3, an example of an

error function f(ϵ) for an overestimating CBLA is depicted.

The function f(ϵ) exhibits a high value for ϵ > 0, f(ϵ)
maintains a relatively low value for ϵ < 0, and f(0) is zero,

indicating an exact approximation.

In this setup, by assigning a higher penalty when an

approximation violates conservativeness, we incline towards

more conservative approximations while sacrificing some ac-

curacy. Additionally, when the derivative of the function h(ϵ)
increases as shown in Fig. 3, this function likely permits only

small positive values of ϵ, as larger positive values result in

exponentially higher penalties. Conversely, reducing the cost

tends to yield more accurate approximations at the expense of

conservativeness.

When the error function is defined as a piecewise linear

function (i.e., when both g(ϵ) and h(ϵ) are linear functions),

the problem formulation to compute CBLAs in (5)–(7) can be

framed as a linear program as follows:

min
a0, a1

1

M

M
∑

m=1

zm (9a)

s.t. [∀m = 1, . . . ,M ]

ϵm = γm −



a0 + aT
1

[

Pm

Qm

]



 , (9b)

zm ≥ k1ϵm, (9c)

zm ≥ k2ϵm, (9d)

where z is a slack variable, and k1 and k2 are the coefficients

of the linear error functions, i.e., g(ϵ) = k1ϵ and h(ϵ) = k2ϵ.

With nonlinear error functions, the regression problem is

a mixed-integer nonlinear program; nevertheless, it can be

conveniently implemented using a user-defined function in

Julia and subsequently solved with a Julia package like Optim,

which provides a framework for solving constrained optimiza-

tion problems [18].

IV. NUMERICAL RESULTS

In this section, we conduct numerical experiments on several

test cases to examine the behavior of CBLA, highlight the ben-

efits of error function design, and demonstrate the effectiveness

of CBLA in a simplified OPF problem.

The test cases used in the simulations are case6ww, case14,

and the IEEE 24-bus system, all of which are accessible in

MATPOWER [19]. For approximations of voltage and current

flow, we draw 500 samples by varying the power injections

within a range of 70% to 130% of their nominal values. Both

voltage and current flow values are reported in per unit (pu).

We use the ℓ1 norm as the loss function L( · ). The numerical

simulation was conducted in Julia using the Optim package.

A. Conservative Bias Linear Approximations

We begin our numerical tests by examining the effects of

changing the error function in (7) in our CBLA approach.

As discussed in Section III-B, error functions are designed

to balance conservativeness and accuracy. By testing different

error functions, we aim to understand how they impact the

number of violated samples and accuracy of the approximated

power flow equations.

In Fig. 4, we present the results of using the CBLA approach

to intentionally overestimate the predicted current flow from

bus 3 to bus 24 in IEEE 24-bus system using different

quadratic error functions. The error functions employed in

this test are defined as g(ϵ) = x2 and h(ϵ) = αx2, where

α is a parameter that we vary across the test. Specifically,

we adjust α to take values of 1, 10, 100, and 1000. When

α = 1, the error functions are equivalent (i.e., g(ϵ) = h(ϵ)),
indicating that there is no difference in cost between violating

and not violating conservativeness (i.e., the error function is

the squared-ℓ2 loss). Under this condition, almost all samples
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(a) g(ϵ) = ϵ2, h(ϵ) = ϵ2.

(b) g(ϵ) = ϵ2, h(ϵ) = 10ϵ2.

(c) g(ϵ) = ϵ2, h(ϵ) = 100ϵ2.

(d) g(ϵ) = ϵ2, h(ϵ) = 1000ϵ2.

Fig. 4. Plots of results when (a) α = 1 (equivalent to the squared-ℓ2 loss),
(b) α = 10, (c) α = 100, and (d) α = 1000 for current flow from bus 3
to bus 24 in IEEE 24-bus system. The red points represent overestimating
CBLAs. The black line represents a zero approximation error.

are well approximated, but several samples fall below the

zero approximation error line, indicating a deviation from the

overestimating objective.

As we increase α, fewer samples fall below the zero

approximation error line, suggesting improved adherence to

the overestimation goal. However, this improvement comes

at the cost of lower overall accuracy. At the highest value

of α = 1000, most samples are overestimated as intended,

but the level of accuracy appears to be the lowest among all

the plots. This trade-off highlights the importance of carefully

selecting the value of α to achieve a suitable balance between

overestimation and accuracy.

Fig. 5. Results showing the average error per sample in per unit (pu) and
the number of violated samples due to overestimating CBLA of current flow
from bus 3 to bus 24 in IEEE 24-bus system, as the value of α (labeled at
each point) varies from 1 to 104.

