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Abstract

Thermal transport is a fundamental process underpinning a wide range of applications. Traditional exper-

imental and computational methods have substantially advanced our understanding of nanoscale thermal

transport. However, they continue to face challenges, such as the cost and speed associated with the

experimental and computational methods, limiting their e!ectiveness for investigating complex nanoscale

systems. Machine learning (ML) has emerged as a powerful approach in this domain, o!ering unique

capabilities for processing extensive datasets, identifying intricate patterns, and designing novel materi-

als. In this article, we provide an overview of recent advancements and applications of ML in nanoscale

thermal transport, emphasizing polymeric systems along with interfaces and inorganic materials. Specif-

ically, we review recent progress in property prediction, material design, atomistic simulations, and data

analysis. We also highlight promising ML methods, including transfer learning, active learning, and

physics-informed neural networks, which e!ectively address data scarcity and improve model accuracy.

Finally, we present our perspective on emerging trends and future research directions, emphasizing their

potential to guide the discovery and design of next-generation thermal materials and to unravel complex

thermal phenomena.
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1 Introduction

Thermal transport at the nanoscale plays a vital role in diverse technologies, including nanoscale elec-

tronics, energy conversion systems, phase-change memory, thermal barriers, thermoelectric devices, photonic

components, and biomedical applications.1,2 As device dimensions approach nanometer scales, managing

heat flow becomes increasingly challenging due to size e!ects, interface phenomena, and material hetero-

geneities.3 For example, local hot spots in integrated circuits can degrade performance and reliability if heat is

not e”ciently dissipated.4 In thermoelectric materials, low thermal conductivity (TC) is essential to enhance

energy conversion e”ciency.5 A substantial portion of recent research, including the applications reviewed

in this work, focuses on polymer-based systems because of their lightweight, flexible nature, and tunable

properties. However, polymers generally exhibit low intrinsic TC, typically in the range of 0.1–0.5 W/mK,

primarily due to their disordered molecular structure and weak inter-chain interactions that limit e”cient

phonon transport.6 These diverse needs across applications, from e”cient heat dissipation in nanoelectronics

to thermal insulation in polymers and thermoelectric materials, highlight the importance of understanding

and controlling heat transport mechanisms at the nanoscale.

Traditional modeling approaches for thermal transport provide essential physical insights but face limi-

tations when dealing with nanoscale complexity. First-principles density functional theory (DFT) can yield

accurate TC predictions. However, they are computationally expensive for large, complex, or disordered

systems.2 Classical molecular dynamics (MD) simulations can handle larger systems (including amorphous

materials and interfaces).7 However, their accuracy depends on the quality of interatomic potentials, and

they cannot capture quantum e!ects.8 Both DFT and MD cannot handle mesoscale structures encountered in

practical applications (e.g., nanotransistors). At this scale, tools like Boltzmann transport equations (BTE)

are accurate, but their numerical computational e”ciency is low. Moreover, experimental or brute-force

computational searches for materials with improved thermal properties are time-consuming. These chal-

lenges have motivated the integration of machine learning (ML) techniques into nanoscale thermal transport

research.9

Data-driven ML o!ers an e”cient way to model, predict, and design materials with targeted thermal

properties. ML models can rapidly estimate TC from a material’s composition or structure by learning
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from existing data from experiments or simulations, enabling high-throughput screening to complement

traditional calculations.10 For example, ML models trained on physically meaningful descriptors have been

successfully applied in a high-throughput screening framework to identify polymer chains with high TC,

revealing structure-property relationships and accelerating the discovery of promising polymers for thermal

management applications.11 Additionally, ML-based interatomic potential can emulate near-DFT accuracy,

allowing e”cient simulations of phonon transport in systems that are otherwise di”cult to treat with first-

principles DFT methods.12

Recent demonstrations of the synergy between physics-based modeling methods (such as MD and DFT)

and ML techniques (including regression models, neural networks, and symbolic regression) have spanned

studies on polymers, interfaces, and inorganic nanostructures. In polymers, ML models have identified molec-

ular structures that yield higher TC despite these materials’ intrinsically poor heat transfer performance.13

At material interfaces, which often dominate thermal resistance in nanostructured devices, ML models can

predict thermal boundary conductance (TBC) and guide interface engineering to minimize resistance.14

Similarly, ML models can quickly evaluate how defects or nanoscale architecture a!ect phonon transport in

crystalline alloys and superlattices.15,16

In summary, integrating ML with conventional thermal transport study methods o!ers a powerful route

to accelerate materials development and deepen our understanding of heat transfer at the nanoscale. This

chapter highlights recent advances in applying ML techniques to nanoscale thermal transport in polymers,

interfaces, and nanostructured materials, emphasizing how combining data-driven models with physics-based

insight enables the design of materials with tailored thermal transport properties and help conventional

thermal modeling tools to be more e”cient.

2 Machine Learning Methods

2.1 Fundamental Principles of Machine Learning

ML techniques have shown promising applicability in addressing problems involving high-dimensional

features and complex mappings, especially when large datasets are available. In thermal transport, one of the
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Depending on their learning paradigms, ML algorithms can be classified into supervised, unsupervised,

semi-supervised, and reinforcement learning (RL).20 Supervised learning algorithms use labeled training

datasets to learn a mapping function between input descriptors and output targets, enabling regression or

classification tasks. Based on the nature of the output, if the model targets are discrete quantities, such

as crystal structures or specific structural motifs, classification methods can be used to find the prediction

function, whereas regression methods are applicable for continuous properties, such as glass transition tem-

perature (Tg). In contrast, unsupervised learning, such as principal component analysis (PCA) and K-means

clustering, is employed to uncover intrinsic data patterns and draw inferences without labeled outputs, facil-

itating dimensionality reduction and data clustering. Another category is semi-supervised learning, which

bridges supervised and unsupervised learning, using a limited amount of labeled data to initially train a

model and then refined iteratively using abundant unlabeled data. RL is a method that allows an agent to

interactively learn through trial and error, optimizing its performance based on feedback from actions and

experiences. Both conventional and deep learning methods21 have been successfully applied to heat transfer,

such as the prediction of TC and TBC. Common conventional ML methods are decision trees (DT), random

forests (RF), support vector machines (SVM), and Gaussian process regression (GPR). Popular deep learn-

ing architectures include artificial neural networks (ANNs), graph neural networks (GNNs), convolutional

neural networks (CNNs), and generative adversarial networks (GANs).

Before practical application, ML models must be evaluated on unseen datasets, known as test sets, to

assess their generalization and extrapolation ability. Most thermal transport prediction tasks involve regres-

sion, commonly evaluated by metrics such as mean square error (MSE), mean absolute error (MAE), and

root mean square error (RMSE). These metrics quantify generalization error, with lower values indicating

better model performance. However, they are sensitive to outliers. To mitigate data sensitivity issues, correla-

tion metrics such as Pearson, Kendall, and Spearman coe”cients have been employed to evaluate the model

performance.20 Additionally, model validation and optimization methods that rely on withholding subsets

of data during training, ranging from a simple holdout, over k-fold cross-validation, leave-one-out cross-

validation, Monte Carlo cross-validation, up to leave-one-cluster-out cross-validation, are also extensively

used.22
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A key challenge in nanoscale thermal transport is the limited availability of high-quality data points,

often restricted to hundreds or thousands at most.23 To overcome this limitation, recent advances in ML

have emphasized techniques suited for small datasets, such as transfer learning (TL) and active learning

(AL). Moreover, integrating physical laws explicitly into ML frameworks presents a promising strategy to

enhance prediction accuracy and reliability, as detailed in subsequent subsections.

