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Non-neutral plasma experiments are excellent benchmarks for validating transport models, including in
strongly coupled conditions. Experiments with Penning-Malmberg traps operate under the Brillouin limit,
which means that the plasma is also strongly magnetized in the sense that the gyrofrequency exceeds the
plasma frequency. This is an unusual regime that is not described by traditional plasma kinetic theory,
particularly when strong coupling and strong magnetization are both present. Here, we apply a recently
developed generalized Boltzmann kinetic theory to compute the temperature anisotropy relaxation rate in
this regime. Strong magnetization is found to severely suppress energy exchange during collisions, leading to
a drastically reduced anisotropy relaxation rate. The results exhibit good agreement with previous work by
Glinsky et al. when the plasma is weakly coupled, and extends the calculation to the strongly coupled regime
as well. Results are compared with published experimental measurements, demonstrating good agreement.
Furthermore, the model is tested using molecular dynamics simulations over a broader range of parameters
than the experiments reached. These simulations utilize a new Green-Kubo relation, enabling an equilibrium
simulation method that is more accurate than previous non-equilibrium methods that have been applied to
this problem. Finally, a discussion of detailed balance in strongly magnetized plasmas is provided. Specifi-
cally, it is shown that despite the absence of time-reversal symmetry, which is usually used to mathematically
prove detailed balance, the results satisfy detailed balance to a high degree of numerical precision.

I. INTRODUCTION

Non-neutral plasmas of pure electrons or pure ions are
well diagnosed systems that make excellent benchmark
experiments to test models for plasma transport. The
most common type of experiment confines the plasma in
a Penning-Malmberg trap. The density in a Penning-
Malmberg trap is typically below the Brillouin limit.!
This means that the plasma is strongly magnetized in
the sense that the gyrofrequency significantly exceeds
the plasma frequency,®* ie., 8 = we/w, > 1, where
we = eB/mec and w, = \/4me?n/m. Previous theoreti-
cal models of non-neutral plasmas primarily considered
the weakly coupled, strongly magnetized regime.?® Here,
we consider the temperature anisotropy relaxation of a
non-neutral plasma as a means to test a generalized ki-
netic theory that treats a broad range of coupling and
magnetization strength regimes.” Predictions are com-
pared with previously published experimental measure-
ments,®Y and new molecular dynamics (MD) simulations.
Here, strong coupling refers to conditions where the po-
tential energy at the average interparticle spacing ex-
ceeds the average kinetic energy: I' = (e2/a)/(kpT) > 1,
where a = [3/(4mn)]'/? is the Wigner-Seitz radius. Un-
derstanding transport in strongly magnetized, strongly
coupled plasmas has applications not only in non-neutral
plasma experiments,® 10 but also antimatter trap plas-
mas, "4 magnetized dusty plasmas,'>'6 magnetized ul-
tracold neutral plasmas,'” 22 pinch experiments,?® elec-
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tron cooling devices,
as the atmosphere of neutron stars.

As an example for how testing models in non-
neutral plasma experiments can contribute to other re-
search areas, previous works have drawn parallels be-
tween the Salpeter enhancement of nuclear reaction
rates in stars®® and the enhancement of temperature
anisotropy relaxation due to strong coupling in non-
neutral plasmas.®!02% Strong magnetization in a non-
neutral plasma causes the perpendicular kinetic energy to
act as an adiabatic invariant, significantly inhibiting per-
pendicular energy exchange during long-range collisions.®
Energy exchange primarily occurs during short-range col-
lisions where adiabatic invariance is broken, drawing an
analogy with the close collisions responsible for fusion re-
actions. As plasmas become strongly coupled, screening
increases the probability of these close collisions, leading
to enhanced relaxation rates. Thus, a measurement of
the screening effect on the temperature anisotropy relax-
ation is a proxy for the screening effect in fusion reactions.

Here, we use the same temperature anisotropy relax-
ation process and experimental measurements to test a
new generalized plasma kinetic theory. Considering an
initial state with a small temperature anisotropy, the
temperature parallel and perpendicular to the magnetic

field is expected to relax linearly according to3%3!
dT' 1dT)
——=———=—(T. -T 1
o 5 v(TL =Ty, (1)

where v is the anisotropy relaxation rate. Here, a uni-
form magnetic field is assumed and || and L refers to di-
rections parallel and perpendicular to the magnetic field.
This process has been modeled using a variety of dif-
ferent theories over the years.>%31:32 Each model is de-
veloped based on expansions associated with assumed
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limits of the coupling and magnetization strength. In
order to appreciate the relevant parameter regimes, con-
sider the coupling-magnetization parameter space pro-
posed in Ref. 2 and shown in Fig. 1. This compares the
gyroradius (r. = /kpT/m/w.) with the other length
scales relevant to collisions: Coulomb collision mean free
path (Aco1), Debye length (A\p = \/kpT/4me?n), Lan-
dau length (r;, = e?/kpT), and interparticle spacing
a = (3/4mn)'/3.

The unmagnetized regime (1) corresponds to condi-
tions were collisions inhibit the gyromotion of particles
and therefore the magnetic field has little influence on
transport (the Hall parameter is small). The weakly
magnetized regime (2) corresponds to conditions where
particles can gyrate, but the gyromotion occurs at a
length scale that is much larger than the interaction
scale. Therefore the magnetic field does not directly in-
fluence the collision operator of the kinetic theory. Re-
gions (1) and (2) are well described by standard plasma
kinetic theories, such as the Landau,® Rosenbluth,3*
Boltzmann,?® or Lenard-Balescu®®37 equations when the
plasma is weakly coupled (I' < 1). Mean force kinetic
theory®®3% is an approach that extends this into the
strongly coupled regime (I' < 20). Strong magnetiza-
tion effects arise in regions (3) and (4), where the gyro-
motion of particles occurs within the interaction length
scale. This is divided into two regions: the strongly mag-
netized regime (3) where gyromotion occurs between the
distance of closest approach and Debye length, and ex-
tremely magnetized regime (4) were the gyroradius is
smaller than the distance of closest approach (or inter-
particle spacing for I > 1).

Previous work on strongly magnetized plasmas in-
cludes O’Neil’s Boltzmann-like kinetic theory,*® which
treats the extremely magnetized regime (4) for weak cou-
pling I' < 1. Analytic expressions for the temperature
anisotropy relaxation rate in this regime were derived
by O’Neil and Hjorth,® and later modified by Glinsky
et al.”> Numerical results for the case where the gyrora-
dius is comparable to the distance of closest approach
(boundary of regime 3 and 4) were also obtained by
Glinsky et al.® For the intermediate regime (3), previ-
ous work has proposed that strong magnetization simply
changes the standard plasma kinetic theory by replacing
the Debye length with the gyroradius in the Coulomb
logarithm.*' %4 Each of these previous models addresses
a portion of the strong magnetization parameter space
at weak coupling (I' < 1), but does not address strong
coupling. One approach that has been used to attempt
to extend the results to strong coupling is to increase the
predicted relaxation rate from Glinsky® by an enhance-
ment factor derived from a model for an unmagnetized
plasma.®1929 This has shown to reproduce experimental
measurements of the anisotropy relaxation rate,®'° but it
is based on an assumption that the strong magnetization
and strong coupling effects can be separated and multi-
plied to obtain the total, rather than deriving a theory
self-consistently.
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FIG. 1: Magnetization coupling parameter space
showing four regimes where transport is influenced by
different fundamental processes. Diamonds indicate the
conditions where MD simulation data was obtained and
circles indicate the conditions where previous
experimental data was obtained (Ref. 8). The
generalized kinetic theory is expected to apply to any
region of this parameter space with I' < 20.

