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FUSION RULES AND RIGIDITY FOR WEIGHT MODULES OVER THE
SIMPLE ADMISSIBLE AFFINE si(2) AND N =2 SUPERCONFORMAL
VERTEX OPERATOR SUPERALGEBRAS

HIROMU NAKANO, FLORENCIA OROSZ HUNZIKER, ANA ROS CAMACHO AND SIMON WOOD

ABSTRACT. We prove that the categories of weight modules over the simple s[(2) and N' = 2
superconformal vertex operator superalgebras at fractional admissible levels and central charges
are rigid (and hence the categories of weight modules are braided ribbon categories) and that the
decomposition formulae of fusion products of simple projective modules conjectured by Thomas
Creutzig, David Ridout and collaborators hold (including when the decomposition involves sum-
mands that are indecomposable yet not simple). In addition to solving this old open problem,
we develop new techniques for the construction of intertwining operators by means of integrating
screening currents over certain cycles, which are expected to be of independent interest, due to
their applicability to many other algebras. In the example of s1(2) these new techniques allow us
to give explicit formulae for a logarithmic intertwining operator from a pair of simple projective
modules to the projective cover of the tensor unit, namely, the vertex operator algebra as a module
over itself.

1. INTRODUCTION

Within the body of literature on conformal field theory and vertex operator algebras the class of
rational theories (satisfying a number of technical niceness conditions including Cs-cofiniteness and
the category of admissible modules being semisimple) stand out as being exceptionally intensively
studied and well understood. One particularly compelling aspect of these rational theories is the
abundance of rich mathematical structures they exhibit. For example, the fact that their categories
of modules are modular tensor categories and that the categorical action of the modular group
via Hopf links and twists matches the modular transformations of characters [43|. Apart from
their intrinsic mathematical beauty these modularity results also have practical implications: they
allow the efficient computation of tensor products (also called fusion) of vertex operator algebra
modules in terms of the modular transformation formulae of characters. In practice, this provides
an enormous reduction in the computational effort required to understand fusion products.

There is ample evidence to suggest that the modularity properties enjoyed by rational theories
generalise to large classes of non-rational ones. The purpose of this paper is to prove that these
conjectured modularity properties do indeed hold for so called admissible s[(2) and A/ = 2 super-
conformal theories. In order to better understand these conjectures, we begin with a historical
overview. This paper makes use of a coset realisation of the N’ = 2 superconformal algebra in terms
of 5[(2) and a fermionic ghost (or be) system [57, 56, 22, 35|. Because of this the representation
theories of N = 2 and sl(2) are closely intertwined and any statement about the representation
theory for one algebra has a corresponding version for the other.

A first hint of modularity beyond rationality was discovered by Kac and Wakimoto [52, 51, 53]
when they computed modular transformation formulae for characters of simple highest weight
modules over affine Lie algebras at admissible levels and weights. Since the non-negative integral
levels (which are the only ones giving rise to rational theories) are a proper subset of all admissible
levels, it is somewhat surprising for such formulae to exist at all. Shortly afterwards Koh and Sorba

2010 Mathematics Subject Classification. Primary 17B69, 17B10, 17B67; Secondary 81T40.
1



2 H. NAKANO, F. OROSZ HUNZIKER, A. ROS CAMACHO, AND S. WOOD

[59] plugged these modular transformation properties for s[(2) into the Verlinde formula, which,
rather startlingly, predicted negative multiplicities for some summands appearing in certain fusion
products. This in turn led to some concern within the academic community that these non-integral
admissible (also called fractional admissible) theories may suffer from some intrinsic “sickness” [33].

New light was later shed on this riddle by Ridout after a careful analysis of sl(2) at level k = —%
[65] led him to note that the characters of highest weight modules at this level were only convergent
in certain domains and that the modular transformation formulae of Kac and Wakimoto hold only
for the analytic continuations of characters rather then their series expansions. This is because
these modular transformations do not preserve domains of convergence. He also noted that in
the category of weight modules the analytic continuation of characters of certain highest weight
modules was the negative of the analytic continuation of characters of certain other weight modules.
This gave a first hint as to why signs were appearing in the Verlinde formula of Koh and Sorba.

Creutzig and Ridout then studied the category of weight modules over affine gl(1]|1) and the
modular properties of characters [32]. While category O is semisimple and finite, the category of
weight modules is neither (this is also true for affine s[(2) at non-integral admissible levels and
weights). However, the span of characters (taken as specific series expansions rather than their
analytic continuations) of a distinguished class of weight modules (called standard modules) carries
an action of the modular group. Further, evaluating the Verlinde formula (in a generalised version
conjectured to hold for infinite categories of modules) using this action predicts non-negative fusion
multiplicities. This new generalised Verlinde formula sheds light on the riddle of negative fusion
multiplicities of Koh and Sorba: there are linear relations between the analytic continuations of
characters of simple weight modules. So a negative multiplicity in the Verlinde formula for category
O can be interpreted as a positive multiplicity of a different weight module outside of category O.
This work was then generalised to s[(2) at all admissible levels [30, 31] and together with other
authors to many other families of algebras |28, 67, 68, 12, 13, 29, 10, 66, 55, 38, 37].

Two key conjectures or hopes that crystallised from Creutzig and Ridout’s work in |32, 30, 31]
were that the category of weight modules is rigid (this implies that the fusion product is exact,
a necessary condition for anything akin to a Verlinde formula to be well defined) and that the
fusion product decomposition formulae predicted by the generalised Verlinde formulae of Creutzig
and Ridout are true (at levels k = —%, —% the fusion product formulae were explicitly checked
using the Nahm-Gaberdiel-Kausch algorithm). Two of the main results of this paper are that both
of these conjectures hold in the sense that all weight modules are rigid and that that predicted
decomposition formulae for fusion products of projective modules are true. Another important
result of our work is that the analogous conjectures for the category of weight modules for the AV = 2
fractional minimal models also hold. That is, all weight modules are rigid and the conjectured
fusion product decompositions of [23] hold.

The description of the logarithmic tensor structures for categories of modules over Virasoro
algebras and its A/ = 1 and N = 2 super extensions is an important problem that has been
intensively studied in the literature in the past years |18, 64, 63, 24, 62, 23]. Since the monoidal
structure on categories of vertex operator algebra modules automatically come with a braiding
and a twist that is balanced with respect to this braiding, the rigidity of these categories implies
that they are braided ribbon categories. The fusion rules for the strongly rational theories arising
from unitary A/ = 2 minimal models were studied by Adamovi¢ in [2] while the tensor category
structure for their module categories was established by Huang and Milas in [47] using the theory
of Lepowsky and Huang developed in [44]. In the Virasoro and A/ = 1 cases, the central charges in
which the universal vertex superalgebras are non-simple are exactly the central charges in which
the simple quotients are strongly rational vertex operator superalgebras. Interestingly, the N' = 2
vertex superalgebras have richer behavior since the central charges in which the universal NV = 2
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vertex superalgebra admits a strongly rational simple quotient vertex superalgebra form a proper
subset of the central charges in which the universal vertex superalgebra is non-simple. While the
logarithimic tensor product theory developed by Huang, Lepowsky and Zhang in [46] has recently
been used to establish the tensor category structure on natural module categories for the universal
Virasoro [18] and A/ = 1 vertex superalgebras [24], in the case of the A/ = 2 vertex superalgebras
the logarithmic tensor structure has not been applied to the universal algebra, but only to the
simple fractional minimal model central charges, namely, to the intermediate family of central
charges in which the universal N' = 2 vertex superalgebra admits a non-trivial ideal such that its
simple quotient yields an irrational representation theory [14]. In our work, we make use of the
logarithmic tensor category structure established by Creutzig in [14] for the category of weight
modules for the fractional A/ = 2 minimal models and for the fractional admissible s[(2) weight
modules to prove the rigidity of both categories.

This paper is organised as follows. In Section 2 we review all the vertex operator superalgebras
that will be needed as well as their corresponding categories of weight modules. In particular,
we recall some s[(2) fusion product decompositions, which will be needed later, that have already
been proved and state the conjectured ones (Conjecture 2.9) which we shall prove in later sections.

In Section 3 we review the coset construction of the N' = 2 superconformal algebra in terms of
affine s[(2) and how the fusion products of these two algebras are interrelated. We prove the first
result, Lemma 3.4, of the paper: a sufficient condition for transporting rigidity results from the
sl(2) side to the N' = 2 side. In Lemma 3.6, we give a sufficient condition for the semisimple fusion
products of Conjecture 2.9 to hold in terms of the dimensions of certain spaces of intertwining
operators.

Sections 4 and 5 are then dedicated to proving Lemma 3.6 by proving upper and lower bounds,
and observing that these bounds are equal. The upper bounds are computed in Section 4 by use
of the Zhu algebra formalism on the A’ = 2 side. The lower bounds are computed in Section 5
on the sl(2) side by means of a free field realisation and screening operators. The appearance of
screening operators and their associated integrals over intricate cycles necessitates the use of P(w)
rather than logarithmic intertwining operators, that is, intertwining operators where the variable
is considered as a complex number rather than a formal variable.

The non-semisimple fusion products of Conjecture 2.9 are tackled in Sections 6 and 7. Specifi-
cally, the projective cover of the tensor unit for s[(2) is constructed in Section 6.1 using the free
field realisation that was also used in Section 5. In Section 6.2 this projective module is used to
analyse one of the fusion products appearing in Conjecture 2.9 and to construct the evaluation
morphisms for a certain family of simple projective modules, F,.; 1, that will be needed to prove
their rigidity. In Section 6.2 we prove that the E.;; modules are rigid. Finally, in Section 7
the results of Section 6 are combined to prove that the categories of weight modules over simple
admissible affine s[(2) and N' = 2 are rigid, as well as that the non-semisimple fusion product
decomposition of Conjecture 2.9 hold.
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2. ALGEBRAS AND CATEGORIES OF MODULES

We review and fix notation for the four families of vertex algebras that will be considered
repeatedly below.

2.1. Affine vertex algebras. Let g be a simple (possibly abelian) finite dimensional complex Lie
algebra with invariant symmetric non-degenerate bilinear form s and choice of Cartan subalgebra
h. Consider the affinisation of g,

§g=9®C[t,t"'| & CK, (2.1)
where K is central and = ® f(t),y ® g(t) € g ® C[t,t™!] satisfy the commutation relation
[ @ f(t),y @ g(t)] = [z, 4] @ f(H)g(t) + £ (x,y) Res, f(t)dg(t) K. (2.2)

We do not include the degree operator in the construction of g because we will always identify it
with the negative for the Virasoro Ly operator obtained from the Sugawara construction. Denote
r, = ®t" for z € g, n € Z and define

g+ =spanc{zsn [ €9, n =1}, go=9BCK, g0 =00D 0+, (2.3)
to obtain the triangular decomposition g =g_ & go D g+ -

Definition 2.1. Let M be a g-module on which the central element K acts as k - id for some
ke C.

(1) The module M is called smooth, if for every m € M
x,m=0 Vreg, n>0. (2.4)

Denote the full subcategory of the category of all g-modules whose objects are all smooth
modules by g,-mod*™™",

(2) The module M is called weight, if it is smooth, finitely generated, simultaneously graded by
generalized L eigenvalues and h eigenvalues, and all homogeneous spaces are finite dimensional.
That is, M decomposes into a direct sum

M= My,  Myp={meM]|(x—Az))m=0=(Lo—h)"m, N>0, z€b}, (25)

Aeph*
heC

where dim M, , < oo for all A € h*, h € C and for fixed A € h*, My, = 0 for Re(h) < 0.
Denote the full subcategory of g,-mod™™ whose objects are all weight modules by gj-mod™".
(3) A weight module M is called positive energy, if there exists a real number hy,;, such that for all
A € b* and all h € C satisfying Re(h) < hmi, we have M), = 0. Denote the full subcategory
of gx-mod™* whose objects are all positive energy modules by gx-mod¥y,.
(4) Let M be weight. A non-zero homogeneous vector v € M is called relaved highest weight, if it
is homogeneous and g, v = 0. If v € M is relaxed highest weight and generates M, then M is
called a relazed highest weight module.

We can now easily construct examples of smooth g-modules. For example, generalised Verma
modules and their simple quotients are smooth. These are constructed as follows. Let M be a
g-module, which becomes a g>o-module by defining K to act as k-id, k € C and g to act trivially.
The generalised Verma module U(k, M), is the induced module

V(k, M) = Ind_ M. (2.6)

If M is simple, then (k, M) has a unique maximal ideal hence a unique simple quotient

ek T7) — W(k, )

(2.7)

(maximal submodule)
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Proposition 2.2 (Frenkel, Zhu [39]). Let g be simple (possibly abelian), k € C and let C be
the trivial g-module. Then the parabolic Verma module 0 (k,C) admits the structure of a vertex
operator algebra by defining the field map on x_11, x € g to be

Y(z_41,2) =x(2) = Z Tz " (2.8)

nez

and continuing by derivatives and normal ordering. This vertex operator algebra is called the
universal affine g vertex operator algebra at level k. Any choice of basis of g corresponds to a set
of strong generators and any two such generators x,y € g satisfy the operator product expansion
relations

s )k | leylw)

~ 2.9
r(E(w) ~ s (29)
There is a distinguished choice of conformal vector, called the Sugawara vector
1 . .
= — 91y 41 2.1
Wk 2(k + hY) Z(ﬂﬂ) 1(y")-11, (2.10)

where hY is the dual Coxeter number (defined to be 0, if g is abelian) {z'} is any choice of basis
of g and {y'} is its dual with respect to k, of central charge ¢ = i(};;lnvg. Finally, §x-mod*™" is the
category of all B(k, C)-modules.

2.1.1. The Heisenberg vertex algebra. Let C be the trivial Lie algebra with non-degenerate invariant
bilinear form characterised by £(1,1) = 2. The rank one Heisenberg vertex algebra H(t) is the
affine vertex operator algebra constructed by applying Proposition 2.2 at level t € C* to the trivial
Lie algebra C. Higher rank Heisenberg vertex algebras are constructed by taking tensor products
of the rank one Heisenberg vertex algebras. Note also that any two Heisenberg vertex algebras of
equal rank are isomorphic regardless of the choice of level.

The (parabolic) Verma modules for the Heisenberg algebra are just Fock spaces. In particular,
we denote by F,, the Fock space of highest weight p € C (as a module of the Heisenberg Lie algebra
H(t) = Fo).

Proposition 2.3. Let t € R*. As a linear abelian category C,-mod* ™" s semistmple with Fock

spaces forming a complete set of representatives for all simple isomorphism classes. Let C,-mod*™"
be the full subcategory generated by Fock spaces with real weights. Then H(t) furnishes C,-mod*™"
with the structure of a rigid braided monoidal category, which is braided equivalent to the category
of finite dimensional R-graded vector spaces.

The linear category structure of C,-mod*™*h (in particular the semisimplicity and classification
of simples) is due to [60, Prop 3.6] and the monoidal structure is due to [34]. See |6, Prop 3.11,
Thm 3.12] for a discussion of both.

2.1.2. The sl(2) vertex operator algebras. Consider the smallest non-abelian simple complex Lie
algebra sl(2) = spanc{e, h, f} with choice of Cartan subalgebra h = Ch. We spell out the well
known relations and normalisations of sl(2) to fix notation. The non-vanishing commutation
relations are

le, f] = h, [h,e] = 2e, [h, f] = —2f. (2.11)

We normalise the Killing form such that its non-vanishing parings are

m(h, h) =2, /{(e,f) = /{(f, e) =1 (2.12)
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Recall that the dual Coxeter number of sl(2) is hY = 2. The vertex operator algebra A;(k)
constructed from sl(2) by applying Proposition 2.2 at level k& € C\ {—2} is called the universal
s[(2) vertex operator algebra at level k.

Recall that s[(2) admits a family of automorphisms called spectral flow.

Definition 2.4.

(1) The spectral flow automorphisms o, ¢ € Z, of sI(2) are determined on basis vectors and the
Virasoro operators constructed by the Sugawara conformal vector by

Ue(en) = €n—t, Jg(hn) = hy, — 65n70K7 Jg(fn) = fate,
1 1
o'(Ly) = Ly, — 5 lhn + Z€2K7 o'(K) =K. (2.13)

(2) Let g € Aut (f?[(Q)) and M an sl(2)-module, then the g-twist of M is an s[(2)-module whose

underlying vectors space is that of M be with the action
z-,m=g 'r) m, Va € ;[(2), VYm € M, (2.14)

where - is the original action of s[(2) on M.

Note that the categories ;[(Q)k—modsmth and f/y\[(2)k—moth are both closed under spectral flow
automorphisms.
Proposition 2.5. The vertex operator algebra A, (k) admits a non-trivial proper ideal if and only
if there exist positive integers u,v € Zg, ged(u,v) = 1, u > 2 such that k + 2 = . The ideals
at these levels are unique and hence maximal. The simple quotient of Al(% — 2) will be denoted
Ai(u,v) and is called the s1(2) (u,v)-minimal model.

For w > 2, Aj(u, 1) is the much studied su, Wess-Zumino-Witten model at non-negative integral
level. Here we shall primarily be interested in A;(u,v) with v > 2. Modules over A;(u,v) are of
course naturally identified with modules over A; (% — 2) on which the maximal ideal acts trivially,
which leads to the following definition.

Definition 2.6. Let A;(u, v)-mod™™" be the full subcategory of A, (% — 2)-modSmth whose objects
are all smooth modules on which the maximal ideal of A; (% — 2) acts trivially.

The category of weight modules A (u, v)-mod™" is defined to be the full subcategory of all weight
modules in A;(u, v)-mod™™® for which the eigenvalues of the Cartan generator hy are real. The
category of positive energy modules A;(u,v)-mod¥;, is the full subcategory of all positive energy
modules in A (u, v)-mod™. -

Proposition 2.7. Forr,s € Z andt € C*, let

—st)’ —1
Nwsmr—1—ts,  Am =S =l (2.15)
” " 4t
(1) (Gabriel [41]). Ewvery simple weight module over sl(2) (modules on which h acts semisimply
and each weight space is finite dimensional) is isomorphic to one of the following mutually
mequivalent modules.
(1) L(p), u € Z>o, the simple finite dimensional module of highest weight p and dimension
A+ 1.
(ii) D (u), p € C\ Z>o, the Verma module of highest weight p.
(iii) D=(u) = Dt (—p) , u € C\ Z<o, the lowest weight modules which are the duals of the
Verma modules above (they are also Verma modules for the choice of Borel spang{h, f}).
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(iv) E(p,q), p€ C/2Z, g € C\{5(v+2) | v € u}, the dense module with weight support
on which the quadratic Casimir %hz +ef + fe acts as q - id.
(2) (Adamovi¢, Milas [5]). For coprime u,v € Z~g, u > 2, every simple relaxed highest weight
module over A;(u,v) (equivalently every simple object in A;(u,v)-mod ) is isomorphic to one
of the following mutually inequivalent simple quotients of an induction of a simple s1(2) module.

(i) Lr:£(9—2,m>,re{l,...,u—l}.

(ii) Df, = (——2,D+()\,,757%)), 1<r<u—-1,1<s<wv-—1.
(i) D, =D, 1<r<u—1,1<s<wv-—1.
) E

7,87
(iv) Eups = 2(——2 E(u,2 ’;Aﬁg%)), 1<r<u—-1,1<s<ov-—1, vr+us < uv,

p€R/2Z, N s, Mu—yv—s & b The mized inequality involving both r and s is required due
to the isomorphism E,.p. s = .y ry—s.
Further, there are the spectral flow relations o' L, = DE_ ro1 and oD = ~ D r—s—1
1<r<u—1landl <s<v-—2.

(3) (Futorny [40]; Adamovié, Kawasetsu, Ridout [4]). Ewvery simple module in A;(u,v)-mod™" is
1somorphic to one of the following mutually inequivalent spectral flow twists of simple modules
in Ay (u,v)-mod¥},.

(i) KD;"S, 1<r<u-1,1<s<uv-1,(€Z.
(ii) 0'Epps, 1 <r<u—1,1<s<v—1,vr+us <uv, g € R/2Z, Mg, Nurv—s & [1.

(4) (Adamovi¢, Kawasetsu, Ridout [4]). At each of the two disallowed weights p above there are
two mutually inequivalent reducible yet indecomposable relaxed highest weight modules uniquely
characterised by the non-split short exact sequences

where

0— Dy, —»E;, =Dl , . —0,
0— Dy, S—>Efrv s — Df =0, (2.16)
for1 <r <u—-1,1<s<v—1,vr+us < w, where B, and E,_,,_ correspond to

1= [\, and E;, and E,_,, _, correspond to pt = [Au_yo—s)-
(5) (Arakawa, Creutzig, Kawasetsu [9]). The simple modules 0'E,,.s, 1 <r <u—1,1<s<v-—1,
vr+us < uv, £ € Z, 1 € R)2Z, Ao, Murv—s & 11, are projective and injective in A (u, v)-mod™.
(6) (Adamovi¢ [3]; Arakawa, Creutzig, Ka,wasetsu ). Forl1<r<u-—-1,1<s<v-1,(€Z
the projective cover and injective hull of D TS are 1somorphic and denoted P, s. These modules
are uniquely characterised by the non-split exact sequences

0 0'Ef, =0'P, = o™ E | =0, 1<s<v—2
0 0'Ef,_| =0'Pry — o' PEL | =0, (2.17)
and they are also uniquely characterised by the non-split exact sequences
O—)UEurvsl—leP —>0£1EJMS—>O, 1<s<v—-2
0—=0'E, 1 »0"°Py =0 E,_,, —0. (2.18)

Since the L,, D_; modules are related to the DT,S by spectral flow their projective covers and
mjective hulls satzsfy the same spectral flow identifications. In particular the projective cover
of L = o7 (Dy_y 1), (namely, Ai(u,v) as a module over itself and hence the tensor unit) is
0_1Pu—1 v—1-

We recall the following result of Creutzig that shows that the category of weight modules for
A;(u,v) admits a braided tensor category structure, with the framework of Lepowsky, Huang and
Zhang [46].
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Theorem 2.8 (Creutzig [14]; Creutzig, Huang, Yang [17]). For coprime v > 2, v > 1 the category
A (u,v)-mod™ admits a tensor product induced from intertwining operators and thereby is a braided
monoidal category. Further, for a,b,c,d € Ny, b,c,d < a — 1, define the integers

N {1 ifle—d|+1<b<minfc+d—1,2a—c—d—1}, b+c+d=1 (mod 2),

&, 0  otherwise.
(2.19)
The simple Aj(u,v) weight modules L, satisfy the fusion product decompositions
L N L 15 a1
// 1
L X Eu vl = @ N(u . ;L '+r—1;r" 8"y ,U/ S R/227 )\r,sa )\ufr,vfs §é Hl7
// 1
1<rr<u—-1 1<s<v—1, vr+us < uv. (2.20)

Further, the simple modules L,, 1 <r < u—1 are rigid.