2.2 Transfer Learning and Multi-Fidelity Models

TL and multi-fidelity modeling have become increasingly important techniques in nanoscale thermal

transport research, where high-quality data for properties like TC are often limited. TL enables models to

learn from large datasets of proxy or lower-fidelity properties and then fine-tune on smaller high-fidelity

datasets, thus improving predictive performance and enabling better generalization to new materials.24

Multi-fidelity approaches combine information across data of varying accuracy levels, enhancing the model’s

robustness.25

Wu et al.26 provided a detailed example of TL applied to polymer TC prediction. Their workflow consisted

of two stages: first, a model was trained to predict the glass transition temperature (Tg) of polymers using

a large dataset containing thousands of entries. Molecular descriptors were generated from the repeat unit

structures of the polymers, and Tg was selected as the source property because it is both more widely available

than TC and physically related to factors such as chain rigidity, segmental motion, and packing density,

which also influence thermal transport. In the second stage, the parameters learned from the Tg model were

transferred to initialize a TC prediction model, which was then fine-tuned using a much smaller dataset of

experimentally measured polymer TCs. By leveraging the structural–property correlations captured in the Tg

pretraining phase, the TL model significantly improved TC prediction accuracy compared to training from

scratch. Using this approach, the authors identified and synthesized three polyimide-based polymers with

room-temperature TCs 18–80% higher than typical amorphous polyimides, demonstrating that abundant

Tg data can be e!ectively used to bootstrap accurate TC prediction when direct measurements are scarce.

Building on leveraging large-scale data, Ju et al.27 focused on lattice TC prediction in crystalline materials.

By pretraining a neural network on low-order features and transferring the learned descriptors, their model
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enabled extrapolative predictions across over 60,000 compounds. The study emphasized that descriptors like

phonon relaxation time and dipole polarizability play a critical role more than mechanical hardness alone in

determining TC. Extending this concept further, Liu et al.18 showed that TL enhances lattice TC predictions

by integrating limited high-fidelity experimental and first-principles data with extensive low-fidelity data

from phenomenological empirical models. Treating these as related tasks, their approach improved model

accuracy by up to 23% in R2 and reduced the average factor di!erence, a logarithmic metric that quantifies

the typical order-of magnitude error between predicted and reference values by 30%. The transfer-learned

model screened an extensive semiconductor database, identifying several candidates with room-temperature

TC above 350 W/mK, confirmed by first-principles simulations. Predicted top candidates are illustrated in

Figure 1b comparing TL predictions with high-fidelity data. Recent works show that TL and multi-fidelity

approaches can significantly enhance ML model performance in predicting complex thermal properties by

e!ectively combining large low-fidelity datasets with limited but crucial high-fidelity information.28

2.3 Active Learning

AL algorithms typically comprise three key components: a surrogate model to predict the target property,

an acquisition function to identify the most informative next experiment, and an iterative update step that

incorporates newly acquired data into the training set. Surrogate models, such as GPR, approximate expen-

sive simulation results or experimental measurements, enabling rapid screening of candidates at reduced

computational cost.23 AL frameworks further accelerate discovery by strategically selecting the most infor-

mative data points to evaluate next, balancing exploitation of known promising regions and exploration of

uncertain areas.29 Kim et al.30 applied GPR with AL to identify polymers with high Tg. Starting from a

small dataset, their iterative strategy terminated after identifying 10 polymers exceeding the Tg threshold,

with benchmarking showing superior performance over random selection.

Extending to TC, Xu et al.31 combined high-throughput MD simulations with AL to explore 550,000

polymer blends. Starting from MD simulations of about 600 single-component polymers and 200 blends, an

AL framework was used to explore the TC of approximately 550,000 unlabeled blends using a weighted sum

representation method. Figure 1c shows a schematic diagram of their AL strategy. Their method revealed
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that AL e!ectively accelerated the discovery of high-performance blends and revealed a positive association

between TC improvement, the radius of gyration (Rg), and hydrogen bonding. Zhang et al.32 used an AL

framework to discover amorphous polymers with enhanced TC under mechanical strain. They trained a GPR

model on MD simulation data and applied Bayesian optimization to iteratively select new candidates from

the PoLyInfo database for further simulation. After several AL cycles, they identified ten strained polymers

with TC above 1 W/mK and revealed structural features linked to high TC under strain. These studies

demonstrate that combining surrogate modeling with AL enables e”cient exploration of vast chemical spaces.

2.4 Physics-Informed Machine Learning

Unlike the purely data-driven ML, Physics-Informed Neural Networks (PINNs) are a type of ML models

that incorporate physical laws directly into the training of neural networks. The physics laws are typically

expressed as partial di!erential equations (PDEs) or ordinary di!erential equations (ODEs) together with

boundary/initial conditions. PINNs were originally introduced by Raissi, Perdikaris, and Karniadakis,33,34

and have emerged as a powerful framework for solving forward and inverse problems in computational physics.

The framework is particularly e!ective in regimes where data are limited or hard to obtain.

PINNs were developed to address challenges faced by classical numerical methods such as finite di!erence

and finite element methods. By incorporating governing PDEs/ODEs into the loss function and leveraging

automatic di!erentiation (AD), physics is enforced in PINN models without the need for domain discretiza-

tion. To be specific, derivatives are computed analytically using chain rule via AD, and the loss function is

constructed by evaluating PDE/ODE residuals. Since the introduction of PINNs, many frameworks have been

developed to include advanced training techniques,35,36 modified network architectures,37–39 and improved

constraint-handling strategies.40

Consider a PDE of the form:

N [u(x)] = f(x), x → #, (1)

with boundary or initial conditions:

B[u(x)] = g(x), x → ω#. (2)
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The N [·] is a di!erential operator (may include spatial and temporal derivatives) that characterizes the

governing PDE, B[·] is a boundary or initial condition operator, # is the spatial domain of interest, and ω#

is the boundary of the domain #. A PINN approximates the solution u(x) using a neural network uω(x),

where ε denotes the network parameters. The total loss function is expressed in Eq. 3,

Ltotal = ϑPDELPDE + ϑBCLBC + ϑDataLData, (3)

where ϑPDE, ϑBC, and ϑData are tunable weights. The LPDE and LBC are PDE residual and boundary/initial

condition residual, respectively, as expressed in Eq. 4 and Eq. 5, and LData is data residual. Usually data

are not needed if the complete physics is known. However, in inverse problems or in the scenarios where the

physics is only partially available, data will be needed to guarantee the uniqueness of solution. The Nr and

Nb denote the number of collocation points sampled in the interior domain # and on the boundary (or initial

surface) ω#, respectively. Training a PINN is an optimization process in which neural network parameters ε

are iteratively updated to minimize the loss function, thereby the governing equations and boundary/initial

conditions can be satisfied.

