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ABSTRACT

Using the Zhu algebra for a certain category of C-graded vertex algebras V , we prove that if V is finitely Ω-generated and satisfies suitable
grading conditions, then V is rational, i.e., it has semi-simple representation theory, with a one-dimensional level zero Zhu algebra. Here, Ω
denotes the vectors in V that are annihilated by lowering the real part of the grading. We apply our result to the family of rank one Weyl
vertex algebras with conformal element ωμ parameterized by μ ∈ C and prove that for certain non-integer values of μ, these vertex algebras,
which are non-integer graded, are rational, with a one-dimensional level zero Zhu algebra. In addition, we generalize this result to appropriate
C-graded Weyl vertex algebras of arbitrary ranks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0117895

I. INTRODUCTION

In this paper, we study various subcategories of the category of C-graded vertex algebras, including those with a conformal element
imposing various grading structures. We illustrate the nature of these subcategories via the conformal flow for the family of C-graded Weyl
vertex algebras with conformal elements ωμ parameterized by μ ∈ C. We prove two rationality results for certain C-graded vertex algebras
that admit a conformal structure with a “nice” grading property. We, then, apply these results to show that for μ ∈ C in a certain simply
closed region of the complex plane, the corresponding Weyl vertex algebras with conformal element ωμ are rational (in the sense that the
representation theory is semisimple) and, in fact, admit only one simple “admissible” module, where “admissible” here means having a
grading compatible with that of the vertex algebra. These admissible modules are also the modules that are induced from the level zero Zhu
algebra.

A large portion of the literature on vertex algebras and their representations from both a mathematical and physical standpoint has
been devoted to the study of rational conformal vertex algebras that are non-negative integer graded (see, for instance, Sec. 1.1 of Ref. 1
for a list of these types of vertex algebras and references therein). It is a natural question to ask whether there are other significant classes of
conformal vertex algebras that are well-behaved from the representation-theoretic point of view, for instance, either rational (have semi-simple
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representation theory) for some category of modules or irrational (have indecomposable modules that are not simple) for some category of
modules, but the category has other nice properties. This is one of the motivations behind the concept of C-graded vertex algebras.

Conformal flow consists of the deformation of the conformal vector ω associated with a vertex operator algebra V to obtain a new con-
formal structure ωμ on V for μ ∈ C, a continuous parameter. All possible conformal structures associated with the Heisenberg vertex algebra
(also known as the free bosonic vertex algebra) were formally classified in Ref. 2. One of these “shifted” conformal structures for the Heisen-
berg vertex algebra is used in the study of the triplet algebras,3 an important example of C2-cofinite but irrational vertex algebras. When
deforming the conformal vector, the grading restrictions associated with the L(0)-operator are often lost. Namely, the new conformal vector
ωμ does not necessarily satisfy that its zero mode Lμ(0) acts semisimply on V or that each graded component of V must be finite dimen-
sional. The appropriate framework to study the new conformal vertex algebra (V ,ωμ) is the theory of C-graded vertex algebras developed in
Refs. 4 and 5 as a continuation of the development of the theory of Q-graded vertex algebras started in Ref. 6. Motivated, in part, by this
work on C-graded vertex algebras and conformal flow, where in Ref. 5 the notion of “C-graded vertex algebra” is more specifically called
“Ω-generated CRe>0-graded vertex algebra” in our work, we establish a refinement of the various concepts of C-grading for a vertex algebra.

The Weyl vertex algebra, to which we apply our results, admits a conformal flow. The Weyl vertex algebra has its origins in
physics as fields of Faddeev–Popov ghosts in the early formulations of conformal field theory where it is also known in the physics
literature (sometimes with some specific fixed central charge and, thus, conformal element) as the bosonic ghost system or the βγ-
system (cf. Refs. 7–9 and references therein). The terminology bosonic ghost system for the Weyl vertex algebra refers to the fact
that this vertex algebra comprises one of the four fundamental free field algebras, those being free bosons, free fermions, bosonic
ghosts, and fermionic ghosts. Consequently, the Weyl vertex algebra has played a crucial role in many aspects of conformal field
theory and the study of the various mathematical structures that conformal field theory involves. Conformal flow and the relation-
ship between conformal flow for bosonic ghosts (i.e., the Weyl vertex algebra) and conformal flow of the free boson vertex subal-
gebra of bosonic ghosts was studied by Feigin and Frenkel in Ref. 10, and the BRST (Becchi, Rouet, Stora, and Tyutin) cohomol-
ogy was calculated for certain Fock space representations of bosonic ghosts with μ = 2 and central charge c = 26 associated with a
26-dimensional Minkowski space. The Weyl vertex algebra was used in the study of free field realizations of affine Lie algebras and the chiral
de Rham complex (cf. Refs. 11–16), and more recently, Weyl vertex algebras have been used to describe relations between conformal field the-
ory, topological invariants, and number theory through the study of the (twined) K3 elliptic genus and its connections to umbral and Conway
moonshine.17

As discussed above, both free bosons and bosonic ghosts admit multiple conformal structures. In this paper, we give a detailed analysis
of the nature of the conformal structures of the Weyl vertex algebra under conformal flow, classify the “admissible” modules for the Weyl
vertex algebra for certain infinite families of conformal elements, and prove that the category of such admissible modules is semisimple for
these conformal structures. We denote theWeyl vertex algebra byM and theWeyl vertex algebra with conformal element ωμ, for the complex
parameter μ ∈ C, by (μM ,ωμ) or just μM .

The Weyl vertex algebra with conformal element ωμ = ω0, denoted by μM = 0M , gives a conformal vertex algebra with central charge
c = 2 and has been studied intensively. For this conformal structure, the Weyl vertex algebra gives a distinguished example of an irrational
Z-graded conformal vertex algebra, of current interest in the setting of logarithmic conformal field theory. The term “irrational” refers to
the fact that the conformal vertex algebra does not have semisimple representation theory, and logarithmic conformal field theory involves
the study of such vertex algebras and the category structure of various types of modules for these algebras (cf. Refs. 18–20). In particular,
categories of modules for which the zero mode of the conformal element L(0) does not act semisimply even though the modules have certain
nice L(0)-grading properties, often referred to as “admissible,” are the categories of interest and specifically those closed under the tensor
product and with graded characters that have modular invariance properties.

It was shown by Ridout and Wood in Ref. 21 that 0M is not C2-cofinite and admits reducible yet indecomposable modules on which the
Virasoro operator L(0) acts non-semisimply. Moreover, in Ref. 21, the authors identified a module category F that satisfies three necessary
conditions arising from logarithmic conformal field theory for the category to have a nice tensor structure. They also determined the modular
properties of characters in that category and computed the Verlinde formulas. Then, in Ref. 22, Adamović and Pedić computed the dimension
of the spaces of intertwining operators among simplemodules in category F and gave a vertex-algebraic proof of the Verlinde type conjectures
in Ref. 21. Recently, in Ref. 23, Allen andWood classified all indecomposable modules in F , showed that it is rigid, and determined the direct
sum decompositions for all fusion products of its modules.

In Ref. 24, certain (nonadmissible) weakmodules for theWeyl algebra with conformal elementω 1
2
and central charge c = −1 were studied

in the context of Whittaker modules and modules for the fixed point subalgebra of 1
2

M under a certain automorphism. Here, it was shown

that the family of Whittaker modules described in Ref. 24 is irreducible for these orbifold (fixed point) subalgebras of the Weyl algebra at
μ = 1/2, while in a recent paper,25 the opposite was proved for other orbifold subalgebras where these Whittaker modules were shown to be
reducible.

A natural question to ask, then, is what is the nature of the category of admissible modules for the Weyl vertex algebra with a conformal
element other than ω0 under conformal flow and, more generally, what broader results concerning the modules for non-integer graded
conformal vertex algebras hold? In particular, is the category of admissible modules semisimple or not?

In this paper, we answer these questions. In particular, we study the influence of the central charge, or equivalently the choice of confor-
mal element, on the representation theory of Weyl vertex algebras of arbitrary rank in the case when the vertex algebra is not integer graded.
More generally, we study non-integer graded conformal vertex algebras. We begin our investigation by studying the (level zero) Zhu algebra
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A(V) of a finitely Ω-generated CRe>0-graded vertex algebra V , where Ω denotes the vectors in V that are annihilated by lowering the real
part of the grading. In fact, we show that if V is an Ω-generated CRe>0-graded vertex algebra that is finitely generated (in the usual sense)
such that the generators do not have integer weights and V contains an N-graded vertex subalgebra, then V is rational in the sense that the
representation theory for admissible modules is semisimple. As an application, we prove that, in particular, a rank oneWeyl vertex algebraMc

with c ∈ R and −1 < c < 2 is rational. Consequently, we prove that a rank nWeyl vertex algebra, which is a tensor product of n rank one Weyl
vertex algebras, each with c ∈ R and −1 < c < 2, is rational. More generally, we show that, in fact, for certain complex values of the central
charge under conformal flow, these rationality result holds as well.

This phenomenon of the change in the nature of the representation theory of the conformal Weyl vertex algebra for admissible modules
(i.e., modules compatible with the grading arising from the conformal structure) under conformal flow is surprising in contrast to the lack of
the change of the representation theory under conformal flow for the free boson vertex operator algebra. See Remark 37.

This paper is organized as follows: In Sec. II, we define various notions involving vertex algebras with gradings and/or with conformal
vectors and their modules. In Sec. III, we study the rank one Weyl vertex algebra and the various graded structures imposed by the family of
conformal vectors ωμ, for μ ∈ C, under conformal flow with respect to μ. This family of conformal vertex algebras provides good examples
and motivations for the various notions of vertex algebra defined in Sec. II.

In Sec. IV, we recall the notion of the Zhu algebra of an Ω-generated CRe>0-graded vertex algebra as introduced in Ref. 5, where such
vertex algebras were called C-graded vertex algebras. We also present several results on the correspondence between modules for the Zhu
algebra V and a certain class of V-modules, i.e., CRe>0-graded modules.

In Sec. V, we present our main results and applications to the Weyl vertex algebras. First, we prove a theorem on the rationality of
Ω-generated CRe>0-graded vertex operator algebras satisfying certain conditions; see Theorem 46.

Then, in Subsection V A, motivated by the work of Zhu26 and of Li,27 we define a filtration on the Zhu algebra of an Ω-generated
CRe>0-graded vertex algebra and prove that under this filtration, we obtain a graded commutative associative algebra grA(V). We show
that there is an epimorphism from our Ω-generated CRe>0-graded vertex algebra to this graded commutative associative algebra with
the kernel of the epimorphism containing a set C(V), which, in this setting, is an analog of the set C2(V) defining the C2-cofinite
condition for a vertex operator algebra. In Subsection V B, we give our main results on the rationality of certain CRe>0-graded vertex
operator algebras with generators having non-integer weights by using the epimorphism from V/C(V) to grA(V); see Lemma 53 and
Theorem 54.

In Subsection V C, we apply Theorems 35, 46, and 53 to the Weyl vertex algebras with conformal vectors ωμ for μ in a certain region
determined in Sec. IV that give these vertex algebras the structure of an Ω-generated CRe>0-graded vertex operator algebra and prove that
these are rational with only oneCRe>0-graded module. We, then, apply this result to the rank nWeyl vertex algebras with a suitable conformal
element. We also prove that, more generally, for μ ∈ C/{0, 1} with 0 ≤ Re(μ) ≤ 1, then the Weyl vertex algebra μM admits a unique, up to
isomorphism, irreducible CRe>0-graded module, namely, μM itself.

In Sec. VI, we summarize the results of this paper and also present a result giving the level one Zhu algebra for 0M , i.e., the Weyl vertex
algebra with central charge c = 2.

II. C-GRADED VERTEX ALGEBRAS AND THEIR MODULES

A. Vertex algebras and Ω-generated C-graded vertex algebras

We recall the definitions of various types of vertex algebras, following, for instance, Refs. 1 and 28 for basic notions, but then also
motivated by the work of Laber and Mason in Ref. 5 in the setting of C-graded vertex algebras and related notions. However, it should be
noted that we use different terminologies for some of the structures in Ref. 5; cf. Remarks 4 and 17.