To gain further insight into the effects of varying α, we plot

the relationship between the average error per sample of the

approximated flow and the number of violated samples when

varying the value of α in Fig. 5. In this test, we adjust α over

a range from 1 to 104. The results reveal a clear trend: as

α increases, the average error per sample also increases while

the number of violated samples decreases significantly, demon-

strating the trade-off between conservativeness and accuracy.

This is due to the increased enforcement of conservativeness

in the error function. Specifically, the average error per sample

increases from 0.00869 when α = 1 to 0.0455 when α = 104,

while the number of violated samples decreases from 161
when α = 1 to just 12 when α = 104.

TABLE I
APPROXIMATED CURRENT FLOW ERRORS AND NUMBER OF VIOLATED

SAMPLES AT SPECIFIC BUSES IN IEEE 24-BUS SYSTEM

Line Average errors/sample # violated samples

(From-to) α = 1 α = 102 α = 104 α = 1 α = 102 α = 104

3-14 0.00869 0.03012 0.04551 161 25 12

6-10 0.00907 0.02274 0.03780 202 30 8

9-12 0.01621 0.04961 0.09397 180 29 6

The data presented in Table I illustrates the relationship

between the number of violated samples and the average

approximated current flow errors across different values of α

at different lines. These results align with the trend observed

in Fig. 5, confirming that as α increases, the average error

per sample increases while the number of violated samples

decreases.

B. Application: Simplified optimal power flow

While our main goal is to use our CBLA approach for

challenge problems such as bilevel problems and mixed-

integer nonlinear programs, these are outside the scope of

this paper. Instead, we concentrate on showcasing results

within a simplified optimal power flow (OPF) framework,

which offers a conceptual demonstration and a foundation for

comparing different linear approximations (DC power flow

and conservative bias linear approximation (CBLA)). This
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TABLE II
RESULTS FROM OPF COMPARING SOLUTIONS FROM AC-, DC-, AND

CBLA-OPF

Formulation
Case

case6ww case14

AC-OPF 2986.04 5368.30

DC-OPF 2995.15 (0.31%) 5368.52 (0.004%)
Violation V (0.029 pu) No violation

CBLA-OPF (α = 1) 2987.28 (0.04%) 5368.52 (0.004%)
Violation No violation V (0.004 pu)

CBLA-OPF (α = 102) 2987.42 (0.05%) 5368.52 (0.004%)
Violation No violation No violation

CBLA-OPF (α = 106) 2987.51 (0.05%) 5368.52 (0.004%)
Violation No violation No violation

simplified version of the OPF scenario imposes constraints

on voltages at buses where P and Q are known, and power

generation within defined ranges, excluding line flow limits

(see [12] for the full problem setup).

Table II presents the outcomes of applying the AC power

flow equations and various power flow approximations in a

simplified optimal power flow (OPF) scenario. The AC-OPF

serves as the baseline, with no violations and providing a

reference for comparing the percentage difference in optimal

cost against other formulations. In the overestimating CBLA

approach, we utilize error functions g(ϵ) = ϵ2 and h(ϵ) = αϵ2,

while for underestimating CBLA, we use error functions

g(ϵ) = αϵ2 and h(ϵ) = ϵ2. As discussed in Section IV-A,

setting α = 1 indicates that the error function does not

differentiate between overestimating or underestimating the

linearization error.

The results indicate that the DC-OPF leads to a maximum

voltage violation of 0.029 pu and an optimal cost that is 0.31%
higher than the AC-OPF’s solution for case6ww. In case14, the

CBLA-OPF causes only a minor voltage violation of 0.004 pu

when α = 1. When α = 102 and 106 (with the latter closely

representing the conservative linear approximations in our

previous work [12]), both test cases have no voltage violations.

Moreover, the optimal costs using DC-OPF and CBLA-OPF

are only 0.004% higher than the optimal solution from AC-

OPF in case14. These results suggest that the flexibility of

CBLA allows us to select a suitable function that optimizes

cost depending on the specific system being analyzed.

V. CONCLUSION AND FUTURE WORK

This paper presents a conservative bias linear approximation

(CBLA) approach for approximating the power flow equations.

This approach strives to balance conservativeness and accu-

racy while maintaining linearity in the approximations. The

numerical results highlight the potential advantages of using

CBLA for power flow problems. By selecting an appropriate

error function, we can achieve an effective balance between

conservativeness and accuracy. Additionally, the ability to

choose different error functions allows CBLA to be tailored to

specific systems and operational conditions, ultimately enhanc-

ing performance and reliability in power system optimization.

In our future work, we aim to extend our current approach

by developing additional conservative bias approximations

through the use of piecewise linearizations formulated as

neural networks. Moreover, we plan to apply our proposed

approach to a broader range of power system planning and re-

silience tasks. This includes tackling complex bilevel problems

as well as conducting capacity expansion planning studies.
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