Conjecture 2.9 (Creutzig, Ridout [31]; Creutzig, Kanade, Liu, Ridout [20]). For1 < r,r’ <wu—1,
1< S, s’ <v-— 1; ur +us < uv, M7ﬂ'l S R/2Z; /\r,sa )\u—r,v—s Q-f 122 )\r’,s’y Au—r’,v—s’ Q-f M/;

B 8 By 2 P N2 < N, N By

// /l

-1
D @ M’ N, s’ (U Eu+u’+%;7“”78” b UEquu’—%;T”,S”)v (2:21)

II //

where additionally p + ' must be such that all of the relaxed highest weight modules appearing in
the direct sum decomposition on the right-hand side are simple (this only excludes a finite number
of values for the sum pu+ p'). For 1 <r < wu—1, pp’ € R/2Z, £X11 ¢ p, £\1 ¢ p' and
)\,,1’0:7”—16,[11_'“/11/

EM;Ll IX El/ml = O'_lpu_r,y_l D (1 - 5U72)EM+H';7"727 (222)

while for 1 <r <wu—1,2<s<wv—2, u, ' € R/2Z, £X\11 ¢ p, £\, 5 ¢ 1/,

PﬁS*l @ J_lEﬂ+MI+%yT75 @ Eu+u’;r,s+17 Zf )\T"sfl E ILL + ILL/’
E . XE, Purps-19D UﬁlEuﬂt”r%ms D Epvprirs—1 U Au—ro—s—1 € B+ 4, (2.23)
;1,1 wir,s — _ . .
g 1Pr,s % O-E'u-{-p/—%;’r’,s S¥ Ep,—l—/ﬂ;r,s—h Zf /\T,s-l—l S/ + ,LL/,

-1 . /
g Pufr,vfs D O'Eerlu’f%;r,s S E#+u’;r,s+1 Zf )\ufr,vferl cpu+p.

Note that from (2.21) we can see that all simple relaxed highest weight modules of the form
E,. s are conjecturally generated as direct summands by repeated application of .11 and E,y.21
to Eyra., and further that all other simple modules appear as subquotients of these repeated
tensor products, due to the appearance of the indecomposable reducible projective modules P, ;.
Since the F,.,  are projective, if they are simple, a sufficient condition for their rigidity is that
E,q1 and E,o; are rigid. Further, from (2.20), we see that E,.01 = Ly X E,y1 1,11 and hence by
the rigidity of Lo, the rigidity of ., implies the rigidity of F,/o,. Thus sufficient conditions for
the rigidity of A;(u,v)-mod™" are given by Conjecture 2.9 being true and E,.; 1 being rigid.
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2.2. The N = 2 superconformal Lie algebra. In order to define the N' = 2 superconformal
vertex algebra we first introduce the superconformal Lie algebra. It is the infinite dimensional Lie
superalgebra with even and odd components of the basis respectively given by {L,, J,,C | n € Z}
and {G¥ | r € 1 + Z} subject to the relations

3 _
(L, Ln] = (0 — m) Lypsrm + %5,1,%0, L., GE] = (%n - 7“) G
4r? — 1
(G Gy = 2L + (1 — 8)Jyy + TT@,_SC, (Lo, Jon] = s,
[y Jom] = gén,_mc, [, G] = £G=, (G, G =0, (2.24)

foralln,meZ,rse % + 7 and where C' is central. We denote

N, = spanC{Li(nH), Ji(n+1), Gi(%%)’ G;(n%) |ne No}
Moy = spanc{Lo, Jo, C'}
N> = Ny &N (2.25)
so that we have a triangular decomposition 0 = _ & Ny b N,

Definition 2.10. Let M be a Zs-graded 9t-module on which C' acts as ¢ - id for some ¢ € C.
(1) M is called smooth, if for every m € M

Eam=0=0,,1m, n>0 (2.26)

where E € {L, J}, O € {G",G"}. Denote the full subcategory of all 9t-modules whose objects
are all smooth modules by D.-mod*™™".

(2) M is called weight, if it is smooth, finitely generated, 91 acts locally nilpotently (for every
m € M, dim(U(9s¢)m) < oo) and Jy acts semisimply. This implies that M is graded by
Jo-eigenvalues and generalised Lgp-eigenvalues, that is, it decomposes into a direct sum of
homogeneous spaces

M= My, My={meM|(J—qm=0=(Ly—h)"m, N> 0}, (2.27)
q,heC

where dim M,;, < oo, the weight support supp(M) = {(q,h),€ C*| M, # 0} C C* is
contained within a finite number of Z2-cosets of C* and M, ), = 0 for Re(h) < 0. Denote the
full subcategory of M.-mod™™ whose objects are all weight modules by D.-mod™".

(3) Let M be weight. A non-zero homogeneous vector v € M is called singular if 9t,v = 0. Note
that GTv = 0 = Jyv is a necessary and sufficient condition for singularity. If v is singular and

generat2es M, then v is called highest weight and M is called a highest weight module.
Recall that 91 admits a family of automorphisms called spectral flow.
Definition 2.11.
(1) The spectral flow automorphisms o*, ¢ € Z of M, are determined on basis vectors by
1 1
o'(Ly) = Ly — 0J, + 6625n,00, o' (J) = J — 300n0C, o' (GE) =GE, o(C)=C. (2.28)

(2) Let g € Aut(9) and M a M-module, then the g-twist of M is a 9t-module whose underlying
vectors space is that of M but with the action
z-,m=g '(x) m, Ve e N, Vm € M, (2.29)

where - is the original action of 1 on M.
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Note that the categories MN.-mod™™™ and N,-mod™* are both closed under spectral flow automor-
phisms. Note that in principle the spectral flow parameter could be a half odd integer, however,
the resulting twisted module would then no longer satisfy the locality axiom. That is, the series
expansion of fields can contain half odd integers. Such twisted modules are called Ramond (as op-
posed to Neveu-Schwarz) modules. Half odd integral spectral flow interchanges the Neveu-Schwarz
and Ramond sectors.

We can now easily construct examples of smooth 9t-modules. For example, the Verma modules
and their simple quotients are smooth. These are constructed as follows. For ¢, h,c € C, let C1,,.
denote the even 1-dimensional 91>o-module characterised by

JO]-q,h,c = qlq,h,ca C]-q,h,c = C]-q,h,c
Lolype=hlghe,, MNilype=0. (2.30)
The Verma module M, ., is the induced module
Myne=UMN) But(ms) Clyhes (2.31)

while the simple quotient of M, . is
Mq,h,c

(maximal submodule)

Lohe= (2.32)

Proposition 2.12. Let ¢ € C. Then the W-module N(c) = Mo g./(G=1100.) admits the structure
2
of a vertex operator supemlgebm by defining the field map on the strong generators

Y(L_51,2) => L,z Y (J_11,2) = Jnz
nel neZ
(Gi 1,2) ZG* ZzT"72 (2.33)
neL

and continuing by derivatives and normal ordering. This vertex operator superalgebra is called the
universal N' = 2 superconformal vertex algebra. The strong generators above satisfy the operator
product expansion relations

L(2)L(w) ~ . _%w) X (j (7:;))2 8:{/(5) L(z)J(w) ~ (ZJ_(wuz)Q + a;i(g)
LG ) ~ L 4 2 I~

J(2)GF(w) ~

GE(2)GF (w) ~ £l L 2Jw) | 2L(w) +0J(w)

(z—w)* (2 —w)? z—w (2:34)

d smth

Finally, N.-mo is the category of all N(c)-modules.

Proposition 2.13 (Gorelik, Kac [42]). The universal N = 2 vertex algebra N(c) is not simple if
and only if there exist u,v € Z with uw > 2, v > 1 and gcd(u,v) = 1 such that the central charge
satisfies

6v

=3 - —. 2.35
=3 (2:35)

For these central charges N(c) admits a non-trivial mazimal ideal generated by a singular vector of
conformal weight (u — 1)v and J-weight 0.
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When N(c) is not simple, so that ¢ = 3 — %” for some u, v as in Proposition 2.13, we denote its
simple quotient by N(u,v) and refer to it as the A" = 2 minimal model at central charge 3 — %

Definition 2.14. For coprime u,v € Zq, u > 2, let N(u,v)-mod™" be the full subcategory of
N(3 — 67”)—modWt of modules annihilated by the maximal ideal of N(3 — %) and for which the
eigenvalues of Jy are real.

Proposition 2.15 (Adamovié [1]). For coprime u,v € Zsq, u > 2, denote

(r — %s) -1 u
hr,s;q = T - 4_1}(]2’ r,s e Z, qc R. (236)
Then the simple highest weight modules L}, 5 so and their parity reversals 1L, ;, 5 6. whose con-
formal and J-weight (q, h) lie in one of the following sets

(1) {(”—hof) [ 1<r<u-1,1-r<p<r—1lp+r=1 (mod 2)}}
(2) {(g,hrsg) |1 <r<u—1,1<s<v—1, vr+us <uv,qec R},

orm a compilele SeEL O] TeEPTESENLALIVES Of SIMPILE 1SOMMOTPNISITN CLASSES 1T u,v -moO . € aenote
lete set tati mple i hi l n N d“t. We denot

o0 = Lgrs.

'Cq hr,s; q73_

Proposition 2.16 (Creutzig, [14, Thm 8.2]). The category N(u, v)-mod™ admits a tensor product
iduced from intertwining operators and thereby is a braided monoidal category.

2.3. The fermionic ghost vertex algebra. Ghost systems date back to the early days in string
theory in the physics literature. For a formal mathematical description of them, we refer to
Kac’s book [50]. To define the fermionic ghost vertex algebra BC we first introduce its underlying
Lie super algebra bc with even and odd components of the basis respectively given by {1} and
{br,c, | r € 3 +Z}. These basis vectors satisfy the commutation relations

1
{br, CS} = 7»_,.570]_, r,S € 5 + Z, (237)

where 1 is central (and will always be taken to act as the identity on modules). We then have the
triangular decomposition

1
bcy = span(c{bir,cir | r e 5 + No}, bey = C]_, bCZ = bC+ @ beg. (238)

Since we require 1 to act as the identity there is only one Verma module (up to parity reversal)
for this decomposition.

1
BC=Indi;, €2, 62=¢0=0, Vre+N. (2.39)

Proposition 2.17. The be-module BC admits the structure of a vertex operator super algebra by
defining the field map on the odd strong generators

Y(b_ 19, 2) Z b2 s, Y(e_ 19, 2) Z ¢ e, (2.40)
reZ+1 re€Z+3

and continuing by derivatives and normal ordering. This vertex algebra has a number of names in
the literature including BC vertex algebra, fermionic ghost system and charged free fermions. The
strong generators above satisfy the operator product expansion relations

b()e(w) ~ —— . b()b(w) ~ c(z)c(w) ~ 0. (2.41)

Z—Ww
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The BC vertex algebra admits a conformal vector

>Q, Y (wse, 2) = TB(2) = %( (0b(2))c(2): +: (0c(2))b(2):). (2.42)
of central charge 1 and an additional distinguished vector
Q="b_1c10, Y(Q,z2) =Q(z) =:0b(2)c(2):, (2.43)
such that b(z), ¢(z) are conformal weight 5 primaries, Q(z) is a conformal weight 1 primary and
Q(z) satisfies the operator product expansion relations
Q) ~ A Qo) ~ Z g)Qw) ~

z—w z—w (z —w)?’

1
wpC = —<b_§C_l +c_sb_
2 2 T2 2

1
2

(2.44)

that is Q(z) generates a subalgebra isomorphic to the Heisenberg vertex algebra H(%) and its zero
mode Qq (the coefficient of 2~1) gives a Z-grading to BC, called ghost weight, which assigns weight
0 to Q, weight 1 to b(z) modes and weight —1 to c¢(z) modes.

Definition 2.18. Let M be a Zs-graded be-module on which 1 acts as the identity.
(1) M is called smooth, if for every m € M

b,m = c¢,m = 0, r > 0. (2.45)

Denote the full subcategory of all be-modules whose objects are all smooth modules by be-mod™™®,

This category is also the category of all Zs-graded BC-modules.

(2) M is called weight, if it is smooth, finitely generated, beso acts locally nilpotently (for every
m € M, dim(U(bcsg)m) < oo0) and (g acts semisimply. This implies that M is graded by
Qo-eigenvalues and generalised Lg-eigenvalues, that is, it decomposes into a direct sum of
homogeneous spaces

M=& My,  Myu={meM|(Qo—qm=0=(Lo—h)"m, N> 0}, (2.46)
q,heC
where dim M,;, < oo, the weight support supp(M) = {(q,h),€ C*| M, # 0} C C* is
contained within a finite number of Z2-cosets of C* and M, ;, = 0 for Re(h) < 0. Denote the
full subcategory of be-mod™™® whose objects are all weight modules by be-mod™".

We conclude this section by recalling the known equivalence between the category of be weight
modules and super vector spaces.

Proposition 2.19. The category be-mod™ is semisimple with two simple isomorphism classes BC
and its parity reversal [IBC. As a braided monoidal category (with the tensor product constructed
from intertwining operators) be-mod™ is equivalent to sVec the symmetric monoidal category of
finite dimensional super vector spaces. In particular BC corresponds to C'0 the even one dimen-
sional super vector space and IIBC corresponds to CO' the odd one dimensional super vector space.

3. THE COSET REALISATION OF THE N = 2 SUPERCONFORMAL ALGEBRA

In this section we recall a well known coset construction of the universal N' = 2 superconformal
vertex operator superalgebras N(c) and their simple quotients N(u, v) which appeared in the physics
literature in [57, 56, 35| and was more recently studied in detail in [22].

Proposition 3.1. Consider the vertex operator superalgebra A;(t —2) @ BC, t € C*, then there
exists an embedding ¢p, : H(2t) — A1 (t —2) ® BC characterised on the strong generator a_1|0) and

continued to the conformal vector a2,]0) by

a=a |00 heQ+210Q = (h_1+26_%c_ )1@9

1
2
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1
Ta2110) t(hQ_l +4(b_%c_% +c_%b_%> +4h_1b_%c_%>1 ® Q0. (3.1)
There exists an additional embedding ¢, : N(3 — &) — A;(t — 2) ® BC

Cc

heQ—(t—2)1 hoy—(t—2)b_
Jo1= gl LE ( neQ M-l t)

GT=G1+"% O \/je®c—\/je 1c_ 11®Q
G‘:G31nﬂ>\/7f®b_\/>f_1b 180

¢n
W = L 21 2t (6 1f 1 + f,16 1 + (t — 2) (b*%C*% + C7%b7%> — 2h,1b7%07%)1 ® Q (32)

Further, the image of ¢, is the commutant (also known as a coset in the physics literature) of the
mmage of ¢n, that is

1
2

2100

b (N (3 _ g)) — Com(én(H(2)), Ay (t — 2) @ BC). (3.3)

Further, if t = =, for coprime uw > 2, v > 1, then N(3 — %) and A{(t — 2) admit non-trivial ideals,

and the embedding ¢,, and commutant factor through the respective simple quotients, that is

On(N(u,v)) = Com(op(H(2t)), Ar(u,v) @ BC). (3.4)

Proposition 3.2. Fort € C* consider the embedding ¢ = ¢pQ¢,, : (2t)®N(3 — —) — At —2)®

BC, where ¢y, ¢, were characterised in Proposition 3.1. Let M be an indecomposable A;(t — 2)

weight module with sl(2)-weight support supp(M) = X+ 2Z,\ € C. Then the following hold.

(1) M ® II'BC, i = 0,1 is an H(2t) @ N(3 — &)-module by restriction (that is, pulling back along
®) and decomposes as

Res(M @ I'BC) = P F, @ Cll(M), (3.5)

p€Esupp(M)

where the C’,[,i](M) are indecomposable N(3 — $)-modules.

(2) A vector m € M @ II'BC is homogeneous for Ay(t — 2) @ BC if and only if it is homogeneous
for H(2t) ® N(3 = 8). The grading operators (and hence weights) for the four algebras are
interrelated by

ho = (t=2)Q0

Ly o + LS =L + L6\/227 ap = ho + 2Qo, Jo = :

(3.6)

(3) For every sl(2) relazed highest weight vectorv € M of s(2) weight ju € supp(M) and conformal

weight h there exists a M highest weight vector x € C’,[f]( M) whose conformal weight is h — ;
and whose J-weight is . In particular, in the decomposition (3.5) above v ® Q = |u) ® x.

(4) If t = 2 for coprime w > 2, v > 1 and M is one of the simple relaxed highest weight modules
E, s, b € C/2Z, £\, s & 1 of Proposition 2.7, then

C’I[)i](UKEu;r,s) = Hi—wﬁ%—f;r,sa JASH U €%7 (37>
with L, s as in Proposition 2.15.
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Proof. With the exception of Part 3 above Proposition 3.2 is well known. Most of the proof will
therefore focus on Part 3.

The form of the restriction (3.5) and the range of the Fock space weights p follows by applying
[19, Thm 3.8] to the embedding ¢ = ¢, @ ¢,,. The indecomposability of C,(M) then follows from
the indecomposability of M also by using [19, Thm 3.8|.

The relations between grading operators follow directly from the embedding formulae (3.1) and
(3.2).

Let v € M be a relaxed highest weight vector of s[(2) weight p and conformal weight h. The
formula for the embedding (3.1) implies that

a0 @ Q= (hy +2Q)v @ Q = o, ov €, n > 0. (3.8)

Note that we have suppressed the embedding ¢. Thus v ® €2 is a Heisenberg highest weight vector
of Heisenberg weight p, that is, v ® Q € |u) ® x, x € Cu(M). Further, the formulae for the
embedding (3.2) imply that

2 1
+ — _
GTU®Q—\/; E € nCrinV @Q =0, 7‘25
neNy
Go®Q \FEjfb ©0=0, r>-
v — — _ — p—
r t nr—l—nv ) T_2
neNp
h, — kQ,
J,ﬂ)@ﬂz%l}@@z&zp%v@ﬂ n > 0. (3.9)

Thus x is an 91 singular vector with J-weight £. Finally, since the image of the sum of the
conformal vectors of H(2¢) and N(3 — &) is the conformal vector of A;(t — 2) ® BC the conformal
weight h of v must be the sum of the conformal weights of |x) and y. Hence the conformal weight

of x is h — ’Z—:.

The relevant formulae for C’Z[,Z](M ) are given in |23, Eq 4.16] (note that ¢ here corresponds to 2i
in [23]).

O

For coprime w > 2, v > 1, the categories H(Q%)-modm, N(u, v)-mod™, A;(u,v)-mod™ and
BC-mod™" are all locally finite abelian categories whose objects all have finite Jordan-Holder length
(see [9, Thm 1.2] and [14, Cor 5.1]), thus by [61, Thm 4.11] we have the following equivalences of
braided monoidal categories.

E B wt ~v g _ Wt _ wt
(H (21)) ® N(u,v)) mod™" H<2v> mod™ XIN(u, v)-mod™,
(A1 (u, v) ® BC)-mod™ =2 A; (u, v)-mod"*RKBC-mod™", (3.10)

where X denotes the Deligne tensor product of abelian categories. Further, A;(u,v) ® BC is a
commutative algebra object in (a direct limit completion of) H(2%) @ N(u,v)-mod™" (see [25]
for details on direct limit completions in the context of vertex operator superalgebras). We
can therefore consider the category RepAi(u,v) ® BC, the category of A;(u,v) ® BC-modules
in (H (2%) ® N(u, v))—mod“’t. These will generally be twisted modules, the full subcategory of non-
twisted (or local) modules is denoted Rep® A;(u,v) ® BC 2 (A;(u,v) ® BC)-mod™. Further, the
restriction functor Res : Rep Ai(u,v) ® BC — (H(2%) @ N(u,v))-mod™" has a left adjoint, the
induction functor Ind : (H(2%) ® N(u,v))-mod™ — RepA;(u,v) ® BC. This functor admits a
monoidal structure (see [21, Sec 2&3| for details) which makes it braided monoidal.
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Since the categories H(Q%)—modWt and BC-mod™ are semisimple and pointed (that is, tensoring
by any simple object is invertible) many hom spaces are 1-dimensional which leads to convenient
factorisations in the Deligne tensor product categories. For example,

Homy(, yon(ze) (M ® Fp) B(N ® Fy), (P @ Fy))
= Homp(y,o) (M X N, P) ® HomH(QE)(F X Fy, Fy) = 0pyq,s Hompym) (M XN, P)

Homa, (u,0)s6c (R @ I'BC) K (S @ 7/BC), (T  I1"BC))
>~ Homa, (u,) (R & S, T) ® Homgc (I'BC X IIVBC, II"BC) = 8, Homa, (4,0 (R X S, T),
(3.11)
where M, N, P € N(u,v)-mod™, p,q,s € R, R, S, T € A;(u,v)-mod™ and i, j, k € {0,1}.