Definition 1 (Ref. 28). A vertex algebra (V ,Y , 1) consists of a vector space V together with a linear map,

Y : V → (EndV)[[x, x−1]],
v ↦ Y(v, x) =∑

n∈Z

vn x
−n−1

,

and a distinguished vector, 1 ∈ V (the vacuum vector), satisfying the following axioms:

(i) The lower truncation condition: for v1, v2 ∈ V , Y(v1, x)v2 has only finitely many terms with negative powers in x.
(ii) The vacuum property: Y(1, x) is the identity endomorphism 1V of V .
(iii) The creation property: for v ∈ V , Y(v, x)1 ∈ V[[x]] and limx→0Y(v, x)1 = v.
(iv) The Jacobi identity: for w, v ∈ V ,

x
−1
0 δ(x1 − x2

x0
)Y(v1, x1)Y(v2, x2) − x−10 δ(x2 − x1

−x0
)Y(v2, x2)Y(v1, x1)

= x
−1
2 δ(x1 − x0

x2
)Y(Y(v2, x0)v1, x2).
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Definition 2. A vertex algebra equipped with a C-grading V =⊕λ∈CVλ is called a C-graded vertex algebra if 1 ∈ V0 and if for v ∈ Vγ with
γ ∈ C and for n ∈ Z, λ ∈ C,

vnVλ ⊂ Vλ+γ−n−1. (1)

Moreover, a homogeneous element in a C-graded vertex algebra V is said to have weight λ if v ∈ Vλ. We denote this by ∣v∣ = λ, and we
define the operator L ∈ End(V) as the linear extension of the map

Vλ → Vλ,

v ↦ λv = ∣v∣v. (2)

Remark 3.

1. Since we do not require the existence of a conformal element in a C-graded vertex algebra, the map defined above is a natural tool to
describe the weight of a homogeneous element.

2. In a C-graded vertex algebra because of Definition 1, we have that for v1, v2 ∈ V ,

∣v1nv2∣ = ∣v1∣ + ∣v2∣ − n − 1.
More generally, for v, v1, . . . , vk ∈ V ,

∣vknk ⋅ ⋅ ⋅ v1n1v∣ = ⎛⎝
k

∑
j=1

∣v j∣ − nj − 1⎞⎠ + ∣v∣.

Remark 4. In Ref. 5, the notion of C-graded vertex algebras has more conditions than what we require above in Definition 2. In our
terminology, the Laber–Mason notion of a C-graded vertex algebra is an Ω-generated C-graded vertex algebra, as defined in Definition 8.
Many of our results, in fact, make fine distinctions between these two notions.

Remark 5. Recall from Ref. 28 that for V , a vertex algebra, the endomorphism D : V → V defined as the linear map determined by

D(v) = v−21 satisfies the D-derivative property: Y(Dv, x) = d
dx
Y(v, x). Furthermore, D(1) = 0 and v = v−11. It then follows that for a

C-graded vertex algebra, by Eq. (1) and the D-derivative property, we have that if v ∈ Vλ, then Dv = v−21 ∈ Vλ+0−(−2)−1 = Vλ+1.

Definition 6. Let V =⊕λ∈CVλ be a C-graded vertex algebra. We define

Ω(V) = {v ∈ V ∣ for any u ∈ Vγ,n ∈ Z, if unv ≠ 0 then either n = γ − 1 or n < Re(γ) − 1},
where Re(γ) denotes the real part of γ.

Remark 7.

1. The space Ω(V) consists of the vectors in V that are zero if they are acted on by any mode of V that lowers the real part of the weight.
This space is often called the “vacuum space” or the “space of lowest weight vectors.” However, the vacuum vector 1 is not necessarily
in Ω(V). For instance, assume that V =⊕λ∈CVλ such that V−10 ≠ 0. Let a ∈ V−10. Note that a−11 = a ≠ 0. In addition, −1 ≠ −10 − 1
and −1 > Re(−10) − 1. Hence, in this case, 1 ∉ Ω(V). We give an example of such a vertex algebra in Sec. III, namely, the Weyl vertex
algebra μM with μ ∈ R and μ < 0, for example, μ = −1/2 and, thus, c = 11.

2. In addition, the term “lowest weight space” is misleading since there can be vectors in Ω(V) that are not of lowest weight in the sense
of having any kind of minimality property with respect to their C-grading in V ; instead, these are the vectors that cannot be further
lowered. An example of such a C-graded vertex algebra is, for instance, the universal Virasoro vertex operator algebra of central charge
c = 1

2
, denoted as VVir( 12 , 0) (in the notation of Ref. 28). This Z-graded vertex algebra is indecomposable but not irreducible, and it has

a singular vector v3,2 of weight 6 that satisfies v3,2 ∈ Ω(VVir( 12 , 0)).
Next, we introduce the notion of an Ω-generated C-graded vertex algebra motivated by Laber and Mason,5 where this notion is called a

C-graded vertex algebra.

Definition 8. AnΩ-generatedC-graded vertex algebra (or aC-graded vertex algebra generated byΩ) is aC-graded vertex algebra (V ,Y , 1)
such that every element v ∈ V is a finite sum of elements of the form

v
k
nkv

k−1
nk−1 ⋅ ⋅ ⋅ v

1
n1u

0
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for k ∈ N, n1, . . . ,nk ∈ Z, v
1, . . . , vk ∈ V , and u0 ∈ Ω(V).

The notions of an Ω-generated R-graded, Ω-generated Q-graded, Ω-generated Z-graded, and Ω-generated N-graded vertex algebra are
defined in the obvious way.

Remark 9. We show in Sec. III that the collection of Ω-generated C-graded vertex algebras forms a proper subset of the set of C-graded
vertex algebras. Namely, in Sec. III, we present a family ofC-gradedWeyl vertex algebras, which are notΩ-generatedC-graded vertex algebras
(see Theorem 35 III).

We will also need the notions of a strongly generated and finitely strongly generated vertex algebra given as follows:

Definition 10. A strongly generated vertex algebra is a vertex algebra (V ,Y , 1) together with a subset S ⊂ V such that every element v ∈ V
is a finite sum of elements of the form

v
k
−nkv

k−1
−nk−1 ⋅ ⋅ ⋅ v

1
−n11

for k ∈ N, n1, . . . ,nk ∈ Z+, and v
1, . . . , vk ∈ S. If V is strongly generated by a finite set S, then we say that V is strongly finitely generated.

Remark 11. Any Ω-generated C-graded vertex algebra V is trivially a strongly generated vertex algebra with S = V . If V is also strongly
finitely generated by a finite set of generators S acting onΩ andΩ is also finite, then we call V a finitely Ω-generated C-graded vertex algebra.
AllΩ-generatedC-graded vertex algebras are strongly generated, but the converse is not true, even if we have finitely many strong generators.
In Theorem 35 (III), we give examples of finitely strongly generated C-graded Weyl vertex algebras, which are notΩ-generated.

For certain Ω-generated C-graded vertex algebras, one can define a degree grading as follows in Definition 12, and we call such
Ω-generated C-graded vertex algebras Ω-generated CRe>0-graded vertex algebras. In Sec. III, we give examples of Ω-generated C-graded
Weyl vertex algebras that admit a grading as defined below.

Definition 12. An Ω-generated CRe>0-graded vertex algebra is an Ω-generated C-graded vertex algebra such that the following notion
of degree is well defined: For V , an Ω-generated C-graded vertex algebra, we define the degree of an element of V by setting the degree of
elements inΩ(V) to be 0 and extending by linearity the following formula:

deg(vknk ⋅ ⋅ ⋅ v1n1u0) =
k

∑
j=1

(∣v j∣ − nj − 1),

where v1, . . . , vk ∈ V for k ∈ N, n1, . . . ,nk ∈ Z, and u0 ∈ Ω(V).

Remark 13. Note that this notion of degree is not necessarily well defined for everyΩ-generatedC-graded vertex algebra. If vnu
0 ∈ Ω(V),

then by definition ofΩ(V), if vnu0 ≠ 0, then deg(vnu0) = ∣v∣ − n − 1 = 0 or Re(deg(vnu0)) = Re(∣v∣ − n − 1) = Re(∣v∣) − n − 1 > 0. Therefore,
by definition, this notion of degree, by setting all elements in Ω(V) to have degree zero, is precluding the possibility of elements in Ω(V) of
the form vnu

0 such that u0 ∈ Ω(V) and vnu
0 ≠ 0 for some n satisfying Re(∣v∣) − n − 1 > 0. Thus, it is the requirement of well-definedness of

this definition that is imposing the degree grading given below.

One can show (cf. Ref. 5) that it follows from Definitions 8 and 12.

Lemma 14. Let V be an Ω-generated CRe>0-graded vertex algebra. For k ≥ 1, let v1, . . ., vk ∈ V be homogeneous, n1, . . . ,nk ∈ Z, and
u0 ∈ Ω(V) such that

v
k
nkv

k−1
nk−1 ⋅ ⋅ ⋅ v

1
n1u

0
≠ 0.

Then, for any given v
j ∈ V and nj ∈ Z, either

Re
⎛
⎝

k

∑
j=1

(∣v j∣ − nj − 1)⎞⎠ > 0 or
k

∑
j=1

(∣v j∣ − nj − 1) = 0.
Proof. See the Appendix for a detailed proof of this fact. ◻
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Remark 15. Note that if V is an Ω-generated CRe>0-graded vertex algebra V , and we define V(λ) to be the space of all v ∈ V with
deg(v) = λ, then, we have the following decomposition:

V = V(0) ⊕
λ∈C

Re(λ)>0

V(λ). (3)

This motivates our use of the term CRe>0-graded vertex algebras to denote this particular family of C-graded vertex algebras.

Proposition 16. Let V be anΩ-generatedCRe>0-graded vertex algebra, and let deg be as in Definition 12. Then, the homogeneous component
V(0) in (3) coincides withΩ(V).

Proof. Note that Ω(V) ⊂ V(0) follows from Definition 12. Therefore, we need to show next that V(0) ⊂ Ω(V). Namely, we need to
prove that if v ∈ V satisfies deg(v) = 0, then v must be a vector inΩ(V). We first prove this fact for vectors of the form

v
k
nk ⋅ ⋅ ⋅ v

1
n1u

0
,

where v1, . . . , vk ∈ V for k ∈ N, n1, . . . ,nk ∈ Z, and u0 ∈ Ω(V):
Assume that vknk ⋅ ⋅ ⋅ v

1
n1u

0 ≠ 0 and that deg(vknk ⋅ ⋅ ⋅ v1n1u0) = ∑k
j=1(∣v j∣ − nj − 1) = 0. We want to show that vknk ⋅ ⋅ ⋅ v

1
n1u

0 ∈ Ω(V). Let u ∈ V
and n ∈ Z be such that unv

k
nk ⋅ ⋅ ⋅ v

1
n1u

0 ≠ 0. Then, using Lemma 14 for unv
k
nk ⋅ ⋅ ⋅ v

1
n1u

0, we have that either ∣u∣ − n − 1 +∑k
j=1(∣v j∣ − nj − 1) = 0

or Re(∣u∣ − n − 1 +∑k
j=1(∣v j∣ − nj − 1)) > 0. Since by assumption ∑k

j=1(∣v j∣ − nj − 1) = 0, it follows that either n = ∣u∣ − 1 or n < Re(∣u∣ − 1).
Therefore, vknk ⋅ ⋅ ⋅ v

1
n1u

0 ∈ Ω(V) if deg(vknk ⋅ ⋅ ⋅ v1n1u0) = 0.
Now, let v be any vector in V . Since V is an Ω-generated C-graded vertex algebra, we know that v is a linear combination v = ∑m

j=1 cjṽ
j,

where cj ∈ C, and each ṽ
j is an element of the form v

k
nk ⋅ ⋅ ⋅ v

1
n1u

0 with n1, . . . ,nr ∈ Z and u0 ∈ Ω(V). If deg(v) = 0, then we have that

∑m
j=1 deg(ṽ j) = 0, where each deg(ṽ j) satisfies either

deg(ṽ j) = 0 or Re(deg(ṽ j)) > 0
by Lemma 14. Therefore, we obtain that deg(ṽ j) = 0 for each 1 ≤ j ≤ m. By the argument above, we have that each ṽ

j is an element in Ω(V),
which implies that v ∈ Ω(V). ◻

Remark 17. In Ref. 5, all Ω-generated C-graded vertex algebras are assumed to be CRe>0-graded and referred to as C-graded vertex
algebras instead.

AnΩ-generatedC-graded vertex algebra resembles a vertex operator algebra (with a possibly weaker non-integer grading) in that it has a
weight operator L defined as in Eq. (2), which generalizes the zero Virasoro mode L(0). Since we need to work in the C-graded vertex algebra
setting, we introduce the definition of a C-graded conformal vertex algebra and show how it generalizes the concept of a conformal vertex
algebra.