LPDE =
1

Nr

Nr∑

i=1

∣∣∣N [uω(x
(i)
r )]↑ f(x(i)

r )
∣∣∣
2
, (4)

LBC =
1

Nb

Nb∑

i=1

∣∣∣B[uω(x
(i)
b )]↑ g(x(i)

b )
∣∣∣
2
. (5)

Once training is complete, the well-trained PINN serves as a non-linear function that maps any input

variables (i.e., independent variables of the governing PDE) to their corresponding solutions (i.e., dependent

variables of the governing PDE). Theoretically, a well-trained PINN can infer solutions across the entire

input space, whereas the traditional numerical methods are limited to providing solutions only at mesh nodes

or cell centers.

To solve PDEs in heat transfer problems, PINNs can enforce governing physics (e.g., Fourier’s heat

conduction equation, phonon BTE, etc) through loss functions. Take phonon BTE for example, Li et al.41

used a PINN framework with two subnets to solve the parametrized nongray phonon BTE under small
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Fig. 2 Schematic of the PINN architecture for solving phonon BTE. Two deep neural networks (DNNs) are employed to
approximate the equilibrium (eeq) and non-equilibrium (eneq) components of the phonon energy distribution, respectively. The
inputs to the networks include the spatial coordinate vector x, the directional unit vector s = (cos ω, sin ω cosε, sin ω sinε)( ω
is the polar angle and ε is the azimuthal angle), the wave number k, and the polarization index p. The symbol µ represents
additional parameters, which for example can be characteristic system length L, to enable parametric learning.

temperature di!erence, as shown in Figure 2. The framework is successfully validated on 1D cross-plane, 2D

in-plane, 2D square, and 3D cuboid problems. Additionally, the Knudsen number is an extra input parameter

into the model, enabling parametric learning and fast inference of solution under di!erent Knudsen numbers.

Later, Li et al.42 extended this framework for solving the thermal transport problems with large temperature

gradient, where the assumption of small temperature di!erence no longer holds and the equilibrium phonon

energy distribution function cannot be linearized. This work features a pretrained shallow neural network

that predicts the scaling coe”cient that bridges local temperature and the equilibrium phonon energy. This

enhanced framework enables accurate prediction for 1D to 3D thermal problems with any temperature

gradient. Later, Zhou et al.43 improved the PINN framework and adapt it to solve the transient phonon BTE.

The time space is encoded into the neural network input layer, which allows the model to predict transient

temperature change in 1D and 2D problems. To extend to model to handle coupled phonon and electron

transport problems, Li et al.44 used three subnets to approximate phonon and electron pseudo temperatures
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and distribution functions separately. Two pretrained neural networks are used in the framework to predict

scaling coe”cient in the electron and phonon distribution functions.

3 Data Acquisition and Databases

Implementing ML in any domain requires relevant and su”cient data. In nanoscale thermal transport,

data can come from experimental measurements, computational simulations, or increasingly from public

databases that aggregate materials properties.

3.1 Experimental Databases

High-quality experimental databases are foundational in applying ML to thermal transport. They provide

curated property data, synthesis conditions, and metadata in structured formats for model development and

validation. Domain-specific resources in polymers, nanofluids, and thermoelectrics have enabled data-driven

discovery, supporting model generalizability and benchmarking across diverse material classes. As highlighted

in recent reviews, materials informatics frameworks integrating experiments and simulations with ML are

accelerating the identification of materials with extreme TC and functional performance.9 A leading example

is PoLyInfo,47 developed by NIMS, which contains over 500,000 curated experimental data points collected

over two decades. It organizes polymers by constitutional repeating units and provides detailed structural,

property, fabrication, and formation data. Designed for human and ML use, PoLyInfo enforces strict data

curation, making it a cornerstone for polymer research and a model for managing complex polymer structures.

Beyond polymers, several other domain-specific experimental databases have been developed to support

ML applications in areas such as nanofluids and thermoelectric materials. Mondejar et al.48 compiled an

open-access nanofluid database with 8,118 data records across 307 datasets, covering 13 base fluids and 19

nanoparticles. It organizes experimental data for five thermodynamic properties and two transport properties,

o!ering easy access to information on nanofluid behavior. The database, hosted on the Dortmund Databank,

also analyzes data consistency and challenges faced during collection.

Na et al.45 developed a public database containing experimentally synthesized thermoelectric materials

and their measured thermoelectric properties to support data-driven discovery. Using this dataset, they
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3.2 Simulation-Generated Databases

In addition to experimental resources, simulation-generated databases have become vital to ML in

nanoscale thermal transport. These datasets, often derived from high-throughput first-principles calculations

or MD simulations, o!er expansive coverage of materials space at a relatively low cost compared to experimen-

tal methods. Several platforms have been developed to provide open access to large-scale simulation-derived

data across polymers and inorganic materials. One of the most widely used platforms in this space is the Mate-

rials Project,50 an open-access platform designed to accelerate materials discovery through high-throughput

first-principles calculations. It provides an extensive database of computed structural, electronic, and ener-

getic properties for over 33,000 inorganic compounds, accessible via web applications, APIs, and open-source

analysis tools. The Materials Project enables rapid prototyping and data-driven exploration of new materials

by combining large-scale computation, web-based tools, and community collaboration.

Focusing on polymers, Polymer Genome46 is a data-powered informatics platform that accelerates poly-

mer property prediction using surrogate ML models. It combines a curated dataset of computationally and

experimentally measured properties for 854 polymers, represented through hierarchical fingerprints span-

ning atomic, molecular, and morphological features. The platform enables rapid property predictions such

as bandgap, dielectric constant, glass transition temperature, solubility parameter, and density, with uncer-

tainty estimates. An overview of the Polymer Genome dataset used for the development of property prediction

models is shown in Figure 3b.

To further expand the design space, Ma et al.51,52 developed PI1M, a benchmark database containing

approximately 1 million virtual polymers generated to support ML research in polymer informatics. A

generative model was trained on around 12,000 polymers from PolyInfo and used to create the expanded

dataset. They introduced a polymer embedding (PE) representation and demonstrated its e!ectiveness in

regression tasks for properties like density, Tg, Tm, and dielectric constants. PI1M was shown to cover

similar chemical space as PolyInfo while significantly filling previously sparse regions, providing a valuable

resource for future polymer informatics studies. Building upon this, Xu et al.53 developed the POINT2

database, which integrates PI1M and other datasets into a comprehensive benchmark with diverse polymer
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representations and ML models, further enhancing property predictions, uncertainty estimation, and polymer

synthesizability.

For inorganic materials, the Open Quantum Materials Database (OQMD)54 contains over one million

compounds calculated through high-throughput DFT studies, including both experimentally known and

hypothetical structures. It supports materials discovery e!orts worldwide and increasingly integrates ML-

based projects to accelerate exploration. The database emphasizes open public access and develops universal

querying protocols to align with Findable, Accessible, Interoperable, and Reusable (FAIR) data principles.

OQMD remains a significant platform for data-driven materials research and innovation. However, building

high-fidelity simulation-generated databases presents several challenges. Ensuring accuracy often requires

extensive convergence testing, careful choice of exchange-correlation functionals, and validation against exper-

imental benchmarks, which can be computationally expensive. For MD-based datasets, force field or potential

selection strongly influences fidelity, and transferability across diverse chemical systems remains non-trivial.

