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The excited orbitals of color centers often show strong electric dipoles, which can serve as a resource for
entanglement, emission tuning, or electric field sensing. Here, we use resonant laser excitation to examine
the electric transitions in the excited state (ES) orbitals of the negatively charged nitrogen vacancy center in
diamond. By applying microwave electric fields, we perform Rabi driving between ES orbitals, and show
that the dressed states can be tuned in frequency and are protected against fluctuations of the transverse
electric field. In contrast with previous results, we observe sharp microwave resonances between magnetic
states of the ES orbitals, and find that they are broadened due to simultaneous electric dipole driving.
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Color centers in semiconductors and their electron and
nuclear spins are widely used quantum sensors [1] and have
attractive low temperature properties for quantum comput-
ing [2], but the short range of their magnetic interaction [3]
means scalable entanglement between centers needs to
be mediated, e.g., by photons [4,5]. In that context, larger
electric dipoles in the excited states [6,7] (ES) can be used as
an alternative resource for entanglement, resonance tuning
[8], or electric sensing [9,10]. The high sensitivity of the ES
energies to the solid-state environment, however, also creates
challenges in the form of spectral diffusion [6,9—11], screen-
ing of low frequency electric fields [12,13], and local
heterogeneities [14,15].

Here, we use photoluminescence excitation (PLE) spec-
troscopy to study the impact of microwave (mw) electric
fields on the excited orbitals of the negatively charged
nitrogen-vacancy (NV) center. We first uncover a previ-
ously unobserved electric transition between the two non-
magnetic excited states. PLE spectra reveal the complex
features of the dressed state, with the excited state orbitals
interacting with the mw electric field via both their
longitudinal and transverse dipole moments. For NVs with
moderate strain (in the GHz range), resonant mw fields
drive Rabi oscillations in the ultrastrong regime without the
need for a resonator. The Rabi splitting we obtain allows us
to tune the optical resonances by up to ~0.8 GHz, while
creating new eigenstates protected against the electric noise
in the NV transverse plane, effectively reducing the
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inhomogeneous linewidth by a factor of 1.6. We show
that under off resonance mw excitation, the PLE resonances
become flanked by multiple sidebands, their amplitude
governed by an interplay between the Stark effect and the
driving of the dipole transition. In contrast with previous
results, we lastly observe narrow magnetic resonances in
the NV excited states [16—18] and determine that electric
driving can broaden them by creating multiple peaks in the
energy spectrum. Interestingly, these electric transitions are
predictable from theory considerations [19] but have been
neither observed nor exploited. While similar physics is
obtained using ultrafast optical pulses [20] or acoustic [21]
and mechanical [22] resonators, electric transitions hold
critical advantages: they can be applied through a standard
mw antenna, are readily tuned on and off resonance, and
allow for the generation of complex pulse trains with well-
defined phase. The fast control of the NV ES orbitals that
we demonstrate could be applied to create electric entan-
glement between proximal NVs or to study other electric-
active defects, the NVO center in diamond being a recent
example [23].

Our experiments take place at 7 K within a closed cycle
cryostat, using a homemade confocal microscope to isolate
single NVs a few microns deep in a 1-ppb-nitrogen bulk
diamond [9,15]. Importantly, both electric and magnetic
mw fields stem from a nonoptimized antenna in the form of
a 25 pm wire laid on the diamond surface. Figure 1(a)
shows a standard PLE spectrum and the measurement
sequence we used. A 1 ps green laser pulse initializes the
NV into its negative charge (and |mg = 0) spin) state before
we read the photoluminescence (PL) under excitation by a
narrow-band tunable laser resonant with the zero-phonon
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FIG. 1. Optical spectroscopy in the presence of a mw drive.
(a) PLE spectroscopy of an individual NV center with ground
state initialization into |0) or |4 1) (red and blue traces,
respectively). The inversion mw pulse is resonant with the
ground state zero field splitting, i.e., w; = wgg. Here, N = 10°
and Av,, = 53 MHz. (b) Excited state 3E and ground state 3A,
energy diagrams (top and bottom, respectively) as a function of
transverse strain. Arrows indicate allowed optical transitions from
|0) or |+ 1) (black and gray, respectively). Circles denote the
measured excited state energies for the NV in (a). (c¢) Example
PLE spectra (N =4 x 10°, Av,, = 27 MHz) with and without
mw drive at ; = 2z x 1.502 GHz (red and blue traces, respec-
tively). The presence of mw leads to new optical resonances
(arrows). In (a) and (c), green (532 nm) and red (637 nm) blocks
denote laser excitation with duration of 1 and 0.5 ps and power of
1.6 mW and 100 nW, respectively; blue squares denote mw
excitation at frequency w,. In all experiments, the temperature is
7 K;unless indicated, the laser reference frequency is 470.465 THz.