Here, we apply the recent generalized kinetic equation,
which attempts to account for strong magnetization and
strong coupling self-consistently.*® This is expected to
apply throughout the coupling-magnetization parameter
space shown in Fig. 1, with the caveat that the cou-
pling strength is below the liquid like regime (I' < 20).
The theory generalizes the traditional Boltzmann kinetic
equation to account for the Lorentz force acting on par-
ticles during Coulomb collisions. It models strong cor-
relation effects by incorporating the mean force kinetic
theory construct®®39 by modeling the binary interactions
using the potential of mean force. The generalized kinetic
theory has previously been tested by comparing its pre-
dictions for the friction force on a test charge moving
through a strongly magnetized plasma with results from
MD simulations.*5:46

Considering temperature anisotropy relaxation, we
find that the generalized kinetic theory reproduces Glin-
sky’s results in the weakly coupled, extremely magne-
tized limit (4) and recovers the standard plasma theory
results when the plasma is weakly magnetized (regions
1 and 2). Furthermore, we use the theory to investigate
the strongly magnetized regime (3). In this regime, our
results do not agree with the previously suggested sim-
ple modifications to the Coulomb logarithm*!=4* (for the
coupling strengths considered I' = 0.01 to 10). Finally,
we extend the theory to strongly magnetized strongly
coupled plasmas, a regime where previous theoretical
treatments are not applicable. Here we find that the re-
laxation rate is enhanced compared to predictions from
the models that assume weak correlations.
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The model predictions are tested against molecular
dynamics (MD) simulations. Here, a novel method is
developed to obtain the relaxation rates from equilib-
rium MD simulations. Previous simulations relied on
non-equilibrium methods where an initial temperature
anisotropy is imposed and the relaxation observed.?3!
Though viable, the accuracy of this approach was found
to suffer from an anomalous partial relaxation at early
times. Here, we avoid this challenge by developing a new
Green-Kubo relation?”#® that enables one to obtain the
temperature anisotropy relaxation rate from equilibrium
MD simulations.

Results of the model are also compared with previ-
ously published experimental data.® In strongly magne-
tized, weakly coupled electron systems, the results show
good agreement with experimentally measured relaxation
rates.® These experiments were previously used to val-
idate the Glinsky theory.® Furthermore, the theory is
compared with recent experiments that extend the data
to strongly coupled conditions,® where the Glinsky the-
ory does not apply. We find that the new approach ac-
curately predicts the experimentally observed anisotropy
relaxation rates in this regime as well, achieving the goal
of self-consistently including the Salpeter enhancement.

Finally, we note that the derivation of transport prop-
erties from kinetic equations commonly relies on the prin-
ciple of detailed balance,** 5! which posits that each el-
ementary process is balanced by its reverse process at
equilibrium. In Boltzmann kinetic theory, this involves
identifying an inverse collision corresponding to a given
forward collision. In weakly magnetized plasmas, this
is achieved by exploiting the invariance of the equa-
tions of motion under time-reversal and space-inversion
symmetries.*>%! However, binary collisions in strongly
magnetized plasmas lack time-reversal symmetry when
the magnetic field is generated externally, making the
traditional proof of detailed balance inapplicable. In this
work, we examine detailed balance by comparing tem-
perature relaxation rates calculated with and without
invoking the assumption. The results are found to be
in excellent agreement, validating the assumption’s ap-
plicability in strongly magnetized plasmas, despite the
lack of time or space-inversion symmetries.

The outline of the paper is as follows: Section II details
the molecular dynamics implementation for calculating
the temperature anisotropy relaxation rate. Section III
outlines the derivation of relaxation rates using the gen-
eralized Boltzmann kinetic theory. Section IV presents a
comparison of the theoretical results with the molecular
dynamics simulations, existing theories, and experimen-
tal data. Section V obtains the relaxation rates without
invoking the detailed balance assumption and compares
these results with those obtained using the assumption.
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FIG. 2: Temperature anisotropy autocorrelation
function for various magnetization strengths [Eq. (6)]
computed from MD simulations. Here, the coupling
strength is I' = 1.

Il. MOLECULAR DYNAMICS SIMULATIONS
A. Green-Kubo relation

Previous studies using MD to compute the tempera-
ture anisotropy relation rate employed a nonequilibrium
method, in which an initial anisotropy was imposed and
the temperatures were observed to relax.?3! Although
this is a viable method, two challenges were encoun-
tered. First, an unphysical short-time partial relaxation
is observed in strongly magnetized conditions.?! This is
thought to be anomalous and may be associated with
an exchange of kinetic and potential energy introduced
by the imposition of the temperature anisotropy. Sec-
ond, non-equilibrium approaches require fitting the time-
dependent temperatures to an exponential, even though
the decay is not exponential at strong coupling.?! Here,
we avoid these issues by utilizing an equilibrium approach
where the relaxation rate is obtained from an integral
of a correlation function, similar to the well-established
Green-Kubo relations.*”*% The derivation of this method
follows closely to the derivation of the Green-Kubo rela-
tions by Zwanzig.>?

To start, consider the temperature evolution equation
from Eq. (1). Conservation of energy can be used to write
this as an anisotropy evolution equation

dAT
dt
where AT = T) =T . The non-Markoffian generalization

of this equation is

d%T =-3 /0 dt’ v(t — t')AT() (3)

where AT = T — T,. Note that a non-Markoffian

= —3UAT, (2)
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FIG. 3: Temperature anisotropy relaxation rate as a function of magnetization strength for various Coulomb
coupling strengths. The green solid lines are the GCO calculations, brown dotted lines are results from Glinksy®,
orange dashed dotted lines are mean force kinetic theory results®, blue dashed lines are modified

Ichimaru-Rosenbluth results*3:44

, purple squares are results from Non-equilibrium MD simulations? and pink

diamonds MD data obtained from equilibrium MD simulations. Hollow squares indicate non-equilibrium MD data
points that are not expected to be converged. The numbers on top correspond to the four transport regimes shown

in Fig. 1, and vertical dotted lines delineate the boundary.

equation is used here because temperature relaxation in
strongly coupled plasmas is non-exponential.®! The re-
laxation rate from theory can be interpreted as the zero
frequency (long-time) behavior of v.

A Laplace transform in time of Eq. (3) yields

WwAT (w) — AT(0) = —30(w)AT (w), (4)

where " is used to represent a transformed quantity. Mul-
tiplying by AT'(0) and taking an ensemble average leads
to

iwC(w) — C(0) = =30(w)C(w), (5)
where
C(t) = (AT()AT(0)) (6)

is the temperature anisotropy autocorrelation function,
with (...) representing an ensemble average. Solving
Eq. (4) for the frequency-dependent relaxation rate pro-
vides

Pw) = L (7)

and an expression for the temperature relaxation rate is
obtained by taking the zero frequency limit
__ ATO)ATO)
© 3 [T dt(AT()AT(0))

(8)

The initial value of the temperature anisotropy autocor-
relation function can be determined using the definitions
of parallel and perpendicular temperatures from the par-
ticle velocities

2 & 1 K1
2 2
T = Nip Z vai,\l and T, = Nip Z §val
i=1 i=1

(9)
where v; || and v; | represent velocities of particle i par-
allel and perpendicular to the magnetic field. The result
is 372N, so that Eq. (8) may be written

N o0
L= [ dt{AT(t)AT(0)). (10)
72 Jy
Equation (10) is a Green-Kubo relation for the temper-
ature anisotropy relaxation rate that can be evaluated
from MD simulations from a time series of particle veloc-
ities.
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B. Simulation setup

Molecular dynamics simulations were performed using
the open-source software LAMMPS.?® The simulations
consisted of 10,000 electrons in a cubic box with periodic
boundaries. Each simulation consisted of an equilibration
phase of 3000 w;l, followed by a main run. In the equili-
bration phase, velocities of the particles were thermostat
to the desired temperature by applying a Nose-Hoover
thermostat.’* The magnetic field was not included dur-
ing this phase because the relaxation to equilibrium is
faster without it, and the magnetic field is not expected
to influence the equilibrium state (the Bohr-van Leeuwen
theorem®°¢). The time step for this phase was cho-
sen as 0.0l w, L. In the main run phase, the thermostat
was turned off, and the simulation was run as a micro-
canonical ensemble. The magnetic field was turned on
for this phase, and the time step was chosen as minimum
of 0.01w, ' or 0.01/8w," to resolve the gyromotion of
the particles.