Achieving broad chemical coverage while avoiding data imbalance is another hurdle, as over-representation

of certain chemistries can bias ML models. Additionally, consistent data curation, metadata annotation,

and adherence to FAIR principles are essential to ensure reproducibility and interoperability across plat-

forms. These challenges underscore the importance of standardized workflows, automated error detection,

and community-driven validation e!orts to maintain the reliability of large-scale computational materials

databases.

3.3 Feature engineering

Feature engineering generally includes data representation and feature selection, both critical determi-

nants of ML model performance. Appropriate data representation (also termed descriptors or fingerprints)

is essential for ensuring model accuracy and interpretability. Collected chemical, structural, or material-

property data should be converted into machine readable descriptors, serving as input features for ML

algorithms. Insu”cient descriptors may hinder model convergence, while redundant features can cause over-

fitting. Thus, e!ective material descriptors typically meet several requirements:55 completeness, uniqueness,

descriptiveness and e”ciency.
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Molecular structures are commonly represented as string notations, which are human-readable and

machine-friendly, facilitating subsequent processing. The Simplified Molecular Input Line Entry System

(SMILES)56 is the most widely used format, which encodes molecular structures as sequences of characters

denoting atoms, bonds, and substructures. Several extensions have been developed to address limitations of

standard SMILES. For example, Self-referencing Embedded Strings (SELFIES)57 resolve issues related to

invalid or physically unrealistic molecular representations inherent in SMILES. In polymer representation,

SMILES employs asterisks (*) to indicate the connection of repeating units, reflecting polymers’ repeti-

tive macromolecular structure. BigSMILES,58 a polymer-specific variant, introduces additional syntax to

accurately capture polymer features such as branching and copolymerization.

Fingerprinting intrinsically depends on the application context, capturing essential attributes of materials

through either handcrafted or automatically generated methods. Hand-crafted descriptors are constructed

based on explicit domain knowledge and predefined rules. For polymer systems, these include macroscopic

properties such as molecular weight distributions, crystallinity, and chain morphology, as well as chemical

group contributions59 and fragment-based fingerprints. Traditional fingerprints encode structural features

as binary vectors indicating the presence or absence of substructures, which e!ectively correlate polymer

structures with thermal properties such as Tg and TC. Each bit in a fingerprint corresponds to a predefined

fragment, facilitating e”cient comparison and screening of large datasets. Common fingerprints include

Morgan fingerprints (Extended Connectivity Fingerprints, ECFP),60 Molecular Access System (MACCS)

keys, Topological Torsion fingerprints,61 and Daylight fingerprints.

Similarly, handcrafted descriptors for TBC include physical descriptors, such as acoustic velocities, Debye

temperatures and densities; chemical descriptors, such as interfacial binding energy and lattice mismatch;

and process descriptors like film thickness and roughness.62 Spectral phonon descriptors such as domi-

nant phonon frequencies, group velocities and relaxation times allow ML models to utilize classical phonon

transport relations while maintaining interpretability under data-scarce conditions.11,63 At the atomic level,

descriptors like Smooth Overlap of Atomic Positions (SOAP) and radial distribution functions (RDF) cap-

ture local atomic environments and spatial correlations crucial for phonon transport modeling. Integrating
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these physics-guided features introduces an inductive bias, substantially improving model extrapolation to

unseen material pairs.

With recent advancements in deep learning, there is a shift toward automatically learned descriptors,

which dynamically extract representations directly from data. Two prevalent methods are graph-based or

language-based approaches. Graph-based representations exploit molecular topology by modeling molecules

as graphs, with atoms as nodes and bonds as edges. GNNs64 leverage graph structures to learn hierarchi-

cal and spatially aware features, implicitly capturing complex interactions critical for predicting thermal

transport properties and generating novel structures. Language-based embeddings, inspired by natural lan-

guage processing, treat SMILES strings as input sequences. Models such as PE51 and transformer-based

architectures directly encode chemical semantics and structural context from data, eliminating the need for

manually defined descriptors. Recent models like polyBERT65 and TransPolymer66 demonstrate comparable

or superior accuracy compared to classical descriptors (e.g., ECFP, Polymer Genome67) in polymer prop-

erty predictions. Furthermore, Guo et al.68 introduced GraSeq, a joint graph and sequence representation

learning model which outperformed single-modality models across multiple molecular property prediction

benchmarks, showing the complementary nature of information extracted from these two representation

strategies. Nonetheless, handcrafted descriptors remain competitive, particularly when datasets are small or

computational resources limited,69 and the relative advantage of automatically learned descriptors depends

on the specific dataset and task.

Feature selection is also crucial for eliminating irrelevant or redundant features to reduce complexity

and dimensionality in structure-property relationship modeling.70 This process can be automated using

various strategies. For instance, the Least Absolute Shrinkage and Selection Operator (LASSO)71 automati-

cally eliminates irrelevant functional group signals through ϖ1-regularization or symbolic regression, reducing

overfitting in high-dimensional fingerprint scenarios. The Sure Independence Screening and Sparsifying Oper-

ator (SISSO)72 constructs sparse, physically meaningful descriptors from large candidate pools. Moreover,

encoder architectures such as multilayer perceptron (MLP) and autoencoders can automatically capture
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salient chemical and structural patterns, performing dimensionality reduction or feature selection by encod-

ing inputs into a low-dimensional latent vectors. These techniques help identify and retain relevant features,

enhancing the e”ciency and e!ectiveness of ML models.

4 Applications of ML in Nanoscale Thermal Transport

4.1 ML for Thermal Property Prediction

4.1.1 Polymer properties prediction

Early e!orts applied ML to individual polymer chains to understand intrinsic thermal transport proper-

ties. For example, Zhu et al.73 applied kernel ridge regression (KRR), a feed-forward ANN, and a CNN to

predict the lattice TC of diverse single polymer chains, which shows that CNN yielded the highest prediction

accuracy with a MAE of 5.20 W/mK, RMSE of 6.83 W/mK. In a recent high-throughput study, Huang et

al.11 developed an interpretable ML framework for exploring high TC polymer chains. They selected twenty

optimized descriptors from 320 physics-based descriptors (e.g., bonding, rigidity metrics) and enabled tree-

based models and an MLP to achieve R2 > 0.80 in TC prediction. The model revealed that ϱ-conjugation

and sti! backbones lead to higher single-chain TC due to high phonon group velocities. These findings agree

well with previous MD simulations of aligned polymer chains,74 showing that ML can correctly reveal certain

structure-property relationships.

In nanoscale thermal transport, Tg is an essential polymer properties when studying bulk homopolymer.

Luo and co-workers52 compared di!erent polymer representations for Tg prediction across di!erent ML

algorithms and found that the learned continuous “molecular embeddings” gave the best Tg correlation (R2 ↓

0.865), outperforming traditional Morgan fingerprints and molecular graph. Meanwhile, deep learning has

shown promise in polymer thermal property modeling. For example, Miccio and Schwartz77 trained a CNN on

images of polymer repeat units to predict Tg, achieving 6% average error. Likewise, Park et al.78 introduced a

graph convolutional network (GCN) model to predict multiple thermal properties, including Tg and melting

temperature (Tm). Their GCN attained high accuracy for Tg on a broad dataset, slightly surpassing the

performance of conventional circular fingerprints. Tao et al.79 proposed comprehensive benchmarks through
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homopolymers to tackle this challenge. Kuenneth et al.81 reported a multi-task DNN for copolymer infor-

matics that incorporated meta-learning techniques. They curated over 18,000 data points of Tg, Tm, and

thermal degradation temperature (Td) for polymers composed of one or two monomers and trained the

model which could accurately predict all three thermal properties for both homopolymers and binary ran-

dom copolymers. This approach achieved screening of copolymer to identify optimal Tg/Tm combinations.