Definition 18 (Ref. 1). A C-graded conformal vertex algebra (V ,Y , 1,ω) consists of a C-graded vertex algebra,

V =⊕
λ∈C

Vλ,

together with a distinguished vector ω ∈ V2 that satisfies the Virasoro relations:

(i) [L(n),L(m)] = (n −m)L(m + n) + 1
12
(n3 − n)δn,−mc for n,m ∈ Z, where L(n) =: ωn+1 for n ∈ Z and c ∈ C, called the central

charge of V .

(ii) The L(−1)-derivative property: for any v ∈ V , Y(L(−1)v, x) = d
dx
Y(v, x).

(iii) The L(0)-grading property: for μ ∈ C and v ∈ Vμ, L(0)v = μv = (wt v)v.
A Z-graded conformal vertex algebra is defined in the obvious way.

Definition 19. A vertex operator algebra (V ,Y , 1,ω) is a Z-graded conformal vertex algebra,

V =⊕
n∈Z

Vn,

such that
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(i) Vn = 0 for n sufficiently negative and
(ii) dimVn <∞ for n ∈ Z.

Since the Z-grading condition for a vertex operator algebra is too restrictive to work with the Weyl vertex algebras of all central charges,
we will need the following modified concept of anΩ-generated CRe>0-graded vertex operator algebra.

Definition 20. A Ω-generated CRe>0-graded vertex operator algebra is an Ω-generated CRe>0-graded vertex algebra V =⊕λ∈CVλ that is
also a C-graded conformal vertex algebra with the following additional properties:

(i) For λ ∈ C, Vλ = {v ∈ V ∣L(0)v = λv} and dimVλ <∞.
(ii) Re(λ) ≥ ∣Im(λ)∣ for all but finitely many λ ∈ SpecV L(0).

Remark 21. Condition (ii) above, which may appear unnatural, guarantees that there are only finitely many eigenvalues λ of L(0) such
that Re(λ) < 0 andVλ ≠ 0. As explained in Ref. 4, if anΩ-generatedCRe>0-graded vertex operator algebra isR-graded (namely, ifVλ ≠ 0, then
λ ∈ R), condition (ii) guarantees the usual lower boundedness condition that Vr = 0 for all r sufficiently negative.

Remark 22. Since ω ∈ V2, we can conclude that any Ω-generated CRe>0-graded vertex operator algebra contains the vertex operator
algebra generated by ω.

The following are the relationships between the various types of vertex algebras introduced in this section:

ΩVOA(CRe>0(V)) ⊂ (Conf (C(V)) ∩Ω(CRe>0(V))) ⊂ Ω(C(V)) ⊂ C(V) ⊂ V,
VOA ⊂ Conf (Z(V)) ⊂ Z(V) ⊂ V.

Here,

V = set of vertex algebras,

C(V) = set of C-graded vertex algebras,
Z(V) = set of Z-graded vertex algebras,
Ω(C(V)) = set of Ω-generatedC-graded vertex algebras,

Ω(CRe>0(V)) = set of Ω-generatedCRe>0-graded vertex algebras,

Ω(Z(V)) = set of Ω-generatedZ-graded vertex algebras,

Conf (C(V)) = set of C-graded conformal vertex algebras,

Conf (Z(V)) = set of Z-graded conformal vertex algebras,

VOA = set of vertex operator algebras,

ΩVOA(CRe>0(V)) = set ofΩ-generatedCRe>0-graded vertex operator algebras.

B. Modules for C-graded vertex algebras

Next, we introduce various types of representations of C-graded vertex algebras, again following or motivated by, for instance, Refs. 1, 5,
and 28. We begin by recalling the definition of a weak V-module for a fixed vertex algebra (V ,Y , 1), as presented in Ref. 28.

Definition 23. Let V be a vertex algebra. A weak V-module is a vector spaceW equipped with a vertex operator map

YW : V → (EndW)[[x, x−1]],
v ↦ YW(v, x) =∑

n∈Z

v
W
n x

−n−1
,

satisfying the following axioms:

(i) The lower truncation condition: for v ∈ V and w ∈W, YW(v, x)w has only finitely many terms with negative powers in x.
(ii) The vacuum property: YW(1, x) is the identity endomorphism 1W ofW.
(iii) The Jacobi identity: for v1, v2 ∈ V ,

x
−1
0 δ(x1 − x2

x0
)YW(v1, x1)YW(v2, x2) − x−10 δ(−x2 + x1

x0
)YW(v2, x2)YW(v1, x1)

= x
−1
2 δ(x1 − x0

x2
)YW(Y(v2, x0)v1, x2).

J. Math. Phys. 63, 091706 (2022); doi: 10.1063/5.0117895 63, 091706-7

Published under an exclusive license by AIP Publishing



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

Remark 24. In Ref. 28, the notion of a weak V-module given above is called a V-module for V , a vertex algebra, but if V has, for
instance, the structure of a vertex operator algebra, then the structure V-module defined above is called in Ref. 28 a weak module for the
vertex operator algebra structure of V. Since we will mainly be concerned with extra “vertex operator algebra”-type structures on V , to
emphasize the differences between the weaker notions of a module for a vertex algebra versus a module for a vertex operator algebra, we have
chosen to call these modules “weak” throughout.

Proposition 25 (Ref. 28). Let V be a vertex algebra, and let D be the linear map on V given by Dv = v−21 as in Remark 5. Let W be a weak
V-module.

1. Then,

YW(Dv, x) = d

dx
YW(v, x).

2. Let T be a subset of W, and let ⟨T⟩ denote the submodule generated by T. Then,

⟨T⟩ = Span{vnt ∣ v ∈ V , n ∈ Z, t ∈ T}.
Next, we recall the notion of a module over anΩ-generated C-graded vertex algebra V , as introduced in Ref. 5.

Definition 26 (Ref. 5). Let V be an Ω-generated CRe>0-graded vertex algebra. A CRe>0-graded V-module W is a weak V-module with a
grading of the form

W =W(0) ⊕
τ∈C,

Re(τ)>0

W(τ)

such thatW(0) ≠ 0, and for any homogeneous v ∈ Vλ, one has

v
W
n W(τ) ⊆W(τ + λ − n − 1).

We say that a homogeneous element w ∈W(τ) has degree τ.
Remark 27. In Ref. 5, CRe>0-graded modules are referred to as admissible modules.

Definition 28. Let V be anΩ-generated CRe>0-graded vertex algebra, and let

W =W(0) ⊕
τ∈C,Re(τ)>0

W(τ)
be a CRe>0-graded V-module. We define

Ω(W) = {w ∈W ∣ for any v ∈ V if v
W
n w ≠ 0 then either ∣w∣ = ∣vWn w∣ or Re(∣w∣) < Re(∣vWn w∣)}.

Note, in particular, thatW(0) ⊂ Ω(W). Moreover,Ω(W) consists of the vectors inW that are annihilated by the action of any mode of
V that lowers the real part of its weight, similarly toΩ(V) in Definition 6.

The following result was stated in Ref. 5 for Ω-generated C-graded vertex algebras, where it was assumed that the degree grading is well
defined for these types of vertex algebras. Here, we give the proof for the case in which V is anΩ-generated CRe>0-graded vertex algebra.

Proposition 29 (cf. Ref. 5).

1. Any Ω-generated CRe>0-graded vertex algebra V is a CRe>0-graded V-module.
2. If W is a simple CRe>0-graded V-module, thenΩ(W) =W(0).

Proof. The first statement follows directly from the degree grading in Definition 12 on V together with Remark 15 and the definition of
a CRe>0-graded V-module.

To prove the second statement, we first show that if W =W(0)⊕τ∈C,Re(τ)>0W(τ) is a simple CRe>0-graded V-module, then Ω(W)
∩ (⊕τ∈C,Re(τ)>0W(τ)) = 0. To see this, let w ∈ Ω(W) ∩ (⊕τ∈C,Re(τ)>0W(τ)). Then, ⟨w⟩ = Span{vWn w ∣ v ∈ V ,n ∈ Z} ⊂⊕τ∈C,Re(τ)>0Wτ

because w ∈ Ω(W), and so, in particular, Re(∣vWn w∣) ≥ Re(∣w∣) > 0 for every v ∈ V ,n ∈ Z such that v
W
n w ≠ 0. Since ⟨w⟩ is a proper

V-submodule ⟨w⟩ ⊊W, we can conclude that ⟨w⟩ = {0}. In particular, w = 0, and we have shown thatΩ(W) ∩ (⊕τ∈C,Re(τ)>0W(τ)) = 0.
Finally, we show thatΩ(W) =W(0). Let u ∈ Ω(W). Since u ∈W, we can write u = w′ +w′′ forw′ ∈W(0) andw′′ ∈⊕τ∈C,Re(τ)>0W(τ).

Sincew′′ = u −w′ andW(0) ⊆ Ω(W), we can conclude thatw′′ ∈ Ω(W). Moreover,w′′ ∈ Ω(W) ∩⊕τ∈C,Re(τ)>0W(τ), which by our previous
argument is 0. This implies that w′′ = 0 and u = w′ ∈W(0). Hence,Ω(W) =W(0). ◻
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Definition 30. LetV be anΩ-generatedCRe>0-graded vertex operator algebra. An ordinary V-moduleW is a weakV-module that admits
a decomposition into generalized eigenspaces via the spectrum of LW(0) as follows:
(i) W =⊕λ∈CW(λ) whereW(λ) = {w ∈W∣LW(0)w = λw}.
(ii) dimW(λ) <∞ for all λ ∈ C.
(iii) Re(λ) > 0 for all but finitely many λ ∈ SpecLW(0).

Finally, we introduce the notion of rationality for the representations of anΩ-generated CRe>0-graded vertex operator algebra.

Definition 31. Let V be an Ω-generated CRe>0-graded vertex operator algebra. V is called rational if the category of CRe>0-graded
V-modules is semisimple, i.e., every CRe>0-graded V-module is completely reducible, i.e., the sum of simple CRe>0 modules.

III. THE WEYL VERTEX ALGEBRA: CLASSIFICATION OF ITS C-GRADED STRUCTURES

In this section, we introduce the rank one Weyl vertex algebra, denoted asM, with a family of conformal elements ωμ parameterized by
μ ∈ C, following, for instance, Ref. 22 (see also Ref. 29). We denote M with the conformal structure by (μM ,ωμ) or just μM . We discuss the
various gradings and associated refined vertex algebra structures imposed on the rank oneWeyl vertex algebraM by the choice of μ. The rank
nWeyl vertex algebra, for n ∈ Z+, is then the n-fold tensor product ofM.

Definition 32. LetL be the infinite-dimensional Lie algebra with generators K, a(m) and a∗(n)withm,n ∈ Z such that K is in the center
and the bracket is given by [a(m), a∗(n)] = δm+n,0K.
We define the rank one Weyl algebraA1 to be the quotient,

A1 =
U(L)
⟨K − 1⟩ ,

where U(L) denotes the universal enveloping algebra of L and ⟨K − 1⟩ is the two sided ideal generated by K − 1.
We have thatA1 is an associative algebra with generators a(m), a∗(n), form,n ∈ Z, and relations

[a(m), a∗(n)] = δm+n,0, (4)

[a(m), a(n)] = [a∗(m), a∗(n)] = 0 (5)

for allm,n ∈ Z.

The Weyl algebraA1 has a countably infinite family of automorphisms, called spectral flow automorphisms given by

ρs : A1 Ð→ A1, a(n)↦ a(n + s), a
∗(n)↦ a

∗(n − s), (6)

for s ∈ Z, as well as the automorphism

φt : A1 Ð→ A1, a(n)↦ ta
∗(n), a

∗(n)↦ −t−1a(n), (7)

for t ∈ C×.
The (rank one) Weyl vertex algebra M can be realized as an induced module for the Lie algebra L as follows. We first fix a triangular

decomposition of L = L −⊕L
0
⊕L

+ where

L
−
= spanC{a(−n), a∗(−m) ∣ n ≥ 1,m ≥ 0},

L
0
= spanC{K},

L
+
= spanC{a(n), a∗(m + 1) ∈ L ∣ n ≥ 0,m ≥ 0}

(see, for instance, Ref. 21 where this is called the normal triangular decomposition). Next, we give the one-dimensional vector space C1 the
L

0
⊕L

+-module structure, given by

a(0)1 = 0,
K1 = 1,

a(n)1 = 0 for n > 0,

a
∗(m + 1)1 = 0 form ≥ 0,
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and we defineM to be the induced module,
M = U(L)⊗U(L0⊕L +)C1.