Parallel and perpendicular temperatures were com-
puted at every timestep from particle velocities from
Eq. (9). This data was then used to calculate the tem-
perature anisotropy Green-Kubo relation from Eq. (8).
In practice, to evaluate Green-Kubo relations from MD,
one must discretize the autocorrelation function in time
and impose a cutoff length of L timesteps, where L is
chosen such that the autocorrelation has decayed to zero
by the time L timesteps have elapsed. Additionally, the
ensemble average is generally replaced by a time average,
so that one obtains a time-series of length ¢ty > L and
averages ¢y — L autocorrelation functions together. With
these considerations, the relaxation rate was evaluated as

,_ L S PAT()AT(r)
36t Zﬁ:o SINCEAT(r + 1) AT (1)

(11)

where 7 and 7; index the timestep (so that AT is here
considered a function of the timestep number) and §t
is the length of a timestep. Figure 2 shows temperature
anisotropy autocorrelation obtained using MD simulation
for various magnetization strengths. This is integrated to
obtain the relaxation rate. Clearly, a stronger magnetic
field delays the relaxation and therefore increases the re-
laxation time, decreasing the relaxation rate.

C. Results

Figure 3 shows the MD simulation results for I' = 1 and
10 as a function of magnetization strength. The figure
also shows results from previous simulations and theory
calculations for I' = 0.01 and 0.1. Across all panels, it is
evident that regardless of the coupling strength, strong
magnetization significantly suppresses the anisotropy re-
laxation rate, v, suggesting that temperature anisotropy
may persist for extended periods of time in strongly mag-
netized plasmas. The relaxation rate is unaffected by the

(S

magnetization strength in the unmagnetized or magne-
tized regimes (regions 1 or 2), in agreement with the pre-
dictions of standard plasma theories. The relaxation rate
gradually decreases in the strongly magnetized regime
(region 3), but drops very rapidly with magnetic field
strength in the extreme magnetic field regime (region 4).
In strongly coupled plasmas, this decrease in relaxation
rate with increasing magnetization is steepest. Here, the
plasma transitions directly from the unmagnetized to ex-
treme magnetization limits.

Results from the equilibrium method are also com-
pared with previously published results from Ref. 2 that
used a nonequilibrium method. For I' = 1, both methods
are expected to apply, and good agreement is seen in this
case. The non-equilibrium method was not applicable to
strong coupling because of the unphysical behaviors in
the short time scale, and non-exponential relaxation rate,
that were described above and in Ref. 2. The new equi-
librium method enables one to obtain simulation data
in the strongly coupled regime. For I' = 0.1, the non-
equilibrium results are expected to be trustworthy up to
B =~ 10, but the data beyond this is questionable because
finite size effects associated with long-range correlations
arise at such high magnetization strengths and weak cou-
pling, which is due to a nearly one-dimensional motion of
the particles along field lines.?” It is expected that these
previous results were not converged with respect to the
particle number, and are displayed as hollow data points
to indicate this. The figure also compares the MD re-
sults with predictions of theoretical models, which are
described next.

1. THEORY

The temperature evolution can be determined by tak-
ing the energy moment of the kinetic equation. We
assume an anisotropic Maxwellian velocity distribution
function

n vi Uﬁ

f(v) = 55— exp (**) exp | ——— |, (12)
T 2upvg, vE ”%H

where vy = /2kpT)/m and vr1 = /2kpT./m are

the parallel and perpendicular ion thermal speeds, re-
spectively. This is expected to be an accurate represen-
tation of the distribution function for a small tempera-
ture anisotropy, and is consistent with the distributions
observed in MD simulations. The perpendicular energy
moment of the kinetic equation provides

dT 1 5 MV?

=L [#vEle, (13)
dt nkp 2
where C is the generalized Boltzmann collision operator

(GCO)T

= Bvy slu-8] [f(v])f(vh) — f(vi)f(v2)].
c=xfa _/Sfdw 8| /(DS (vh) — Fva)f( ()1)
14
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Here, u = v; — vy is the relative velocity of the colliding
particles, the surface integral is on the surface of the col-
lision volume and § is the unit normal to the ds surface
area. The post collision velocity of each particle (v} and
v4) are obtained by solving the equations of motion of
the colliding particles inside the collision volume

dV A%
mo-=e (7 X B> , (15a)
du u .
mT = —29(r) +e (E x B) , (15b)

where V = (vq + v2)/2 is the center of mass velocity.
Since the equations of motion for the relative and center
of mass velocities separate for a one-component system,
only Eq. (15b) needs to be solved to evaluate the col-
lision operator. The interaction between the particles
is modeled using the potential of mean force, ¢(r)383°
which is related to the pair distribution function via
¢ = —kpT In[g(r)]. Here, the pair distribution function is
modeled using the hypernetted-chain approximation for
a one-component plasma.®® For a weakly coupled plasma,
the potential of mean force is simply the Debye-Hiickel
potential.

In addition to obtaining the accurate interaction po-
tential, mean force kinetic theory also considers the
Coulomb hole surrounding particles interacting via the
Coulomb force. This excluded volume reduces the avail-
able space for particles, resulting in an increased colli-
sion frequency in strongly coupled plasmas. This phe-
nomenon leads to a frequency enhancement factor, de-
noted as x[g(r = )], where o represents the radius of the
Coulomb hole, within the collision operator. This factor
for plasmas is derived by modifying Enskog’s theory of
hard spheres.%° In this model, the y factor is calculated
based on a property of thermodynamic equilibrium, rep-
resented by [g(r)], and consequently, it does not depend
on the strength of the magnetic field. The values of x
range from 1-1.6, and are provided in Ref. 60.