Besides, Tao et al.82 explored multiple ML strategies for copolymer property prediction. They formulated

four model architectures - a standard feed-forward neural network (FFNN), a CNN, an recurrent neural net-

works (RNN), and a combined FFNN/RNN (fusion) mode, and evaluated them across four di!erent datasets.

The RNN architecture, which allows the sequence distribution to be processed both forward and backward,

is found to be the best-suited model for copolymers with good generalization ability. A more recent study by

Queen et al.83 introduced PolymerGNN for polyesters, a GNN-based multitask model capable of handling

copolymer compositions and branching. Each polymer (linear or branched, homopolymer or co-polyester) is

represented by its constituent monomer graphs, and the network jointly learns multiple targets like Tg and

inherent viscosity.

4.1.2 Thermal boundary conductance modeling

TBC is critical in thermal transport across heterogeneous interfaces in nanostructured materials, compos-

ite systems, and electronic devices. However, accurately modeling TBC is di”cult due to its dependence on

a complex interplay of atomic structure, interfacial chemistry, and phonon mismatch. ML o!ers a promising

approach to address these challenges by enabling data-driven prediction and optimization of interfacial ther-

mal resistance (ITR) and TBC across diverse material systems. Recent studies have integrated experimental

data, MD simulations, and first-principles calculations with ML models to accelerate interface screening and

provide interpretable insights into thermal transport mechanisms.

Wu et al.14 developed ML models to predict ITR based on experimental data using three physical,

chemical, and material descriptors. A list of the three descriptor sets is shown in Figure 4b. Their models

achieved a predictive performance of 96%, using inputs from over 80,000 material systems composed of

293 materials. Among the top 100 high-ITR predictions, 25 material systems were consistently identified
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by at least two algorithms, including Bi/Si, which showed ultra-low TC. Building on this, Chen et al.76

employed ML and deep learning algorithms to predict ITR by addressing its high-dimensional nature. After

exploratory data analysis, they used XGBoost to identify the most significant descriptors and built concise

predictive models with XGBoost, KRR, and DNNs. An ensemble learning approach combined these models to

predict high melting points and high-ITR material systems relevant for spacecraft, automotive, and building

insulation applications. Pearson correlation coe”cient map between all 35 descriptors and the target ITR

in a training dataset is shown in Figure 4c. Complementing these data-driven methods, Rustam et al.84

presented a scalable Bayesian optimization framework to enhance TBC by dynamically running parallel MD

simulations via Message Passing Interface (MPI). They optimized heat transfer at the silicon/aluminum

(Si/Al) interface, achieving up to a 50% increase in TBC through a two-layer intermixed region with a

higher silicon concentration. The study highlighted that the randomness of intermixing and the stochastic

nature of MD contribute to the variance in TBC. Jin et al.85 combined MD simulations with ML to optimize

interfacial thermal transport in Si/Ge heterostructures through interfacial nanostructuring. They introduced

three structural parameters to describe nanostructures and demonstrated that ITR exhibits nonmonotonic

dependencies on nanostructure height, density, and angle. The study revealed that optimal heat dissipation

occurs at specific structural configurations, with minima gradually disappearing as nanostructure angles

increase.

In a broader scope, Foss et al.86 used first-principles phonon dispersion calculations combined with a 2D-

3D Boltzmann transport model to compute the TBC of 156 unique 2D/3D interface pairs. They developed ML

models, including neural networks and Gaussian processes, achieving high predictive accuracy with RMSE

< 5 MW/m2K and R2 > 0.99. Sensitivity analysis identified key descriptors impacting TBC, and decision-

tree models demonstrated good transferability to unseen materials. Anandakrishnan et al.87 proposed a

data-driven method to model TBR at nanoscale solid-liquid interfaces using macroscopic observables. Using

heuristic algorithms, they correlated TBR with thermodynamic state variables, material properties, and

geometric parameters, deriving generalized predictive relationships. Their analysis showed that interfacial

liquid layering strongly correlates with TBR, while work on adhesion and system geometry also becomes
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significant under phonon size e!ects and extreme conditions. Together, these studies demonstrate how ML

enhances interfacial thermal transport’s prediction, understanding, and optimization.

4.2 ML for Materials Design and Optimization

4.2.1 Design of Polymers using ML

Forward screening and inverse design are two of the most prominent supervised learning tasks for polymer

design. Early e!orts in polymer design relied on high-throughput virtual screening (HTVS), which explores

large, predefined libraries using ML predictors or high-throughput simulations (e.g., DFT or MD). These

screenings are guided by expert intuition, with iterative feedback between theory and experiment refining

the candidate pool. For example, Li and co-workers88 trained a DNN model to screen one million hypothet-

ical polymers, identifying over 65,000 candidates with Tg greater than 200 °C, showing the e”ciency of in

expanding high Tg polymer discovery. They also successfully identified multi-functional polyimides with high

Tg and tensile strength through high-throughput screening combined with explainable ML models.89 Huang

et al.90 proposed a hybrid workflow integrating physical feature engineering with automated MD simulations

to explore amorphous polymers with high TC. Based on trained ML models using 25 optimized descriptors,

104 high TC candidates were identified out of over 790,000 polymers, over half exceeding 0.35 W/mK. The

study suggested that the conjugated molecular structure, chain sti!ness, and maximum relative atomic mass

in polymers have a strong influence on TC. These mostly agree with physics-based MD simulations.91

Unlike forward screening, inverse polymer design enables the direct, on-demand generation of candi-

date structures tailored to target properties or performance requirements. Typically, candidate structures

are iteratively generated by applying sequence perturbations or interpolations within learned latent spaces

(generator), then evaluated by property predictors, until structures meet the desired properties (Figure 5a).

Crucially, additional filtering steps, such as synthetic accessibility (SA) scores or retrosynthesis rankings,

can ensure chemical validity of generated polymers. Recent advances in generative models, such as RNNs,

variational autoencoders (VAEs), RL, and GANs, have enabled inverse design of polymers with target prop-

erties. For instance, Batra et al.93 coupled the unsupervised syntax-directed VAE with the supervised GPR

method to identify polymers with high Tg and large band gap. They first encode known polymers meeting
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et al.13 employed RL framework based on RNN and MD-labeled TC data to discover amorphous polymers

with high predicted TC above 0.4 W/mK, with the top candidate reaching 0.69 W/mK after MD validation.

Liu et al.94 employed an invertible graph generative model to generate hypothetical polymers with promis-

ing properties, particularly focusing on high-temperature polymer dielectrics. Moreover, a recent benchmark

compared six deep generative models on real and hypothetical polymer datasets, identifying CharRNN,

REINVENT and GraphINVENT as the most e!ective for producing valid, diverse structures.95 These three

models were successfully further trained on real polymers using RL methods, targeting the generation of

hypothetical high-temperature polymers for extreme environments.

4.2.2 Search-based Optimization

Beyond predictive analytics, ML plays a key role in structural optimization for thermal transport, using

methods like simulated annealing, particle swarm optimization, genetic algorithms (GAs), Bayesian opti-

mization (BO), and Monte Carlo tree search (MCTS) to identify structures with desired thermal properties.