Then, M is a simple Weyl module and, as a vector space, M ≅ C[a(−n), a∗(−m) ∣ n > 0, m ≥ 0]. There is a unique vertex algebra struc-
ture on M (see, for instance, Theorem 5.7.1 in Ref. 28 or Lemma 11.3.8 in Ref. 14) given by (M,Y , 1) with vertex operator map Y : M
→ End(M)[[z, z−1]] such that

Y(a(−1)1, z) = a(z), Y(a∗(0)1, z) = a∗(z),
a(z) =∑

n∈Z

a(n)z−n−1, a∗(z) =∑
n∈Z

a
∗(n)z−n. (8)

In particular,
Y(a(−1)a∗(0)1, z) =: a(z)a∗(z) :,

where: a(z)a∗(z): denotes the ordered product of the fields a(z) and a∗(z) given by

: a(z)a∗(z) ∶= a(z)+a∗(z) + a∗(z)a(z)−,
with a(z)+ = ∑n≤−1 a(n)z−n−1, a(z)− = ∑n≥0a (n)z−n−1.

In terms of the operator product expansion of the vertex operators, i.e., the corresponding fields, we have

a(z)a∗(w) = 1

z −w
+ : a(z)a∗(w) : .

Moreover, the map Y : M → End(M)[[z, z−1]] is given by

Y(a(−m1 − 1)a(−m2 − 1) . . . a(−mk − 1)a∗(−n1) . . . a∗(−nl)1, z)
=

k

∏
i=1

1

mi!

l

∏
j=1

1

nj!
: ∂

m1a(z) ⋅ ⋅ ⋅∂mka(z)∂n1a
∗(z) ⋅ ⋅ ⋅∂nla

∗(z) :
form1, . . .mk,n1, . . .nl ∈ Z≥0.

Remark 33.

1. The fields a(z) and a∗(z) defined in (8) are usually denoted by β(z) and γ(z) in the physics literature (up to a choice of sign) where the
vertex algebraM is referred to as the βγ vertex algebra or βγ-system.

2. Since for all n ∈ Z, the nmodes of the fields Y(a(−1)1, z) = a(z),Y(a∗(0)1) = a∗(z) satisfy
(a(−1)1)n = a(n),
(a∗(0)1)n = a∗(n + 1),

we have that the set T = {a(−1)1, a∗(0)1} is a set of strong generators for the vertex algebraM in the sense of Definition 10. Namely,
M is spanned by the set of normally ordered monomials,

{: ∂k1α
i1
. . . ∂

klα
ik : ∣ k1, . . . , kl ≥ 0, αij ∈ T}.

Therefore,M is strongly finitely generated as a vertex algebra in the sense of Definition 10.

From the simple relations between the modes of the strong generators a(−1)1 and a(0)1 given by (4) together with Remark 33, it is easy
to see thatM is a simple vertex algebra.

Let β ∶= a(−1)a∗(0)1. We set β(z) = Y(β, z) = ∑n∈Z β(n)z−n−1. [We note that in Ref. 22, there was a typo in the exponent of z in the
expansion of β(z).] We note, in particular, that in this notation,

β(−2)1 = a(−2)a∗(0)1 + a(−1)a∗(−1)1.
Then, β is a Heisenberg vector inM of level −1. Namely, for n,m ∈ Z, we have

[β(m),β(n)] = −mδm+n,0

as operators onM, and therefore,

β(z)β(w) = − 1

(z −w)2 + : β(z)β(w) : .
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In addition, we have

[β(m), a(n)] = −a(m + n) and [β(m), a∗(n)] = a∗(m + n).
We are interested in the possible C-graded conformal vertex algebra structures on the vertex algebraM. The vertex algebraM admits a

family of Virasoro vectors,

ωμ = (1 − μ)a(−1)a∗(−1)1 − μa(−2)a∗(0)1 for μ ∈ C

= a(−1)a∗(−1)1 − μ(a(−1)a∗(−1)1 + a(−2)a∗(0)1)
= a(−1)a∗(−1)1 − μβ(−2)1, (9)

of central charge

cμ = 2(6μ(μ − 1) + 1). (10)

The corresponding Virasoro field is

L
μ(z) = (1 − μ) : a(z)∂a∗(z) : −μ : ∂a(z)a∗(z) :, (11)

and it satisfies

L
μ(z)Lμ(w) = 1 − 6μ + 6μ2

(z −w)4 +
2Lμ(w)
(z −w)2 +

∂wL
μ(w)

z −w
+ : L

μ(z)Lμ(w) : .
This gives a C grading on M as we give explicitly below, and we denote the particular C-graded conformal vertex algebra structure

onM by

(μM ,Y , 1,ωμ)
or just μM .

Lemma 34. The composition of the spectral flow ρ1 and φ1 automorphisms of the Weyl algebra lifts to give the following isomorphisms of
C-graded conformal vertex algebras:

φ1 ○ ρ1 : (μM ,ωμ) ≅

Ð→(1−μM ,ω1−μ), (12)

given explicitly on M by

a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nl)1↦
(−1)la(−n1 − 1) ⋅ ⋅ ⋅ a(−nl − 1)a∗(−m1) ⋅ ⋅ ⋅ a∗(−mk)1

for k, l ∈ N and mi,nj ∈ N. Or, more generally, for the vertex algebra structure, letting F = φ1 ○ ρ1, we define

F(u1n1 ⋅ ⋅ ⋅uknk1) = [F(u1)]n1 ⋅ ⋅ ⋅ [F(uk)]nk1 (13)

for uj = a(−1)1 or a∗(0)1 for j = 1, . . . , k and n1, . . . ,nk ∈ Z.
Moreover, this is the only C-graded conformal vertex algebra isomorphism between (μM ,ωμ) for distinct μ ∈ C. In particular, the central

charge cμ = c1−μ completely determines (μM ,ωμ) up to isomorphism.

Proof. By definition, F = φ1 ○ ρ1 is a vector space isomorphism. Equation (13) implies that F is a vertex algebra homomorphism, as
follows: By the definition of F, we have F(unv) = F(unv−11) = F(u)nF(v)−11 = F(u)nF(v) for u, v ∈ {a(−1)1, a∗(0)1}. By induction on k,

we have that F(unv) = F(u)nF(v) for v = u1n1 ⋅ ⋅ ⋅uknk1 for u1, . . . ,uk ∈ {a(−1)1, a∗(0)1} and n1, . . . ,nk ∈ Z.
Then, note that

F(Y(a(−1)1, z)v) = F(∑
n∈Z

a(n)vz−n−1) = ∑
n∈Z

F(a(n)v)z−n−1
=∑

n∈Z

F((a(−1)1)nv)z−n−1 = ∑
n∈Z

[F(a(−1)1)]nF(v)z−n−1
=∑

n∈Z

(a∗(0)1)nF(v)z−n−1 = ∑
j∈Z

a
∗( j)z−jF(v)

= Y(a∗(0)1, z)F(v) = Y(F(a(−1)1), z)F(v)
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and

F(Y(a∗(0)1, z)v) = F(∑
n∈Z

a
∗(n)vz−n) = ∑

n∈Z

F(a∗(n)v)z−n
=∑

n∈Z

F((a∗(0)1)n−1v)z−n =∑
n∈Z

[F(a∗(0)1)]n−1F(v)z−n
= −∑

n∈Z

(a(−1)1)n−1F(v)z−n = −∑
j∈Z

(a(−1)1)jF(v)z−j−1
= −Y(a(−1)1, z)F(v) = Y(F(a∗(0)1), z)F(v).

Therefore, by Proposition 5.7.9 in Ref. 28, we have F(Y(u, z)v) = Y(F(u), z)F(v) for all u, v ∈M and F is a homomorphism of vertex algebras.
Since it is a bijection, it is an isomorphism of vertex algebras.

Finally, for μ ∈ C,

φ1 ○ ρ1(ωμ) = φ1 ○ ρ1((1 − μ)a(−1)a∗(−1)1 − μa(−2)a∗(0)1)
= φ1((1 − μ)a(0)a∗(−2)1 − μa(−1)a∗(−1)1)
= −(1 − μ)a∗(0)a(−2)1 + μa∗(−1)a(−1)1
= μa(−1)a∗(−1)1 − (1 − μ)a∗(0)a(−2)1
= (1 − (1 − μ))a(−1)a∗(−1)1 − (1 − μ)a(−2)a∗(0)1
= ω1−μ,

proving that this is an isomorphism of C-graded conformal vertex algebras. Then, since cμ = 2(6μ(μ − 1) + 1) = 2(6ν(ν − 1) + 1) = cν for
μ ≠ ν implies ν = 1 − μ, this shows these are the only isomorphisms between the conformal structures onM. ◻

Let

L
μ(z) = Y(ωμ, z) =∑

n∈Z

L
μ(n)z−n−2.

For μ = 0, we set ω ∶= ω0, L(n) ∶= L0(n), and, then, c0 = 2. More generally, we have that for μ ∈ C,

ωμ = ω − μβ(−2)1. (14)

Furthermore, since (β(−2)1)0 = (Dβ)0 = 0 and (β(−2)1)1 = (Dβ)1 = −β(0), whereD is the endomorphism described in Remark 5, we, thus,
have that

L
μ(−1) = L(−1) for all μ ∈ C,

L
μ(0) = L(0) + μβ(0).

In addition, for allm,n ∈ Z,

[L(m), a(n)] = −na(m + n),
[L(m), a∗(n)] = −(m + n)a∗(m + n).

In particular, we have

[L(0), a(n)] = −na(n),
[L(0), a∗(n)] = −na∗(n),
[Lμ(0), a(n)] = [L(0) + μβ(0), a(n)] = −na(n) − μa(n) = (−n − μ)a(n),
[Lμ(0), a∗(n)] = [L(0) + μβ(0), a∗(n)] = −na∗(n) + μa∗(n) = (−n + μ)a∗(n).

Note that for integersm1 ≥ ⋅ ⋅ ⋅ ≥ mk ≥ 0, n1 ≥ ⋅ ⋅ ⋅ ≥ nt ≥ 0, and k, t ∈ Z+, we have

L
μ(0)a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)1 = ((m1 + ⋅ ⋅ ⋅ +mk + k) − kμ)a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)1

= ((m1 + ⋅ ⋅ ⋅ +mk) + k(1 − μ))a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)1,
L
μ(0)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nt)1 = ((n1 + ⋅ ⋅ ⋅ + nt) + tμ)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nt)1,
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and

L
μ(0)a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nt)1
=
⎛
⎝

k

∑
i=1

mi +

t

∑
j=1

nj + k(1 − μ) + tμ⎞⎠a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nt)1. (15)

Thus, from Eq. (15), an element v = a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk − 1)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nt)1 ∈ μM has an Lμ(0)-grading of the form
wt v = r + s + k(1 − μ) + tμ for r, s, k, t ∈ N, with k, t ∈ Z+ if r, s ∈ Z+, respectively. (16)

That is, the action of Lμ(0) on μM defines aC-grading on μM , which gives μM the structure of aC-graded vertex algebra. It is also aC-graded
conformal vertex algebra with strong generators a(−1)1, a∗(0)1, which satisfy

∣a(−1)1∣ = 1 − μ, (17)

∣a∗(0)1∣ = μ. (18)

However, for only certain values of μ is μM anΩ-generated CRe>0-graded vertex operator algebra in the sense of Definition 20.
We are interested in these values of μ, which give μM an Ω-generated CRe>0-graded vertex operator algebra structure and the nature of

the representations of these vertex algebras μM .
To that end, we note that Eq. (16) implies that

wt v = r + s + k + Re(μ)(t − k) + iIm(μ)(t − k) (19)

for r, s, k, t ∈ N with k, t ∈ Z+ if r, s ∈ Z+, respectively.
The analysis of the structure of μM naturally falls into the following five cases:
Case 1: μ = 0, 1, i.e., c = 2. Then, with respect to Lμ(0) weight grading, we have that (0M =⊕∞n=0 0Mn,ω0) = (0M ,ω) is an N-graded

conformal vertex algebra with central charge 2. Moreover, the space of vectors of Lμ(0) = L(0)-weight zero is equal toΩ(0M) and is given by

0M0 = Span{a∗(0) ⋅ ⋅ ⋅ a∗(0)1 = a∗(0)t1 ∣ t ∈ N},
which is an infinite-dimensional subspace of 0M . Analogously,

Ω(1M) = 1M0 = Span{a(−1) ⋅ ⋅ ⋅ a(−1)1 = a(−1)k1 ∣ k ∈ N}.
0M is not a vertex operator algebra (or for that matter, anΩ-generatedC-graded vertex operator algebra) since it has infinite-dimensional

weight spaces.