The GCO from Eq. (14) differs from O’Neil’s kinetic
equation,*® which was the basis for Glinsky’s previous
analysis of temperature anisotropy relaxation,® in two
respects that enable it to extend to a broader range of
magnetization and coupling strength. First, the collision
volume described by the 2D surface S_ in Eq. (14) is a
sphere with a radius larger than the interaction range.
By concentrating on the extreme magnetization regime,
O’Neil simplified the collision volume by assuming it has
a cylindrical form and that particles only enter or leave
the cylinder through the circular end surfaces. This en-
ables a reduced dimensionality to 1D in the surface in-
tegral ds — 2mwpdp. By keeping a general 2D collision
surface, Eq. (14) is able to treat the full range of mag-
netic field strength, including the usual unmagnetized
limit.” Second, modeling particle interactions via the
mean force, rather than the Coulomb force, in Eq. (15b)
brings in aspects of many-body interactions via the ap-
propriate static screening. Previous work has shown that
this extends the theory to the strong coupling regime of

I’ < 20, which is limited only by a transition to a liquid-
likes state where other assumptions in the kinetic theory
break down.38:39

Combining Egs. (13) and (14), the perpendicular tem-
perature evolution equation is

ar, — x

1
o ks d®vid®vy /S, ds|u- s|§mvi

[FV)f(v3) = f(vi) f(v2)] . (16)

Section V will discuss evaluating the temperature
anisotropy relaxation rate directly from Eq. (16). Here,
the expression is further simplified by assuming a prin-
ciple of detailed balance, as was done in Glinsky®, with
the exception of the different form of the collision oper-
ator here. Detailed balance assumes that the collision
integral is invariant under interchanging velocities of col-
liding particles (v1 <+ vo and v} <+ v} ) and interchang-
ing the postcollision velocities with precollision velocities
(vi > v} and vo < v}). Applying these to Eq. (16)
provides

dd% = ﬁ/cﬁvldsvz /S, ds|u- é%mng
(F(vDf(va) = f(vi) f(v2)] (17)
and

dT b 1
L_ X d3v’1d3v/2/s ds|u-é\§mv’h

W TL]CB
F(vOf(v2) = F(V)F(V2)]. (18)

Adding Egs. (16) and (17), then applying Eq. (18) and
using the property d*v/d®v) = d®vid®vy provides

dT'| X // 3 3 / .
- _ -§8|AE
il nkn d°vid’vy 5 ds|u-S|AE,

[f(V'1)F(v'2) = f(v1) f(v2)],(19)

where
1 ‘
ABL =gm([(vi + Vi) = (viL+vi)]  (20)

is the change in kinetic energy in the perpendicular di-
rection. Rewriting the change in energy in terms of the
center of mass and relative frames, and using the fact
that the change in energy contribution from the center
of mass velocity is zero (A(V?2) = 0), the change in per-
pendicular energy can be simplified to

AE, = imA(ui), (21)

where u; = vy —voi, u) =u; -u; and A(u?) =
(u3) —u?.

To simplify the temperature evolution equation, the in-
tegration variables are transformed from individual par-
ticle velocities (v1, v2) to center of mass velocity (V) and
relative velocity (u). Since the change in perpendicular
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energy, AF |, and integral on the collision surface are in-
dependent of the center of mass velocity, the integration
over V can be performed independently, simplifying the
temperature evolution equation to the form

dT'| n

m?
Tdt 327T3/2k5/2TL /*_/

*muﬁ —mu?
ex — | €X]
P\ @pty ) P\ 2hip Ty

d3u/ ds|u-8|AE,
S

2 2 2
—mu’y + mu —mu’ M2
I I mu’| + muj]
_ —— | — 1] (22
eXp( 4kpT, ) P ( kT, ) 22)
Utilizing energy conservation, A = —AFE,, and ex-
panding for small temperature anisotropy yields,
dTJ_
— =v(Ty-T 23
7 v(T) —Ty) (23)
where

V=15 (kBT 7/271_3/2/ / ds (AE;)*|u- 3|

mu?
exp ( 4kBT>(24)
is the temperature anisotropy relaxation rate.

The temperature anisotropy relaxation rate, v, was
obtained by numerically evaluating the 5-D integral in
Eq. (24), employing techniques similar to our prior stud-
ies.”®61 Specifically, the integration uses the adaptive
Monte Carlo integration code VEGAS.52:63 For each step
of the integration, the change in perpendicular kinetic en-
ergy from Eq. (21) was determined by numerically solving
the equation of motion from Eq. (15b) using the ?"DOP
853” method.%* Several convergence tests were run with
respect to number of integration points, and tolerance
of the trajectory solver. A typical range of integration
points was 10° — 107, and the tolerance for trajectory
calculations was set within the range of 1078 — 10710,

IV. RESULTS AND DISCUSSION
A. Comparison with MD

Figure 3 presents a comparison of the GCO and MD
calculations. Excellent agreement is observed in all cases
that the MD results are expected to be converged. No-
tably, the GCO calculations accurately reproduce all
trends observed in the MD data, including the suppres-
sion of the equilibration rate at high magnetization. The
sharp decrease in relaxation rate with increasing coupling
strengths at high magnetization observed in MD simula-
tions is also well captured by the GCO. This excellent
agreement between the theoretical GCO results and MD
simulations, spanning several decades in magnetization-
coupling phase space, provides strong verification of the
theory.
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FIG. 4: Comparison of relaxation rate obtained using
GCO with an experiment on strongly magnetized
magnesium ion in a Penning Malmberg trap® and
results from Glinksy.®

B. Comparison with non-neutral plasma experiments

Figure 4 presents a comparison of the GCO results
with measurements conducted on a strongly magnetized
magnesium ion plasma in a Penning-Malmberg trap by
Anderegg et al.® These experiments used an applied mag-
netic field of 1.2 T and an ion density of 2.06 x 10' m~3
resulting in a magnetization strength of 5 = 3.92. The
plasma temperature was varied over the range 107° <
T < 1073, spanning a coupling range of 0.1 < T < 6.
The figure shows good agreement between the theoret-
ical prediction and experimentally measured relaxation
rates. The prediction from Glinsky® is also shown for
comparison. As expected, this deviates from the mea-
surements at the low temperature end, corresponding to
the transition to strong coupling (I' Z 0.1). This is be-
cause the Glinsky theory models binary interactions with
the Coulomb force, which neglects effects of screening
that become important at moderate to strong coupling
regimes. By modeling interactions using the potential of
mean force, the GCO method is found to naturally ex-
tend to this range of strong coupling parameters. This
comparison provides the first experimental validation of
the GCO theory in a strongly magnetized, strongly cou-
pled plasma.

Figure 5 shows a comparison of predictions from the
GCO and Glinsky models with a variety of experimental
data? that was obtained in weakly coupled, strongly mag-
netized regimes. Here, the relaxation rate is presented
as a function of k& = \/irL/rC, which is a dimensionless
parameter quantifying magnetization strength that was
used in much of the previous work.>? A value of & = 1
corresponds to the boundary between the strong and ex-
treme magnetization regimes (regions 3 and 4) in Fig. 1,
and is related to T’ and 8 as & = v/6I*/243. Results in
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the figure are shown in terms of a reference value of the
relaxation rate

T net 3
p=2 )= = wyy | —T/2, 25
v m (kgT)3/2 P\ ax 25)

The experimental data was obtained from Ref. 9, which
compiles measurements conducted on pure electron plas-
mas in the late 1980s and early 1990s by Hyatt et al,*2
and Beck et al.?"%® The plasma in these experiments was
always dilute and hot enough to be in a weakly cou-
pled regime. The ability to quantify the relaxation rate
in terms of only 7 and & is a consequence of being in
a weakly coupled regime, which is a basic assumption
in the previous models.>*° Tt can be traced to using a
Coulomb potential to model the equation of motion in
Eq. (15b). Indeed, the figure shows excellent agreement
between Glinksy’s theory and the experimental measure-
ments, as has been shown previously.®

In contrast, the GCO predictions depend indepen-
dently on I" and 3, and cannot be written simply in terms
of 7 and & in the general case. This is a consequence of
the potential of mean force depending on I', indepen-
dent of the value of 3, in modeling the equation of mo-
tion in Eq. (15b). The GCO data for coupling strengths
I' = 0.01 and 0.1 agree well with the experiments and
Glinsky curve at sufficiently large values of &, but devi-
ate at smaller values. This is simply associated with the
finite value of I' assumed in each of the GCO calculations.
It points out the feature that at a finite value of Gamma,
the collision rate cannot be captured solely by the kappa
parameter. The GCO and Glinsky results converge in
the limit of asymptotically small I, corresponding to the
limit that screening has a negligible affect on the tra-
jectories computed in Eq. (15b). The experimental data
shown here corresponds to this asymptotically small T’
regime throughout the range of & values shown in the
figure.