Theorem 3.3. The right adjoint of the restriction functor H(2%) ®@ N(u,v)-mod™ is the induction
functor. Moreover, let M, N,O be weight A(u,v)-modules, let p € supp M, q € supp N, and let
Cp(M), Cy(N) be respective counterparts to F, and F, in the restriction (3.5), then there exists a
functorial linear isomorphism

0 (GO (3.12)
M, N ~\clon), PN ’ '
) A1 (u,v) D ( )7 q ( ) N(u,v)

and further for s € supp O

c(o) | L
<Cg[ﬂ(M), C,EMN)) . =0, ifs#p+qor nZi+j (mod2). (3.13)

The above theorem was implicit in the presentation of the conjectured fusion rules in [23, Sec
6] and has also been generalised for larger families of algebras in [16]. Nevertheless, we provide a
specialised proof for clarity.

Proof. The theorem follows from induction and restriction being adjoint functors and induction
being a monoidal functor [21, Thm 2.59]). More specifically,

0
<M N) A AR O)

=~ Homp, (uuesc (M @ II'BC) ¥ (N ® IFBC),0 @ II'BC)

= Homa, (u,n)esc (Id ((F, ® C”]( ) X (F, ® C'(gj](N))),O ® II"BC)
= Homa, (un)esc ((Fp @ CH(M)) B (F, @ CU(N)), Res(O ® II"7BC))
= GB Homa, (u0)28c (Fpig ® (CH(M) R CI(N)), F, @ CIH(0))

s€supp O

0 n fi+4] Cpi(0)
~ i J vrJ o~

where we have used that [I'BC X IIVBC = IT'*BC and F, X F, = F,,. O

While it is known that monoidal functors such as induction preserve duals (see [36, Exe 2.10.6]),
sufficient conditions for the converse to hold will also prove helpful below.
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Lemma 3.4. Let M € A;(u,v)-mod™ be simple and let Cg](M) ® Fp, p € supp(M), i € {0,1} be
a direct summand of the restriction Res M @ BC. If M is rigid with dual MY, then C;[ﬂ(M) 18 too,
with rigid dual CJ'(M)Y = CH(MY).

Proof. Since all tensor categories involved are braided, it is sufficient to only consider left duals.
Further, since all the vertex operator superalgebras involved are isomorphic to their contragre-
dients, it is sufficient to show that only one of the rigidity zig zag relations is non-zero by |26,
Lem 4.2.1 and Cor 4.2.2|. The vertex operator algebra A;(u,v) is self contragredient, thus, the
rigid dual M"Y of M, which exists by assumption, must be isomorphic to the contragredient M.
Hence the weight support of MY must be the negative of the weight support of M, that is,
supp(M") = —supp(M). Therefore the restriction of MY ® BC must admit a non-trivial direct

summand of the form CE}p(M V) ® F_,. Since BC is rigid and self dual M ® BC is also rigid with
the first of its zig zag relations given by

id =M ® BC =5 (A (u,v) ® BC) K M @ BC 5%, (M © BC) K (M ® BC)) ® (M © BC)
AL (M ®BC)R (MY ®BC) B (M © BC))
— (M ®BC) X A (u,v) ® BC S (M ® BC) (3.15)

Applying the restriction functor to this composition of maps, using that induction is monoidal and

1IEeE

discarding all but the C’]Li](M ) summand then yields the following composition.
id =C(M) @ F, *5 (N(u,v) ® Fo) R CH(M) ® F,
S((cian e F)E (B ) e Fy) B (CH(M) @ F)

{

p

—1

o (@on e F) B (A0 e F,) B (Cll0n ¢ F))
5 (C(M) ® F,) BIN(u,0) @ Fy & (CH(M) @ F,), (3.16)

where the arrows marked by a question mark are to be determined. Next we use that N(u,v) ®

H(2%)-mod™" is braided equivalent to the Deligne tensor product N(u,v)- mothXH(Z )-mod™" to
factor out all the Fock spaces to obtain the composition

id =CU(M)RF, S5 (N(u,v) R CH(M))R(F, B F,)
5 ((cian ) m el () )R(F, B F,) 8 F,)

=

2o (Cfon m (B0 R ) )R(F,(RF-, 8 F,)

5 (CE(M) R N(u, v))R(F, B Fo) & CI(M)RF,. (3.17)

Note that each of the products of Fock spaces above is simple (and isomorphic to F,) and so
each of the arrows in the composition above lies in a Deligne tensor product hom space of the
form Homp, (A, B) ® HomH(2u>(fp,F ). Since the Heisenberg hom space is one dimensional,

every f € Hompy)(4, B) ® HomH( )(.Fp,}" ) can be written as a tensor product fy ® fg, fv €
Hompy(uw) (A, B), fu € Hom, (QE)(]:p,fp) as opposed to some linear combination of such tensor

products. We can therefore factor out all the Heisenberg morphisms to obtain the composition

id =C1 (M) 55 N(u,0) B CE(M) S ((CB(M)) R A (M) R Cl(M)

p

A1 i i i ? i r i
A7, cil(M) R (C[J,,(MV) X CIL](M)) % CE(M) ®IN(u, v) 2 CE(M). (3.18)
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The two arrows marked by a question mark lie in the hom spaces Hompy, ) (N(u v), cf ( )X CE g o(M V))
and Hompy, ) (Oz[j] (MV)X C’E]p( M), N(u, ’U)> ®id. Thus there exists a pair of morphisms from these

hom spaces and such that the composition yields a non-zero morphism C’I[f](]\/[ ) — C’I[ﬂ(]\/[ ).
UJ

Theorem 3.5. For coprime uw > 2, v > 1,1 <r <wu—1andl1 < s <v—1and q € R,
let Ly, s be the simple highest wezght N(u, U) module L, iy sigu3— 80 05 given in the second part of

Proposition 2.15. Additionally consider the simple relazed hzghest weight Al(u v)-modules Elguyirs,
where [q%] = q% +2Z. Then for all 1 <7v',r" <u—1,1<5"s"<v—-1, ¢ €R, Uqgéi/\r,s—FZZ
the non-vanishing simple fusion rules between L., s, Eq/;r@s/ and between E[q%ms, Bl g are

E /~TJ/ S// . E /r' s W) r o) s o) s
dim (L i ) — dim (E (a+a) E} ) NG (NS{S), L+ N +1)
g S a2l Blg 2l

dim <H£q+q’i1;r”,8”) — dim (UjFlE[(ffrq’il)L‘];r”,s”) — N ) s”

rr! 8,8
Lors: Lo, E[q%]mw E[q’%];r’,S’

where the N-coefficients are defined in (2.19).

(3.19)

The equality of the dimensions of s[(2) and N = 2 intertwiner spaces (3.19) is just Theorem 3.3
applied to the relaxed highest weight modules Elguys. The computation of these dimensions will
form the focus of the next two sections. Note that when q,¢ in (3.19) are such that 2(q+g¢ —I—e) ¢
+\ s+ 2Z, e = —1,0, 1, then (3.19) together with the projectivity of the simple modules o Eums
established in [9] implies that the tensor products of Elgu)s, Ejgr 2y s and of Lyys, Loy s are
semisimple with direct sum decomposition given by

Elgayrs M Blgr a5 = EB ( 2T+ N s)+1>E[<q+q) i
b @ <U*1E[<q+q'+1>%1;wcs~ < 0E[<q+q/—1>%1;wcs~>,
Logrs W L5 = @ ( ss’ 1 + N§ s)+1>£q+q’;7"’78’
o @ (L g s 10r50 B Ly g1 ) (3.20)

// l/

By associativity these tensor products are generated by E[q%];l,l, E[q%m,l and by L,11, L421. More-
over, by specialising (2.20), we observe E[q%};zl = L X E[q%}_l;u. Hence all of the relaxed fusion
rules can be obtained from the Efgupaa fusion rules and by tensoring those with L,. That is,
Theorem 3.5 holds if and only if the following lemma holds.

Lemma 3.6. For coprime uw > 2, v > 1, and 1 < r,r' <u—-1,1<s,§ <v-—-1, ¢q,¢d € R,
L' & £ +2Z. If g & £+ 2Z,

E el gl . E Ul g/
dim (E i ) = dim (E[ ata) i, ) = 0y (05—1,' + 0511, ),

a1l Lotirs g 11,1, Byt

F1 “

dim (Hﬁqﬂ’il;r"s/) = dim (U Equ/iDvW“S/) = 611105y

= — Urp/Us.s’y
£q;1,1> Eq’;r,s E[q%];l,b E[q’%}ms

X Y
dim = dim =0, 3.21
(ﬁq;l,h ﬁq';r,s) (E[q;t];l,h E[q’lj]ms) (3.21)
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where X and Y are any simple modules other than those appearing in the first two lines of (3.21).

We will prove Lemma 3.6 by computing upper bounds for the dimensions in (3.21) on the NV = 2
side using Zhu’s algebra and its bimodules in Section 4 (see Proposition 4.15) and lower bounds
on the sl(2) side in Section 5 (see Propositions 5.4 and 5.5) by explicitly constructing certain
intertwining operators.

4. UPPER BOUNDS FOR LEMMA 3.6 VIA ZHU ALGEBRAS

We recall some definitions and results from Zhu and Frenkel’s work [39, 75| and the generalisation
by Kac and Wang [54] to vertex superalgebras where all odd vectors with respect to the Zs grading
have half odd conformal weights. We then apply these results to N(u,v) to compute upper bounds
for Lemma 3.6 in Proposition 4.15.

4.1. Zhu algebras, Zhu modules and intertwining operators. For any super vector space
V, we denote the subspaces of even and odd vectors by V° and V! respectively. For a vertex
operator superalgebra V' in which the space of odd vectors coincides with the space of vectors of
half odd integer conformal weight, the Zhu algebra is constructed from the two bilinear operations
on V characterised for homogenous a,b € V' by

Res, <Y(a, z)wb)7 a,be Vo,
axb= # - _
0, acViorbeVl

Res, (Y(a z)%b), aeVo,

ao b == wta—1 =
Res, (Y(a,z)(lﬁ)%b), aeVh

(4.1)

Proposition 4.1 (Zhu |75]; Kac, Wang [54]). Let V' be a vertex operator superalgebra for which
the space of odd vectors and the space of vectors of half odd conformal weight coincide and define
O(V) = spang{aob|a,b e V}. Then A(V) = V/O(V) is an associative unital algebra with
multiplication given by x. The identity element is [1] = 1 + O(V), the equivalence class of the
vacuum vector, and the class [w] of the conformal vector is central.

Note that for odd a € V1, a o1 = a and hence V! € O(V). We next recall some standard Zhu
algebra results.

Lemma 4.2 (Zhu [75]; Kac, Wang [54]). Let V be a vertex operator superalgebra. For all homo-
geneous elements a,b € V and m > n > 0 we have that

(1) (Loy+ Lo)a € O(V), a € V°,
(2 Resx< (a,x)%b) cOV),aec VO,

)
(3) Resm( (a,x)#b) cO(V),aecVl,
)

x

(4) axb= Resm(Y(b x)Lmbl ) +0(V), a,b e VO,

Theorem 4.3 (Zhu |75]; Kac, Wang [54]). Let V' be a vertex operator superalgebra and let M be

a V-module. Define the top space of M to be M ={m & M | v,m =0 Yv € V,Vn > 0}.

(1) Any element [a] € A(V) acts on M™P by the zero mode ag where Y (a,z) =, , ayz~ {0
hence giving M'™P the structure of a left A(V')-module. Further, if M is simple as a module
over V', then M*'*P is simple over A(V).
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(2) Any left A(V')-module M*™P can be induced to a V' module with conformal weights bounded below
and with M*™P contained in the top space. If M'"P is simple over A(V), then the induction
admits a unique simple quotient.

(3) Simple A(V') modules are in bijection with simple V -modules with conformal weights bounded
below.

Ideals in a vertex operator superalgebra and in its corresponding Zhu algebra are interrelated
as follows.

Lemma 4.4 (Zhu [75]; Kac, Wang [54]). Let V' be a vertex operator superalgebra and I a Zs-
graded ideal of V' (with grading consistent with that of V). Assume that 1 ¢ [,w ¢ I. Then the
Zhu algebra of the quotient A(V/I) is isomorphic to the quotient A(V')/[I] where [I] is the image
of I in A(V).

If M is a V-module, we define an A(V')-bimodule A(M) as follows. First, we set the left and
right actions of V on M by

Resz 1+Z)Wm m>, if a € VO,
axm = _
0 if a € V1
_ Resz (1= Z)Zwm lm>, ita € V?, (4.2)
0 ifa e V%
where m € M. Next, we let O(M) be the subspace of M linearly spanned by elements of the form
1 wta B
Res, (Y(a, z)%m), aeV?
z
1 wta—% B
Res, (Y(a, z)%m), acV? (4.3)
z

where m € M.

Proposition 4.5 (Zhu [75]; Kac, Wang [54]). Let V' be a vertex operator superalgebra and M a
V-module. Then A(M) = M/O(M) is an A(V')-bimodule with left and right actions given by (4.2).
For any homogeneous elements a € V, m € M and p > q > 0 we have that:

(1) Res, (Y (a,2) 2295 m ) € O(M), a € VO, and

wta—&-q—%

(2) Res, (Y(a,x)%m) cOM), ae Ve

As in Lemma 4.4 the Zhu bimodule structure is compatible with quotients by submodules as
described in the following result.

Lemma 4.6 (Zhu [75]; Kac, Wang [54]). Let V' be a vertex operator superalgebra and let M be a
V-module.

(1) If M" is a submodule of the V-module M, then A(M/M') = A(M)/[M'], where [M'] denotes
the image of M' under the projection M — A(M).

(2) If I is an ideal of V, 1 ¢ I,w ¢ I and I.M C M’, then the A(V/I)-module A(M)/A(M') is
isomorphic to A(M/M").

We will denote the vector space of intertwining operators of type (W1W3W2) by the same symbol

(W1W3W2) and for the moment postpone the definition of intertwining operators until they are
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explicitly used in Section 5. One of the main benefits of Zhu bimodules is that they provide a
means for computing dimensions of spaces of intertwining operators.

Lemma 4.7 (Huang, Yang [48, Prop 5.8|). Let V' be a vertex operator superalgebra and let My, Mo
and Ms be V-modules with My and M} generated from their top spaces. Then

M.
dim ) < dim Hom gy (A(My) @aqy Ma™, My). (4.4)
M, M,

The relationship between spaces of intertwining operators and hom spaces was, of course, also
considered in Zhu [75]; Kac, Wang [54], but not with the assumptions that we require here.

4.2. Determining the Zhu algebra for N(u,v). Let ¢ be any complex number and let N(c) de-
note the universal N' = 2 vertex operator super algebra of central charge ¢ as defined in Proposition
2.12.

Theorem 4.8 (Gaberdiel, Eholzer [35]).

(1) For any c € C, the Zhu algebra A(N(c)) is isomorphic to the polynomial algebra C[A,n|, where
A is the image of the conformal vector [w] and n is the image of [J_11].

(2) Foru,v coprimeu > 2, v>1, and c = 3—"2, the image in A(N(c)) of the non-trivial mazimal
ideal of N(c) generated by a singular vector x € N(c) of conformal weight (u—1)v and J-weight
0is (p1(A,n), p2(A,n)), where py is the image of x and py is the image of GT, G~ x.

2 2

(3) The Zhu algebra of N(u,v) admits the presentation

C[A.n]
<p1(A7 n):p2(A7 T])>

The goal of this section is to compute the polynomials py, ps.

2

A(N(u, v) (4.5)

Theorem 4.9. Fiz c = 3 — %“ for coprime u > 2, v > 1 and let J denote the maximal ideal
J C N(c). Then, as an ideal of Ag(N(c)) = C[A, n] under the isomorphism given in Theorem 4.8,
[T] is generated by the following two polynomials

Uu
P (777 A) = fu (777 A; ;) H (A - hr,s;n); (46)
(r,s)eEK (u,v)
2v vou U
plnd) = (£ 28 -y= 20 ) < f(na ) )ea- (VLI

where hy ., is the conformal weight defined in (2.36), K (u,v) is the set of pairs (r,s) € {1,...,u—
1}x{1,...v—1} satisfying the additional constraint vr+us < wv, and the polynomials f,(z,y, z), n >
2 are defined recursively by

foro(z,y,2) = %fn+1(x,y7z) Adyz 4o z(n——iri); 1)(n+ 1)fn(36,y,2), (4.8)
with
fo(z,y,2) = xz, f3(z,y,2) = :v2z —yz. (4.9)

In particular, the Zhu algebra for the minimal model superconformal algebra at central charge
c=3— %” admits the presentation
ClA, 7]

A(N(u,v)) = (p1(A,n), p2(A,n))

(4.10)
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Proof. Eholzer and Gaberdiel established in [35] that, under the isomorphism ¢ in Theorem 4.8,
the ideal [J] C C[A,n] is generated by the images of the singular vector x, which generates J
and its descendant G*,G~,x. Thus all that is left to show is that these images are equal to

2 2
the polynomials py,p,. For this we use the coset realisation in Proposition 3.1 and the relations

between singular vectors in Proposition 3.2(3) for the vacuum module A; (% — 2). Let w,, denote
the singular vector generating the maximal s[(2) submodule in A;(% —2). Then fi 'w,, is a
relaxed singular vector in A; (% — 2) whose image in the Zhu algebra of Al(% — 2), up to a non-

zero multiple, was shown in [69] to be given by
([0, [Ta)) = ]  (Tu@) = A¥) guw (2], [Tue)) (4.11)
(r,s)eK (u,v)

where [h] and [Tyg)] denote the images of h_;1 and and the conformal vector Ty = wu_y =
S (3h% ) —e_1fo1 — foer)1 in A(A (% —2)) = U(s[(2)) and g,.(z,y) are polynomials recur-
sively defined in [69] by

G20(T,y) =2 (4.12)
3
Gs.o(w,y) = 2" — ty (4.13)
and
(2u+1)x Aty — (u—1)(u+1)
u+2,v\ 4L = 7 1\ Jutiw\d, - w,v\+ty Y )y 4.14
Ju+2, (:L‘ y) (U,"— 1)2 Ju+1, (:L‘ y) (U"— 1)2 Gu, (l’ y) ( )
where ¢ is a parameter that will be later specialised to t = . By Proposition 3.2.(3) we have that

$(10) @ x) = f5 " wu, ® Q, (4.15)

where ¢ is the coset embedding of Proposition 3.1, |0) is the vacuum vector in H (%) and () is the
vacuum vector in BC.

In particular, the zero modes (]0) ® x)o = id ®xo and (f*  w,, @ Q) = (f*  wyp)o ® id must
act equally on any A; (L—‘ — 2) ® BC module. Thus, for an A; (% — 2) relaxed highest weight vector
m(X, A of s1(2) weight A and conformal weight A*T we have

Xo(mA, AM) @ Q) = ((f* 'wyp)om(A, A)) @ Q = I(A\, A" )m(X, A*) ® Q, (4.16)

where in the second step we have used that Zhu’s algebra models the algebra of zero modes acting
on relaxed highest weight vectors. Recall that the sl(2) data (A, A*T) corresponding to the Jy
eigenvalue n and A/ = 2 conformal weight A are interrelated via A\ = tn and A = A + L.
Thus p1(n, A) = I(tn, A+ tn?), which matches the formula given in the Theorem after identifying
Ju(n, At) = guo(tn, A + Z%772) and t = 2.

Next we compute the image of G*, G~ x in the Zhu algebra, again via the coset realisation.

2 2
Following on from the identification (4.15) we have

¢(|0) ® GJ_F%G:%X) = ¢(GJ_F%G_ ) g_lwu,v ® Q

_1
2

2 -
= 0@y +er®ey) fofi win © b0

2 2
= _ZeOfOf(q)Jilwu,v ® Q + ;eflfOf(q)Jilwu,v & Q’ (417)

where () is the Heisenberg vector within BC. Applying both sides of the above identity to the
same test vector m(\, A*) @ Q as before yields
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(G+1 Gﬂx) m(\, A @ Q
3 —27/0

= _%(eofo.fglwu,v)o &® QO( ()\ Aaﬂ) ® Q) (6 1f0f0 lljum)o(?n()\7 Aaﬂ) ® Q) (418)

Note that the first summand vanishes due to Qo) = O, while the second can be simplified using
the Zhu relations (4.2) to give

(67,67 x) mO A 2 = 2(Fx (f5~ ) we — (f5~ ) « £ ¢ ) gm(r, &) @ 0

%(f()( g_lwu,v)oeﬂ - ( wu v) f060) ( Aaﬁ) & Q

2
- %(I()\ +2,A*) — I (X, A*)) (2tmff — % — A)m()\, A @ Q, (4.19)

where for the final equality we used that m(\, A*") is a relaxed highest weight vector and hence
foeom(X\, AM) = (2tLo — $hi — ho)m(X, A*T). The s[(2) and N = 2 weights are again interrelated

by A = tn and A"® = A+ £p? and thus the eigenvalue of (GflG:lx) is the polynomial ps(n, A).
2 2 0
[

Using Theorem 4.9 we recover the classification of N(u,v)-irreducible modules obtained by
Adamovi¢ in [1].