Global Optimization like GAs have been widely applied in polymer design as a template-based generative

approach. GAs iteratively evolve polymer structures to optimize desired properties by mimicking natural

selection processes. For example, Pilania et al.96 integrated the ML surrogate model with a GA, e”ciently

identifying multicomponent polymer compositions with a prespecified Tg. Kim et al.97 employed a GA guided

by ML property predictors to design polymers that simultaneously exhibit ultra-high Tg (>500 K) and wide

bandgaps (>6 eV), demonstrating GA’s ability to find polymers beyond known property limits. Similarly,

Zhou et al.98 combined MD with a GA to optimize the specific sequence of polyethylene-polypropylene (PE-

PP) copolymers for maximum TC, showing that the monomer sequence has a crucial e!ect on thermal energy

transport of the copolymers. Beyond GAs, other global search algorithms have also emerged. For instance,

Nagoya et al.99 applied a MCTS with rapid Green-Kubo MD evaluations to autonomously explore new

amorphous polyimides. After screening 1,000 evaluations, their MCTS approach found an optimal polymer

sequence with TC of 0.25 W/mK.

BO has also been applied to both single- and multi-objective optimizations for discovering desirable

polymers. In BO, each iteration fits an updated ML model, such as GPR, to predict the target property
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and its uncertainty, then selects the next candidate by maximizing an acquisition function (e.g., expected

improvement). This closed-loop ”AL” approach is well-suited for expensive evaluations. In thermal transport

material design, optimization is often needed to balance multiple competing objectives simultaneously. Multi-

objective EAs (MOEAs) and multi-objective BO (MOBO) techniques have been applied to generate Pareto-

optimal sets of polymer candidates that balance such trade-o!s. Huang et al.92 developed a framework

combining a deep-learning surrogate model with two advanced multi-objective optimizers to design sequence-

defined polymers with high intrinsic TC and easy synthesizability. In their workflow, a unified NSGA-III

(U-NSGA-III) genetic algorithm and a qNEHVI (q-noisy expected hypervolume improvement) Bayesian

optimization were used in parallel to explore polymer sequence space (Figure 5b-c). They found that the GA-

based U-NSGA-III quickly generated candidate solutions but sometimes converged to local optima, whereas

the BO-based qNEHVI method can identify a diverse set of Pareto-optimal polymers (Figure 5d-e).

4.3 ML Interatomic Potentials for Thermal Transport

4.3.1 High-fidelity ML interatomic potentials

Machine learning interatomic potentials (MLIPs) have emerged as powerful surrogates for quantum

mechanical simulations, delivering near-DFT accuracy at a fraction of the computational cost.104–107 ML

potentials have significantly improved atomistic simulations by o!ering a flexible, data-driven alternative to

empirical interatomic potentials. Traditional models, such as Lennard-Jones or EAM potentials, rely on fixed

analytical expressions that often fail to capture the full complexity of many-body interactions. In contrast,

MLIPs learn these interactions directly from high-fidelity data, typically obtained from DFT calculations,

leading to notable improvements in accuracy and transferability.

Among the foundational MLIP models, Behler-Parrinello Neural Network Potentials (BPNNPs)108 uti-

lize high-dimensional descriptors and deep learning architectures to capture complex many-body e!ects.

Deep Potential Molecular Dynamics (DPMD) by Zhang et al.109 extends NNPs with hierarchical representa-

tions to improve accuracy across diverse chemical environments. Kernel-based models, such as the Gaussian

Approximation Potential (GAP)110 and Moment Tensor Potentials (MTPs)111, leverage symmetry-aware

descriptors to enhance accuracy and transferability. For instance, Deringer et al.112 demonstrated that ML
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can accurately reproduce atomic interactions and phonon dynamics, which are critical for modeling heat

transfer in both crystalline and disordered materials.113 A pioneering application of GAP is the work by

Deringer et al.,100 who applied it to simulate liquid and amorphous elemental carbon. This model accurately

captured energetic and structural properties across a wide range of densities using a hierarchical set of two-,

three-, and many-body structural descriptors, outperforming state-of-the-art empirical potentials. Applica-

tions to diamondlike amorphous carbon surfaces further demonstrated the model’s ability to simulate surface

energies and high-temperature graphitization processes. As shown in Figure 6a, comparing DFT-computed

and GAP-predicted force components for 125-atom liquid and amorphous carbon snapshots illustrates the

range and magnitude of forces the model learns across melt-quench trajectories. Similarly, Rybin et al.114

developed MTPs for atomistic simulations of the ς and φ phases of Ga2O3, achieving excellent agreement

with DFT-calculated phonon dispersion and lattice thermal conductivity. Their study also highlighted the

importance of active learning in generating robust and accurate potentials with a moderate training dataset.

More recent developments have expanded the MLIP landscape to include Neuro-evolution Machine Learn-

ing Potentials (NEPs),115 which employ evolutionary algorithms to optimize both structural descriptors

and neural network architectures. This approach achieves high accuracy while maintaining computational

e”ciency and has been successfully applied to directly calculate per-atom heat currents, enabling e”cient

thermal transport modeling. In parallel, universal pre-trained MLIPs such as CHGNet116 and MACE117

have been trained on chemically diverse datasets, allowing fine-tuning for specific materials with minimal

additional data. These models reduce the cost of developing new potentials and are particularly useful in

high-throughput screening for thermal property discovery. Furthermore, equivariant message-passing archi-

tectures like NequIP118 encode rotational and translational symmetries, improving accuracy in anisotropic

systems, while active-learning frameworks such as DP-GEN119 iteratively expand the training set to cover

unexplored yet physically relevant regions of the configuration space. Together, these advances strengthen the

applicability of MLIPs in capturing complex atomic-scale processes critical for accurate thermal transport

predictions.
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To provide a broader perspective, Wang et al.120 reviewed the current state of MLIPs, highlighting their

role in bridging the gap between computationally expensive DFT and less accurate classical MD. They dis-

cussed four essential stages of MLIP development: data generation, structural descriptors, machine learning

algorithms, and available software tools. Applications of MLIPs were examined across areas such as phase-

change memory materials, structure searching, property prediction, and pre-trained universal models. The

review also addressed future perspectives, emphasizing the importance of standard datasets, transferability,

generalization, and balancing accuracy with model complexity.

4.3.2 Applications to nanoscale systems

MLIPs are particularly valuable for modeling thermal transport in nanoscale systems, where atomic-level

accuracy is essential and traditional empirical potentials often fail to capture complex interfacial phenomena.

Mortazavi et al.121 demonstrated that MLIPs trained on short ab initio MD trajectories can enable first-

principles multiscale modeling of lattice TC. Using graphene/borophene heterostructures as a case study,

they bridged DFT, classical MD, and finite element method (FEM) simulations to predict thermal properties

at both atomic and continuum scales e”ciently. Their MLIP-based approach accurately captured the lattice

TC of pristine phases and thermal conductance across interfaces. Expanding on interfacial modeling, Wyant

et al.122 developed MLIPs for modeling interfacial heat transport in Ge/GaAs systems, addressing limitations

of traditional analytic potentials and mixing rules. They assessed ab initio harmonic force constants (IFC2s)

near interfaces, showing convergence to bulk-like values within 1 nm while highlighting complex interface

behavior. Two MLIPs based on the linear spectral neighborhood analysis potential (SNAP) were constructed:

a standard SNAP fit to total forces and a hybrid SNAP combined with a harmonic Taylor expansion. Each

potential was evaluated for bulk thermal properties, interface behavior, and stability, guiding future modeling

of interfacial thermal transport.