C. Comparison with previous theoretical predictions

Next, the GCO predictions are compared with pre-
vious reduced models that concentrated on either ex-
treme, or weak, magnetization regimes. For extremely
magnetized plasmas, where the gyroradius is significantly
smaller than the distance of closest approach (k > 1),
O’Neil and Hjorth derived analytic expressions for the
relaxation rates.® These were later extended by Glinsky
et al.® to also account for weaker field regimes (& ~ 1)
by numerically solving O’Neil’s collision operator.® Glin-
sky’s results can be written as

2V2
ve /v = 7{1(@» (26)
where I(i) is the result of a numerically tabulated in-
tegral. The curves labeled “Glinsky” in Figs. 3, 4 and
5 were obtained by interpolating the data provided in
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FIG. 5: Comparison of the relaxation rate obtained
using GCO with experimental values from Ref. 9 and
results from Glinksy® and modified
Ichimaru-Rosenbluth. 4344

Ref. 5 for I(). In Fig. 3 the GCO results exhibit good
agreement with the Glinsky results for weakly coupled
plasmas at high magnetization strengths (regions 3 and
4 for I' = 0.01 and 0.1). This trend is also observed in
Figs. 4 and 5. As previously mentioned, this agreement
is anticipated as the GCO reduces to O’Neil’s collision
operator in the weakly coupled, extremely magnetized
limit. However, the predictions of each model diverge at
lower magnetization strengths, because the underlying
assumption of a cylindrical collision volume in O’Neil’s
collision operator is only appropriate in strongly magne-
tized plasma.

Figures 3 and 4 shows that when plasma becomes
strongly coupled, the Glinksy model deviates signifi-
cantly from GCO. This arises from screening effects via
the potential of mean force in Eq. (15b) depending on
T, a feature absent in Glinsky’s theory, which assumes
bare Coulomb interactions. Previous works have mod-
eled the strong coupling contributions by multiplying the
Glinksy curve by an enhancement factor obtained from
a model for the collision frequency in an unmagnetized
plasma.®19 This leads to a total relaxation rate that is a
product of a strong magnetic field effect, and coupling
enhancement factor (or Salpeter enhancement factor):
v/v o I(g)f(T).29 In contrast, GCO obtains relaxation
rates by accounting for both the strong coupling effects
and strong magnetization simultaneously. The effects are
not separable in this formulation.

As discussed in Sec. IV B, Fig. 5 illustrates that the
normalized relaxation rate (v/v) in Glinsky’s model
is governed by a single dimensionless parameter (%),
whereas the GCO requires two parameters (I' and j).
The dependence on two-parameters in the GCO is be-
cause of using the potential of mean force as the interac-
tion potential in Eq. (15b). This can be simply illustrated
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by considering the limit of the Debye-Hiickel potential
(6(r) = e2e~"/*P /1), which represents the potential of
mean force in the weak coupling limit. In dimensionless
units, the relaxation rate Eq. (34) and the equations of
motion Eq. (15b) can be written as

_ X 3~ S al( A2 )2, —12/2
=X /d u/ds|u 5/(Ai2 )2 (27)

RR

da  exp(—7x%) o\, R/ -
il I 1+IE r+§(u><b> (28)

Here, 7 = r/rp, and @ = u/vp. The ratio rp,/Ap is re-
lated to coupling strength by r;,/A\p = v/3T'%/2. From the
equations of motion, Eq. (28), it is clear that the system
is characterized by only one parameter () if and only if
rr/Ap = V3032 — 0, which corresponds to the interac-
tion being modeled by the bare Coulomb potential. It is
noteworthy that the behavior of weakly coupled, strongly
magnetized plasmas can be adequately characterized by
a single parameter in Glinsky’s model. This is in con-
trast to weakly magnetized plasmas, where the kinetic
theory logarithmically diverges if screening is neglected
(the Coulomb logarithm).3935:3% This simplification, ne-
glecting the physics of static screening, highlights that a
strong magnetic field effectively acts to limit the range
of Coulomb interactions.

In the weakly magnetized limit, the GCO results align
with the mean force kinetic theory results.?®3% This is
expected since previous works have shown that at weak
magnetization, the two are equivalent.” Mean force ki-
netic theory extends the traditional Boltzmann theory
to stronger coupling by incorporating the potential of
mean force. The temperature anisotropy relaxation rate
computed from this is3!

2X —(2.2)
=== 2
15 29

N R

where the generalized Coulomb logarithm
1
=em -] / dee? e 50 /g (30)

extends the traditional Coulomb logarithm into the
strongly coupled regime (I' < 20).°%% Here, 0o =
met/(2kpT)? is a reference cross section, ¢2 = u?/(2v%)
and o@ is the [*® momentum scattering cross section
obtained using the potential of mean force [Eq. (10)
in Ref. 66]. In weakly coupled plasmas =22 = 2InA,
where A = Ap/rp.

Equation (29) with 22 = 2InA is the same re-
laxation rate obtained by Ichimaru and Rosenbluth for
singly-ionized ions in a magnetized, neutral plasma.’?
This expression is commonly adapted to the strong mag-
netization regime by replacing the Debye length with
the gyroradius in the logarithmic term, i.e., A — A, =
re/rr. 24142 This substitution is based on early work by

Montgomery*® and Silin*, extending plasma kinetic the-
ory to strong magnetization. With this, the “modified
Ichimaru-Rosenbluth” relaxation rate is

12449 4
7 — 15 InA,,. (31)
The theory is not applicable for extremely magnetized
regime, because in this regime r. < rp, making In A,, <
0, leading to a negative relaxation rate. Thus its applica-
bility limited to the strongly magnetized regime (region
3 in Fig. 1). Figure 3 shows that the modified Ichimaru-
Rosenbluth (v{i) clearly departs from the other models
as [ increases. This suggests that the magnetic field’s
influence is captured differently by this theory compared
to others, and a simple substitution of the Debye length
with the gyro radius, while economical, may not be ac-
curate, at least for the coupling strengths considered
(I' = 0.01 — 10). However, Fig. 5 shows that for low
values of &, the modified Ichimaru-Rosenbluth seems to
predict the trend in the data well. These low values of &
correspond to sufficiently small " values. Therefore, this
method might be more appropriate under much weaker
coupling conditions than considered in this work, such as
the transition from region 2 to 3 in Fig. 1.

The GCO theory broadly applies across all magnetiza-
tion strengths within the coupling-magnetization phase
space (as depicted in Fig. 1) for I' < 20. While GCO
offers a comprehensive approach, it is computationally
more demanding than other theories limited to particu-
lar regimes. Thus, a breakdown of which theory applies
where is useful for efficient and accurate prediction.

For unmagnetized and weakly magnetized plasmas
(regimes (1) and (2)), when the plasma is weakly coupled
(I' < 1), standard plasma kinetic theories such as Lan-
dau, Rosenbluth, Boltzmann, or Lenard-Balescu are suit-
able. Conversely, when these plasmas are strongly cou-
pled (T" 2 0.1), mean force kinetic theory provides better
results. In weakly coupled, strongly magnetized regimes
(8 > 1), Glinksy’s tabulated results offer the most accu-
rate approach. The modified Ichimaru-Rosenbluth the-
ory is restricted to very weak coupling (I' < 0.01) and
only applicable at the boundary between regions 2 and
3 (8 ~ 1). Finally, for strongly coupled and strongly
magnetized plasmas (I' > 0.1 and 8 > 1), GCO theory
stands out as the sole viable candidate.