line. Preceding the readout with a mw pulse resonant with
the ground state crystal field splitting wgg allows us to
observe the spin dependence of the spectrum. PLE peaks
appear when the frequency of the red laser matches one of
the six allowed transitions, as depicted in Fig. 1(b). Owing
to the p-like character of the ES orbitals, their energies
depend on local strain: in particular, the energies of the
nonmagnetic orbitals |E,) and |E,) split (shift) by an
energy proportional to the transverse (longitudinal) strain,
leading to states |E,) and |Ey> in the strained crystal.
Figure 1(c) shows a less conventional PLE measurement
for the case of an NV with moderate transverse strain,

0, = 2.9 GHz, where a mw drive runs continuously during
optical illumination and PL readout. In this instance, the
drive frequency, w, =2z x 1.5 GHz, is far from the
ground state magnetic resonance, and we center the PLE
spectrum around the |0) <> |E,) and |0) < |E,) lines.
Surprisingly, the mw drive has a dramatic impact, shifting
the main resonances and creating numerous side peaks at
multiples of the drive frequency. We show below that these
complex features stem from the combined effects of the
longitudinal and transverse electric dipole moments of
the NV.

First, the displacement of the main resonance peaks
away from each other hints at a coupling term shifting the
energies of the mw-dressed states. We confirm this hypoth-
esis by setting the mw tone on resonance with the |E,) <
|E,) transition: Fig. 2(a) displays PLE spectra for increas-
ing mw power and shows for both peaks the emergence of
Autler-Townes (or Rabi) splitting proportional to the
amplitude of the mw drive. Indeed, in the interaction
picture with ¢ = w,/2(|E,)(E,| — |E,)(E,|), a coupling
term 7, = Qq(|E,)(E,| + |E,)(E,|) sin(wyf) leads to
new eigenstates |+) in the |E,), |E,) basis subspace with
eigenenergies @, = £1/21/Q% + A%, where A =w, —

(w, — w,) is the drive detuning. Note that the presence
of the two pairs of resonances at @} and wi / straightfor-

wardly arises upon introducing the laser field H; =
(Q,|0)(E,| + Q,[0)(E,|)e” ' + H.c. and transforming the
resulting Hamiltonian to the interaction picture as shown in
the Supplemental Material [24].

Interestingly, we find that the E, and Ey optical
resonances are systematically sharper under a resonant
mw drive. In Fig. 2(c), we confirm this effect by lowering
the laser power well below saturation to observe the
inhomogeneous linewidth (broadened by spectral diffu-
sion) [24]. This linewidth then decreases from 98 to
62 MHz, an improvement by a factor of 1.6; a similar
effect has been proposed [22] and recently realized with an
acoustic drive of the ES orbitals [21]; it ensues from a
protection of the dressed states against electric fluctuations
in the NV transverse plane. Specifically, if o, and o,
denote the average frequencies of the optical resonances, a
small perturbation of the transverse electric field €, shifts
these values to w, + ¢, and w, —e,. However, under a
drive set at w; = w, — w, we find that a detuning A =
—2¢, on the eigenenergies of the modified dressed states
|4) only shifts the optical resonances by +e2 /€y (to first
order in €, /€);) [24]. Intuitively, we see that for a strong
enough drive, the two pairs of resonances remain separated
by the drive frequency, while without a drive the separation
between the E, and Ey resonances fluctuates with the
transverse electric field. The remaining broadening origi-
nates from slow fluctuations of the longitudinal electric
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FIG. 2. Dressed states in the ’E manifold. (a) Main: PLE
spectroscopy of a single NV under mw excitation resonant with
the |E,) < |E,) transition for variable mw power. Upper left:
schematics of the pulse sequence. Upper right: Rabi splitting vs
the square root of the mw power as derived from the main plot.
(b) In the rotating frame description, the |E,) and |E,) states
hybridize to yield states |4) split by the mw Rabi field €.
(c) Enlarged view of the Ey optical resonance with and without
mw; Rabi-split peaks show narrower linewidths.

field [9], which could be suppressed by active stabilization,
e.g., via an external electric field [36,37], or by adjusting
the amplitude of the driving field.