Theorem 4.10. A complete set of inequivalent simple modules over the Zhu algebra (4.10) is
given by the I1-dimensional vector spaces on which (n,A) act as any of the pairs of scalarswithin
the following sets.

(1) {(%Jlno;%) [1<r<u—1,1—-r<p<r—1,p+r=1 (mod 2)},
(2) {(¢,hrsg) |1 <r<u—1,1<s<v—1, vr+us <w, q € C}.
where hy s, s given in (2.36).

Proof. The theorem follows by showing that the pairs of scalars above constitute all the simulta-
neous zeros of the polynomials p;(n, A), pa(n, A) of Theorem 4.9. Note first that both polynomials
contain the divisors (A — h, ;). These correspond to the second set of pairs (g, h, s,,) above.

If a simultaneous zero of p;, ps is not of the form (q, hrsq) then it must necessarily be a
simultaneous zero of fu(n,A, L—‘) and fu(n, ,v) fu(77+ JA—np—2 “) or of fu(n, ,%) and
(2A—n). Using Bézout’s Theorem, which in its simplest form states that two bivariate polynomials
can have at most as many simultaneous zeros as the product of their degrees we will show that
there are at most u(u;l) such simultaneous zeros. This is precisely the number of pairs of scalars
in the first set above. After that has been established, all that will remain to be shown is that the
above pairs are indeed simultaneous zeros, which we will show inductively.

We start by giving on upper bound on the simultaneous zeros of f, (7], A, %) and f, (7], A, %) —
fu (77 + CA—n—2 %) From the given formulae for f; and f3, and the recursion relation for
fu, we see that fu(n, ,%) has degree u — 1 in n and degree at most “T’l in A, in particular
the monomial term with the largest power of n has no factor of A and the monomial term With
the largest power of A has no factor of n. Further the shifted version f, (n + A —p— )
preserves the power of 7 in its first argument and A in its second, so it too will have degree u—1
in n and degree at most “T_l in A, with the monomial term with the largest power of 1 having no
factor of A and the monomial term with the largest power of A having no factor of n. Crucially,
these respective greatest monomial terms of f, (77, A, ) and f, (77 —|— CA—n—2 —) have identical

coefficients so the difference f,(n, A) = f, (1, A, %) — fu(n+ 2 A — 11 haS degree at most

u’ v
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u—2 in n and at most “T_l —1in A. So if we introduce an additional variable v, which is to take on
u

the role of a square root of A, then f,, (77 72, ;) is a polynomial in 7,y of degree u — 1 and fu(n, 7?)
is a polynomial of degree u — 2 in 7, ~, that is, replacing all the A by squares does not increase
the total degrees of the polynomials. Thus by Bézout’s Theorem they have at most (u — 1)(u — 2)
simultaneous zeros. However, these zeros come in pairs, as if (19,70) is a zero, then (19, —7o) is
too, yet both of these zeros correspond to the same zero in 1, A given by (19,73). So f, and fu
have at most %2(“72) simultaneous zeros in 7, A. Bézout’s Theorem also immediately bounds
the number of simultaneous zeros of f, and (2A — ) from above by u — 1. Thus there are at most
Wléﬂ +u—1= @ simultaneous zeros of f,(n, A, %) and f,(n+ 2, A —n— 2 ) (2A —n).

Next we show by induction that all pairs in the ﬁrst set listed in the theorem are 1ndeed simul-
taneous zeros of f, (n, A, %) and f, (77 +ZA—pn— )(ZA —n). For our base case we need to
consider u = 2 and v = 3. First u =2 and v odd. Then

fQ(n,A,%)—ng—O and f2(n+vA n—gg)(m n) = (n+v)%(2A—n):0. (4.20)

The first equation requires 7 = 0 and then the second can only hold if A = 0, which reproduces
the first set of zeros for u = 2. Similarly for © = 3 and v not a multiple of 3, one can easily verify
that the three candidate simultaneous zeros for u = 3 solve the equations

f3(777A7%) :7721—§A_0

202

RPN ((n@)g%_g(A_n_g))(m_m:o_ w2

Next for u > 3 and v coprime to u assume that the pairs (2, h,gee), 1 <7 <k —1,1—7 <
p<r—1,p+r=1 (mod 2) are zeros of fr(n,A, %) for 2 <k < u. Then the recursion relation
(4.8) 1mp11es that (2, hyo.re) with r < u — 3 is a zero, because it is a zero of f,—1 and f,». For
r = u — 2, note that pluggmg (B, hy_9 0,2 ) into the recursion relation (4.8) leads to the coefficient
in front of f,_, vanishing and hence (%%, hu-s0;20) is a zero of f, because it is a zero of f,_1.

Finally, fu< v b1 0, %) was computed in [69, Eq (4.30)] in terms of s[(2) data. Expressed in
terms of N' = 2 data this becomes

fu( u):(2(u—1))(p+u—2)(p+u_4).,,(p_u+2)

Mo u—1 201 (y — 1)! !

(4.22)

which is zero for 2—u <p<u—2,p+u =0 (mod 2)

Finally we consider the zeros of f, (7] + @ JA—n— )(2A n). The base case of u = 2 and
u = 3 has already been established. For the mductlon assume again that the pairs (27, hr,o;%L
1<r<k-1,1-r<p<r—1,p+r=1 (mod 2) are zeros of fy(n+2, A—n—2 2)(2A—n) for
2 < k < u. Then the pairs (£, hr,o;%) are for zeros of fu(n+%’, A—n—2,2)(2A—n) forr <u—3 by
the recursion relation (4.8). For r = u — 2, plugging (-, h, 2 0,»2) into the recursion relation (4.8)
for fu(n+22, A—n—"2,%)(2A—n) leads to the coefﬁment in front of fu o(n+2, A—n—% “)(2A—n)
vanishing and hence (2 hu 2,0;2) is a zero for f,(n +E2A—n-—% % (2A—n) because it is & zero
for f._1(n —|— A —n— )(QA n). Finally we can again use [69, Eq (4.30)| to compute

fu(@Jr? v v u):(Z(u—l))(p+u)(p+u_2)...(p_u+4>

_hu B ’
uu b0 u  uw u—1 2u=1(y —1)!

(4.23)
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and note that

vp v vp
2hu-rp = = = 5o (W = 2u—p* = 2p) = —o-(p —u+2)(p + u). (4.24)

Thus fu<%” + Q_J’,hu_lyo;pl -2 2) (2hu_170;m_m) vanishes for 2 —u < p < u—2,u =p
(mod 2).
O

4.3. Fusion rules from Zhu bimodules. Using the theory on Zhu algebras outlined in Sec-
tion 4.1 we are now in a position to describe the Zhu bimodules associated to N(¢)-Verma modules

Mq,h,C'

We first introduce the following auxiliary spaces:
Wn = spang{1,s, Gj%lq,h, G 1, G:%Gfélq,h} C Mghe
Won = Clz,y, 2] @ W (4.25)
Next, we endow W, ;, with a C[A, n]-bimodule structure as follows.
A(flz,y,z) Qu) =2 f(z,y,2) @
(f(z,y,2) @v).A=y- f(z,y,2) ®v
n.(f(z,y,2) @v) =z f(x,y,2) v+ f(z,y,2) ® Jov
(f(z,y,2) @v)n =2z f(z,y,2) ®v

Using standard arguments in Zhu theory (see |75, 39, 54]) we obtain the following description for
the Zhu bimodules A(M ).

Proposition 4.11. As an A(N(c)) = C[A, n]-bimodule
AMype) =2 Wyp (4.27)

(4.26)

where the isomorphism is given by
C[:U7 y, Z] ® quh —> A(Mq7h7c)
flz,y,2) @wv— [f(L—g +2L_1+ Lo, Lo+ L_y, J_1)w]. (4.28)

Denote the left A(N(c))-module formed by the space of least conformal weight of a Verma
module M, . by N, . That is N, = Cnyp, with Ang=hngy and n.ng ), = qng,. We describe
AMgne) Dan(e)) Nos,ho as a left A(N(c))-module.

Lemma 4.12. Let hy, hs, g1, 92 € C.
(1) Then, the set

{xa ® Gj%iG:%jlqlvhl QD AN(e)) n(I27h2| a€Z,ij€ {07 1}} (4'29)

is a C-basis of Wy, hy.e @an(e)) Naoho-
(2) The action of A and n on the C-basis above is

A2 @ W DAN() Ngahe = T @ W DAN() Mo b

N.2% @ W DAN(C)) Mo shy = (2 + @)z ®w @ A(N(c)) Mgz has (4.30)

where w = G’_LliG_ jlqhhl and § = q1 + 1 — j 1is the Jo-weight of w.
2

1
2
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Theorem 4.13. Let h;,q; € C, i =1,2,3, then

L if [g+a@—agl=1,
dim Hom(W(h,hl ®AN() Naahas Nq3,h3) =92 if @+q=g, (4.31)
0 else.

Proof. Since the action of A and 1 on Wy n, ®an()) Ng,p, does not mix the basis vectors

G+

i g = . L
! G%]1q17h1 of W, n,, we have the direct sum decomposition

2
Waii @A) Nasho = €D Cla) ® CGFL G710, 1 @ave)) Crgauns, (4.32)
i=0,j=0
where each summand is the n-eigenspace of respective eigenvalue ¢; + g2 +7 — j. This immediately
implies the “else” line of the theorem.
Next assume there exists a homomorphism p: Wy, 1y @ an(e)) Ngohy = Ngs by, then

0= (A —=hs)p(=) = p((A = h3)—), (4.33)
that is, the image of A — hg in W, n, @ a(n(e)) Neshe lies in the kernel of p. The image of (A — hg)
is just the submodule

Shs = (& = h3) © W @ AN()) TNigas [0 € Wy, 1y )- (4.34)

Consider the quotient by S, and we immediately obtain
2

Wlh h1 ®A(N(C)) NQQ ho C[I]
’ — = —— _—®CGT
5. D

(I - h3> —%lG:%jlql,fu @ AN(e)) (CTL%,12
i=0,j=0

= Nh37q1+q2—1 D 2Nh37q1+q2 @ Nh37q1+q2+17 (435)
which implies the theorem. O
Proposition 4.14. Let t,q € C and consider the Verma module Mgy, .. #).ct), where hy14(t) =

%, Then the vector

t _
w1 (t,q) = ((q — 1)L+ §(q2 —1)J_1+ GjéG ;) Lo by 1o (8)sct) (4.36)
is singular in Mgp, . @).cr)- Furthermore, under the isomorphism in (4.28), the images of the
singular vector [wy 1] € A(Mgn, 1. @).cw)) and its G*, descendants are

N

i) = @2 0) @ (L] 19 G567 L
[Gt%wl,l: = [ (2,y,2,9) © |:GJ_F%1‘11h1,1;q(t)i|
[G:%wl,l: = f(T,y,2,¢) ® [G:%lq,m,hq(t)])
[G%G:%wm: — %(q2 -2y —2)® [1th1,1;q(t)]

+ fG(x7 Y, 2, q) X [Gt%G:%]"th,l;q(t)} , (4.37)

where

Plopsa) == (-t g+ S Des+e-1),
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t
P = g1 -y+ Ja+ D@ +a+ ),

(2,2 0) =<q+1>(x—y+f<q—1><2z+q—1>),

4
fC(x,y, 2,q9) = (g+1) (x —y— % + ;l(q —1(2z+q+ 1)> (4.38)

Proof. By direct computation we see that ijwu = 0 = Jyw; 1 and hence w,; is singular. The
2
simplifications within the Zhu bimodule follow from the relations in Proposition 4.11, which allows
us to make the following replacements
L_Q)—>2’y—l‘+L0, L_l)—>$—y—L0, J 41—z,
[T 0] = —[J_1], [va] . [G;U]. (4.39)
2 2
O

Proposition 4.15. For q,t € C, ¢ # +1, let ¢(t) =3 — %. Let r, s be positive integers, q; € C and

B gy (£) = C=EEI0R) - pinally et g, hy € C. Then,

17 qu3 ZQ+Q2+17 h3 :hr,s,qga
M o(t).c 1,4 = —1, hs3=hy 44,
dlm Hom (A (M) ®A ng,hrsg NqS’hg) S ’ Zf Q3 q + q2 ) 3 8,43 (440)
(wi,1) ’ 1,if g3 =q+ q2, hs = Ry si1,45,
0, otherwise,

where @4 denotes the tensor product over A(N(c)).

Proof. We use the canonical identification of vector spaces

Hom(A(Mqﬁlvl;Q(t)vc(t)) ®A Nquhr,S;qg(t)’ NQ3>h3) = N;s,hS ®A A(Mq,hl,l;q(t)zc(t)> ®A Nq2:hr,s;q(t) (441)
to compute dimensions, where N

os.hs 18 the dual of Ny, 5, By Lemma 4.6, the dimension of the
hom space in (4.40) is therefore the codimension of N ;- @4 A((w11)) ®a Ny hy og(ry I Ny s @
AM g hira@e)) @a Nog o). I @3 —q— g2 # 0, %1, then the dimension of the hom space (4.40)
must be zero by Theorem 4.13. So we first consider the case q3 = ¢ + ¢2 + 1. After tensoring the
vectors in (4.37) with the basis vector ng4q,41.4, of N . we see that only the second vector in

q3;h3
(4.37) does not vanish and yields

Ngtga+1,hs DA Gt%wl,l XA Ny hy = f+(h3’ hr s (1), g2, Q)nq+q2+1,h3 XA Gi_%lq,hm ®A Mgy has (4.42)

where
P B b0 0200) = (0= D) (B = ) = §0= )+ 0+ D D)
= (C] - 1)(h3 - hr,s;Q+Q2+l(t))a (443)

that is, the variables z,y, 2 evaluate to hz, hy g, (t), g2, respectively. Hence N; ;@4 A({w11)) ®4
Ny hyoiq(r) has codimension 0 in Ny 5 @4 A(Mgny 0 0),00) @A Nog g () UneSS by = by g g0 11(1),
which proves the first line of (4.40). Similarly, for g3 = ¢ + g2 — 1 only the third vector in (4.37)

does not vanish when tensoring with 7,4 4,1, and yields

Ngtga—1,hs @A G:%wl,l @A Ngyhy = [ (3, Nrsign (), @2, Q) Ng1ga—1,05 @ Gfélq,hl,l @A Ngy iy, (4.44)



FUSION AND RIGIDITY FOR ADMISSIBLE s[(2) AND N =2 27

where
fi(h?n Py siq (t)a q2, Q) = (q + 1) <h3 — R0 (t) - 2(1 - q2) + %(q - 1)(Q2 - 1)>
= (g4 1)(hs = hrsg1q,-1(2)). (4.45)

For g3 + ¢ + ¢2 the second and third vectors in (4.37) vanish when tensoring with n,4 4, n,, while
the others yield

_rl
Ng+qa,h3 XA wWi,1 ®a Nga,ho _f (h37 hT,Sﬂlz <t>7 q2, q)nq+QQ,h3 ®a 1q,h1,1 ®a Ngo,ho

+ —
+ Ng+q2,hs3 ®a G_%G_%1q7h1,1 XA Tg9,ha s

_ t
Tg+g2,hs3 XA Gt%G,%le ®a Nga,hy = 5((]2 - 1)(2hr,s;q2 <t> - Q2> XA 1q,h1,1 ®a Nga,ho

+ fG<h37 hT,S;Q2 (t)a q2, Q) ® Gj%G:% 1q,h1,1 XA Mo ho - (446)

The constant coefficient in front of one of the summands above means that Ny, ., ®4A((w11))®4
Ny hy oiq(r) Must always have codimension at most 1in N7, ®@a A(Mqyn, 0 0).e) @4 Ny by eoa(t)-
To determine when the codimension can be greater than 0 we compute the determinant of the
coefficients (4.46) to obtain a polynomial in hz. The roots of this polynomial are precisely where
the codimension can be greater than 0.

det( fl (h?” 4 Nrsiq (t)> QQ) 1 )
5(0° = 12N 0o (t) —a2) [ (M3, 0, s (1), G2)
= (92 - 1) (h3 - hr,s+1;q+q2 (t))<h3 - hr,s—l;q+q2 (t>> (4-47)

Therefore hy = hy 511,444, (t) are the only values for which the codimension need not be 0.
O

Note that these bounds on hom space dimensions in particular provide an upper bound for the
fusion rules (3.21) in Lemma 3.6 after setting ¢ = %.

5. LOWER BOUNDS FOR LEMMA 3.6 VIA FREE FIELD REALISATIONS

In this section we prove lower bounds for the dimensions appearing in Lemma 3.6 by explicitly
constructing suitable intertwining operators in a free field realisation of A;(u,v). To this end we
recall some facts regarding P(w)-intertwining operators following [21, 45| before discussing the free
field realisation of A;(u,v) and its screening operators.

Given a generalised V-module M = &) My,, its algebraic completion M is defined as the

heC
superspace M = [] M), where M' = M for i = 0,1 while its contragredient or graded dual
heC
module M’ is defined as the vector space
M =& My,  Mj) = Hom(My,,C) (5.1)
heC

together with the action Y);, characterised by

(Yo (v, 2)m';m) = (m', Y, PP (v, 2)m), (5.2)
where m’ € M',m € M, v € V, and where
YiPP (v, 2) = V(e (=27 %) oy, 271 (5.3)

is the opposed action (note that the module M needs to satisfy some lower boundedness conditions,
which will never be an issue here, in order for the action on M’ to be well defined). Similarly,
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for any triple of modules M;, My, M3 and an intertwining operator ) € (
intertwining operator

My M) the opposed

yopp(mhz) - y(eZLl(_Z_2)LOm17Z_1) (54>
. . .. = M! .
characterises an intertwining operator ) € ( My, QMé) via
<m2,;)7(m1, z)mg> = (mj, Y°PP(my, z)ma). (5.5)

Definition 5.1. Let w € C* and let My, My, M3 be modules over a vertex operator superalgebra
V. A P(w)-intertwining map of type (M1M3M2) is a bilinear map I: M; ® My — Ms, for M; the
algebraic completion of M3, that satisfies the following properties:

(1) Lower truncation: For any 1y € My, 1y € Ms, mp(1(1h1 ® 12)) = 0 for all Re(h) < 0, where
7, denotes the projection onto the generalised eigenspace (M), of L(0)-eigenvalue h;

(2) Convergence: For any ¢y € My, o € My, 135 € Mj, the contragredient of Ms, the series
defined by

<¢3, }/3(7}7 Z)I(l/)l, w)¢2>7
(3, I(Yi(v,z — w)hr, w)ya), and
(13, 1 (1, w)Ya(v, 2)3h) (5.6)

are absolutely convergent in the regions |z| > |w| > 0, |w| > |z — w| > 0 and |w| > |z] > 0,
respectively, where the subscript under each Y indicates the module being acted on.

(3) Cauchy-Jacobi identity: Given any f(t) € Rp) = C[t,t‘l, (t — w)_l}, the field of rational
functions whose poles lie in some subset of {0, w, 0o}, we have the following identity.

é ﬂ@w&nwxﬂwhmuwu:f&ux%Jaﬂuz—m¢mm%mz

+ § 1), T30, 0)Valo, e} (5.7)

where the subscript on each integral indicates the points in {0,w, 00} that must be enclosed
by simple positively oriented contours.

Next we recall a free field construction of A;(u,v) due to Semikhatov [70], and Adamovié¢ [3].
Consider the 2-dimensional trivial Lie algebra with basis denoted {a,b} and with invariant non-
degenerate symmetric form normalised such that

t
<CL,CL> = _<b7b> = 5 - 177
We denote the rank 2 Heisenberg vertex algebra constructed from the affinisation of this Lie algebra
by H(2,t). This vertex algebra is isomorphic to the tensor product of two rank 1 Heisenberg
algebras of respective levels 52 and 22, that is H(2, ) = H(52) @ H(32). Let {a(z),b(z)} be the
generating currents correspondmg to the basis {a, b} whose operator product expansions therefore
satisfy

(a,b) = 0. (5.8)

a(z)a(w) ~ —b(z)b(w) ~ ﬁ a(2)b(w) ~ 0. (5.9)

Further, consider the rank 1 lattice L = Z%5(a — b) (note that the pairing (5.8) restricted to this
lattice vanishes) and corresponding lattlce Vertex algebra

=P r. (5.10)

peL
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where F,, denotes the rank 2 Fock space over H(2,¢) whose highest weight vector |p) satisfies

aolp) = {(a,p)|p),  bolp) = (b,p)|p). (5.11)

Note that even though H(2,t) = F; has two independent generating currents (that is, it is rank 2)
the lattice IL is only rank 1. The hence dual of L

2
L*:{UER@)ZL]W@,@—@EZ}:R(a—b)@Zb (5.12)
is not discrete. Finally, for any p € L*/IL, the sum of Fock spaces

F, =P 7 (5.13)

PEN
is naturally an L(¢) module.
Theorem 5.2 (Adamovi¢ [3, Thm 5.5, Prop 9.2|). For coprime u,v > 2, let M(u,v) denote the
2

Virasoro minimal model vertex operator algebra at central charge c,, = 1 — 6%. Denote the
conformal vector of M(u,v) by wy, = L(_uz’v)l.