V. DISCUSSION ON DETAILED BALANCE

In deriving transport coefficients from the kinetic equa-
tion, it is common to rely on the principle of detailed
balance to simplify the collisional integral. In Sec. III,
we used the principle of detailed balance to obtain
Eq. (19) from Eq. (16). The principle of detailed bal-
ance [Egs. (17) and (18)] relies on finding an inverse col-
lision for each forward collision. The inverse collision is
obtained by interchanging the precollision and postcolli-
sion states. Specifically, in a forward collision, particles
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FIG. 6: Results of the temperature anisotropy
relaxation rate obtained with the detailed balance

[Eq. (24)] (red dashed line) and without [Eq. (34)] (blue
dots). Here, the coupling strength is I' = 0.1.

enter the collision volume with velocities vi and v, and
exit with velocities v} and v5. Conversely, in an inverse
collision, particles enter with v} and v} and exit with v;
and va.

In an unmagnetized plasma, the inverse collision is
obtained by time reversal followed by spatial inversion.
Time reversal maps postcollision velocities to precolli-
sion velocities with a sign change (—v}, —v) — —vq,
—v3), and spatial inversion flips the velocity signs, re-
sulting in (v}, v — vy, v3). These operations are valid
due to the invariance of the equations of motion under
time reversal and spatial inversion. However, in magne-
tized plasmas, the Lorentz force during Coulomb colli-
sions breaks time-reversal symmetry, invalidating the in-
variance of the equations of motion under time reversal.
Complete time reversal symmetry is only captured if the
currents generating the magnetic field are also included
in the system,®” but here the magnetic field is assumed
to be supplied externally. Consequently, the above pro-
cedure for obtaining inverse collisions fails. To rigorously
assess the applicability of detailed balance in such scenar-
ios, we calculate the anisotropy relaxation rate without
invoking this assumption and compare the result with
what was obtained with the assumption.

Returning to Eq. (16), before the detailed balance as-
sumption was used, velocity variables are transformed to
center-of-mass and relative coordinates, followed by inte-

10

gration over the center-of-mass velocity to obtain

T, xn [ m %( m / 3 / R
e A d d .

dat 4\/§(sz”) 27rTL) v slu-3|
mu 2 —mu? —mu?

<TL v > exp ( i) Hess ( 4Tj)

—mu'} + mu?2 —mu’? 2
I ”) ( mul+mul)_1 9
[exp( 47 exp T . (32)

Utilizing energy conservation, AEy = —AFE), and ex-
panding for small temperature anisotropy yields,

vy -1 (3)

where,
3 g .
-~ X" ( m )a/ 3 / .
v=———— d’u dsju-s|AE
7242 \ 27T ER | IAEL
2

(T + m‘il ) exp <_TT“2>. (34)

Equation (34) was evaluated numerically using a similar
approach to the detailed balance case, but the computa-
tion presents some additional challenges. Specifically, the
integrand in this case exhibits both positive and negative
values, corresponding to increases and decreases in per-
pendicular energy, respectively. This contrasts with the
detailed balance case, where the integrand is always posi-
tive (due to the squared change in perpendicular energy).
Accurately resolving both positive and negative peaks in
the five-dimensional integration space is computationally
demanding. Consequently, more precise trajectory eval-
uations and a larger number of integration points was re-
quired to ensure accurate calculation of relaxation rates.

Figure 6 shows results of the calculations with and
without the detailed balance assumption [Egs. (24) and
(34)]. Results from each calculation are indistinguish-
able. Here, the coupling strength was chosen to be
I' = 0.1. A reason detailed balance works here in absence
of time reversal symmetry might be that many collisions
can lumped together to produce a result with the same
consequence as an inverse collision, instead of a single
collision. Such an explanation is what is used to jus-
tify detailed balance in polyatomic gases where there is
no space inversion symmetry.>! Even though the detailed
balance is not proven for the magnetized collisions, these
results verify the validity of the assumption for these con-
ditions. A better rigorous mathematical proof is desired.

VI. CONCLUSION

In this work, we used the recently developed gener-
alized Boltzmann kinetic theory to calculate the tem-
perature anisotropy relaxation rate in strongly magne-
tized plasmas. Irrespective of the coupling strength,
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we observed that strong magnetization significantly sup-
presses the anisotropy relaxation rate, but this is most
pronounced in strongly coupled plasmas. At high magne-
tization strengths, the perpendicular energy of particles
becomes an adiabatic invariant, substantially reducing
energy exchange between parallel and perpendicular di-
rections during collisions.

The calculated relaxation rates were compared with
existing theories, molecular dynamics simulations, and
experimental data. In the weakly coupled, strongly
magnetized limit, our results agree with those of pre-
vious results from Glinsky et al.> The new method ex-
tends the theory to the strongly coupled regime, show-
ing excellent agreement with molecular dynamics simula-
tions and experimental measurements. We introduced a
novel method to extract anisotropy relaxation rates from
molecular dynamics simulations based on a Green-Kubo
relation, with enables a calculation based on equilibrium
MD instead of non-equilibrium methods that can intro-
duce nonphysical effects. Furthermore, we examined the
validity of the detailed balance assumption in strongly
magnetized plasmas, where time-reversal symmetry is
broken. We found that relaxation rates calculated with-
out the detailed balance assumption were in excellent
agreement with those calculated using it, validating the
assumption’s applicability in strongly magnetized plas-
mas.

In a weakly magnetized ion-electron system, the fastest
process is the anisotropy relaxation of the electrons due
to electron-electron collisions, which is faster than the
ion-electron equilibration time by a factor proportional
to the ion-to-electron mass ratio. However, when the
electrons become strongly magnetized, the temperature
anisotropy relaxation due to electron-electron collisions
slows down and becomes considerably slower than the
ion-electron relaxation time. Recent work®® has shown
that this leads to novel pathways for temperature relax-
ation in ion-electron systems. Specifically, the ion tem-
perature equilibrates with the electron parallel tempera-
ture, while the perpendicular electron temperature equi-
librates with the other temperatures at a much slower
rate, determined by the electron-electron anisotropy re-
laxation rate. These results have significant implications
in determining the collisional cooling time of antiprotons
with electrons in antimatter traps at the Antihydrogen
Laser Physics Apparatus (ALPHA).13:14

VIl. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

11
VIIl. AUTHOR DECLARATIONS
A. Conflict of Interest

The authors have no conflicts to disclose.

ACKNOWLEDGMENTS

The authors thank James C. Welch for helpful conver-
sations during the preparation of the manuscript. This
material is based upon work supported by the NSF
grant award No. PHY-2205506. It used Expanse at San
Diego Supercomputer Center®” through allocation PHY-
150018 from the Advanced Cyberinfrastructure Coordi-
nation Ecosystem: Services & Support (ACCESS) pro-
gram, which is supported by National Science Foundation
grants #2138259, #2138286, #2138307, #2137603, and
#2138296.

1J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko,
“Plasma and trap-based techniques for science with positrons,”
Rev. Mod. Phys. 87, 247-306 (2015).

2S. D. Baalrud and J. Daligault, “Transport regimes spanning
magnetization-coupling phase space,” Phys. Rev. E 96, 043202
(2017).

3T. Ott and M. Bonitz, “Diffusion in a strongly coupled magne-
tized plasma,” Physical review letters 107, 135003 (2011).