0M is an Ω-generated CRe>0-graded vertex algebra, and the L(0)-weight spaces of 0M are also the degree spaces of 0M viewed either as
anΩ-generated CRe>0-graded vertex algebra or as a CRe>0-graded module over itself.

0M is referred to as the Weyl vertex algebra with central charge 2 and is the unique rank 1 Weyl conformal vertex algebra with central
charge 2 up to isomorphism by Lemma 34.

Case 2: μ ∈ R and 0 < μ < 1, i.e., c ∈ R, and−1 < c < 2. In this case, we have 0 < μ = Re(μ) < 1 and 0 < Re(1 − μ) < 1, and so from Eq. (16),
we have that μM (or equivalently 1−μM) is an R-graded conformal vertex algebra and isΩ-generated withΩ(μM) = μM0 = C1 and

μM =⊕
λ∈R
λ≥0

μMλ = μM(0)⊕
λ∈R
λ>0

μM(λ),

where the degree spaces and weight spaces coincide. Furthermore, μMλ = μM(λ) = 0 unless λ ∈ (N + μZ) ∩R+, and in fact,

Spec
μM

L
μ(0) = {r + s + k + μ(t − k) ∣ r, s, k, t ∈ N, and k, t ∈ Z+ if r, s ∈ Z+, resp.}

= μN + (1 − μ)N.
In this case, we have dim μMλ <∞ since μM is Ω-generated by the finite-dimensional set Ω(μM) = μM0 = C1 and the generating set

S = {a(−1)1, a∗(0)1} of positive non-integral weights μ and 1 − μ, respectively, between 0 and 1.
Finally, noting that Re(λ) ≥ 0 = ∣Im(λ)∣ for all λ ∈ SpecμMLμ(0), we conclude that μM is an Ω-generated CRe>0-graded vertex operator

algebra.
Case 3: μ ∈ C, Im(μ) ≠ 0, and Re(μ) = 0 or 1. Since μM≅1−μM, without loss of generality, we may assume Re(μ) = 0. Setting μ = iq,

then 1 − μ = 1 − iq; from Eq. (16), we have that μM0 = C1, and with respect to the weight grading given by Lμ(0) and denoted as ∣u∣, we have
that Re(∣u∣) > 0 unless Re(∣u∣) = 0, in which case u ∈ Span{a∗(0) ⋅ ⋅ ⋅ a∗(0)1 = a∗(0)t1 ∣ t ∈ N}. However, in this case, ∣a∗(0)t1∣ = tiq. Thus,
μM0 = C1 = Ω(μM) and the degree grading and Lμ(0)-weight grading coincide. Furthermore, dim(μMλ) <∞ for each λ ∈ C.
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Thus, in this case, μM is an Ω-generated CRe>0-graded vertex algebra and, therefore, a CRe>0-graded module over itself. However, as a
module over itself, μM has an infinite number of λ ∈ Spec

μM
Lμ(0) with Re(λ) = 0 as we now show below.

Since the weight spaces of μM in this case are finite dimensional, one might think it is a candidate for an Ω-generated CRe>0-graded
vertex operator algebra. Here, the question is does it satisfy Re(λ) ≥ ∣Im(λ)∣ for all but finitely many λ ∈ Spec

μM
Lμ(0). Here, the answer is no

since ∣a∗(0)1∣ = tiq = λ implies Re(λ) = 0 < t∣q∣ = ∣Im(λ)∣ for t ≠ 0. Thus, μM for μ ∈ iR is an example of anΩ-generatedC-graded conformal
vertex algebra that is not anΩ-generated C-graded vertex operator algebra even though dim(μMλ) <∞.

Analogous results hold for μ ∈ C with Re(μ) = 1 by Lemma 34.
Case 4: μ ∈ C, Im(μ) ≠ 0, and 0 < Re(μ) < 1. Setting μ = p + iq, then 1 − μ = (1 − p) + i(−q) and Re(1 − μ) = 1 − p satisfies

0 < Re(1 − μ) < 1. Thus, from Eq. (16), we have that μM0 = C1, and with respect to the weight grading given by Lμ(0) and denoted as ∣u∣, we
have that Re(∣u∣) > 0 unless Re(∣u∣) = 0, in which case u ∈ C1. Thus, μM isCRe>0-graded withΩ(μM) = C1. Therefore, μM is anΩ-generated
CRe>0-graded vertex algebra and the Lμ(0)-weight spaces correspond to the degree spaces. More precisely,

Spec
μM

L
μ(0) = {r + s + k + p(t − k) + iq(t − k) ∣ r, s, k, t ∈ N, and k, t ∈ Z+ if r, s ∈ Z+, resp.}

⊂ pN + (1 − p)N + iqZ.
In this case, we also have that dimVλ <∞ for all λ ∈ Spec

μM
Lμ(0). To see this, we observe that if we consider only the real part of

the weight grading for μM , then the grading is the same as that for case 2. That is, for v ∈M with Lμ(0)v = λv, LRe(μ)(0)v = Re(λ)v. Thus,
dim μMλ ≤ dim Re(μ)MRe(λ) <∞.

To analyze when μM is also an Ω-generated CRe>0-graded vertex operator algebra, we need to determine if Re(λ) ≥ ∣Im(λ)∣ for all but
finitely many weights λ ∈ Spec

μM
Lμ(0).

Here, we split into two subcases:
Case 4(a): If either 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(μ) or 0 < Re(1 − μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(1 − μ) hold, then we claim that μM is

an Ω-generated CRe>0-graded vertex operator algebra. We first prove this for 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(μ) and then note that since

μM≅ 1−μM, the result will hold for 0 < Re(1 − μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(1 − μ).
Hence, assume that 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(μ), i.e., writing μ = p + iq, we have 0 < p ≤ 1/2 and ∣q∣ < p. Then, for any

λ = r + s + k + p(t − k) + iq(t − k) ∈ Spec
μM

Lμ(0), we have that ∣Im(λ)∣ = ∣q(t − k)∣ ≤ ∣p(t − k)∣ ≤ r + s + k + ∣p(t − k)∣, whereas ∣Re(λ)∣
= ∣r + s + k + p(t − k)∣. Thus, if t − k ≥ 0, we have ∣Im(λ)∣ ≤ ∣Re(λ)∣. If t − k < 0, then k ≠ 0 and Re(λ) ≥ k + p(t − k) = k(1 − p) + pt. How-
ever, since (1 − p) ≥ p, we have Re(λ) ≥ kp + pt = p(k + t) and thus ∣Im(μ)∣ = ∣q(t − k)∣ ≤ ∣p(t − k)∣ ≤ ∣p(t + k)∣ ≤ ∣Re(λ)∣. Therefore, Re(λ)
≥ ∣Im(λ)∣ for all weights λ ∈ Spec

μM
Lμ(0).

Therefore, we have that in this case, μM is anΩ-generated CRe>0-graded vertex operator algebra.
Case 4(b): If 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ > Re(μ) or if 0 < Re(1 − μ) < 1/2 and ∣Im(μ)∣ > Re(1 − μ), then we claim that μM is not an

Ω-generatedCRe>0-graded vertex operator algebra. To see this, we first prove the result for 0 < Re(μ) ≤ 1/2, but ∣Im(μ)∣ > Re(μ), and we then
note that since μM≅ 1−μM, the result will hold for 0 < Re(1 − μ) < 1/2 and ∣Im(μ)∣ > Re(1 − μ).

Hence, assume that 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ > Re(μ). Then, ∣a∗(0)t1∣ = tμ = λ for t ∈ N. ∣Im(λ)∣ = ∣tIm(μ)∣ > tRe(μ) = Re(λ). Thus,
for an infinite number of λ ∈ Spec

μM
Lμ(0), Re(λ) ≥ ∣Im(μ)∣ is not satisfied, and thus, μM is not anΩ-generated CRe>0-graded vertex operator

algebra.
Case 5: If Re(μ) > 1 or Re(μ) < 0, then μM has nonzero weight spaces μMλ with both Re(λ) arbitrarily large negative and arbitrarily

large positive. This can be seen by considering that ∣a(−1)k1∣ = k(1 − μ) and ∣a∗(0)t1∣ = tμ for k, t ∈ N. This then implies that 1 ∉ Ω(μM)
even though 1 ∈ μM0 since if Re(μ) > 1, then a(−1)1 = (a(−1))−11 ≠ 0 with ∣a(−1)1∣ = 1 − μ, but Re(1 − μ) − (−1) − 1 = Re(1 − μ) < 0.
Or analogously, if Re(μ) < 0, then a∗(0)1 = (a∗(0))−11 ≠ 0 with ∣a∗(0)1∣ = μ, but Re(μ) − (−1) − 1 = Re(μ) < 0. Thus, in this case,

μM0 ⊈ Ω(μM).
In fact, in this case,Ω(μM) = 0. To see this, without loss of generality, assume that Re(μ) > 1. Then, consider v = a(−m1 − 1) ⋅ ⋅ ⋅ a(−mk

− 1)a∗(−n1) ⋅ ⋅ ⋅ a∗(−nt)1 ∈μM . We have that v ∉ Ω(μM) since for u = a(−1)1 ∈μM1−μ, we have (a(−1)1)−1v = a(−1)v ≠ 0 even though
−1 ≠ 1 − μ − 1 = −μ and −1 > −Re(μ) = Re(1 − μ) − 1. Extending by linearity, it follows thatΩ(μM) = 0.

Therefore, in this case, μM is not anΩ-generatedC-graded vertex algebra. Thus, in particular, it is also not anΩ-generatedCRe>0-graded
vertex operator algebra.

In summary, we have that, independently of its conformal structure, the Weyl vertex algebra is always strongly finitely generated [see
Remark 33 (2)]. However, as shown above, this vertex algebra is not necessarilyΩ-generated (as this does depend on the conformal structure).
Thus, we have the following theorem:

Theorem 35. The C-graded Weyl vertex algebra with grading given by the conformal element ωμ for μ ∈ C, denoted as μM = (M,ωμ), is a
finitely strongly generated C-graded vertex algebra that is also a conformal C-graded vertex algebra. Furthermore, we have the following:

I. μM is a finitely Ω-generated CRe>0-graded vertex operator algebra, i.e., it is inΩVOA(CRe>0(V)), if and only if one of the following holds:
(i) 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(μ)

or
(ii) 0 < Re(1 − μ) < 1/2 and ∣Im(μ)∣ ≤ Re(1 − μ).
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In addition, in this case I, we have that Ω(μM) = C1.
II. μM is both a finitely Ω-generated CRe>0-graded vertex algebra and a conformal C-graded vertex algebra, i.e., it is in Conf (C(V))
∩Ω(CRe>0(V)), if and only if 0 ≤ Re(μ) ≤ 1.

III. If Re(μ) > 1 or Re(μ) < 0, then μM is a finitely strongly generated C-graded conformal vertex algebra, but it is not an Ω-generated
C-graded vertex algebra.

Finally, outside of the strip given by 0 ≤ Re(μ) ≤ 1, we have Ω(μM) = 0, and inside of the strip, Ω(0M) and Ω(1M) are infinite, whereas
elsewhere inside this strip,Ω(μM) = C1. See Fig. 1 for a visual representation of the regions where these results apply.

Proof. Cases 1–5 above exhaust the possibilities for μ ∈ C, and in each case, it is shown that μM is both a conformal C-graded vertex
algebra and anΩ-generated C-graded vertex algebra with generating set {a(−1)1, a∗(0)1}.

Cases 2 and 4(a) show that when 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(μ) or when 0 < Re(1 − μ) < 1/2 and ∣Im(μ)∣ ≤ Re(1 − μ), μM is an
Ω-generated CRe>0-graded vertex operator algebra.

Cases 1, 3, 4(b), and 5 show that in the remaining cases, μM is not an Ω-generated CRe>0-graded vertex operator algebra but is still both
a conformal C-graded vertex algebra and anΩ-generated C-graded vertex algebra.

Finally, we note that by cases 1–5, we have that if 0 ≤ Re(μ) ≤ 1 (cases 1–4), then we have that μM is anΩ-generatedCRe>0-graded vertex
algebra, but outside of this region (case 5), it is not.

Ω(μM) are as given in cases 1–5. ◻

Remark 36. We note that the Weyl vertex algebras in case 3, μM , with μ being a purely imaginary nonzero number, provide a family of
examples of conformal CRe>0-graded vertex algebras, which are not CRe>0-graded vertex operator algebras.