Further demonstrating the advantages of MLIPs in interface modeling, Rajabpour et al.101 calculated

the TBC between silicon and diamond using an MLIP trained on DFT data. Non-equilibrium MD (NEMD)

simulations showed that the ML potential produced TBC values in much closer agreement with experiments

than traditional semi-empirical potentials like Terso!123 and Brenner124. The ML model accurately captured
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phonon dispersion relations and lifetimes, providing insights into the frequency-dependent heat transfer

spectrum. Phonon lifetimes calculated using the MTP and Terso! potential, compared against DFT results

for bulk diamond, are shown in Figure 6b, highlighting the improved agreement achieved with ML-based

models.

4.3.3 Accelerating thermal transport calculations

High-fidelity simulation of thermal transport properties, especially lattice TC, traditionally relies on

DFT combined with phonon transport calculations. However, these methods are computationally expensive,

especially for large or disordered systems. MLIPs provide a promising alternative, o!ering significant speedups

while retaining near-DFT accuracy. Qian et al.102 demonstrated this potential by developing MLIPs trained

on DFT data to model the TC of both crystalline and amorphous silicon. By stochastically sampling the

potential energy surface, they trained potentials that enabled equilibrium MD simulations at scales beyond

those achievable by first-principles methods. The predicted thermal conductivities agreed with experimental

measurements for both material forms. Compared with other studies, the TC of crystalline silicon derived

from the GAP model using EMD and the BTE is shown in Figure 6c.

Expanding the applicability across a broader material spectrum, Choi et al.103 employed neural network

interatomic potentials to compute LTCs at 300 K for 25 materials with diverse structural symmetries and

thermal conductivities spanning three orders of magnitude (10→1 to 103 W/mK). They found that training

on MD trajectories between 50-700 K consistently achieved near DFT-level accuracy while providing a

uniform computational cost and a speed gain of 2-10 times compared to pure DFT methods and using a

reduced training set further increased e”ciency by up to 50 times without significant loss of accuracy. The

computational cost of calculating ↼l using DFT and NNPs trained on 400 and 50 structures is illustrated in

Figure 6d.

Further broadening the application of MLIPs to both bulk and interfacial systems, Li et al.125–127 devel-

oped deep learning-based interatomic potentials trained on ab initio data to model thermal transport across

silicon (in crystalline, liquid, and amorphous phases), φ-Ga2O3 (with anisotropic phonon transport), and

GaN/SiC interfaces with AlN transition layers. Their MLIPs accurately captured phonon dispersions, phase
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transitions, and TCs in good agreement with experiments. Notably, their GaN/SiC interface study revealed

that AlN transition layers enhance TBC via phonon bridging and improved crystalline quality. Collectively,

these works demonstrate the versatility of MLIPs in capturing complex nanoscale thermal transport phe-

nomena across diverse materials and interfaces. These studies demonstrate how MLIPs are accelerating

thermal transport modeling by enabling accurate, e”cient, and scalable simulations across crystalline, dis-

ordered, and interfacial systems. As ML techniques mature, they are poised to become indispensable tools

for materials discovery and design in thermal management and energy technologies.120

4.4 ML for Thermal Data Analysis

4.4.1 Data interpretability

While ML models for thermal transport prediction have achieved remarkable accuracy, their widespread

adoption in materials science is often hindered by many algorithms’ “black-box” nature. This opacity

challenges scientific understanding and rational materials design, underscoring the need for interpretable

approaches. Explainable ML (XML) techniques aim to identify which structural, chemical, or physical fea-

tures most strongly influence predictions, thereby enhancing trust, guiding design strategies, and revealing

new physical insights. Several methods have been adopted to address this challenge. Techniques such as fea-

ture importance analysis, Shapley Additive exPlanations (SHAP), and symbolic regression are increasingly

applied in thermal transport research to bridge the gap between predictive performance and interpretabil-

ity.128 Attention mechanisms in neural networks enhance model transparency by highlighting influential

features within input structures. Feature importance analysis, including SHAP, quantifies the contribution of

individual input features (e.g., bond types, functional groups, or atomic configurations) to the model’s pre-

diction. This enables researchers to identify which physical or chemical attributes are key drivers of thermal

transport behavior, facilitating rational design of materials with targeted properties.129 Symbolic regression,

on the other hand, can derive human-readable mathematical expressions that describe complex structure-

property relationships, allowing domain experts to uncover underlying physical principles from data-driven

models.130 Attention mechanisms in GNNs further help pinpoint substructures or motifs within polymer

chains or crystalline lattices that dominate transport behavior.131
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Fig. 7 An overview of the RGDA (Rationalize GNN predictions with Data Augmentation) framework. (Reprinted with
permission from Liu et al.132 Copyright 2024 by the Association for Computing Machinery)

For example, Liu et al.132,133 developed a unified framework (as shown in Figure 7), RGDA (Rationalize

GNN predictions with Data Augmentation), which rationalizes GNN predictions for both node-level and

graph-level tasks by identifying key environment-based subgraph structures. Their method incorporates

environment-based data augmentation to enhance rationale extraction and bypasses costly graph decoding

by learning representations in latent space. This allows researchers to trace predictions back to chemically

meaningful substructures, thereby improving trust and model transparency. This strategy enhances graph-

based models’ interpretability and generalization capabilities for materials science applications.

To integrate interpretability and deep learning, Zeng et al.134 introduced an interpretable deep learning

framework for rapid and accurate prediction of lattice TC, addressing the trade-o! between model accuracy

and interpretability. Using this framework, they identified and validated four promising thermal conductors

and insulators through DFT and MD simulations. The interpretable model helped in screening candidate

materials by revealing which descriptors (e.g., atomic mass, bonding environment, or symmetry factors)

significantly influenced thermal conductivity predictions. Sensitivity analysis and DFT calculations provided

novel insights into phonon thermal transport mechanisms.

Other studies have applied SHAP-based feature importance analysis on experimental and hybrid datasets

to uncover dominant physicochemical drivers behind TC, demonstrating the utility of explainable ML in
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diverse material systems.135,136 For instance, SHAP analysis revealed that atomic density, chain flexibility,

and bonding motifs were the most influential features across di!erent polymer families, directly informing

design strategies for high- or low-conductivity materials.

4.4.2 Physics-informed ML

Recent advancements in PINNs can also enhance thermal data analysis, particularly through the inte-

gration of physical principles into predictive models. As PINNs embed governing equations directly into the

learning process, they can be used to improve predictions from datasets, especially when dealing with sparse

and noisy datasets. For instance, Gokhale et al.137 proposed PINN-based models that integrate measured

data with underlying physics to perform thermal modeling for buildings. The models demonstrate more

data-e”cient and accurate predictions for control-oriented thermal modeling. Apart from solving forward

problems, PINNs also demonstrate the advantage in handling inverse problems when data are noisy and

sparse. Li et al.138 integrated Bayesian PINNs with nonparametric variational inference to model phonon

BTE with uncertainty quantification. The model can not only recover temperature and heat flux distribu-

tions from noisy data, but infer parameters such as the Knudsen number. Liao et al.139 developed a hybrid

thermal modeling approach for additive manufacturing processes, combining partial temperature observa-

tions with physical laws to predict full-field temperature histories and identify unknown material and process

parameters. Similarly, Sripada et al.140 utilized PINNs to robustly extract thermal properties from noisy

data obtained by the laser-based Angstrom method, showing the method’s ability in performing inverse

parameter fitting under experimental uncertainties. These studies collectively underscore the versatility and

robustness of PINNs in thermal data analysis.