(1) There exists an embedding of vertex operator algebras

¥ A(u,v) = M(u,v) @ L<E> (5.14)
v
characterised on generators by
2v
e1l1—1® u—2v<a_b)>’ (5.15)
h_ll = 2a0_11® |0>, (516)
U U 2v
e (B e - (2 1) )1 |- ~b) ). 1
f 11 — " 9 bfl . b 2 X u_%(a b) (5 7)

The image of the conformal vector in Ai(u,v) under this embedding is

1 /1 W
o (§h2_1 +e_1fo+ f—1€—1> 1 (L(g’ )+

v
— (a®, —b%)) — b_2) 1® |0). (5.18)
(2) Let S,s, 1 <r<u-—1,1<s<wv—1 denote the simple M(u,v)-module of highest conformal
weight
(us —vr)® — (u —v)?

hys = . (5.19)
duv
Recall that Ay (u,v) admits an automorphism vy called conjugation, which is characterised by
e_11— f_ll, h_ll — —h_ll, f_11 —e_11. (520)

Thus 1 o v is also an embedding A (u,v) < M(u,v) @ L(%). For any M(u,v) ® L(*%)-module
we can therefore pull back along 1 and 1o~y to obtain Ai(u,v) modules. Under these pullbacks,
forteZ, 1 <r<u-—1,1<s<wv—1 we have the identifications

w*sr,s ® ]F:u"r,s;l = O-EE;fr,vfsa M s:l = [(% + f) (a - b) + (l - 1)b:| )
(09)'Srs © Fp, = 0B}, ot = [ (—2% - ) (a =) = 1+ 18],
VS, @F, 2 olem@ it g @€ L*/L, (20, 4+ b) # [£A],

2v

<w © ’Y)*Sr,s ® Fu = O_(—m(a—b),u+b> E—(2b,u+b);r,s- (521)
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(3) Consider the simple M(u,v) module Sy 5 of highest conformal weight hy o = i—z — % generated

by a highest weight vector vy 5. Tensor products with Sy o decompose, for 1 <r <wu—1, as

Sng ZfS = 1,
51,2 Sr,s = ST75_1 D ST7S+1 Zf2 S S S v — 2 (522)
Srv—2 ifs=v—1.
Further, let [;’rs € (Sf;’sgis), 1<s<wv—2 and I € (515;’5‘51”), 2 < s < wv—1 be surjec-

tive M(u, v)-intertwining operators and let 1, a surjective L(%)—mtertwmmg operator of type
(]Fb]i‘f”h) such that their tensor product ngm = Ifs ® 1, is an M(u,v) ® L(%)—intertwmmg

operator of type (Sl,ziajﬁ:bi?ﬂ:sbi:@m)’ Then v12 ® |b) € S12 @ Fyip is a screening vector for the

free field realisations 1) and 1) oy, that is

imv =im oy C kerRes; Vi 1 (v12 ® |b), 2). (5.23)
We denote the corresponding screening currents by
Qi(’z) = y;ﬁi;r,s@}l,? ® ’b>a Z)v (524)

where the indices p,r,s will be determined by the module the screening current is applied to.
In particular, the Ai(u,v) generators satisfy the following operator product expansions with the
screening currents.

Y((e),w)Q*(2) ~0,  Y(¢(h),w)Q"(2) ~0
d | L.(|7), z)@zlfs(vm, z) + ]fs(vm, z)]u((ﬁ%b_l + 2= a_l) IT), z)

Y((f),w)Q5(z) ~ 2w -
— (% — 1) I (v1.2, 2)Lu(I7), 2) (5.25)
(z —w)” ’
where |7) = | —5-b — 24-a).

Remark 5.3. There is a minor typographical error in [3, Sec 9.1] where the module label (1,2) is
stated as (2,1) for the highest weight vector used to construct the screening current.

Proposition 5.4. For coprime u,v > 2, let I be a surjective L(%) intertwining operator of type

F o :
(]F uﬂv“’“")%"*b)*%“t ). Recall that vertex operator algebra actions on modules are sur-

a=—gy Pla—b)—b+Ll> u‘fﬂp/(a—b)—b-&-]l‘
jective intertwining operators and so we denote the M(u,v)-action on S, by Y, s to obtain an
intertwining operator of type ( Sris ) and by tensoring an M(u,v) ® L(%) intertwining operator

S1,17 Sr,s
of type

u—2v

Srs @F 2 (prp)(a—b)—264L ) (5.26)

Y, ®1I¢€ (
Sl,l QF p(a—b)—b+L> Sr,s ® ]Fu_l’%p’(a—b)—b-l-l

u—2v
Then the pullback of Y, s ® I along ¢ gives surjective Ay(u, v)-intertwining operators of type

o YE~ ) , o YE~
) b Y € A + 22, ( , ) PP+ T € s + 22,
<E[p1;1,1a Epirs By, Eplirs ”

o YEr
( [p+p +u]v“3>, p+p + LN+ 27, (5.27)
Bt Eprs
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while the pullback along v o vy gives surjective Ay (u, v)-intertwining operators of type

OE+ ) / O'E'l—l_ 7" v—S /
s ) _% —p—pE )‘r,s + QZ, ( ) _% —p—pE )‘u—r,v—s + QZ,
(E[pm,h Bl pirs El g, Elprs

OE[fﬁfpfp’];r,s u /
v , —Y—p—p & £A\+2Z. (5.28)
Eipiag, Blpiirs

In particular, these spaces of intertwining operators are therefore at least 1-dimensional.

Proof. The free field realisations 1, 1) o v in Theorem 5.2 construct A;(u,v) as a subalgebra of
M(u,v) @ L(%). Hence any M(u,v) ® L(%) intertwining operator is also a A;(u,v) intertwining
operator by restriction. The identification of modules given in Part 2 of Theorem 5.2 then imme-

diately implies the identifications of intertwining operators in (5.27).
0

Proposition 5.4 proves the lower bound on the dimensions of intertwining operator spaces in the
second line of (3.21). We devote the rest of the section to establishing the remaining fusion rules

n (3.21).

Proposition 5.5. Let w € C* and let T'y,, be a Pochhammer contour (or its homotopy class)
about 0 and w (see Figure 1 for a visualisation). Define linear maps

(I):,s(w) = QT(Z‘)Y;’S(—, U)) - ®I(_7 UJ) - dl’, (529)

FO,U}

where T = £, with respective domains and codomains

O (w) 1 S11 @ Fpat)—b4L ® Srs @ Fra—p)—o+L = Srsirt @ Fippp)a—ty—biL; (5.30)
where £A11 € [( —2)p], £ & [(4 = 2)p] and X o1m1 & [(4 —2)(p+ )] Then @7 (w) is a

(G =2@tp)lmstrt ) I particular, these

surjective Ay (u,v) P(w)-intertwining operator of type ( .
[(Z—2)p];1,1> Z[(L-2)p']ir,s

intertwining operator spaces are at least 1-dimensional.

Proof. Note that since Y, ; and I are intertwining operators the lower truncation and convergence
properties follow immediately for ®7 .. Thus in order to conclude that they are intertwining
operators we only need to verify the Cauchy-Jacobi identity (5.7). Specifically, forany o € S [, ®
F,(p—i-p’)(a—b)—bHL? m € S11 @ Fpipya—t)—b+1, 1 € Srs @ Fipipyat)—b+1, v € Ai(u,v) and f(y) €
Cly,y™', (y — 2)7'] we need to show the identity

]{f <0Yvy¢,smwn>2m 7{]‘7 )0, ® (Y (v,y — w)mz)n;i—;:l
d
= IO m Y s, (531

where the respective integration contours are counterclockwise circles that encircle 0 and w, w but
not 0, and 0 but not w. We therefore consider the complex function

A(w) = (y){0,Y (v, y)®] (m,w n>— - j{ F(w){o, @] ( (v,y—w)m,w)n>%

2mi
ff o, 97 (m,w)¥ (v, y)n) %

7{ o, f )oY (v, ) Q () (Vo @ I)(m, w)n Vo SY

27i
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FIGURE 1. Left: A Pochhammer contour about the points 0 and w. The contour is
non-contractible, runs counter-clockwise around both points once and then clockwise
around both points so that the total winding number for each point is 0.

Right: The Pochammer contour can be moved around the back of the Riemann
sphere to form a trefoil contour about 0, w and co. When considered on the Riemann
sphere the clockwise winding about 0, w is equivalent to a counterclockwise winding

about oo.
tau dy
— (y)(0, Q" (2)(Yrs @ I)(Y (v, y — w)m, w)n)ydz—

1—‘0 w 27-“

T dy

74 £, Q@)Y ® D)im,w)Y (v, i) 52 (5:32
To.u i
Since Y, s ® I is an intertwining operator, it satisfies (5.7) and hence
d

—§ [ Y 0@ @ D wn)drs”
0,w,x JT0,w I

/rgwf f(y)(0, Q" (2)Y (v,y)(Yrs ® I)(m, w)n >dxd_y

2mi
= 75 Resa—y f(y)(0, Q" (2)Y (v,y) (Ve ® I)(m, wn)dy = 0, (5.33)

where the residue vanishes (that is, the third equality holds) because Q7 (y) is a screening current,
that is, because of (5.23). The second equality follows by carefully manipulating the contours and
keeping track of winding numbers. These manipulations are illustrated in Figure 2. Thus A(z) =0
and @] _ satisfies (5.7). All that remains now is showing that @] is non-zero by evaluating it on
suitable vectors. Denote the highest weight vector of S, 5 by v, and its conformal weight by h, ;.
Further, consider the vectors

V1,1 ® ‘p(a - b) - b) € Sl,l & IFp(a—b)—b—l—]La Ur.s & ‘p/(a - b) - b> € Sr,s ® Fp(a—b)—b+L7
Ur,s471 ® <p(CL - b) - b’ € S:”,S+Tl ® IE;I;J(afb)ber]L' (534)
Then
(Urs1r1 @ (p(a = b) = b, @] (v11 ® |pla —b) = b), w)v,s @ [p'(a — b) = b))
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FIGURE 2. By taking the difference of the Pochhammer contours we see that the
windings about 0, w and oo cancel out and only a circle about y is left.

— / w(1+p+p/)(1*%)x(%*l)(pl+1)+hr,s+717h1,2*hr,s (I _ U})(%_l)(p—i_l)dl’
Lo, w
_ w;l”;r”? )(1+p) / y (1+p') (2 )+71_TT_§<1_”) (1- y)( )(1+p)dy

To,1
et
gm 1+p ( 1)+w>)

—1—77‘+Tsf
= U}f 1+p (
1—7r—2(1-7s)

. F<i1+p)—p +—)F 3(1+p)—p
(1 . GQW.((%—l)(Hp))) 2v 2 : (%u - ) # 0, (5.35)
F(z—“v(l +p+p’)—p—p’+w+w)

where we used the following well known relation between Pochhammer contours and and the beta
function B(z,y).

—_

B(z,y) = /O "1 =) dt = % R(x), R(y) > 0,

/ 1=ttt = (1 — ™) (1 — €*™) B(z, y). (5.36)
To
Hence @7 ; is non-zero. 0J

Note that Proposition 5.5 proves the lower bound on the dimensions of intertwining operator
spaces in the first line of (3.21) of Lemma 3.6. Thus, combining Proposition 5.4, Proposition 5.5,
Proposition 4.15 and Theorem 3.3 we obtain a proof for Lemma 3.6 and equivalently, a proof for
Theorem 3.5. This settles the semisimple fusion rules, namely the fusion product decomposition
formula (2.21) in Conjecture 2.9.

6. INTERTWINING OPERATORS AND RIGIDITY

The purpose of this section is to prove that the simple projective modules F,.;; are rigid. To
do this we will need to construct the projective cover of the tensor unit, a surjective intertwining
operator taking values in this projective cover and a candidate for the evaluation map.

6.1. Constructing the projective cover of the tensor unit. In this subsection, we construct
the projective cover 07 'P, 1, ; of the tensor unit, that is, A;(u,v) as a module over itself, by
constructing an indecomposable module which satisfies the second non-split exact sequence of
(2.18) with r = u — 1 and ¢ = 1. This projective module will be required to show that the simple
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members of the family of modules E,;; ; are rigid. This projective module will also turn out to be
the first summand in the conjectured decomposition of the fusion product (2.22), when r = 1. The
construction presented here is similar to that of |3, Prop 9.5] in that we consider a sum of M(u, v)®
L(%) modules and then twist the action of M(u,v) ® L(%) by screening currents. The details of
how the twisting is done here will differ from [3], yet result in isomorphic indecomposable modules.
The calculations in [3] involve taking residues of screening currents, while our considerations here
require us to integrate over Pochhammer contours.

Recall the screening currents QF of Part 3 of Theorem 5.2 and set
H02511®F[_2b]g0'_1E1_1, —511®F0—0'E; 1,0—1> H:HO@HI (61)

where we recall that that o1 E| 11 and oF,_, , , satisfy the non-split exact sequences

0—0 (D) w0 'Efy—»o 'Di_, =L —0,
0—=o0D, ,, =L —0E, ,, ,—0doDf)—0. (6.2)
We denote
|0) = vii®[2(i — 1)b) e H', i=0,1 (6.3)

and the corresponding dual vector in the contragredient module (H) by (¢?||. Consider the four
point function

<91H (21)Q" (2 H90> <Ul 1s 12(”1 2721)11+1(U12,Z2 Jui 1> Ol7-5(|b), 21)I-25(|b), z2)[—20), (6.4)

where we have factorised the screening currents Q= (z;) and Q7 (z9) into their Virasoro and Heisen-
berg parts. Note that the Virasoro intertwining operators can be normalised such that

- _3u
<U1,1, ]1_,2(?11,2, 21)1i1(01,2722)01,1> = (2'1 - 22) 2hiz (21 - 22)1 v, (6‘5)
and the Heisenberg intertwining operators such that
x_9 u_9 T
(O17-5(18), 21) (B, 22)|~28) = 21 25 (21 — )" 5. (6.6)

With these choices of normalisation, we therefore find
Lo\ b2 L\ T2
(0| Q (1) Q" (22)]|6°) = ( 2) (1—_2) . (6.7)
21 21
Following the arguments of |73, 74| on choosing appropriate contours for integrating screening
currents, we introduce new variables (z,y) € C* x (C\ {0,1}) and set z; = 2,29 = zy. Then in
these new variables, we have

<61||Q Q+ (2y H‘90> — yv 2(1 _y)zfz G(y)

222
Let C,—o be the homology class of a counter-clockwise circle about origin z = 0 rescaled by (27i)

(so that fcz:o 42 — 1) and let T'g; be the Pochhammer contour about y = 0 and y = 1. Then the
contour

< g

Gly)=ys(1—y)* .  (68)

-1

I'= 02:0 X F071 (69)

is a twisted cycle with respect to the multivaluedness of (6']|Q~(2)Q™ (2y)]|6°) (or G(y)). That is,
for any E, F € C[y*!, (1 —y)~%, 2%, we have

/ ((0']|Q (2) Q" (29)||6°)(Edz + Fdy)), (6.10)

where d is the exterior derivative with respect to the variables (z,y). Note that
(v, Q(2)Q  (zy)v) € G(y)Cly™, (1 —y)~", 2] (6.11)



FUSION AND RIGIDITY FOR ADMISSIBLE s[(2) AND N =2 35

for any v € HY, v' € (H')". Then we can define the following operators

QF(z) = | Q@ (2)Q"(zy)2dy : H' — H'[[z,27]],
To
ol — /Qg 2)Q " (2)dzdzy : HO — H'. (6.12)
These operators are non trivial, since, for example, we have
_ u_ _ou . dz u_ _ou
/@WQ(QQW@WWﬂaMri/W2@—w2%@r—=/ yr (1 —y) By
r T z Lo
u Su (2 —1)I'(3 —2%)
= (1= 2miy 1— —2mi2 7 v v ) 1
(=) (=) =gy #0. (613)

Since I' is a twisted cycle and the QF(z) are screening currents, we obtain the following proposition.

Proposition 6.1. The operator Q1 : H* — H' commutes with the A,(u,v)-action (that is, it is
an A, (u,v)-module homomorphism). Thus Q@ defines a non trivial screening operator.

Proof. We verify that Q@ commutes with the action of A;(u,v) generators and consider the f-
generator first. Let R*(z,w) denote the right-hand side of the operator product expansion relation
(5.25) for the f-generator with the screening current without the total derivative, that is,

L(|m), Z)@Z]fs(vm, z) + Ifs(vm, Z)Iu(( b1+ 2= a_l) 7)), z)
Z—w

— (5 = DI(12,2)1u(I7), 2)

u—2v

R*(z,w) =

P (6.14)

Then from the definition (6.12) of Q?I(2), we have
Y (@ (f),w), Q%) =Y (¢(f), w) Q% (2) ~ /F (0-R™(2,w)) Q" (2y)2dy

+ Q (2)(0: R (Z,w))|52.y2dy. (6.15)

To1

Note that dz A (2dy) = dz A d(zy). Then, from (6.15), we have
[QP, Y (v(f), )] = Res.—, (W) w)QP(2)
/ /F (2 0)Q ()2 + Q (IR (w)dz),  (6.16)

where C,_,, is a counter clock-wise circle (scaled by (27i)~! about w, and d is the exterior derivative
with respect to the variables (z, ). Since C,—,, x I'g; is a twisted cycle and the integrand is exact
(6.16) must vanish. Thus QP commutes with the f-generator. For the the e and h-generators,
note that the operator product expansions (5.25) are regular and hence the integral calculations
analogous to those above vanish trivially. Thus Q2 commutes with the action of A;(u,v). U

Consider the operator

Ad(—;2) : Ai(u,v) = Home(H®, H") [2%, 2]

g %fQ[Q](w)e_eY(g,z)eedw (6.17)
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where e*¢ is the Heisenberg weight shifting operator characterised by

[ao’ej:e] — :l:feie’ [bo,eie] — :Ffeie’
2 2
[an, e:te] = [bn; ej:e] =0, n # 0, ei6|:u> = | + €U _UQU ((1, - b)> (618)

Note that the integral in (6.17) can also be expressed as the commutator
1
Adlg;z) = ~[Q%, e™Y (g, 2)e]. (6.19)
€

Proposition 6.2. Consider the operator A (—; z) defined above.
(1) For all g € A(u,v), Adg; 2) € Home(H®, HY)[2%L, €], that is, no negative powers of € appear.

(2) For all g € Ai(u,v), set A(g;2) = Ad(g;2)|._y- Then on the generators of Ai(u,v) and the
conformal vector we have

Ale;z) =0, A(h;z) =0,
—2v lu—w

— 2]
u—2v>’z)]+22 20 < ’Y<

Q21 Y ((a_y — b_1)|0), 2)]. (6.20)

A(f;2) = —E[Q[Q},Y(b_1

1
Alwu-20;2) = — Y

ZU— 2v

Proof. For any v € H, u € (H') and g € A;(u,v), the matrix element
Res.—1(u, Q¥ (2)e~Y (g, le‘v) € eCle] (6.21)

is a power series in non-negative powers of €, because the Heisenberg weight shift operators will only
introduce non-negative powers by the relations (6.17). Next, recall from the proof of Proposition 6.1
that Res,—, Q(2)Y (g, w) = 0 (g € Ai(u,v)), hence the power series (6.21) has vanishing constant
term, that is,

Res.—1(u, Q¥(2)e Y (g, l)ev) € eCle. (6.22)

Thus we have A(g; 2) € Home(H°, H')[2%1, €] and hence A(g; 2) is well defined.
We evaluate A(—; z) on generators and the conformal vector by direct computation. First note

that
—€ € E/2 —€ €
e Y(a_1]0),2)e = Y(a_1/0), 2) + — e Y (b_1]0), 2)e® = Y (b_1]0), 2z) +

e_EY( f;v (a— b)>, z> e = Y( 2 b)>, z). (6.23)

U — 2v
For images under the free field realisation 1 of Part 1 of Theorem 5.2 we therefore have

Y (learl). ) =V (Wleal)2), e Y (@(hal) 2)e =Y ((hal) o) + 7,
eV ((f_11), 2)e = Y((f_11), 2) — EY (bl u__212)1}>,z) _ 61/24}/( u__2;’v>,z)
(=8

e*ﬁy(w(wu%v),z)eﬁ - Y(zb(wu;vm,),z) PR —Y (a1 = b1)[0),2) + ez/—f (6.24)

€/2
2 Y
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The evaluations of A(—,z2) are therefore just the commutator of Q? with the terms linear in ¢
above. O

Proposition 6.3. Consider the M(u,v) ® L(%) module H and denote the M(u,v) @ L(%)-action
by Yu (which is also an Aq(u,v) action by restriction). For d € C* define the linear operator

Ya(—,2) : Ay(u,v) = Home(H, H)[z*'] by
Ya(—, 2) o =Yu(=2) +d A= 2), Ya(—,2)| = Yu(—,2). (6.25)

Hl

Then XN/d is an action of Ai(u,v) on H. Further, (H, EN/d) 15 1somorphic to the projective cover
Oilpu—l,v—l Of Ll = Al(“?”)'

The construction above is similar to |3, Prop 9.5], but our choice of constructing will turn out to
be more convenient for the intertwining operators to be considered below. Note that the extension
group Ext! (UE;MA, J_lE; 1) is one dimensional. The parameter d above hence reflects this one
degree of freedom.

Proof. To show that Y, defines an A, (u,v)-action, we need to show that Yy(1,z) = idy, that
Y,(w, z)h has at most a finite order pole for any w € A;(u,v) and any h € H, and that Y, satisfies
the Jacobi identity. The first two conditions hold by construction and so we only need to consider
the Jacobi identity. Note that the factor d can be absorbed by rescaling the entire space H' by d,
hence without loss of generality it is sufficient to verify the Jacobi identity for d = 1. We thus set
Y =Y. Let f(z) € Clz*, (2 —w)7Y], ¢ € H, ¢ € H' and a,b € A;(u,v), then we need to show
that the following sum of integrals vanishes.