Remark 37. Theorem 35 shows a stark contrast between the Weyl vertex algebras (i.e., free bosonic ghosts) under conformal flow in
comparison to free bosons under conformal flow. Recall (cf. Ref. 2) that free bosons Vbos = C[α(−n) ∣ n ∈ Z+] admit a family of conformal
vectors ων =

1
2
α(−1)21 + να(−2)1 for ν ∈ C, which endow Vbos with a vertex operator algebra structure of central charge 1 − 12ν2. However,

under this conformal flow, we have that Lν(0), and thus, the Z-grading and vertex operator algebra structure of Vbos do not change. In fact,
the vertex operator algebra (Vbos,ων) differs from (Vbos,ων′) only in its representation theory in that some indecomposable nonirreducible
modules can have a Lν(0)-action that is semisimple on a module with a 2 × 2 Jordan block in the vacuum space Ω(W) for some values of ν,
whereas the action of Lν

′(0) is not semi-simple for some other ν′ ≠ ν. However, the non-semi-simplicity of Vbos-modules under conformal
flow does not change, i.e., (Vbos,ων) is always irrational, whereas by comparison, we will show in Sec. V C that (μM ,ωμ) can be rational or
irrational depending on μ.

FIG. 1. Different C-graded vertex algebra structures for μM under conformal flow. For μ ∈ C satisfying Theorem 35, part I, i.e., for μ inside the diamond shaped region, μM is

an Ω-generated CRe>0-graded vertex operator algebra. In the regions where Re(μ) > 1 or 0 < Re(μ), μM is not an Ω-generated CRe>0-graded vertex algebra and, thus,

is also not an Ω-generated CRe>0-graded vertex operator algebra. In the remaining regions, μM has the structure of an Ω-generated CRe>0-graded vertex algebra and a

conformal vertex algebra but not of an Ω-generated CRe>0-graded vertex operator algebra.
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Remark 38. We note that the use of the term “rank” in the definition of the Weyl vertex algebra in Sec. III alludes to the number of pairs
of fields of the form a(z), a∗(z) [or pairs of β(z), γ(z) fields in the physics literature] and not the rank of the vertex algebra in the sense of
Ref. 30, which involves the action of the Virasoro algebra and is, instead, referred to as the central charge. Therefore, the rank nWeyl vertex
algebra consists of the tensor product of n copies of the rank 1 Weyl vertex algebra. Its conformal structure is determined by the choice of
the conformal structures associated with each of the tensor factors. Namely, the rank nWeyl vertex algebra μ1M ⊗ ⋅ ⋅ ⋅ ⊗ μnM has conformal
vector ω = ∑n

i=1ωμi [as in Eq. (9)] and central charge c = ∑n
i cμi [as in Eq. (10)].

IV. ZHU ALGEBRAS OF Ω-GENERATED CRe>0-GRADED VERTEX ALGEBRAS

In this section, we present some results from Ref. 5 on the (level zero) Zhu algebras ofΩ-generated CRe>0-graded vertex algebras and the
correspondence between simple modules for the Zhu algebra and simple CRe>0-graded modules for the vertex algebra. We remind the reader
that in Ref. 5, our notion ofΩ-generated CRe>0-graded vertex algebra was called a C-graded vertex algebra.

Let V = (V ,Y , 1) be an Ω-generated CRe>0-graded vertex algebra with grading V =⊕λ∈CVλ. For u ∈ Vλ, let ∣u∣ denote the ceiling of the
real part of λ, i.e.,

∣u∣ ∶= min{n ∈ Z ∣ n ≥ Re(λ) = Re(∣u∣)}.
Let

V
r
∶= spanC{v ∈ V ∣ v is of homogeneousweight and r = ∣v∣ − ∣v∣}. (20)

Then, we have that

V =⊕
r∈C

V
r
.

Remark 39. We observe that u ∈ V0 if and only if ∣u∣ = ∣u∣ and, equivalently, if and only if Lu = ∣u∣u, where L is the operator defined in
Eq. (2). We can then characterize V0 as the vertex subalgebra of V consisting of all vectors of integer weight.

In Ref. 26, Zhu introduced an associative algebra, A(V), associated with any vertex operator algebra V , which can be used to classify its
irreducible representations. Laber and Mason in Ref. 5 studied the Zhu algebra associated with certain C-graded vertex algebras by making
the necessary modifications to the formulas introduced by Zhu. We will use the C-graded Zhu algebra machinery to show that a particular
family ofΩ-generatedCRe>0-graded vertex algebras are rational. We recall first the appropriate definition of the Zhu algebra in theC-grading
setting following Ref. 5.

Definition 40 (Ref. 5). Let V be an Ω-generated CRe>0-graded vertex algebra. Let u ∈ Vr and v ∈ V . Define the products ○ and ∗ on V as
the linear extensions of the following equations:

u ○ v ∶= Resz
(1 + z)∣u∣+δr,0−1

z1+δr,0
Y(u, z)v

and

u ∗ v = δr,0Resz
(1 + z)∣u∣

z
Y(u, z)v. (21)

Define O(V) to be the linear span of all elements of the form u ○ v for u, v ∈ V .

Proposition 41 (Ref. 5). Let V be anΩ-generated CRe>0-graded vertex algebra, and define V
r as in Eq. (20). Then, we have the following:

(i) If r ≠ 0, then Vr ⊆ O(V).
(ii) For u ∈ V homogeneous, (D + L)u ≡ 0modO(V), where L is the operator defined in Eq. (2).
(iii) For u ∈ Vr homogeneous, v ∈ V, and any m ≥ n ≥ 0, we have

Resz
(1 + z)∣u∣+δr,0−1+n

z1+δr,0+m
Y(u, z)v ∈ O(V).

(iv) For u, v ∈ V homogeneous, we have

Y(u, z)v ≡ (1 + z)−∣u∣−∣v∣Y(v,− z

1 + z
)umodO(V).
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(v) For u, v ∈ V0 homogeneous, we have the identities

u ∗ v ≡ Resz
(1 + z)∣v∣−1

z
Y(v, z)umodO(V)

and
u ∗ v − v ∗ u ≡ Resz(1 + z)∣u∣−1Y(u, z)vmodO(V).

(vi) O(V) is a two-sided ideal of V with respect to the ∗ product.
(vii) Define A(V) ∶= V/O(V). Then, A(V) is an associative algebra with respect to the ∗ product.

Remark 42. It follows from Proposition 41 (i) and (vii) that A(V) = V0/(O(V) ∩V0).
Definition 43. For v ∈ V being homogeneous, define the zero mode o(v) of v as o(v) = v∣v∣−1. We extend this definition to all of V by

linearity.

Remark 44. If v ∈ Vr for some nonzero r, then ∣v∣ − 1 > Re(∣v∣) − 1, and o(v) = v
∣v∣−1

annihilates any element of Ω(V). In addition, if

v ∈ V0, then ∣v∣ = ∣v∣, and this definition of o(v) reduces to the original zero mode definition given by Zhu in Ref. 26.

We conclude this section stating the expected correspondence between simple A(V)modules and simple “admissible” V-modules in the
C-graded setting. We note that CRe>0-graded modules are the appropriate “admissible” representations in this context.

Proposition 45 (Ref. 5). Let V be anΩ-generated CRe>0-graded vertex algebra.

(i) Let W =W(0)⊕λ∈C,Re(λ)>0W(λ) be a simple CRe>0-graded V-module with Ω(W) =W(0), as shown in Proposition 29. Then, Ω(W) is
a simple A(V)-module.

(ii) There is a one-to-one correspondence between the categories of simple A(V)-modules and simple CRe>0-graded V-modules.

V. RATIONALITY FOR CERTAIN CRe>0-GRADED VERTEX OPERATOR ALGEBRAS AND APPLICATIONS

In this section, we prove our main result on the rationality of finitely Ω-generated CRe>0-graded vertex operator algebras that are not
Z-graded and whose simple CRe>0-graded modules are all ordinary. We then apply this result to the Weyl vertex algebras with the central
charges cμ (or equivalently the conformal element ωμ) that give (μM ,ωμ) the structure of a CRe>0-graded vertex operator algebra.

The following theorem is analogous to Theorem 3.3 in Ref. 31 where a g-rationality for g-twisted modules of a vertex operator algebra
V and for an automorphism g was studied. Here, we use the idea of their proof applied to the setting of Ω-generated CRe>0-graded vertex
operator algebras.

Theorem 46. Let V be anΩ-generated CRe>0-graded vertex operator algebra satisfying the following conditions:

1. Every simple CRe>0-graded V-module is an ordinary module.
2. A(V) is a finite-dimensional semisimple associative algebra.
3. ω +O(V) acts via its zero mode L(0) on all irreducible A(V)-modules as the same constant eigenvalue λ—that is, there is a fixed λ ∈ C

such that for any A(V)-module U, U consists of generalized eigenvectors for o(ω) = L(0) with eigenvalue λ.
Then, V is rational, i.e., every CRe>0-graded V-module is completely reducible.

Proof. Let W be a CRe>0-graded V-module. We will show that W is a completely reducible CRe>0-module by considering the following
cases:

Case 1:Ω(W) is a simple A(V)-module, andW is generated by Ω(W). If W̃ is a V-submodule ofW, then Ω(W̃) is an A(V)-submodule of
Ω(W), and therefore, by the assumption that Ω(W) is simple, Ω(W̃)must be the trivial A(V)-module or Ω(W). SinceW (and thus
W̃) is generated by Ω(W), this implies that W̃ = 0 or W̃ is generated by Ω(W) and is, thus, W, assuming W ≠ 0. Therefore, W is a
simple CRe>0-graded V-module.

Case 2: Ω(W) is not a simple A(V)-module, and W is generated by Ω(W). Since Ω(W) is not simple and A(V) is finite-dimensional
semisimple, Ω(W) is the direct sum of simple A(V)-modules, say, Ω(W) =⊕ i∈IΩ(W)i, where Ω(W)i is simple for i ∈ I, for I some
indexing set. Thus, if W is generated by Ω(W), we set W i

∶= ⟨Ω(W)i⟩ and we obtain W =⊕ i∈I W
i, where each W i is generated

by the simple A(V)-module Ω(W)i and is, thus, simple by the case 1 argument. Therefore, whenW is generated by its lowest weight
vectors, in this case,Ω(W), we have thatW is a completely reducible CRe>0-graded V-module.

Case 3: W is not generated by Ω(W). We will show that W is completely reducible by further analyzing two subcases. First, we let W̃ be
the submodule of W generated by Ω(W). Then, W̃ is completely reducible by case 2, i.e., W̃ =⊕i∈IW̃

i for W̃ i irreducible. Thus,
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W̃(0) =⊕i∈IW̃
i(0) =⊕i∈IΩ(W̃ i) = Ω(W) by Proposition 29. Then, we have W̃ = W̃(0)⊕μ∈C,Re(μ)>0W̃(μ), with W̃(0) being a gener-

alized eigenspace for L(0) = ωW̃
1 with eigenvalue λ, so that SpecW̃(0)L(0) = λ. Moreover, we have that W̃(0) = Ω(W) generates W̃, and

for m ∈ Z and v ∈ V , we have that L(0) acts on vmW̃(0) via the L(0)-eigenvalue wt v −m − 1 +wt w for w ∈ W̃(0). Thus, W̃ is graded
by L(0)-generalized eigenspaces with eigenvalues of the form (SpecVL(0) + λ +N) ∩ {μ + λ ∈ C ∣ μ ∈ SpecVL(0)} = SpecVL(0) + λ, i.e.,

W̃ = W̃λ ⊕
μ∈C, Re(μ)>0

W̃λ+μ = W̃λ ⊕
μ∈SpecV L(0)

μ≠0

W̃λ+μ,

with W̃λ = W̃(0) [where we have used the fact that vmW̃(0) = 0 for m > 0 since W̃(0) = Ω(W)]. Next, we consider the moduleW/W̃.
Since we are assuming thatW is not generated by Ω(W), we have thatW/W̃ ≠ 0. This implies Ω(W/W̃) ≠ 0. We analyze the following
two subcases to show that under the assumptions of case 3,W must be completely reducible:

Case 3I: Suppose thatW/W̃ is completely reducible. Then, as above, (W/W̃)(0) = Ω(W/W̃) and every w + W̃ ∈W/W̃ is contained in
some L(0)-generalized eigenspace, i.e., w + W̃ ∈ (W/W̃)λ+μ for some μ ∈ SpecVL(0). However, then W itself is [SpecVL(0) + λ]-
graded by L(0)-generalized eigenspaces. In addition,Wλ is an A(V)-module and, thus, completely reducible. Thus, the submodule
of W generated by Wλ is completely reducible. Denote this by W′. However, then, if W ≠W′, there exist elements in Ω(W/W′)
that are not in Wλ and, thus, are in a generalized eigenspace for L(0) of the form λ + μ for μ ≠ 0, which contradicts the fact
that Ω(W/W′) is an A(V)-module and, thus, in the λ generalized eigenspace for L(0). Therefore, W =W′ and W is completely
reducible.