47, Ott, M. Bonitz, P. Hartmann, and Z. Donké, “Spontaneous
generation of temperature anisotropy in a strongly coupled mag-
netized plasma,” Phys. Rev. E 95, 013209 (2017).

5M. E. Glinsky, T. M. O’Neil, M. N. Rosenbluth, K. Tsuruta,
and S. Ichimaru, “Collisional equipartition rate for a magnetized
pure electron plasma,” Physics of Fluids B: Plasma Physics 4,
1156-1166 (1992).

6T, O’Neil and P. Hjorth, “Collisional dynamics of a strongly mag-
netized pure electron plasma,” Physics of fluids 28, 3241-3252
(1985).

L. Jose and S. D. Baalrud, “A generalized boltzmann kinetic the-
ory for strongly magnetized plasmas with application to friction,”
Physics of Plasmas 27, 112101 (2020).

8F. Anderegg, D. H. E. Dubin, M. Affolter, and C. F.
Driscoll, “Measurements of correlations enhanced collision rates
in the mildly correlated regime (y ~ 1),” Physics of Plas-
mas 24, 092118 (2017), https://pubs.aip.org/aip/pop/article-
pdf/doi/10.1063/1.4999350/19771454/092118_1_online.pdf.

9B. R. Beck, J. Fajans, and J. H. Malmberg, “Tem-
perature and anisotropic-temperature relaxation measure-
ments in cold, pure-electron plasmas,” Physics of Plas-
mas 3, 1250-1258 (1996), https://pubs.aip.org/aip/pop/article-
pdf/3/4/1250,/19084692/1250_1 online.pdf.

10F. Anderegg, D. H. E. Dubin, T. M. O’Neil, and C. F. Driscoll,
“Measurement of correlation-enhanced collision rates,” Phys.
Rev. Lett. 102, 185001 (2009).

11J. Fajans and C. Surko, “Plasma and trap-based techniques for
science with antimatter,” Physics of Plasmas 27, 030601 (2020).

12E. V. Stenson, J. Horn-Stanja, M. R. Stoneking, and T. S. Ped-
ersen, “Debye length and plasma skin depth: two length scales of
interest in the creation and diagnosis of laboratory pair plasmas,”
Journal of Plasma Physics 83, 595830106 (2017).

13M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, E. But-
ler, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Co-
hen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S.
Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, A. Ishida,



AlIP
Publishing

£

M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchaninov, N. Mad-
sen, M. Mathers, D. Maxwell, J. T. K. McKenna, S. Menary,
J. M. Michan, T. Momose, J. J. Munich, P. Nolan, K. Olchan-
ski, A. Olin, P. Pusa, C. @. Rasmussen, F. Robicheaux, R. L.
Sacramento, M. Sameed, E. Sarid, D. M. Silveira, S. Stracka,
G. Stutter, C. So, T. D. Tharp, J. E. Thompson, R. I. Thompson,
D. P. van der Werf, and J. S. Wurtele, “Antihydrogen accumula-
tion for fundamental symmetry tests,” Nature Communications
8, 681 (2017).

14¢. J. Baker, W. Bertsche, A. Capra, C. L. Cesar, M. Charlton,
A. C. Mathad, S. Eriksson, A. Evans, N. Evetts, S. Fabbri, J. Fa-
jans, T. Friesen, M. C. Fujiwara, P. Grandemange, P. Granum,
J. S. Hangst, M. E. Hayden, D. Hodgkinson, C. A. Isaac, M. A.
Johnson, J. M. Jones, S. A. Jones, S. Jonsell, L. Kurchaninov,
N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Mo-
mose, P. Mullan, K. Olchanski, A. Olin, J. Peszka, A. Pow-
ell, P. Pusa, C. @. Rasmussen, F. Robicheaux, R. L. Sacra-
mento, M. Sameed, E. Sarid, D. M. Silveira, G. Stutter, C. So,
T. D. Tharp, R. I. Thompson, D. P. van der Werf, and J. S.
Waurtele, “Sympathetic cooling of positrons to cryogenic tempera-
tures for antihydrogen production,” Nature Communications 12,
6139 (2021).

15E. Thomas, R. L. Merlino, and M. Rosenberg, “Magnetized dusty
plasmas: the next frontier for complex plasma research,” Plasma
Physics and Controlled Fusion 54, 124034 (2012).

16M. Menati, S. Williams, B. Rasoolian, E. Thomas, and
U. Konopka, “Formation of turing patterns in strongly magne-
tized electric discharges,” Communications Physics 6, 221 (2023).

17G. M. Gorman, M. K. Warrens, S. J. Bradshaw, and T. C. Killian,
“Laser-induced-fluorescence imaging of a spin-polarized ultracold
neutral plasma in a magnetic field,” Phys. Rev. A 105, 013108
(2022).

18G. M. Gorman, M. K. Warrens, S. J. Bradshaw, and T. C. Killian,
“Magnetic confinement of an ultracold neutral plasma,” Phys.
Rev. Lett. 126, 085002 (2021).

19X. L. Zhang, R. S. Fletcher, S. L. Rolston, P. N. Guzdar, and
M. Swisdak, “Ultracold plasma expansion in a magnetic field,”
Phys. Rev. Lett. 100, 235002 (2008).

20R. T. Sprenkle, S. D. Bergeson, L. G. Silvestri, and M. S. Murillo,
“Ultracold neutral plasma expansion in a strong uniform mag-
netic field,” Phys. Rev. E 105, 045201 (2022).

213, M. Guthrie and J. L. Roberts, “Finite-amplitude rf heating
rates for magnetized electrons in neutral plasma,” Physics of
Plasmas 28, 052101 (2021), https://doi.org/10.1063/5.0047640.

22(. Pak, V. Billings, M. Schlitters, S. D. Bergeson, and M. S.
Murillo, “Preliminary study of plasma modes and electron-ion
collisions in partially magnetized strongly coupled plasmas,”
Phys. Rev. E 109, 015201 (2024).

23N. Bennett, D. R. Welch, G. Laity, D. V. Rose, and M. E. Cuneo,
“Magnetized particle transport in multi-ma accelerators,” Phys.
Rev. Accel. Beams 24, 060401 (2021).

24L. I. Men'shikov, “New directions in the theory of electron cool-
ing,” Physics-Uspekhi 51, 645-680 (2008).

25Y. S. Derbenev and A. N. Skrinsky, “The Effect of an Accom-
panying Magnetic Field on Electron Cooling,” Part. Accel. 8,
235-243 (1978).

26V, Parkhomchuk, “Study of fast electron cooling,” in Proceedings
of the Workshop on Electron Cooling and Related Applications
(ECOOLS4, 1984), edited by H. Poth (Kernforschungszentrum
Karlsruhe GmbH, Karlsruhe, 1984) pp. 71-84.

27A. K. Harding and D. Lai, “Physics of strongly magnetized neu-
tron stars,” Reports on Progress in Physics 69, 2631 (2006).

28E, E. Salpeter and H. M. van Horn, “Nuclear Reaction Rates at
High Densities,” Astrophys. J. 155, 183 (1969).

29D. H. E. Dubin, “Measurement of screening enhancement to nu-
clear reaction rates using a strongly magnetized and strongly cor-
related non-neutral plasma,” Phys. Rev. Lett. 94, 025002 (2005).

308, Ichimaru, Statistical Plasma Physics, Volume I: Basic Prin-
ciples (CRC Press, 2004).

12

313, D. Baalrud and J. Daligault, “Temperature anisotropy
relaxation  of the  one-component plasma,” Contri-
butions to  Plasma  Physics 57, 238-251  (2017),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ctpp.201700028.