7€wf( (0. T (@ T w)o)ds - § 10T (@2 - wbw)o)ds

w

_ 7{ P, ¥ (b, w)¥ (0, 2)0)d (6.26)

Note that for ¢ € H',¢p € H" or ¢ € H°, ) € H” the above expression reduces to the Jacobi
identity for the action Yy and hence vanishes and that it is trivially zero for ¢ € H',¢» € H”. So
we only need to consider the case ¢ € H°, v € HY, where the above expression specialises to

§ I (B0, Yl w) + Yala, 00101
- f FE) W, AY (0, 2 — w)b,w)g)d:
j[ F(2) @, (Ya(b, w)A(a, 2) + A(b, w)Via(a, 2))d)dz. (6.27)
The first and third integrands above can be simplified by noting
Ala, 2)Ya(b, w) + Yi(a, 2) f e 0 e it Vit wiearay 629

Let {7;} be a basis of H' with dual basis {7'}, then (6.27) is equal to

]{w/rmz Y, Q" (2) QT (zy)vi <7{ F(2)(+", Ya(a, 2) Y (b, w)$)dz

i

- 7{ F) A Ya(Y (a, z — w)b,w)¢)dz
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_ 7{ () Ya(b, w)Ya(a, z)q§>dz>, (6.29)

which vanishes, because Yy satisfies the Jacobi identity. Further, from the formulae in Part 2 of
Proposition 6.2 we see that the hyp-grading remains unchanged, while the Ly operator acquires a
nilpotent part but its generalised eigenvalues do not change, hence (H, }7) is a weight module.
To conclude that (H, 17) is isomorphic to a‘lPu,Lv,l note that H! is a submodule isomorphic to
oE, ,, 1, that the quotient of (H, Y) by H' is isomorphic to H° and thus o~ 'Er; and that (H, Y)
is indecomposable due to A mapping between H° and H'. Hence (H, }7) satisfies the characterising
non-split exact sequence (2.18) of 071 P, _1,_1.

O

6.2. Constructing logarithmic intertwining operators. This section assumes some familiar-
ity with twisted cycles and twisted De Rham cohomology, and we refer readers unfamiliar with
these notions to Aomoto and Kita’s book on hypergeometric functions [8] for an comprehensive
account or to |74, Sec 3.2| for a short summary.

Let w,u € Rsp, w > u and consider the complex manifold Z,, = {(z1,22) € C* | 2z #
2o, 21,22 W, 21,22 # u}. For a, B, € C, let

2 2
U, 8,7,2) = |20 1]z — w)* (21 = 20)7 (20 — 20)7. (6.30)
=1 j=1
be a multivalued function on Z,, 5. The logarithmic derivative of U, (a, £, 7, 2)
6% ﬂ le — dZQ
w\&s M) =dl Z/{w s My = <_ >dz 2y———— 6.31
(@, 0,7,2) = dloghu(a, 672 = 3 (S LY r =2 (o)

Z.
i=1,2 7

defines the twisted differential V,, = d + wy, (o, 8,7, 2)A. Let L,(a, ,7) be the local systern
defined by the local solutions of V,, g(z1, 22) = 0, and let LY («, 5,7) = Homc(Ly(a, 5,7),C) b
the dual local system. The twisted homology groups with coefficients in LY («, 3,7) are denoted
by Hy(Zwo, L) (a, B,7)) and the twisted cohomology groups by

HP(Zuwo, Lu(a, B,7)) = Home (Hy(Zw,o, Ly, 8,7)), C). (6.32)

It is known that the twisted cohomology groups are isomorphic to the twisted de Rham cohomology
groups (see [8, Sec 2|)

HP(Zw0, Lo, 8,7)) = HY(Z0, Va,)- (6.33)
By permuting the variables zi, 2 there is a natural action of the symmetric group. We denote the

subspace that is invariant this action by H?(Z,, V., )® and the subspace on which the transpo-
sition (1,2) acts by —1 by H*(Zy0, Vi, )*

Lemma 6.4. Consider the hyperplane arrangement

H = U{ ,B,7) € C?li(a+ (i —1)y) € Z}

2

Ul J{(@.8.7) e C*j(B+(j —1)y) € Z}U{(a, 8,7) € C* | 2y € Z},

j=1
G=HU{(a,B,7) €C®|a+p+2y¢7Z}, (6.34)

and let (a, 8,7) € C3\G. The skew symmetric 2-form Uy, (v, 3,7, z) represents a non-zero cohomol-
ogy class within the cohomology group H*(Zy0, V., )* and dim H*(Z, 0,V )* = 1. Further, for
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any symmetric Laurent polynomial in F(z1,2) € Clzi, 237", (21 — w) ™Y, (22 — w0) 71 [(21 — 22)_2}
there exist a rational function c(a, 8,v) € C(a, B,7) such that

Uy (v, B,7, 21, 22) F (21, 20)dz1 A dzg = c(a, B, 7)Un (v, B, 7, 21, 22)d21 Adzg +d(---), (6.35)

where d(---) denotes a total derivative, that is, the two form Uy(a, 5,7, 21, 29) F (21, 22)dz1 A dzy
is cohomologous to a scalar multiple of Uy (c, 5,7, 21, 29)dz1 A dza. Finally, the rational function
c(a, B,7) is holomorphic on C3\ H, that is, all of its singularities lie in H.

By [8, Sec 2| Lemma 6.4 is known for generic values of «, 3,7, however, as we shall see below,
here we are primarily interested in the case a +  + v = —1, which is not generic.

Proof. By [8, Eq. (2.53) and Thm 2.5] local systems cohomology can be identified with twisted
de Rham cohomology of rational forms. Hence we restrict our attention to rational forms. Fix
(o, B,7) € C3\ G and denote U, = Uy, (e, 8,7, 21, 22). Consider the 1-form U, ((z; —w)(2F2)dz —
(20 —w)(2520)d2y), k,l € Z, k > | and compute its exterior derivative.
d(uw((zl —w)(2125)dz; — (2 w)(ZQZl)dZI))
=(a+B+2y+k+1)(2h2h + 2520 Uydzy Adzy
—w(o+ 2y + k) (2812 + A DU d 2 A dey
k-

k-1
+27<Z 2 Z 2t J)U dz A dza, E>1+2.

i=1 j=1
d(Un((z1 — w)( 1 2y)dze — (22 — w) (27 21)d2))
= (a+ B+ 2y +1+2)(e 2L 4+ 2L 2D d,dzy A dzsy
—w2(a + 7+ 1+ 1)z 2hUydzy A dzs, E=1+1.

d(Uy((21 — w) (2 2L)dzy — (20 — w)(zzzl)dzl))

=2(a+ B+~ + 1+ 1)U, dz Adzy
—w(o+ 1272 4 2 2D Udzy A des, k=1. (6.36)
Note that with the exception of the coefficient on the second to last line, the coefficients in the

above identities cannot vanish because of the assumptions on «, 3,~v. The above exterior derivative
implies that a skew symmetric 2-form of the form

(2125 + 252" Uypdzy A dza, m,n € Z (6.37)

is cohomologous to linear combinations of such two forms, where the difference |m — n| of the
exponents m, n has been reduced by 1 or more. This procedure can be iterated until the exponents
are equal. Once the exponents are equal we can apply the relations generated from (6.36) twice to
shift both exponents by 1, that is,

(a0 + B4+ n+ 220201, dz A dz,

y(a+y+n+1)(at+n+1)
= w d d d . (6.38
O T Bty tngr  wrmdandntdi). (638

For a+ 5+~ ¢ Z this allows one to conclude that any 2-form of the form (6.37) is cohomologous to
a scalar multiple of U,. If a+ 3+~ = p € Z, then 2" 20", dz; Adz, is cohomologous to a scalar
multiple of U, dz; Adze for n > —p —1 and to 0 for n < —p — 2 and so the same conclusion holds.
Further since U,, is symmetric under interchanging «, 8 and factors of z; with z; — w analogous
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arguments to those above imply that any 2-form of the form
(21 —w)"(za —w)"™ + (22 — w)" (21 — w)" )WUypdzy A dza, m,n € 7Z (6.39)

is also cohomologous to a scalar multiple of U,,. Next we consider more general skew symmetric
2-forms made up of linear combinations of 2-forms of the form

l kol

k
21 %9 2921
Updzy A dzo, nETsy, kIEZ, (640
Qa MW@—wW+(@—MWa—Mm> afde,  mn € L (6.40)

however, using partial fractal decomposition these can be reduced linear combinations of (6.37)
and of

2k 2k
! m -+ 2 ™ Z/dezl A dZQ,
(22 —w) (21 —w)

1 1
Uypdzr A dzg, k,m € Z>. 6.41
(T et nten kime (o4
So we consider these two new cases. The first case of (6.41) reduced to the case (6.39) after noting
g - k 1 Ly
i e R D N ) [CRR (6.42)
(2 —w) (2 —w) (2 — w)™ = \p

The final case can be reduced to the case (6.37) after noting the relation

1 1
Z/{w s M T dzp Ad
(o * e o o 2

<(Zl —w) + (22 ;kw) )L{w(a,ﬁ —m,7y, z)dz; Adzg
2

_ (; (7;‘) w3 ( ) )m—j>uw(a,5 —m, 7, 2)dzn Adzy (6.43)

j=>0

and that («a, §, ) satisfies the assumptions of the lemma if and only if (a, 8 4+ m,~y) does. Finally,
the most general form that a skew symmetric 2-form can take is a linear combination of 2-forms
of the form

F _ _
(2 <le2z§2n_z/{wd21 ANdzy, 1€ Zso, F(z1,2) € Claf, 2, (21 — w) Y (2 —w) 1}' (6.44)
17 <2

The factor of (z; — 22)2" can be absorbed in to the multivalued function ¥, so that, from the
reasoning above, we can conclude the existence of a rational functions ¢(«, /3, ) satisfying

F
%L{wdzl Adzy = F(z1, 20) Uy (a, B,y — 2n, 2)dzy A dzy
1— 22
= C(O{, ﬁ? 7)“@0(057 67 Y= 2n7 Z)le A dZ2 + d( : ) (645)

This shift in the v-argument can be converted to a shift in the o and § arguments by repeatedly
using the identity

d((Zl - 22) ( B,y —2 21,22)d22 + (21 - 22) ( By — 2721722)d21)
= 2(7 - 1) ( By — 2,21, 22>d21 Ndzg — azy Z2 w(% B.7, 21, 22)dz A dzg
—5(21 - w)i (Zz - w)f w(Of; B,7, 21, 22)d2'1 A dz,. (6-46)

which can then be simplified using all the previously discussed identities. Hence any 2-form of the
form (6.44) is cohomologous to a scalar multiple of U,,dz; A dzy. Thus dim H*(Z, 0, V., )* = 1.
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The rationality of the functions ¢(a, 3, 7) is immediate from the identity (6.36), its corresponding
version for the case (6.39) and (6.46), because the coefficients that appear in these identities have
zeros only in G. The rationality of ¢(a, §,7) is also a special case of [71, Cor 1.1.1]. U

For real numbers @ > b, let A, = {a > 21 > 2, > b}. Given f(z1,2) € Clzi!, 257, (21 —

w)™t (29 — w) 7], we see that for appropriate (c, 3,7), the integral
Iw[f](Oé7B7/y) = / u’w(aaﬁu’yv Z)f('zl?ZQ)ledZQ (647)
Aw 0

converges. In the case f = 1, the explicit formula is given by

 o(atBil A+l +a+(i— )Y+ B+ (i—1)y)
Zo[1)(cv, B,7) = w*@*F )52 T1+)2+a+ B +i) '

In |72, Cor 1.1.1], it was shown that Z,[f](«, 3,7) admits an analytic continuation to C3 \ H,
where H is the hyperplane arrangement (6.34) in Lemma 6.4. In |73, Def 3.6], a non-zero twisted
cycle [Awo(a, 8,7)] € Ho(Zwo, L (c, B,7)) was constructed from the simplex A, . This cycle

[Aypola, B, fy)] satisfies

/[ -, )]Uw(oé,ﬁa%z)f(zhZz)d21dz2:Iw[f](a,ﬁ,y) (6.49)

(6.48)

for f(z1,2) € Clzit, 25, (21 — w) ™Y, (22 — w)™!]. We shall abbreviate this cycle as [A,, o] when
the parameters «, 3, are clear from context.

Let A\,e € R such that A # +A,_1,-1 (mod 2) = (% —2) (mod 2) and X\ +¢€ # £A,_1,1
(mod 2). We specialise the parameters of U, («a, 3,7,2) to a = 3= —1— ’\;“, B=g5—1+ )‘;“, v =
1 — = and define the shorthand

’ 2

uii}(z):uw< _1_&&_1_’_)\;6’1_972)’
v

ﬁw L= L:w <u72v;1())\+6)v7 quUJg’L())\Jre)'U’ _% + 1>7
u—2v—(Ate)v  u—2v+(A+e U
Ly = Ly (gt weOnde _u ), (6.50)
Now consider a non-zero L(%)-intertwining operator
]Fe Y —(a—b)—2b
Iyye—x € ( umR , (6.51)
Fovto—_(a—b)-b, Fox_v_(a-s)

and recall that E[A 1,1 — =S, 1®F[/\ v (a—b)— b] and o~ E[Au Loo1teill = =S, 1®F[ v (ab)— 2b] — eHO.
Tensoring Iy, with the action of M(u,v) on Sy yields an A;(u, v)-intertwining operator
O'_lE[)\ + }.1 1
Pte—r € ( e IR ) 6.52
Ao E[)\—&—e};l,la E[—)\];l,l ( )
by restriction.

Corollary 6.5. For anyo € (H')', m € S11®Fp 2 (a—b)-t) = B andn € S11@F [y v (ap)-t) =

BN
(0,97 (21) Q" (22)€” Varse,_a(e“m, w)n) € U (Z)C[zfd, (2 —w) T (2 —w) S (6.53)
Specifically, oy = 11 ® (0], mg = v11 ® |u2”§‘v —b) — b> and ng = v11 ® ‘ u212’2 —b) — b> we have
(00,9 (21)Q" (22)e ’EyHe’,,\(eemo,w)n@ —w ”E“ue( ) (6.54)
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up to a phase.

Then we can define a bilinear operator Q[ x(¢) Prhoa(—w)—: Ex11 X E_y11 — H. as

02 4(© Vr-a(m, w)n = / Q7 (21) Q" (22)e “Vrse—a(€m, w)ndz dzy, (6.55)

[Aw,o]
where m € Exq1,n € E_x1,1.
Let t: Zyo — Zy-19 be a diffeomorphism defined by i(21,22) = (27',25"). Let uy = 27,
uy = 25 *. Then we have

(U e (21, 22)dz1 Adzg) = (ug — ug)”~ VT2 H uif2 11—, w)u TR duq A dus. (6.56)
1=1,2

Thus we can pair this differential form with the twisted cycle I" defined by (6.9). By pulling back
I' to the original variables (z1,22), we have a twisted cycle [*(I')] € Ha(Zwo,L,,). The cycle
I, = ¢*(I') allows us to define a transpose of the operator Q%

Lemma 6.6. Let 'QP : (HY) — (H°) be the transpose of Q2. That is, the a linear map uniquely
characterised by the identity

<tQ[2]o m> = <0 Qmm>. (6.57)

Then an explicity integral formula for *Q is given by
/ 0(Q7 °PP(21) Q" PP(29)—)d21d2a, (6.58)
[Coo]
where — indicates the argument from H°, and where QF °PP denotes the application the opposition
formula (5.4), that is, QF °PP(2) = —272QF(271).

Proof. The lemma follows immediate from the definition of [I'w] as

<tQmO’m>:/[ (o QO (57 Q" ()m)y 02 _ (0@ (@)Q (w)m)dundu,
T'o r

2122

— (0,0%m) (6.59)
[l

Next we consider the operator analogous to Q[z]*gf;)y,\,_,\(—,w)—, but integrated over [['y] in-
stead of [I'].

Lemma 6.7. Consider linear operator Q[Q]*g?y,\ﬁ_,\(—, w)—: Exq1 X E_y11 — H! defined by

Q«OY, _y(m,w)n = Q (21)Q" (22)e” Vrsenr(e“m, w)ndz1dzy, (6.60)
[F'oc]
form € Eyxi1 andn € E_y;1. Then
QP % Mor = C,\,eQm *Ei? Mr—xs (6.61)
where
e?’m% F(l — H)
= R (“*“6’” _q,uOdge g g E) 6.62
T Tsin(r®) sin(2r ) T(2 — I3 - 2%) B 20 o (6:62)
Further,

(0, QP+l Y _\(m,w)n) = cx(Q%0, eV ye_r(em, w)n). (6.63)
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Proof. The lemma follows by direct computation. By Lemma 6.4, we know that for any o € (H')’,
m € Fyi1,1 and n € E_), 1, there exists a constant ¢ € C such that

u—2v+4ev

20 <0 Q7 (21) Q" (22)e Vase—a(em, w)n>d21 A dzsy
=c <00, Q (21) Q" (22)e  Varrexr(e“my, w)n0>d21 Adzy +d(---)
= c U (21, 20)dzy Adzo +d(--+), (6.64)

where d(- - -) is some total derivative, that is, an exact 2-form, and where mgy = v1;® fj’g‘v (a—b) — b>,

no = vy, ® |22 (a — b) — b) and 0y = 71 ® (0|. By integrating (6.64) over [I'] and [I's] we obtain

the identities

2v—u—ev

<0 Q[z] € y/\ A(m w n> = cw 2v / Z/{Z](Zl, Z2)d21 N dZQ,
[Aw,0]

2v—u—ev

(o, QP +9 Y\ _\(m, w)n) =cw” 2 / U (21, 29)dz1 A dzo. (6.65)
[Foo]

The integral over [A, o] is just (6.49). While for the [['«]-integral we use (6.56)

2
/ U (21, z2)dz Adzy = / (ug — u1)272% Hu572(1 - uiw)%fH%dul A dus
[Foo] (]

i=1

u oy u U Ate
j{/ (zy — ) 2vay 2ay) (1 — zw)2 1Jr;ra:d:)sdy
To,1
= (- / Y2 (1—y)* P dy
To,1

. u cu (2 —DIN(3 — 2%
_ 6—27“? (1 _ 627”5)(1 _6—27r|2;> (v ) ( U)

re-3 7
u re—-1nrE—2y
= 4™ sin(m%) sin(27 %) G F(Q) (u) o) (6.66)
Thus
_3mid . wy ” F(% - 1)F(3 - 2%) u—(Ate)v u+(A+€)v u
Cre = 473 sin(r¥) sin(2r2) L (2— _ g utgr g —). (6.67)
; v v 2 - %) v v v
Hence
- (00, Qm ) Vx,—a(mo, w)ng)
e —
<00, Ol % y,\ ~x(mo, )no>
+)

_ 637”5 I‘(
 4dsin(r¥)sin(2r%) T(% -1

To obtain (6.63) note
(o, QP+ yy \(m, w)n) = ¢y (o, QP+, \(m, w)n)
= c,\7€<tQ[2]0, e Vrie_nr(em, w)n> (6.69)

T3 —=27)

We set QPlxY, 5 = QB+, _;.
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Proposition 6.8. The operator Q2 *V\.—x, constructed above, is a non-zero intertwining operator

of type
Hl
. 6.70
(E)\;l,l E)\;l,l) ( )

Furthermore, the image of this intertwining operator is the submodule Ly C H; (recall that L,
is the vertex operator algebra Ai(u,v) as a module over itself and hence the tensor unit). denote
the intertwining operator Q[Q} * V- with the codomain restricted to Ly by eg.

We will show later that er defines an evaluation morphism for E)y ;.

Proof. Since Q[2}*)}A7_ \ clearly satisfies the truncation condition, we begin by showing that it also
satisfies the convergence condition. Let m € Eyi1, n € E_y11, 0 € (H') and g € A;(u,v) and
consider

(0, Qs a(m, w)Y (g, 2)n) = 3 (0, QI a(m, w)gan)=~"7,

keZ
<07 Q[Q]*y)\7—>\(y(g7 = U))m, w)n> = Z<07 Q[Q]*y/\,—)\<gkma ’LU)?’L><Z - w)_k_la
keZ
(0,Y (g,2)Q%Ds s (m,w)n) = 3 (0, Q2% _(m, w)n)z*1 (6.71)
keZ

The convergence of the first two series in their respective domains follows applying the identity
(6.69) to transpose Q2 and move it to the left side of the pairing and noting that Y _, is an
intertwining operator and hence satisfies the convergence condition. The convergence of the third
series follows from

{(0,Y(g, 2) Q) _\(m, w)n) = (Y (g, 2)°o, Q4 Y, _y(m, w)n)
= c,\70<tQ[2}Y(g, 2)°PPo, Yy _x(m, w)n>
= c)\70<Y(g, z)OPPtQmo, Pha(m, w)n>
= C)\70<tQ[2]O, Y(g,2)Vx-r(m, w)n>, (6.72)

where the third equality uses that Q) and hence also its transpose commutes with the action of
the vertex operator algebra, and convergence then follows from Y, _ satisfying the convergence
condition.