The coupling term .77, arises from an electric dipole

moment 2T , with Q,; = c_ff € where € is the electric
component of the mw field [24]. Its strength can be
experimentally estimated by comparing the Rabi splitting
in the optical resonances with the Rabi frequency between
the |0) or | + 1) states of the ground state manifold *A,: At
the same power and similar frequencies, the Rabi frequency
is (50 £ 10) times faster in the excited state. By combining

these findings with simulations of our antenna and the
experimental determination of the optical dipole orienta-
tions [24], we can estimate the mw electric field, and find
an electric dipole (d9),,, = 1.6 £0.4 D.

exp

To support these findings, we perform first principles
calculations. Unlike prior work [19,38,39], our methodol-
ogy is based on a quantum embedding approach, which
treats the NV~ center on a many-body footing, and hence
includes important (otherwise missing) electron correla-
tions necessary to attain the highest accuracy [40-42]. Our
quantum embedding model yields an amplitude (dF)qr =
2.16 D in a direction perpendicular to the plane containing
the NV symmetry axis and the strain vector, consistent with
the results of a group theoretic description [24,38]. This
value is in agreement with the experimental estimate above,
and is close to a similar measurement in the NV state [23].
We also calculate the electric dipole along the NV sym-
metry axis, and find a value (dﬁs)QE = 1.63 D, consistent

with preceding experimental work [6,10,43].

Since, in general, the electric field we apply has a
nonzero component along the NV axis, we can extend
our approach to also examine dﬁs through the use of mw. To

this end, we first note that while quasistatic electric fields
induce shifts in the optical resonances [6,11-13,44], a
periodic drive whose frequency exceeds the inverse excited
state lifetime such as ours at w,;—instead leads to a series of
sidebands at multiples of w,. Known as Landau-Zener-
Stiickelberg (LZS) interference fringes [45,46], the ampli-
tude of the nth sideband is typically proportional to
J.(A/w,), where J, is the Bessel function of the nth
kind and A is the drive amplitude [24]. For a weak or
moderate drive as in Figs. 3(a) and 3(d), the sideband
amplitudes quickly decay with increasing order. In Fig. 3(a),
we measure the optical spectrum as a function of the mw
frequency for a weak drive amplitude, and observe that only
the first two sidebands flanking the Ey transition are above
noise, with their amplitude following the variation of the
drive due to the frequency-dependent input impedance of
the mw circuit.

The system response is expected to change at higher
amplitudes because a large enough drive should lead to a
frequency comb with the main peak losing intensity. We
investigate this limit in Figs. 3(b)-3(d) for a fixed drive
frequency w,; = 470 MHz; this value represents a trade-off
as we try to simultaneously make w, greater than the
inverse excited state lifetime, but sufficiently removed from
the |E,) <> |E,) transition frequency. Figure 3(d) shows
the results: as the mw power increases, we first observe
low-order sidebands arising more quickly around the E,
line simply due to a stronger projection of the mw electric
field on the E, than on the Ey dipole. At higher powers a
frequency comb arises as predicted, but the sideband
pattern is more complex than anticipated, namely, we find
that (i) the central peaks corresponding to both E, and Ey
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FIG. 3. ac Stark modulation of the NV optical transitions.
(a) PLE spectrum near the I:Zy transition in the presence of mw of
variable frequency. The reference frequency is 470.4633 THz.
(b),(c) Measured amplitudes of the central PLE resonance as well
as four satellites as a function of 1/P,;. Solid lines show fits to the
model. The peaks are labeled (=, ) with n denoting the sideband
order as indicated in (d) compared to the central peak at wy and
7. (d) PLE spectroscopy (left) and simulations (right) in the
presence of an ac electric field of variable power P,  |A|*> and
angular frequency w,; = 27 x 470 MHz. As P, increases,
dressed states become relevant, and the main resonances show
satellites separated from the center frequency by w,. Spectra have

been shifted vertically for clarity.