Case 3II: Suppose that W/W̃ is not completely reducible. Then, replace W/W̃ with the submodule of W/W̃ generated by Ω(W/W̃),
which is U/W̃ for some submodule U ofW. Then, by the argument above, since U/W̃ is completely reducible, every u + W̃ ∈ U/W̃
is contained in some L(0)-generalized eigenspace, i.e., u + W̃ ∈ (U/W̃)λ+μ for some μ ∈ SpecVL(0) / 0. However, then, U itself is[SpecVL(0) + λ]-graded by L(0)-generalized eigenspaces. In addition,Uλ is anA(V)-module and, thus, completely reducible. Thus,
the submodule ofW generated by Uλ is completely reducible. Denote this by U′. However, then, if U ≠ U′, there exist elements in
Ω(U/U′) that are not in Uλ and, thus, are in a generalized eigenspace for L(0) of the form λ + μ for μ ≠ 0, which contradicts the
fact that Ω(U/U′) is an A(V)-module and, thus, in the λ generalized eigenspace for L(0). Therefore, U = U′ and is completely
reducible.

Finally, we will show below that W̃ the submodule of W generated by Ω(W) is a maximal completely reducible submodule of W.
This would then imply that W̃ ⊂ U ⊂ W̃, implying that Ω(W/W̃) generates the trivial module W̃/W̃, and thus, it must be the trivial
A(V)-module, which impliesW = W̃, and soW is completely reducible.
Therefore, we only have left to show that W̃ is amaximal completely reducible submodule of W. Indeed, ifU is also amaximal completely
reducible submodule, then both W̃ and U are generated byΩ(W) and, thus, equal.
This completes the proof. ◻

Remark 47. Note that in the proof above, one of the key facts used repeatedly is that for the class of C-graded vertex algebras that
we are working with, namely, Ω-generated CRe>0-graded vertex operator algebras, we have that Ω(W) =W(0) for all simple CRe>0-graded
V-modulesW, i.e., Proposition 29 (ii) holds.

A. Filtration of Zhu algebras

In Ref. 26, Zhu introduced two associative algebras related to a vertex operator algebra V , the Zhu algebra A(V) and the C2 algebra
V/C2(V). Moreover, to prove that V/C2(V) is a Poisson algebra, Zhu built a filtration further studied and generalized by Li in Ref. 27. In this
section, we use analogous constructions to describe A(V) in the CRe>0-grading setting.

Let V be an Ω-generated CRe>0-graded vertex algebra with grading V =⊕μ∈CVμ. We continue with the notation from Sec. IV and, in

particular, of ∣u∣ for the ceiling of the real part of μ if u ∈ Vμ and Vr for the set of all elements u ∈ V with r = ∣u∣ − ∣u∣. In addition, recall that
V =⊕r∈CV

r , and for r ≠ 0, we have Vr ⊆ O(V). Observe that
A(V) = V/O(V) = V0

+O(V)/O(V) =⊕
n∈Z

Vn +O(V)/O(V) (22)

by Remarks 39 and 42.
Now, we further assume that the integer grading for V0 is bounded below. For the purposes of the exposition, we write V0 =⊕n∈NVn

although the results will follow with little modification if V0 =⊕∞n=NVn for some N ∈ Z. Consider the filtration {FtA(V)}t∈N where

FtA(V) = t

⊕
j=0

Vj +O(V)/O(V) ⊂ A(V).
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From the definition of ∗, i.e., Eq. (21), and by taking the residue, we have that for u ∈ Vr , v ∈ V ,

u ∗ v = δr,0Resz
(1 + z)∣u∣

z
Y(u, z)v = δr,0∑

i≥0

( ∣u∣
i
)ui−1v. (23)

In addition, note that for homogeneous elements u, v ∈ V , we have ∣ui−1v∣ = ∣u∣ + ∣v∣ − i. Hence, we can conclude that

FsA(V) ∗ FtA(V) ⊆ Fs+tA(V) for s, t ∈ N. (24)

Letting F−1A(V) = 0, we define an N-grading on A(V) by
grtA(V) = FtA(V)/Ft−1A(V) for t ∈ N

so that

grA(V) = ∞⊕
t=0

grtA(V).
Observe that by Eq. (24), the multiplication of A(V) induces an associative multiplication on the graded vector space grA(V). In

addition, we have the following lemma.

Lemma 48. Let V be an Ω-generated CRe>0-graded vertex algebra such that V0 =⊕∞n=0Vn. Then, grA(V) is a commutative associative
algebra.

Proof. Let u ∈ Vr , v ∈ V s. By the fact that Vr ⊂ O(V) if r ≠ 0, i.e., Proposition 41(i) if either r ≠ 0 or s ≠ 0, then u ∗ v = 0 = v ∗ u
since either u or v is in O(V). Therefore, assume that u, v ∈ V0 are homogeneous elements, and u ∈ FtA(V), v ∈ FsA(V). Since by
Proposition 41(v),

u ∗ v − v ∗ u = Resz(1 + z)∣u∣−1Y(u, z)vmodO(V)
= Resz∑

i≥0

( ∣u∣ − 1
i
)ziY(u, z)vmodO(V)

= Resz∑
i≥0

( ∣u∣ − 1
i
)uivmodO(V)

and ∣uiv∣ = ∣u∣ + ∣v∣ − i − 1, we can conclude that modulo O(V), u ∗ v − v ∗ u ∈ Fs+t−1A(V), i.e., is zero in grt+sA(V). Hence, gr(V) is
commutative. ◻

Remark 49. grA(V) is isomorphic to A(V) as a vector space.
Next, we study an upper bound for dimA(V) when V is an Ω-generated CRe>0-graded vertex algebra. For simplicity, we write [u] for

u +O(V). Consider the linear epimorphism

f : V Ð→ grA(V)
u ↦ [u] + Fk−1A(V) for u ∈ Vk. (25)

Note that if u ∈ Vr and r > 0, then f (u) = [0] + Fk−1A(V). Consequently, u ∈ Ker( f ).
Now, let u, v be homogeneous elements in V .

Case 1: u ∈ V0.

Since u ○ v = Resz
(1+z)∣u∣

z2
Y(u, z)v = ∑i≥0( ∣u∣i )ui−2v ∈ O(V) and

∣uj−2v∣ = ∣u∣ + ∣v∣ − j + 1 ≤ ∣u∣ + ∣v∣when j ≥ 1,
we have

f (u−2v) = [u−2v] + F∣u∣+∣v∣A(V) = [0] + F∣u∣+∣v∣A(V).
Moreover, u−2v ∈ Ker( f ).

Case 2: u ∈ Vr such that r > 0.

Since u ○ v = Resz
(1+z)∣u∣−1

z
Y(u, z)v = ∑j≥0( ∣u∣−1j

)uj−1v ∈ O(V) and
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∣uj−1v∣ = ∣u∣ + ∣v∣ − j < ∣u∣ + ∣v∣ for all j ≥ 1,

these imply that

f (u−1v) = [u−1v] + F∣u∣+∣v∣−1A(V) = [0] + F∣u∣+∣v∣−1A(V).
In addition, u−1v ∈ Ker( f ).
In conclusion, we have the following theorem.

Theorem 50. Let V be an Ω-generated CRe>0-graded vertex algebra with integer graded part V0 as in Eq. (20) satisfying V0 =⊕∞n=0Vn.
Let f : V → grA(V) be defined by (25). Set

C(V) = SpanC{a,u−2v, b−1w ∣ a, b ∈ Vr
with r ≠ 0, u ∈ V

0
, and v,w ∈ V}.

Then, C(V) ⊆ Ker( f ). In addition, f induces a linear epimorphism f̄ from V/C(V) to grA(V), and therefore, dimA(V) ≤ dimV/C(V).
Recall that an Ω-generated CRe>0-graded vertex algebra V is endowed with the endomorphism D as defined in Remark 5. Using the fact

that (Du)n = −nun−1 for u ∈ V , n ∈ Z, we have the following corollary:
Corollary 51. Let V be a CRe>0-graded vertex algebra such that V

0 =⊕∞n=0Vn. Then, we have the following:

1. For u ∈ V0, v ∈ V, we have u−nv ∈ C(V) for all n ≥ 2.
2. For b ∈ Vr with r ≠ 0 and w ∈ V, then b−mw ∈ C(V) for all m ≥ 1.

Remark 52. It is necessary to assume that V0 =⊕n∈Z Vn is bounded below. Otherwise, the theorem above is false. For instance, when
L is a nondegenerate non-positive definite even lattice of an arbitrary rank, it was shown in Ref. 32 that A(V+L ) ≠ 0 and in Ref. 33 that
dim(V+L /C(V+L )) = 0. In that context, C(V+L ) = C2(V+L ), the C2 space originally defined by Zhu26 for Z-graded vertex algebras. However, as
noted earlier, it is enough to just assume that the grading for V0 is bounded from below, not necessarily by zero.

B. Main results on rationality for certain CRe>0-graded vertex operator algebras

In this section, we use the construction of the Zhu algebra A(V) presented above to prove that under some mild conditions, an
Ω-generated CRe>0-graded vertex algebra admits only one CRe>0-graded simple module.

Theorem 53. Let V be a finitely Ω-generated CRe>0-graded vertex algebra generated as in Remark 11 by u1, . . . ,uk. Let V0 be the integer
graded part of V as in Eq. (20). Assume that we have the following:

1. For j ∈ {1, . . . , k}, ∣uj∣ is not an integer. Namely, the strong generators satisfy uj ∈ V / V0 for 1 ≤ j ≤ k.
2. V0 =⊕∞n=0Vn.

Then, dimA(V) = 1 and A(V) ≅ C.
Proof. By Corollary 51, using that uj ∈ Vr for r ≠ 0, we can conclude that u

j1
−n1 ⋅ ⋅ ⋅u

jt
−nt1 ∈ C(V) for all uji ∈ {u1, . . . ,uk}, ni ≥ 0. Hence,

V/C(V) = C1 + C(V). Moreover, in light of Theorem 50, this implies that dimA(V) = 1 and A(V) ≅ C as desired. ◻

Theorem 54. Let V be a finitelyΩ-generated CRe>0-graded vertex operator algebra that is finitely generated by u
1, . . . ,uk as in Remark 11

and, in addition, satisfies the following:

1. For each j ∈ {1, . . . , k}, ∣uj∣ is not an integer.
2. V0 =⊕∞n=0Vn.
3. Every simple CRe>0-graded V-module is ordinary.

Then, V is rational and has only one simple CRe>0-graded V-module.

Proof. SinceV is anΩ-generatedCRe>0-graded vertex operator algebra, using Theorem 53, we have that dimA(V) = 1. By Proposition 45(ii), we can conclude that V has only one simple CRe>0-graded V-module. Finally, by Theorem 46 and condition (3), we can conclude that V
is rational. ◻
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C. On rationality of CRe>0-graded Weyl vertex operator algebras

In this section, we apply Theorems 46 and 53 toWeyl vertex algebras μM with certain conformal structures as classified in Theorem 35 to
prove the rationality of μM for those values of μ that give μM the structure of anΩ-generatedCRe>0-graded vertex operator algebra, including,
for instance, when 0 < Re(μ) < 1 and Im(μ) = 0, which corresponds to the case of the central charge c real and in the range −1 < c < 2.

Theorem 55. Let μ ∈ C such that one of the following holds:

(i) 0 < Re(μ) ≤ 1/2 and ∣Im(μ)∣ ≤ Re(μ)
or

(ii) 0 < Re(1 − μ) < 1/2 and ∣Im(μ)∣ ≤ Re(1 − μ).
Then, ( μM ,ωμ) is a rationalΩ-generated CRe>0-graded vertex operator algebra and has only one simpleCRe>0-graded module, which is, in

fact, a simple ordinary μM-module, namely, μM itself.