The P(w)-compatibility condition for Q) _, also follows by transposing Q) moving it to
the left side of the pairing. That is for f(z) € C[z,27!, (z — w) ], consider

fg f(z)<0, Y(g, z)Qm*)}A’_,\(m, w)n>dz — jI{ f(z)(o, Q[Q]*J),\,_,\(Y(g, z —w)m, w)n>dz
- j{ f(2){o, Qs )\ _a(m, w)Y (g, z)n)dz
= j{ c,\76f(z)<tQ[2}o,Y(g,z)yA,,,\(m, w)n)dz — j{ c,\,ef(z)<tQ[2]0, Ir-a(Y (9,2 — w)m, w)n)dz

- 7{ caef(2) <tQ[2]0, Vr-a(m,w)Y (g,z)n)dz.
’ (6.73)

The right-hand side of the above equality vanishes due to Y, _, satisfying the Jacobi identity and
thus so does QY . O
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Lemma 6.9. Consider the bilinear operator Ade Q1% * W\ a(—w)—: Ex11®FE_\11 — " defined
by
Adee Q[2] * 3})\7_)\(7717 w)n = UJE/

—2v— (A —
[Aw,O(u 1)21() +6)’Uyu 22vv+/\v’7%+1)]

e‘Q (21)Q" (z2)e" Y _a(m, w)n,

(6.74)
where m € Exi11, n € E_x11. Then the operator
d _
yﬁ_,\ = &AdeeQ[z] * Vx—a D E N1 @ E oy — H' (6.75)
e=0
18 well defined and non-trivial.
Proof. By |72, Cor 1.1.1], we see that
<0, Adee Q[Z} * y/\7_>\(m,w)n>, m € E)\;l,ly n € E—/\;l,la (B (Hl)/ (676)

is holomorphic in the variable ¢ in a neighbourhood of ¢ = 0. This can also be verified by
expanding the image of Adec ol « Y\ - in a monomial basis of H! (a basis given by monomials of
negative Virasoro and Heisenberg modes applied to v; ; ® f_";’v (a — b)> with an appropriate choice

of ordering), where we see that each coefficient of this expansion is holomorphic in a neighbourhood
of e = 0. Thus yﬁ_ y is well defined.

To conclude non-triviality consider the vectors my = v1; ® ‘UQ_UQ/\U(CL —b) — b>, ne = v ®
;Egi (a—1b)— b> and oy = 771 ® (0| and note

2v u—2v

w”z (00, Y5,z (mo, w)ng) = w 'z 9e(0g, Adee QP 5 Yy, _x (o, w)no)|e=o

_ 0 pp DO = P 4 (- DL EECR 46— D - ) (677
Oe o D141 —%)T(2+ =2 +4i(1 - 4)) .

Then by using the asymptotic expansion of the digamma function

I'(z) 1 < B

) ~ log(z) — 5 Gt (largz| < m, z — 00), (6.78)
we have an asymptotic behaviour

w*s" (o V2 (Mg, w)n
o0 Vii-a(mo whno) CT(—27"A)log(—A) (A — —0) (6.79)

P+ )01 =3 +3)

20

where Bs, are the Bernoulli numbers and C' is a some nonzero constant. Thus V£ , is non-
trivial. O

With the definition of yﬁ_ , in place, we are now able to give an explicit construction of an
intertwining operator with non-trivial logarithmic parts.

Theorem 6.10. Recall the bilinear operators Yy _x : Exiq ® E_xi11 — HO and yQ_A By ®
E_yi1— H! defined above and consider y;‘fg =Vr-x +y§‘,_A : Byx11 ®E_yq1 — H. Then y;‘?g

is a P(w)-intertwining operator of type
( (L Yo, > (6.50)
Exi1, E_xaa
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The above theorem implies that o' P,_;,_1, the projective cover of the tensor unit, is a direct
summand of the fusion product Ey;; X E_y.;,. To prove this theorem we prepare the following
lemmas.

Lemma 6.11. For allm € Fxq11,n € E_y11, 0 € (H') and g € Ai(u,v) the series

(0, Adee QP D\ _x(m, w)Y (g,2)n) = (0, Adee QP55 _5(m, w)gn )z

keZ
(o, Ade QP55 A (Y (g, 2 — w)m, wn) = Z<0, Ade QP55 _\(grm, wn)(z —w) !
keZ
<o, Y (g, 2)Adee Q[Q]*y,\v_,\(m, w)n> = Z<o, gkAdeeQ[Q}*)),\_)\(m, w)n>z_k_1 (6.81)
keZ

are absolutely convergent on w > |z| >0, w > |z —w| > 0 and |z| > w, respectively.

Proof. We only show the first case, as the other cases can be proved in the same way. Consider
the correlation function

<0’ eQ” (ZI)Q+(21)G_€yA7_,\(m, w)Y (g, z)n> -
5 22 20,97 (21)QF (20) Vs a(m, w)Y (g, 2)n), (6.82)

which is absolutely convergent on w > |z| > 0 for each fixed (21, 22). By expanding

21225 2(0,Q7(21) Q" (22) Vs —a(m, w)Y (g, 2)n) =
Z Z;§Z;§<O, Q™ (21)Q* (22) Vs,—a(m, w)gkn>2_k_1 (6.83)
kez

we see that

u—2

w 2vvz;§z;%<o, Q (1) Q" (22) Vs —a(m, w)gn)

(6.84)
€ L{w<u_(;‘je)v — 1,0 11— % gy, 22>(C[wil][zfﬂ, (2 —w) 7 (2 — w)7H2
Then by Lemma 6.4, there exists a rational function cx(\, w) € C(\) ® Cle, w*!] such that
w'z” zf%zf(o, Q™ (21) Q" (22)Vr—a(m, w)grn)dzy A dzo
= e (A W)y (MG < 1 11— 2z 2 )da Adzy () (6.85)

By taking sufficiently small absolute value of z, we see that z is contained in the tubular neigh-

bourhood of the twisted cycle [Aw70(“_2vgl())‘+e)”, u=2vtdo v 4 1] (see [8, Sec 3.2.4]). Thus, the

first of (6.81) converges for small |z| > 0 and satisfies

W' (0, Adec Q5 Y\ _5(m, w)Y (g, 2)n)
_ u—(At€)v u+Av u —k—
_11[1]< —1,;—3—1,1—;>§ e\ w)zF1. (6.86)

2v
keZ

After having show convergence for small |z| > 0, we next need to extend to the domain |w| >
2| > 0. Let v : Zy9 — Zy-1, be a diffeomorphism defined by ¢(21, 29) = (271, 25 "). Let uy = 277",
uy = 2y *. Then we have

Ly <L{w(u_(;‘:€)” -1, “;;\“ —-1,1- %, 21, 22)d21 A d22>
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_ou 2—2-1,-5 2v+/\v
= (ug — uy) 2,+2 H uy 2(1 - uiw) duy A dus
i=1,2
u—2v+Av

=w Z/{w—l(%_2+§,%U+XU’1—%,UQ,Ul)d/U/l/\dUQ, (6.87)

where the multivalued function in the pushforward ¢, is the multivalued function on the right-hand
side of (6.84). Then by pulling back the twisted cycle

[Ap-19(d =24 §, 22020 1 — )] € Hy(Zy10, Lopr (L =2+ 5,582 — 11 — 1)) (6.88)

2v 2v

by ¢, we have a tw1sted cycle

C[Auo(2 =24 552 = 11— 0] € Hy(Zino, £ (552 - 1,252 — 1,1 2)). (6.89)

v 2v

This twisted cycle is a regularisation of the contour {oco > z; > z5 > w}. Then by (6.83) and by
(6.85), we have

u—2v

217257 (0,Q7(21)Q (22) 3, a(m, w)Y (g, 2)n)dzn A dy

w 2v /
A -1 o (2 —245, 2520 —1,1-2)]
=L -2+ 552 -1 1-2) Y (A w)z ! (6.90)
keZ
which is absolutely convergent on w > |z| > 0. Thus by (6.86), we see that the first series of (6.81)
is absolutely convergent on w > |z| > 0. O

Lemma 6.12. The series

(o, QP«OY, _y(m,w)Y (g, z)n) = Z<0, QP+, \(m, w)gkn>27k71

keZ
(0, QP P, (€Y (g, 2 — w)em, wyn) = 3" (o, OF+OW, (e guetm, w)n) (= — w) !
keZ
<0, Y(g, z)Q[Q]*(G)y,\y_A(m, w)n> = Z<0, T Qm*(g)y,\,_)\(m, w)n>z_k_1 (6.91)
keZ

are absolutely convergent on the domains w > |z| >0, w > |z —w| > 0 and |z| > w, respectively,
for anym € Exqg1,n € E_x11, 0€ (H'Y) and g € Ay(u,v).

Proof. The proof follows by a very similar argument to the proof of Lemma 6.11. U
Lemma 6.13. Form € Ex 1, n € E_y11,0€ (HYY, g € Ai(u,v) and f(z) € Clz, 271, (z —w) ™!,

we have
dz

271

ff (2)(0, Y (g, 2)VE_, (m, w)n) —

dz
:7{ <0)7A \Y(g,z —w)m,w)n ——I—ff <0;)7A (m,w)Y (g, 2 >>2m
dz
+ ¢y, ,\7{ f(z Z)y,\,—x(m,w)mT- (6.92)
i
Proof. From the definition of yﬁ_ \, 1t is enough to show the equality
]f F(2)(0,Ades QP51 _5(Y (9,2 — w)m, w)n f £(2)(0, Adec QP 5 (m, w)Y (g, 2 n>2 -
T

f f(z <0Yg, AdeeQ[]*y)\ A(m,w)n >

27r2
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= —ec,\+e,_)\?{ f(2){0, A1(g; z; €)Y —x(m, w)n)% +(...) (6.93)

0 2m

where (...) denotes functions which are homomorphic near ¢ = 0 with vanishing derivatives at
e = 0, since (6.92) is obtained by differentiating both sides of (6.93) by e and setting ¢ = 0. By
the P(w)-compatibility condition of J, _ and by the proof of Proposition 6.1, we see that there
exist 1, Fy € Clzy, 27, 20, 25 1, (21 — w) 7Y, (2 — w) ™', w, w™] satisfying

F 1006 Q ()0 (e VsV a2 = wmwmn) 1

27m
dz

27?2

f £(2)(0,€°Q (1) QF (2)e™ D a(m, w)Y (g, 2)n)

]{ f(z 0 Y(g,2)e°Q (21) Q" (22)e W _r(m,w n>

2m
dz

271

_ f ) 2)(0,6°Q7 (21) Q" (22)e™Y (g, 2) Vs A (m, w)n) 5 —

- ]{ 0f(z)<o,Y(g,z)eEQ_(Zl)Q+(22)e_€yA7—,\(m,w)n>2—;

=wT B 2y P Py, (U (U5 — 155 — 11— ¥ 21, 20) (Fiden + Fad)). (6.94)

Similarly, we see that there exist F{9, F\9 € Clzy, 271 20,251, (21 — w) ™Y, (20 — w) ™Y w, w1, ¢
satisfying

$ 1600 ()@ (e VrealY (g2 — wlem, wpn) =

271
dz

271

75 F(2)(0, Q" (:1) Q" (2)e Vrse(em, w)Y (g, 2)n) -

_ £70f<z)<0, e Y(g,2)e°Q (1) Q" (22)e” Vrse—a(em, w)n %
_ j’{w f(2){0, Q7 (21) Q" (22)e™Y (g, 2) Vrre,—a(em, w)”>2d_7f¢

_ ]{U,Of<z><o, e Y (9,2)e°Q (1) Q" (22)e” Wasea(em, w ”>2m
- z;ézgiéof(z)@, e Q7 (21) Q" (22)Y (9, )Vt -a(em, w)n %

e wof(z)(O, e Y (g,2)Q (21)Q" (22)Vase—r(em, w) ”>;;z

u—2v+ev —E

= T (U (52 - 1 11— ) (Fdz + 7z ))(6.95)

and FI(O) = I, FQ(O) = F,. Thus, noting (6.91), by (6.94) and by (6.95), we have

j[f(z)(o, Ade Q5 _A(Y (g, 2 — w)m, w)n >2d7rzz + ff(z)<0, Ade QP55 _x(m, w)Y (g, 2 n>
w 0

27rz

— § 0¥ (9,980 QI m w5
w0 ’ 2m
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5 d
= wi( 7{ 2)(0, QPHOW, (7Y (g, 2 — w)em, w)n)
4 ff(z)@’ Q[z]*(e)yAﬁ)\(m,w)Y(g,z)n>—dz.
. 271
dz

- fFEHo. Y (9,20 QPO m )5

0 2mi

) () (6.96)

where (...) denotes functions which are homomorphic near ¢ = 0 with vanishing derivatives at
e = 0. By (6.63), we have

d
$ 7)o, OV, e Y (9,2 = wem,w)n) T+ 1) (0, 0OV, A w)Y (g )5
dz
271
ey 74 F(2)(QP0, e Vree a (Y (g, 2 — w)em, whn)

21
dz
27rz

- f 10,7V (g, 2)e QY5 (w5

%f Q[ o, e y)x-f—e A(em w)Y(g, )

—]{ f(z) Q[Q]e_E Y (g, 2)°PPe‘0, e Vrte—r(e“m, w)n £>

21
ff<@ Y (g, 2)Prpea(Em, wn)
_C)\e 0,¢€ g,z Ate, )\emw i
d
]{ F(2)(QPle™Y (g, 2)°PPe‘0, e Vst ("M, w)n 2_7:)
% o 2] —€ dz
—c,\6 f <e Y (g, 2)"Pe‘ Q0,6 Vrse_r(e“m, w)n
2

f{ F(2){ Qe ™Y (g, 2)°PPe0, e Vhye,—a(e“m, w)n) 27”)

dz
= —CM]{ f(2) Resy= Z<Q[ ]( )e”Y (g, 2)°PPe‘0, e Vrie _r(em, w)n et (6.97)
By (6.57), we see that the last term of the above identity becomes
2] €,—¢€ € dz
— Ce f Resy z<0 Q (ga )e € y/\—l-e,—)\(e m, w)n>%
= —ecMJq{ f(z <o Aq1(g; z5€)e Voge—a(em,w n>2m (6.98)
Thus by (6.96), we see that the identity (6.93) holds. O

Proof of Theorem 6.10. The operator )/f\o,i ,, clearly satisfies the truncation condition and the con-
vergence condition follows from Lemma 6.11. Therefore, all that remains to be shown is that
le«"A satisfies the Cauchy-Jacobi identity. By Lemma 6.13, for m € Eyy1,n € E_y11, 0 € (H'Y,

g € Ai(u,v) and f(z) € Clz, 271, (2 —w) ™1, y/\,_A satisfies

(0o ) o

™
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dz

d
— ﬁf(z)<0’ log (Y(g,2 )m,w)n>2—; +j§f(z)<o, yﬁfﬁ/\(m,w)Y(g,z)n>%, (6.99)
where YCA ,(g, 2) is the A;(u,v)-action on H defined by
~ Y — A . THO
Vo sl 2) = 4 02 = erobulgi2) o B (6.100)
Y(g,2) on H
Therefore, from (6.99), yl"g satisfies the Cauchy-Jacobi identity. O

Remark 6.14. Because the action of Ly on H has Jordan blocks of size 2, the P(w) intertwining
operator yi(ji , has first order logarithmic terms (that is, log z appears but (logz)", n > 2 does

not) once the complex variable w is replaced by a formal variable z by using the identity [45, Eq.
(4.17)], that is,

;ogA(fU17 2)vg = (0 L(0) ;?§A<y—L(O)Z—L(O)Ul ® y—L(O)Z—L(O)Uz) 7 (6.101)

y=e— log w

where zL0 is defined to the formal series

21O = om Z M(log z)". (6.102)

7!
1€Z>0
6.3. The rigidity of simple E,;; modules. In this subsection, following the same principles
as in |7, Prop 5.13], we will show that Epy;i1, A € R\ {£A1 + Z}, [\] = A + 2Z are rigid in
A (u,v)-mod™, with rigid duals Ej_y.11 (we use explicit representatives for the coset [A], because
it will be convenient in calculations below). Note that since the category of weight modules is
braided, there is no need to distinguish left and right duals. Since the integration cycles required
here are more complicated than in [7] the details of the arguments are considerably more subtle.
In particular, the methods of |8, Sec 3.2| will be crucial.

Let wy,w; € Ry be real numbers satisfying wy > w;—w; > 0 and let E' = Ejy,11, EY = Bl
By [26, Lem 4.2.1 and Cor 4.2.2] a sufficient condition for rigidity is the existence of two morphisms
1By, Ln = Ex1i®yE xi1andeg, 0 Box11X, Exi1 — Ly, where Ly is the unit of the category
(the vertex operator algebra as a module over itself), such that the composition

i -1 e r
Rp=EFE5 0L, RE" (ER,, F)R,, E 25 ER,, (E'B,, E) 2% ERL, 5 E (6.103)
is non-zero. Here, [ and r are the left and right unitors, respectively, and A the associator of the
category. Since Ejy11 is simple Ry will be a scalar multiple of the identity and hence the pair
(€Bx11)1Ey,,) define evaluation and coevaluation morphisms after dividing one of them by this
scalar. We begin by constructing candidates for these evaluation and coevaluation maps. For eg,
we take,

ep = QP x Y 5, (6.104)
as noted after Proposition 6.8. To characterise the coevaluation morphism we prepare the notation
VA — VA
= —b) — E; = —b)—b). 1
Or =011 ® | —-(a=1) b> € Epjag, Oh=|—5-(a=1) b> (6.105)

Note that from Theorem 6.10 we know that £ X E’ has a direct summand isomorphic to (H, YCA o)
the projective cover of L;. We then characterise the coevaluation map ig by the image of the
vacuum vector 2 € L.

ol2y-1 [2] 4
in: Q= v @00 2 0 @ =26) = Yaa(100), w)]0-2) 25 QP Yy 1 (103), w)|0-1),

(6.106)
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where the first arrow is the inclusion of L, into oFEy ;11 C (H, Y), (Q#)~ denotes picking
preimages of Q!%. Note that the ambiguity of picking preimages of QP is undone by applying
QPlx and hence the map is well-defined. The morphism Rp is thus non-zero (and hence FE is
rigid) if and only if Rg(6,) is non-zero. This in turn is the case if and only if the matrix element
(x, Rp(0y)) is non-zero, where

A
UZ (a—b)+0b

U — 240

, m=< M2 (@a—b)+b (6.107)

MA:U1,1®<
u—2v

and vy 1 is the vector dual to the vacuum vector of the Virasoro minimal model. The remainder of
this section will be dedicated to show that R(\,w;,ws) is non-zero.
From the characterisations (6.104) and (6.106) above of ep and ig, we see that

(a, Re(0))) = //<:u>nQ_<21)Q+(Z2)Q_(33)Q+(Z4)y(9>\;w1)y(0_)\;IU2>9)\>d21---dZ4

= //<[1,2(’01,2;21)Iff2(v1,2;22)[1,2(’01,2;Zl)fffg(v1,2;24)>
: <m, y(b; Zl)y(b; Zz)y(b; Zs)y(b; 24)37(53 wl)y(E; w2)£>dz1 -+ dzy, (6-108)

where, for the momement, we deliberately suppress the integration cycles. Naively one would want
to integrate the z3, z4 variables over the regularised symplex
[Aw2,0] = [sz,O(% - 1A 5 — 1+ %7 1 - %)] (6109)

27 20

considered in Section 6.2 and the 2, 2o variables over [Ay, w,], that is, the translate of [Ay, —w, 0]
by wy. However, these two cycles intersect at z; = 29 = 23 = 24 = w, leading to a number of subtle
technical problems. We side step this issure entirely by using the freedom to shift the weight A by
arbitrary even integers to go the domain A < —2 —2%. There we can construct cycles homologous
t0 [Awywe) and [A,, o] which avoid these interesction subtilties and on which the integrand admits
an expansion that can be evaluated term by term. Before doing this we need to understand the
integrand in greater detail.
The free field part of the matrix element above is easily evaluated to

(Fix, V(b5 21) Y (b; 22) V(b; 23) V(b 24) Y (Ox; w1) Y (0_x; w2) 6

4 R 4 R 4
1— u+v -1 u—vA_ | 2771
= H (zi —z) > | |(Zz' —wy) * H(Zi —wy) * | |Zz :
1<i<j<4 i=1 i=1 i=1
u u+v>\_1 1—u

2v

wy ¥ (6.110)

(wr — wy)' P,

To compute the 4-point function involving the Virasoro intertwining operators, we need to solve
the corresponding BPZ equation [11].

Lemma 6.15. The intertwining operators Ifz can be normalised such that

U(z) = <11_,2(U1,2; 21)—7{2(01,2; 22)]1_,2(?11,2; Zl)]iz(vl,% Z4)>

_ 3u

1—24
<1,223,4%1,4%2,3 2 3u u Qu, 21,422,3
- (— JFy (20— 81— v g 2z, (6.111)

21,3224 ERExex
for |z1| > |z2| > |z3] > |24], where z;; = 2 — z;.