lines move away from each other, and (ii) the sideband
amplitudes are asymmetric, contrary to what we would
expect from the Bessel function symmetry. We attribute
both effects to the off resonance excitation of the |E,) <>
|Ey> transition: at higher powers, the Rabi frequency €,
becomes comparable to the detuning A = w; — (0, — ) =
—2.4GHz, and optical resonances must consider the

dressed states |+) rather than the bare states |E.), |E,).
Similar to Fig. 2 and as labeled for the P; = 30-33 dBm
curves, this results in two pairs of resonances at o and a);E
with an in-pair separation equal to the generalized Rabi
frequency and an out-of-pair separation equal to w,. The
sidebands generated by the Stark effect then overlap within
each pair, explaining the asymmetric distribution of their
amplitude. To simulate these spectra, we calculate the
steady state population in the excited states, using a
Lindblad master equation to describe spontaneous emission
in the presence of simultaneous laser and mw excitation.
The right section of Fig. 3(d) shows the resulting spectra
while Figs. 3(b) and 3(c) show the calculated amplitudes of
six chosen peaks as a function of the mw amplitude, in all
cases yielding good agreement with experiment.

We now turn to transitions between the nonmagnetic and
magnetic states in the 3E manifold. Electron spin reso-
nances (ESR) in the excited states can be observed at room
temperature at 1.4 GHz due to orbital averaging [16,18],
but have remained elusive at low temperatures [17].
Figures 4(a) and 4(b) show continuous optically detected
magnetic resonance spectra (ODMR) under green illumi-
nation (1.8 mW, above saturation) for varying mw drive
power. While the regular ground state |0) <> |+ 1) tran-
sition is visible at 2.88 GHz, additional features appear
close to the energy difference between excited states for the
present strain. On the right side [Fig. 4(b)], we observe
peaks matching the |E,) <> |A,) transition, while on the
left side only a low power measurement yields a peak close
to the |E,) < |E,,) transitions. In both cases, we find
Lorentzian linewidths of about 58 MHz and note the
absence of the "N 40 MHz ES hyperfine splitting
[16,47,48], which could be due to a hyperpolarization
mechanism or to orbital mixing in the absence of external
magnetic fields. At higher power, the |E,) <> |E;,) tran-
sitions split and broaden into multiple replicas, a feature
that we now show is caused by the electric component of
the mw drive.

Indeed, at frequencies close to the |E,) <> |E, ) transition
(2.9 GHz), one must consider the dressed states rather than
the bare |E,) orbital. Figure 4(c) shows the evolution of
simulated ODMR spectra with power, considering both the
|E,) <> |E;) transition and the |E,) <> |E,) electric tran-
sition [24]. Two resonances appear due to the power-
dependent Rabi splitting, with the upper transition weaker
due to its |E,) character. Crucially, this implies that the
resonant frequencies depend on the mw drive power. Since
the amplitude response of our mw antenna is not flat, the
same magnetic resonance amplitude can then be found at
different frequencies. Figure 4(d) shows how this affects
the ODMR spectra by incorporating the frequency response
of our mw circuit as measured at the antenna input [24].
Features from the experimental data (shift, broadening,
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FIG. 4. Optically detected mw resonances under green excita-
tion. (a),(b) Spectra at different mw powers; in (b) solid lines are
Gaussian fits yielding a 58 MHz linewidth. Dashed (solid) lines
are the expected position for the resonances in the excited
(ground) states. Simulated ODMR spectra (c) for a single
transition, considering the electric drive that splits the line in
two and (d) considering the two lower transitions and accounting
for mw power inhomogeneities. The dashed curve is the common
|0) <> |4+ 1) ESR dip in the A, manifold. (¢) Energy diagram
and transition energies as measured from the PLE spectra.

resonance replica) are reproduced reasonably well, though
a quantitative match cannot be attained given our inability
to measure the exact current at the antenna.

In conclusion, we studied the impact of mw electro-
magnetic fields on the short-lived NV~ excited states using
resonant optical excitation. With a simple wire antenna, we
drove strong Rabi oscillations and created LZS interference
fringes in the optical spectrum, which we reproduced
quantitatively with the help of an analytical model. We
found that dressed states are protected against fluctuations
of the transverse electric field and allow tuning of the
optical resonances [49] without the use of a dc electric field.
Combined with our ab initio modeling using quantum
embedding, our results portend alternative schemes to
precision electrometry at the nanoscale, simpler practical
approaches to coherently manipulating color centers fea-
turing electric dipoles, and, with them, novel strategies to
engineering multiqubit entanglement.
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