325, Ichimaru and M. N. Rosenbluth, “Relaxation pro-
cesses in plasmas with magnetic field. temperature re-
laxations,” The Physics of Fluids 13, 2778-2789 (1970),
https://aip.scitation.org/doi/pdf/10.1063/1.1692864.

331, D. Landau, “The transport equation in the case of coulomb
interactions,” in Collected Papers of L.D. Landau, edited by
D. TER HAAR (Pergamon, 1965) pp. 163-170.

34M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, “Fokker-
planck equation for an inverse-square force,” Phys. Rev. 107, 1-6
(1957).

35]. H. Ferziger and H. G. Kaper, Mathematical theory of transport
processes in gases (North-Holland, 1972).

36 A. Lenard, “On bogoliubov’s kinetic equation for a spatially ho-
mogeneous plasma,” Annals of Physics 10, 390-400 (1960).

3TR. Balescu, “Irreversible processes in ionized
gases,” The Physics of Fluids 3, 52-63 (1960),
https://aip.scitation.org/doi/pdf/10.1063/1.1706002.

388, D. Baalrud and J. Daligault, “Effective potential theory for
transport coefficients across coupling regimes,” Phys. Rev. Lett.
110, 235001 (2013).

398. D. Baalrud and J. Daligault, “Mean force kinetic theory: A
convergent kinetic theory for weakly and strongly coupled plas-
mas,” Physics of Plasmas 26, 082106 (2019).

40T, O'Neil, “Collision operator for a strongly magnetized pure
electron plasma,” Physics of Fluids 26, 2128-2135 (1983).

41J. Rand McNally, “Simple physical model for the effect of a mag-
netic field on the coulomb logarithm for test ions slowing down
on electrons in a plasma,” Nuclear Fusion 15, 344 (1975).

42A. W. Hyatt, C. F. Driscoll, and J. H. Malmberg, “Measurement
of the anisotropic temperature relaxation rate in a pure electron
plasma,” Phys. Rev. Lett. 59, 2975-2978 (1987).

43D. Montgomery, G. Joyce, and L. Turner, “Magnetic field depen-
dence of plasma relaxation times,” Physics of Fluids 17, 2201-
2204 (1974).

44V, Silin, “On relaxation of electron and ion temperatures of fully
ionized plasma in a strong magnetic field,” Sov. Phys. JETP 16,
1281 (1963).

451,. Jose and S. D. Baalrud, “A kinetic model of friction in strongly
coupled strongly magnetized plasmas,” Physics of Plasmas 28,
072107 (2021), https://doi.org/10.1063/5.0054552.

461, Jose, D. J. Bernstein, and S. D. Baalrud, “Barkas effect in
strongly magnetized plasmas,” Physics of Plasmas 29, 112103
(2022), https://doi.org/10.1063/5.0121285.

47TM. S. Green, “Markoff random processes and the statistical me-
chanics of time-dependent phenomena. ii. irreversible processes
in fluids,” The Journal of Chemical Physics 22, 398-413 (1954).

48R. Kubo, M. Yokota, and S. Nakajima, “Statistical-mechanical
theory of irreversible processes. ii. response to thermal distur-
bance,” Journal of the Physical Society of Japan 12, 1203-1211
(1957).

49F. Reif, FPundamentals of statistical and thermal physics (Wave-
land Press, 2009).

50C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical
theory of dilute gases, Vol. 106 (Springer-Verlag New York, 1994).

51C. Cercignani and M. Lampis, “On the h-theorem for polyatomic
gases,” Journal of Statistical Physics 26, 795-801 (1981).

52R. Zwanzig, “Elementary derivation of time-correlation formu-
las for transport coefficients,” The Journal of Chemical Physics
40, 2527-2533 (1964), https://pubs.aip.org/aip/jcp/article-
pdf/40/9/2527/18833421/2527_1_online.pdf.

53A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida,
C. Trott, and S. J. Plimpton, “LAMMPS - a flexible simulation
tool for particle-based materials modeling at the atomic, meso,
and continuum scales,” Comp. Phys. Comm. 271, 108171 (2022).



AlIP
é/_ Publishing

54D. Frenkel and B. Smit, “Chapter 6 - molecular dynamics in vari-
ous ensembles,” in Understanding Molecular Simulation (Second
Edition) (Academic Press, San Diego, 2002) second edition ed.,
pp. 139-163.

55¢4Ti. the doctor’s dissertation (text and translation)**[see intro-
duction, sect. 2.],” in EARLY WORK (1905-1911), Niels Bohr
Collected Works, Vol. 1, edited by L. Rosenfeld and J. R. Nielsen
(Elsevier, 1972) pp. 163-393.

56Van Leeuwen, H.-J., “Problemes de la théorie électronique du
magnétisme,” J. Phys. Radium 2, 361-377 (1921).

5TK. R. Vidal and S. D. Baalrud, “Extended space and time corre-
lations in strongly magnetized plasmas,” Physics of Plasmas 28,
042103 (2021).

581, Jose, Kinetic Theory of Strongly Magnetized Plasmas, Ph.D.
thesis, University of Michigan (2023).

59J. P. Hansen and I. R. McDonald, Theory of simple liquids: with
applications to soft matter (Academic Press, 2013).

608, D. Baalrud and J. Daligault, “Modified enskog kinetic theory
for strongly coupled plasmas,” Phys. Rev. E 91, 063107 (2015).

611, Jose and S. D. Baalrud, “Theory of the ion—electron tempera-
ture relaxation rate in strongly magnetized plasmas,” Physics of
Plasmas 30, 052103 (2023).

62@. P. Lepage, “Adaptive multidimensional integration: vegas en-
hanced,” Journal of Computational Physics 439, 110386 (2021).

03P, Lepage, “gplepage/vegas: vegas version 6.1.3,” (2024).

13

64E. Hairer, S. P. Norsett, and G. Wanner, “Runge-kutta and
extrapolation methods,” in Solving Ordinary Differential Equa-
tions I: Nonstiff Problems (Springer Berlin Heidelberg, 1993) pp.
129-353.

65B. R. Beck, J. Fajans, and J. H. Malmberg, “Measurement of col-
lisional anisotropic temperature relaxation in a strongly magne-
tized pure electron plasma,” Phys. Rev. Lett. 68, 317-320 (1992).

663, D. Baalrud and J. Daligault, “Extending plasma transport
theory to strong coupling through the concept of an effective
interaction potential,” Physics of Plasmas 21, 055707 (2014).

673, R. de. Groot and P. Mazur, Non-equilibrium thermodynamics
(North-Holland Pub. Co.; Interscience Publishers, 1962).

681, Jose, J. C. Welch, T. D. Tharp, and S. D. Baalrud, “Temper-
ature relaxation rates in strongly magnetized plasmas,” Phys.
Rev. E 111, 035201 (2025).

693. Strande, H. Cai, M. Tatineni, W. Pfeiffer, C. Irving, A. Ma-
jumdar, D. Mishin, R. Sinkovits, M. Norman, N. Wolter,
T. Cooper, I. Altintas, M. Kandes, I. Perez, M. Shantharam,
M. Thomas, S. Sivagnanam, and T. Hutton, “Expanse: Com-
puting without boundaries: Architecture, deployment, and early
operations experiences of a supercomputer designed for the rapid
evolution in science and engineering,” in Practice and Ezperi-
ence in Advanced Research Computing 2021: Evolution Across
All Dimensions, PEARC 21 (Association for Computing Ma-
chinery, New York, NY, USA, 2021).