Proof. By global conformal covariance any 4-point function of conformal highest weight (also known

as primary) vectors can be factorised into a part depending on the differences of variables z; — z;
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and a part depending only on the cross ratio

p o Lz 2 (6.112)

(21— 23)(22 — 21)

For this particular 4-point function this yields
U(2) = 21522, G (), (6.113)

where hy 9 = i—;‘ — % is the conformal weight of the highest weight vector vy 5. Using the Ward iden-
tities to convert Virasoro generators into differential operators (see [33, Sec 8.3| for an overview),
the singular vector relation (L2_1 - %L,g)vm = 0 then implies that G(x) satisfies the differential

equation

5 U 1 1 ul1 1 ull 1
u S I T S (IR S VS (e —0. (6.114
{8x+v<x_1+x)8x hl,QU(xQJr(x_l)Q Mo~ = ——7 ||G@) = 0. (6.114)

This is a Fuchsian differential equation (see, for example, [49, Sec 2.1] for an overview on solving
such equations). The characteristic exponents at © = 0 and at x = 1 for this differential equation
are the roots of the equation

P (E _ 1>p _ hl,# — 0, (6.115)
v v
that is p € {1 — g—z, 5-}. The characteristic exponents at = oo are the roots of
2
V4 (1 - 7“)7:0 (6.116)

and hence vy € {0, 24 —1}. For each choice of root p in (6.115) there is a solution to (6.114) given by
a series expansion in 2°™", n € Zsq. Further, the types of the intertwining operators ]ff o and I,

Si,2 Si1 : — . + . :
are (51,2, S1,1) and (51,2» 5172) respectively, so I} 5(v1,2; 23)I15(v1,2; 24) can be expanded as a series

in (23 — 24)72h1’2+n, n € Zs(, which implies that we need to pick the root 1 — ?2’—7; = —2h, 9 as our
solution to (6.115). Hence

G(x) =" % (z— 1) 72, F, (2—-3%1— % 2 2% 1), (6.117)
which proves (6.111). O

To more easily group the various factors appearing in integrand defining (uy, Rg(6))), we intro-
duce the notation

9 u+v)\71 utv u u 9_gu
Hz,2w)=wi 2% 25 (21— 23)7 (20 — 24)v (21 — 24)” v (22 — 23

Sy — 23) T Ny — )

1 vA—u 1 vA—U z % z % z 2_2% z 2_2%
—w;Pz oz (12 (1-2) (12 1-3
21 22 21 22

Sy — ) T wy — ) B

2 2
_ou utvd u—vA _
gz)L\Luz (yh y2) - (yl - y2)2 % H(yl - ul) T H(yl - u2) =
i=1 i=1
f(wy,ws) = wi_/\_%w;_%(wl —wy)' T (6.118)

Then we can write the integrand defining (uy, Rg(60y)) as
M(Aa w, Z) = f(wh wZ)H(zv w)
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LBy (2881 22— on e (e )G N (20, 2). (6:119)

v’ (z1—23)(22—24)

The factor of w; " in the definition of H is there to simplify the following expansion formula.

H(z,w) , F1(2—3" 1—u g2 w)

v (21—23)(22—%24)

v/\ u u+v)\ )

(@)
=Wy " g ng (21, 20, wo) Hy 3 (23, 24, 1),

)

H{} e Clw'] @ Clzi —w | i = 1,2]°,
Hy) € Clui] ® Clzs, 2], (6.120)

where the superscript G indicates invariance under permuting z; with 2 or z3 with z4, respectively,
vA—U u+vA
42 wtvA_9

and where the factor w, *  “w; * comes from
1+ vA—u
1+ 'u/\ 1+ vA—u 'u.+v)\_1 u+v>\_1 vA—U 492 u+vA —9 Zl — w2 2v
AT T 0y 2) Ty — ) T e (14 2
2

i 1+’U>é;u 2v -1 2v
-(1 +2 wQ) (1 - ﬁ) (1 - ﬁ) . (6.121)
w9 w1 w1

The non-integral exponents of the factors mixing the z;, 2o variables with the z3, z4 make the
integral (6.108) very difficult to evaluate head on. So instead we will construct regularised cycles
which are homologous (in appropriate homology groups) to [Ay, w,], [Aw,.0]- These will allow us
to decompose the integral into more manageable parts. Specifically, they will allow us to pull the
sum appearing in (6.120) out of the integral.

Definition 6.16. Let [AS ] and [A9 (] be the surfaces constructed in Figure 3.

w1,w2

Lemma 6.17. Consider the surfaces [AO ] and [AO } constructed in Definition 6.16. Then

w1, w9 wa2,0
[A?Ul ’LUQ] H%f(ZUJLUQ? ‘Ev(g’i\)l,u&)) and [A?UQ 0] H%f(ZUJQ,O? ‘Ev(g’l;;\,o)) and these CyCZeS Satisfy
O[Au, ) = {(21, 22) = (w2, ws)}, O[Au, o] = {(73, 24) = (w2, w2)}. (6.122)
Further, [AY ] and [AS, o] are, respectively, homologous to [Aw, w,] and [Ay, ).

Proof. This lemma is a combination of the reasoning and constructions in Sections 3.2.4 and 3.2.5
of [8]: The fact that [AY ] and [AY (] lie in the stated homology groups is [8, Lem 3.3] and

w1, w2
these newly constructed cycles being homologous to [A,, .,] and [A,, o], respectively, is [8, Thm
3.1]. 0

Proposition 6.18. Let A € C with X < —2 — 2%, then

(tr, Ri(62)) = /Ml ; ( /{AO

wo, 0]

M\ w, z)dzs A dz4> dz A dzo,

= f Wi, W2 Z/ 1 2 Zl, ZQ,wQ)gA(Zl, ZQ)le N dZQ
/[ . ] Hé?i(Zg, 24, wl)g_)‘(z3, Z4>d23 A dZ4. (6123)
Awg 0

In particular the right-hand side is well defined and the sum converges for R(A\) < —2 — 22,
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22 22 22
L(wy, w1) (w}, wy) L(ws, wy) w1, wy) L(wa, wy) (w.l, wy)
™ S R
1
) !

} ){ z1 ){ 21 { - 21
(U)Q, w?) (wla w2) e /aB 'l,UQ w17 w?) Z(w27 w?) <w17 w?)
2 2 2

,,(wg, wl) (w.l, wl) | w27 w1 w1, wl) A(O, w2) (U)Q, wg)
D ~
0
w1 ’u)2 [Aw%o]
N 5—{\ 21 \ 21 { 21
(wa, wy) (wy, wy) wz, wo) (wy, wy) (0,0) (w3, 0)

FIGURE 3. Constructing the regularised cycles [A?Dl wJ and [A?U%O}: Starting from
the top left with the standard twisted cycle built from the 2-simplex {w; > |z1] >
| 25| > wsy} by replacing the edges by tubular neighbourhoods. Note that the tubes do
not intersect. This is just an artifact of presenting the image in two real (as opposed
to complex) dimensions. In the second image B(ws) = {4]|21 — wo|? + 4|22 — wy]? <

(wy + w,)*} denotes a ball centred at (ws,w,) with radius M We cut away all
of the twisted cycle that is within the ball leaving two circles on the tubes connected
by a line and obtain the third image (see |73, Sec 5.4] and [8, Sec 3.2.4]). The circles
are then connected to (ws,ws) by a pair of cones, whose orientation matches that of
the circle they are attached to. This leaves a wedge shaped hole and is depicted in
the fourth image. The hole is filled in to give [AY wz} in the fifth image. The same

procedure but with (wy,ws) replaced by (ws,0) yields [AJ, o]

Proof. Let [AZ ] =[A) ..., ] N {lzi = wal? + |zi1 — wo]* > 7?}, where ®15%2 > 5 > 0. Let us
denote (u1y, Rp(0)), the integral (6.108) integrated over [A}, ] and [Aj, o]. From the definition
of [AT w+1] for any points (21,22) € [AL ), (23,24) € [A], ], we see that |z| > ||, k=1,2, | =
3,4. That is the cycle [A7 ] x [A}], o] is contained in the domain

{w1 — Wy > ‘Zl — w2| > |22 — U)2| > 0} N {|22‘ > |2’3| > |Z4| > O} (6124)

Further, the right-hand side of the expansion (6.120) is absolutely convergent on the domain
(6.124), hence we can pull the sum out of the integral. That is, we have

(x, Re(0))), = / M(X w,z)dz; Adzg Adzg Adzy
(A 1wy |®A,

20]

= / </ M\ w, z)dz3 A dz4> dz A dzy
(A% w] \/ AL, o]

wg,0
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w1,w2/ / Z 1(2 Zl,ZQ,QUQ)H?EZ(Zg,Z4,1U1)g)\(21,22)
Al A

w1w2 w20 7

G (23, 24)dzg A dzg)dzg A d2s

E A
wl,wg / 12 21,22,11)2)@ (Zl,Zg)dzl /\dZQ
AW

wy, wz
/[ ] Hé?i(Zg, 24, wl)g*’\(z;;, Z4)d23 N dZ4. (6125)
A"
wg,0
Since RA < —2— 2%, we see that M (), w, z) is bounded on the closure of Uy, N ([AY, ] % [AY, (])

where U,, is a small neighbourhood of wy. Thus from (6.125), we have

(tx, Re(6))), = / (/ M(A\ w, z)dzs A dz4> dz A dzy
a9, L \J1a, )

wg,0
= f Wi, Wy Z/ 1 2 Zl, ZQ,’LUQ)Q/\(Zl, ZQ)le A dZQ
/[ . ] Hé?i(Zg, 24, ’U)l)gi)\(Z:g, Z4)d23 VAN dZ4. (6126)
Aw%o

O
Next we show that (uy, Rg(6,)) is non-zero by showing that the integral (6.123) is non-zero.
Lemma 6.19. Let A € C, then for R\ < —2—2% and A —3% ¢ 27 we have that (j, R(0x)) # 0.

A+T—2 A2-—

Proof. We set R(\,wy,ws) = (wy * “w, f(wl,wg))*lw,\,RE(Q)\». We will see shortly that
R(\, wq,ws) admits an expansion in C[[w{;g“’? , w1]] and we will show that this expansion is non-zero
by showing that the constant term is non-zero. Computing this expansion is most easily done in
a new set of variables yq, ...,y related to the zq, ..., 24 as follows.

z1 = (W1 — w2)Y1 + wa, 22 = (W1 — Wa)ya + Wa, 23 = WaY3, 24 = WYy (6.127)
In these new variables the G functions are expressed as
Gy, g (71, 22) = (w1 — w2) °G o (w1, ), Guno(23, 21) = w5 G 3 (Y3, Ya).- (6.128)
In particular, the right-hand side of (6.123) becomes

(w1 — w)*w) / < M\, w,y)dys A dy4> dys A dys, (6.129)
(A o] \/[A] 0]
where M (\, w,y) is M (A, w, z) after the change of variables (6.127). We can then integrate (6.129)

term by term as a series in “t-#2, #2. Thus we consider how the factors i and 2Fy of M (A, w, 2)
are expand after the change of Varlables (6.127). The function H can then be expressed as

vA—u u+vA
+2 -2 -1
(wp* “wp v 7)) H(zw)
1+v)\7u 1+'U)\7u 'u,+'u)\71 u+'u)\71
21 — w2 2v 22 — w2 2v Z3 2v 24 2v
—(1+ 1+ 1- =2 12
Wa Wa wy wy
u u
v v
23 24
1-— 1-—

Wa (1 + —Zl;;”) Wa (1 + —ZZ;"UQ)
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2—2% 2—2%
v v

Z4 Z3

1-— 1-—
Wo (1 + _z11;2w2> W3 (1 + _z2;;1]2)

14+ vA—U vA—u ut+v u+v>\71
Wy — Wa v
= (1+ 2y,
W2

2 _ 1+ 2v Til 2v
<1 N um) (1 _ @yg) (1 _ @y)
W wq Wy
N CUN TH S -
1+ =222 1+ =222y,

228 2-2%
- 1 wy147w2 1 - 1 wg{?:wz :
+ o5 W + =5, Y2

= (1 —y3)? v (1 —yg) ¥ v + o(n=u2 w2) (6.130)

wg 7wy

Before we consider the hypergeometric function note that

21 — RoR3 — 24 21 — 24 %9 — 23 <w1w;2wa1 +1- y4> <w11;2w2y2 +1-— y3>

]_— p— p—t
21 — 23 %9 — % 21— 23% — % w1 —w wy—w
1~ 23%2 — 24 1~ 2322 — 24 <1w—223/1+1_y3>(1w22y2+1_y4>
:1+0(““w;2“’2,$—f) (6.131)

and hence we need to expand around 1 rather than 0. This can be done using the connection
formula

[(2—-24)Ir2e —1)
FEHra—13)
2%71F(2 —29)I(1 —-2Y)

rE2-39ra-—-2x)
Recalling the well known formulae for hypergeometric functions evaluated at 1 we therefore obtain

o F (2381 — 8 9 gu sz

T(2 —24)0(2% — 1) F(21—_2322)f(422 —1)
T —=13) eI —13)
T(2 — 25)T(1 — 2%) T(24)T (2% — 1)

PE-350(1 - 2) T(HIE: - 1)

_ sin(r%)? +sin(73%) sin(n})

2 F1(2-33,1—4,2-242) =

JF (2351 -4 2241 —g)

+(1—2) P (51— 5281 — 1), (6.132)

+o(* 2, w2

wimwz 02) — ] wi-wp W 6.133

SiIl(7T2%)2 0( wy w1> + 0< wa wl)’ ( )

where in the second equality we have used Euler’s reflection formula I'(1 — x)I'(x) = ey Lhus
R\, wy, wp) = g?,o(yb y2)dyr A dya

[A1,0]
| /[ ] Gii (v ) (1 = ys)? v (1= ya)? > dys A dys + o(5 )
A1

_ Il[l]<u—v>\ —1, utvA 1,1 — %) ._’Z'l[l](u-i-v)\ —1,= 2:}1})\ +1,1— %) + O(M ﬂ)’ (6134)

2v 2v 2v w2 ) wy

where we have evaluated the integrals using (6.48). From the formula (6.48) for Z in terms of
[-functions, we see that the I' functions in the numerator have poles when A — 3% € Z, but that
(tir, Re(0))) # 0 when A — 3% ¢ Z. Hence the lemma follows. O
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Theorem 6.20. The simple projective modules UZEH;M, peR/2Z, p# tM1+2Z, N\ € Z are
rigid, with rigid dual o™ E_ 1.

Proof. Without loss of generality we can restrict ourselves to only a single value of the spectral
flow parameter and hence we choose ¢ = 0. As mentioned at the beginning of this section by
[26, Lem 4.2.1 and Cor 4.2.2| a sufficient condition for E_,.; ; being the rigid dual of E,; ; is the
non-vanishing of the matrix element (6.108). So initially assume that 4 # 3% + 2Z and pick a
representative A € p which is sufficiently negative for Lemma 6.19 to apply. Hence the matrix
element (u, Rg(6y)) is non-vanishing and E,,; ; is rigid. To extend this conclusion to the previously
excluded case, let i1, po € R/27Z, iy, pro ¢ {£2+27, 3% +27} satisfying p+po = 3% +4-2Z. Then the
E,,.1.1 are both rigid (by our reasoning so far) and projective. From the tensor product formula
(2.21), which we have already proved, we see that the tensor product E, .11 X E,,.11 contains

1 . . .
0E3y+2z;1,1 and o E5%+ZZ;1,1 as direct summands. Hence E3%+QZ;1,118 also rigid and the theorem

follows. O

7. NON-SEMISIMPLE FUSION DECOMPOSITIONS

Theorem 7.1. The non-semisimple fusion product decomposition of Conjecture 2.9 hold. That is,
for1<r<u-—1, pp e R/2Z, £X\1 ¢ p, £N 1 ¢ andr —1 € p+ g/

Eu;l,l X Eu’;r,l = 0_1Pu—r,v—l > (1 - 51),2)Eu+,u’;r,27 (71)
while for 1 <r <wu—1,2<s<wv—2, u, ' € R/2Z, X\11 ¢ p, £\ 5 & 1/,

Pr,sfl S O'_IE;Hrlu/Jr%;r,s D E,u+,u’;r,s+17 Zf )\r,sfl SHUNS ul,
E X E ~ Pu—r,v—s—l D J_lE/L'hU/"r%;T,S D Eu+ﬂ’;r,s—1 if )\u—r,v—s—l cp+ M/7 (7 2)
;1,1 w'irs — _ . .
o 1Pr,s S O-Eu—&—u’—%;r,s D E,u-l—u’;r,s—la Zf )\T,S+1 € pu+ /u/7

U_lpu—'r,v—s 5% O'E,u-hu’—%;'r,s ¥ E,u—l-,u’;'r,s—s—l Zf )\u—r,v—s—l—l € p+ /j,/,
Moreover, the category A;(u,v)-mod™ is rigid.

Proof. Note that a module is rigid if and only if any of its spectral flows are rigid. We begin
by proving (7.1) for » = 1. Note that from Propositions 4.15, 5.4 and 5.5 we have the equality
dim Homa, (u,0)(Epi1,0 W E_ 11, Eo12) = 1 — 6,2, hence since Ejp, o is simple and projective, if it
exists (that is, if v > 2) it must be a direct summand. From Propositions 4.15, 5.4 and 5.5 we also
see that there can be no simple projective summands other than Fy; ». Further, from Theorem 6.10
we also know that o' P,_1 ,_1 is a direct summand of E, ;1 X E_,,; . Thus

E,u;l,l X Efu;l,l = Uﬁlpufl,vfl S (1 - 51},2)E0;1,2 S M7 (73)

where M is a projective module whose composition factors must all be spectral flows of high-
est weight modules, that is of the form oD/, We then choose v € R/2Z such that v ¢
{2Z, —p, [£2t], [£t " M1 2], [£A1 3]}, and by associativity we can evaluate E,1 X E,q 1 X E_ 4
as

(Bvag X E 1) XE_ 1, = 072E,,

2
+28:11 Do Eu—2%;1,1 @ (3= 0v2)Evia

®(1—06,2) <U,1 By, ®F, u,,®(1- 51,,3)E,,;173> (7.4)
and note that the right-hand side of (7.4) is semisimple with 5 — 6,2 + (1 — 0,2)(3 — d,,3) simple
projective summands. Evaluating the fusion product with the other bracketing yields

Ea1R(Ea 1 XE 11)2E,11 X (Uﬁlpufl,vfl @ (1—06y2)Ep12® M)
=Ey1 X (07 Py @ M)



58 H. NAKANO, F. OROSZ HUNZIKER, A. ROS CAMACHO, AND S. WOOD

@ (10, )(a E _LQ@UEV_EM@EW@(1—51,,3)EV;1,3). (7.5)

The projective module P,_;,_; has four composition factors and since the right-hand side of
(7.4) is semisimple, E,.;1 X P,_1,-1 must contribute at least four simple summands in addition
to the (1 — 0,2)(3 — dy3) contributed by E,.; 1 X Epy; 9, which brings the total up to 5 — d,2 +
(1 —6,2)(3 —0,3). Hence £, 1 XM =0, that is M = 0.

The decomposition formula (7.1) for general r now follows from the formula for r = 1 by
repeatedly applying LoX.

Next we show (7.2) for » = 1 (once this formula has been establish for r = 1, the formula for
general r follows again by applying L,X). We consider first the case p1+ p' = [\, s—1], then Propo-
sitions 4.15, 5.4 and 5.5 imply that E,;, X E,,; s has exactly two direct summands isomorphic

to a‘lE[/\ ) and E[A T RISE From Proposition 5.4 we also see that there exists a sur-
r,s— vt 85— vl
+
jective intertwining operator of type ( = lalElbf ). Hence P,y (which by (2.18) is the projective
w1 Byl s

cover of a‘lE;s) must be a direct summand of £, 1 W E,1.y ;. Thus

E,u;l,l X E,u,’;l,s - U_lpl,s—l S O'_IE[ © E ) M, (76)

>\7‘,571+%]§175 |:>\7‘,571+%]§175+1

where again M is a projective module whose composition factors must all be spectral flows of
highest weight modules, that is of the form O'ZD+ We can now use the same reasoning for
concluding that M = 0 as we did for (7.3) by applying E, 11 to (7.6) with v € R/2Z chosen such
that the fusion product will be semisimple. Counting the number of simple summands contributed
by each summand in (7.6) to E,.11 X E,11 X E,q ¢ will again imply that M = 0. Similarly for
p~+ i’ = [Ay—1,0—s—1] Proposition 5.4 implies the existence of a surjective intertwining operator of

+
type ( Z?ul %E:, 1) with P,_1,-s—1 as the corresponding projective summand. While for p + ' =

A st1] and g+ ¢ = [Au—10-s+1) the corresponding intertwining operator types and projective

O'_IEI R 1 o 1B~ _1
541 ) ( u—1,0—s+1
By B | and 07" P 5, and By B! ) and 07" P,_1,_s, respectively.

With the fusion product decomposition formulae of ConJecture 2.9 now proved, we see that all
projective modules appear as direct summands in repeated products of the simple projective mod-
ules Fy;; , and Fy; ,. Hence all projective modules are rigid. To conclude that all the composition
factors of the non-simple indecomposable projectives are rigid, we note that in the nomenclature
of [58, App A] A;(u,v)-mod™" is weakly rigid [58, Def A.4] and semirigid [58, Def A.6] because the
A1 (u,v) is isomorphic to itself and is hence a dualising object in the sense of Grothendieck-Verdier
categories (see |6, Thm 2.12|). Further, A;(u,v)-mod™" is Frobenius [58, Def A.9] because there
are sufficiently many injectives and projectives, all projectives are injective and vice versa, and all
projectives are rigid. Thus we can use [58, Prop A.2|, which states that if two terms in an exact
sequence in a Frobenius category are rigid, then the third is as well. We already know that the
simple modules L, = ¢~ 1D 1 <r <wu—1 are rigid. From Proposition 2.7 we know that

u—r,v—1

P, ,—1 admits a socle filtration P, ,_; = My D M; D M, satisfying

Mo = D,y = My/My, M/My=o"'D}_, , ,®c*D} . (7.7)

Thus [58, Prop A.2] implies that M;/M, is rigid because M, and My = P, ,_; are rigid and in turn
My /M is rigid because My /My = (My/M,)/(My/M,) and My /M, are. Hence D, and D},
are rigid because they are (spectral flows) of direct summands of rigid modules. By the same

argument the rigidity of the remaining D;f , can be deduced inductively from the socle filtration of
P, s, 1 <s <wv—2, which satisfies

Moy = D}, = My/My, M,/My= o~ 'D,_ @®oD],,,. (7.8)

summands are (

and hence the rigidity of D, implies the rigidity of D}, ;. Thus A;(u,v)-mod™" is rigid. O



FUSION AND RIGIDITY FOR ADMISSIBLE s[(2) AND N =2 59
Theorem 7.2. The category N(u,v)-mod™" is rigid.

Proof. This follows immediately from Lemma 3.4 and the rigidity of A;(u,v)-mod™". U
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