Proof. Theorem 35 implies that μM is an Ω-generated CRe>0-graded vertex operator algebra. Theorem 53 and the fact that∣a(−1)1∣ = 1 − μ and ∣a∗(0)1∣ = μ imply that A(μM) ≅ C, and thus, μM has only one irreducible CRe>0-graded module. Since μM is a CRe>0-
graded irreducible module over itself, we conclude that the only simple CRe>0-module is μM . We observe that, in fact, μM is an ordinary

μM-module as well. Thus, by Theorem 46, we have that μM is rational. ◻

Corollary 56. For i ∈ {1, . . . ,n}, if μi ∈ C and one of the following holds for each μi,

(i) 0 < Re(μi) ≤ 1/2 and ∣Im(μi)∣ ≤ Re(μi)
or

(ii) 0 < Re(1 − μi) < 1/2 and ∣Im(μi)∣ ≤ Re(1 − μi).
Then, (μ1M ,ωμ1)⊗ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⊗ ( μnM ,ωμn) is rational.
Proof. This follows immediately from Theorem 55. ◻

Formore general values of μ, namely, in the range 0 ≤ Re(μ) ≤ 1, but not necessarily in the subregion defined by (i) and (ii) in Theorem 55
and Corollary 56, we do not necessarily obtain a CRe>0 graded vertex operator algebra structure on μM , but we still have that μM is a finitely
Ω-generated CRe>0-graded vertex algebra (see Theorem 35 Case II). We conclude this section by showing that these families of Weyl vertex
algebras admit only one irreducible CRe>0-graded simple module.

Theorem 57. Let μ ∈ C/{0, 1} be such that 0 ≤ Re(μ) ≤ 1. Then, the Weyl vertex algebra μM admits a unique, up to isomorphism,
irreducible CRe>0-graded module, which is μM itself.

Proof. By Theorem 35 (II), for μ ∈ C such that 0 ≤ Re(μ) ≤ 1, the Weyl vertex algebra μM is a finitely Ω-generated CRe>0-graded vertex
algebra. Moreover, because μ ≠ 0, 1, we have from Eqs. (17) and (18) that the strong generators of μM have non-integer degree so that con-
dition (1) of Theorem 53 is satisfied. In addition, since Ω(μM) = C1, it is clear that condition (2) of the Theorem also holds. Therefore, we
obtain that A(μM) ≅ C. Finally, Proposition 45 (2) implies that μM admits only one irreducible CRe>0-graded module, which must be μM
itself. ◻

Remark 58.

1. We note that in light of Theorem 57, we obtain a family of conformal vertex algebras in which the Zhu algebra is one dimensional.
In particular, the class of the conformal vector [ω] ∈ A(V) must be a multiple of the class of the vacuum vector [1] as in the classical
setting of vertex operator algebras constructed from self-dual lattices.34

2. The Weyl vertex algebras admit many non-isomorphic irreducible weak modules such as the relaxed highest weight modules studied
in Ref. 21. We note, however, that those modules are independent of the conformal structure on the Weyl vertex algebra and are not
CRe>0-modules because they have infinite-dimensional graded components. In particular, they are not “admissible” modules, namely,
modules induced from the level zero Zhu algebra and, thus, possessing a CRe>0-grading. Other such examples of (non-admissible)
non-isomorphic weak modules are the (generalized) Whittaker modules, for which the reducibility was studied in Refs. 24 and 25.

VI. SUMMARY OF APPLICATIONS AND FUTURE WORK

In this work, we classified the C-graded conformal structures associated with the Weyl vertex algebra. Moreover, we showed that a
large family of these vertex algebras admits a unique irreducible “admissible” module in the appropriate sense. We also described in detail
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which families of Weyl vertex algebras admit the C-graded notion of a vertex operator algebra and proved that non-integer C-graded Weyl
vertex operator algebras are rational. In the literature, the Weyl vertex algebra at central charge 2 has been studied in detail (see, for instance,
Refs. 21–23 and 29). This vertex algebra, 0M in our notation, is not a vertex operator algebra because its graded components fail to be finite
dimensional. Linshaw showed in Ref. 29 that the (level zero) Zhu algebra A(0M) is isomorphic to the rank one Weyl algebra A1. Higher
level Zhu algebras introduced by Dong, Li, and Mason in Ref. 35, can be used to study indecomposable nonirreducible modules. Using the
theory and methods developed by Barron, along with Vander Werf and Yang in Refs. 36 and 37, and by Addabbo and Barron in Refs. 38 and
39, preliminary calculations by Addabbo together with the authors of the current paper indicate that the level one Zhu algebra for this Weyl
vertex algebra satisfies

A1(0M) ≅ A1 ⊕ (A1 ⊗Mat2(C)),
with A1 being the rank one Weyl algebra. In particular, the injective image of the level zero Zhu algebra A1 inside the level one Zhu algebra
has a direct sum complement, namely,A1 ⊗Mat2(C), and this complement is Morita equivalent to the level zero Zhu algebraA1. Therefore,
there are no new N-gradable 0M-modules detected by the level one Zhu algebra for 0M that were not already detected by the level zero Zhu
algebra. Thus, this agrees with the work of Ref. 23 on category F as discussed in the Introduction. Although this shows that the structure of
the level one Zhu algebra gives no new information for the admissible 0M-modules, we expect that the study of higher level Zhu algebras for

0M and in the more generalC-graded setting will shed light on the difficult open problem of describing the Zhu algebra for an orbifold vertex
algebra in which twisted modules are expected to be detected.
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APPENDIX: PROOF OF LEMMA 14

We will prove that if V is anΩ-generated CRe>0-graded vertex algebra, then it satisfies the following:
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For r ≥ 1, v1, . . ., vr homogeneous elements in V , n1, . . ., nr integers, and u0 being a vector inΩ(V) such that

v
r
nrv

r−1
nr−1 ⋅ ⋅ ⋅ v

1
n1u

0
≠ 0,

either
r

∑
j=1

(∣vj∣ − nj − 1) = 0 or Re
⎛
⎝

r

∑
j=1

(∣vj∣ − nj − 1)⎞⎠ > 0.

Proof. We prove the proposition by induction on r. If r = 1 and v
1
n1u

0 ≠ 0, then because u0 ∈ Ω(V), we have that either n1 = ∣v1∣ − 1 or
n < Re(∣v1∣ − 1). Equivalently, either ∣v1∣ − n1 − 1 = 0 or Re(∣v1∣ − 1 − n) > 0, so the proposition holds for r = 1.

Next, assume that r ≥ 2 and that

v
r
nrv

r−1
nr−1 ⋅ ⋅ ⋅ v

1
n1u

0
≠ 0.

Using the inductive hypothesis on

v
r−1
nr−1 ⋅ ⋅ ⋅ v

1
n1u

0
,

we know that either
r−1

∑
j=1

(∣vj∣ − nj − 1) = 0 or Re
⎛
⎝
r−1

∑
j=1

(∣vj∣ − nj − 1)⎞⎠ > 0.

We consider the following two cases:
Case 1: If either ∣vr ∣ − nr − 1 = 0 or Re(∣vr ∣ − nr − 1) > 0, we can conclude immediately that either ∑r

j=1(∣vj∣ − nj − 1) = 0 or

Re(∑r
j=1(∣vj∣ − nj − 1)) > 0 and we are done with this case.

Case 2: If ∣vr ∣ − nr − 1 ≠ 0 and Re(∣vr ∣ − nr − 1) ≤ 0, before presenting the proof of the lemma in this case, we recall the commutator formula
[cf. Eq. (3.1.9) in Ref. 28], which holds for n,m ∈ Z and any two elements v, v′ in a vertex algebra,

[vn, v′m] =∑
i≥0

(n
i
)(viv′)m+n−i. (A1)

Using (A1), we can rewrite

v
r
nrv

r−1
nr−1v

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0

= v
r−1
nr−1v

r
nrv

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0
+∑

i≥0

(nr
i
)(vri vr−1)nr+nr−1−ivr−2nr−2 ⋅ ⋅ ⋅ v

1
n1u

0
. (A2)

We further analyze the following two subcases:
Case 2.I: There exists i ≥ 0 such that (vri vr−1)nr+nr−1−ivr−2nr−2 ⋅ ⋅ ⋅ v

1
n1u

0 ≠ 0. By the inductive hypothesis, we have that

∣vri vr−1∣ − nr − nr−1 + i − 1 + r−2

∑
j=1

(∣vj∣ − nj − 1) = 0
or

Re
⎛
⎝∣vri vr−1∣ − nr − nr−1 + i − 1 +

r−2

∑
j=1

(∣vj∣ − nj − 1)⎞⎠ > 0.

Using Remark 3 (2), we have that ∣vri vr−1∣ = ∣vr ∣ + ∣vr−1∣ − i − 1, so we can conclude that either ∑r
j=1(∣vj∣ − nj − 1) = 0

or Re(∑r
j=1(∣vj∣ − nj − 1)) > 0, and the lemma holds in case 2.I.

Case 2.II: For all i ≥ 0, (vri vr−1)nr+nr−1−ivr−2nr−2 ⋅ ⋅ ⋅ v
1
n1u

0 = 0. Then, by (A2), we have that

v
r
nrv

r−1
nr−1v

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0
= v

r−1
nr−1v

r
nrv

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0
.

Using the commutator formula (A1) again on the right-hand side of the equation above, we get
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v
r−1
nr−1 v

r
nrv

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0

= v
r−1
nr−1(vr−2nr−2v

r
nrv

r−3
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0
+∑

i≥0

(nr
i
)(vri vr−2)nr+nr−2−ivr−3nr−3 ⋅ ⋅ ⋅ v

1
n1)u0.

If there exists i ≥ 0 such that vr−1nr−1(vri vr−2)nr+nr−2−ivr−3nr−3 ⋅ ⋅ ⋅ v
1
n1u

0 ≠ 0 using the inductive hypothesis, we have that either

r

∑
j=1

(∣vj∣ − nj − 1) = 0 or Re
⎛
⎝

r

∑
j=1

(∣vj∣ − nj − 1)⎞⎠ > 0.
Moreover, this reasoning applies as long as there exists 1 < j < r and i ≥ 0 such that

v
r−1
nr−1v

r−2
nr−2 ⋅ ⋅ ⋅ (vri vr−j)nr+nr−j−i ⋅ ⋅ ⋅ v1n1u0 ≠ 0.

To finish the proof, we show that there must exist such j and i: Otherwise, the commutator formula applied r times implies that

v
r
nrv

r−1
nr−1v

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1u

0
= v

r−1
nr−1v

r−2
nr−2 ⋅ ⋅ ⋅ v

1
n1v

r
nru

0
≠ 0.

In particular, vrnru
0 ≠ 0, which contradicts the fact that u0 ∈ Ω(V) since by assumption ∣vr ∣ − nr − 1 ≠ 0 and Re(∣vr ∣ − nr − 1) ≤ 0 in case 2.

Therefore, the lemma holds in case 2.II. ◻
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7A. M. Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B 103, 207–210 (1981).
8A. M. Polyakov, “Quantum geometry of fermionic strings,” Phys. Lett. B 103, 211–213 (1981).
9D. Friedan, E. Martinec, and S. Shenker, “Conformal invariance, supersymmetry, and string theory,” Nucl. Phys. B 271, 93–165 (1986).
10B. L. Feigin and E. V. Frenkel, “Bosonic ghost systems and the Virasoro algebra,” Phys. Lett. B 246, 71–74 (1990).
11B. L. Feigin and E. V. Frenkel, “A Family of representation of affine Lie algebras,” Russ. Math. Surv. 43, 221–222 (1988).
12B. L. Feigin and E. V. Frenkel, “Affine Kac-Moody algebras and semi-infinite flag manifolds,” Commun. Math. Phys. 128, 161–189 (1990).
13B. L. Feigin and E. V. Frenkel, “Representation of affine Kac-Moody Lie algebras and bosonization,” in Physics and Mathematics of Strings (World Scientific, 1990),
pp. 271–316.
14E. V. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs Vol. 88 (American Mathematical Society, Providence, RI,
2001).
15F. Malikov, V. Schechtman, and A. Vaintrob, “Chiral de Rham complex,” Commun. Math. Phys. 204, 439–473 (1999).
16M.Wakimoto, “Fock representation of affine Lie algebra A

(1)
1 ,” Commun. Math. Phys. 104, 605–609 (1986).

17V. Anagiannis, M. C. N. Cheng, and S. M. Harrison, “K3 elliptic genus and an umbral moonshine module,” Commun. Math. Phys. 366, 647–680 (2019).
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