4.4.3 ML for analyzing experimental and simulation thermal data

Traditional thermal metrology techniques, such as time- or frequency-domain thermoreflectance

(TDTR/FDTR)141,142 and 3↽ method143,144, produce complex, multi-variable datasets that encode prop-

erties like TC, heat capacity, and TBC. Traditional nonlinear fitting methods for property extraction can

be laborious and sensitive to initial parameter guesses and noise, especially when multiple parameters are

involved. ML o!ers a great alternative for thermal transport data analysis, by learning direct mappings from
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experimental data to material properties, thereby improving the robustness of analysis. For example, one

study145 proposed to apply deep learning approach to nanosecond transient thermoreflectance technique

for high-throughput experimental data processing. Compared to the conventional non-linear fitting method

(such as Global Optimization), the computation time of the new model is 1,000 times lower. Additionally,

ML models can be designed to output multiple target parameters at once, allowing simultaneous determina-

tion of TC, TBC, and volumetric heat capacity (⇀Cp) from a single experiment, something that is di”cult for

standard fitting due to parameter correlations. Xiang et al.146 used KRR-based reconstruction method for

extracting depth-dependent TC directly from pump-probe phase signals, without requiring pre-knowledge

about the functional form of the profile. Moreover, hybrid simulation-experiment modeling has emerged as

an e!ective strategy for thermal data analysis. Shen et al.147 proposed a novel data analysis method to build

DL-FDTR, which can predict TC, ⇀Cp and TBC with mean errors below 5% for bulk samples coated with

Au and supply an initial guess for subsequent least-square fitting. Similarly, Pang et al.148 generated over

10,000 synthetic TDTR curves to train an ANN. Without further retraining, their model can directly extract

TC and TBC from experimental TDTR data collected from various samples under di!erent modulation

frequencies and laser spot sizes.

5 Perspectives

5.1 Enlarging databases via automated data generation

Developing accurate ML models for nanoscale thermal transport requires much larger and more diverse

datasets than are currently available. One promising approach is sustainable data acquisition from the lit-

erature. Advanced NLP methods and large language models (LLMs), such as BERT-based models and

ChemDataExtractor149, can be leveraged to mine published papers for thermal properties of polymers,

nanocomposites, and other materials. Such tools can automatically extract values of TC, interfacial conduc-

tance, heat capacity, etc., but they face challenges like polymer name normalization (many synonyms for the

same polymer) and the lack of standardized dictionaries for thermal terms. Domain-specific solutions are

needed, for example, polymer-focused NER taggers and ontologies , and future systems must move beyond
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text, extracting data from figures and tables when critical information (like molecular structures or data

points) is only present in graphical form.150

Another strategy is data augmentation, which can multiply the e!ective size of training sets. For

polymer-based thermal predictions, graph-based augmentations are especially useful. Examples include node

reordering (to augment graph representations without altering the polymer),151 repeat-unit expansion (sim-

ulating longer chain segments or varying chain lengths),75 and substructure recombination (mixing key

”rationale” motifs of a polymer with di!erent chemical environments)132 can generate new virtual samples

from existing ones. By judiciously applying such augmentations - tailored to preserve relevant thermal trans-

port physics - researchers can combat data scarcity and improve model robustness without requiring entirely

new experiments.

5.2 Integrating Physics and ML

The integration of physics and advanced ML techniques is rapidly reshaping the landscape of thermal

transport research, particularly at micro- and nanoscale regimes where classical di!usion models fail. By

embedding physical laws (e.g., the phonon BTE) into ML architectures, researchers can overcome data

scarcity, improve prediction accuracy, and ensure physically consistent solutions. Unlike traditional black-box

ML modeling, integrating physics with ML can increase model interpretability.

Recent developments in neural operators152,153 and conditioning neural fields154,155 provide powerful

frameworks for learning mappings in function spaces of PDE-governed systems. They can be used for high-

resolution predictions from sparse and noisy experimental measurements. And the conditioning allows models

to generalize well across geometries and boundary conditions. Furthermore, the fast developments of founda-

tion models and LLMs156,157 present new opportunities for incorporating prior physical knowledge, symbolic

reasoning, and multimodal data fusion into thermal modeling. As the architecture of ML models continues

to evolve, the coupling with domain-specific knowledge o!ers a promising direction towards data-e”cient,

interpretable, and robust modeling of non-di!usive thermal e!ects, paving the way for breakthroughs in

thermal metrology, material design, and microelectronic thermal management.
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5.3 Generative and foundation models for thermal transport

Generative machine-learning models, ranging from graph- and sequence-based generators to large pre-

trained “foundation” models (e.g., transformer LLMs), o!er new routes to propose novel nanoscale materials

with tailored thermal properties. By exploring vast chemical spaces in an inverse-design framework, they

could accelerate polymer discovery for targeted thermal behavior.158 LLMS have been used to generate

small molecules, peptides and even polymers in property-driven design tasks. However, direct applications

to thermal transport remain scarce.

Recent e!orts illustrate the emerging promise. Transformer-based models have shown high accuracy in

polymer generation. For instance, PolyTAO (a Transformer-Assisted model)159 produced valid polymers

with 99.3% chemical validity and strong agreement (R2 ↓ 0.96) between generated and target properties.

Multimodal LLMs like Llamole (which interleaves graph-based molecular generation with text-based ret-

rosynthetic planning)160 demonstrate how future models might integrate synthesis and domain knowledge.

Such examples suggest that generative/foundation models could possibly support (a) property-conditioned

design: Models can be fine-tuned or conditioned to generate polymers optimized for desired thermal metrics

(e.g., high conductivity or insulation); (b) Synthesis-aware generation: Generative networks can incorporate

synthetic-accessibility or retrosynthetic planning (as in Llamole) to filter candidates for realistic synthesis;

(c) Multi-modal integration: Foundation models may combine structural (graph) inputs with text or simula-

tion data (e.g., literature, thermophysical predictions) to enrich design; early multimodal systems illustrate

this potential.

Generally, generative/foundation models conceptually promise to expand thermal materials discovery by

automating property-driven material design and by linking generation with practical constraints. However,

their use in nanoscale thermal transport is still in early stages. Careful, application-specific development and

benchmarking will be needed, and current claims should be viewed as proof-of-principle rather than fully

realized solutions.
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5.4 Transfer learning and cross-domain application

One of the most promising frontiers in ML for materials science and thermal transport is the growing

application of TL and cross-domain frameworks. These strategies allow models trained on large, readily

available datasets to generalize across di!erent tasks, including those with limited or high-cost data. By trans-

ferring learned representations across properties, material classes, or simulation fidelities, TL significantly

reduces data requirements, improves model accuracy, and accelerates materials discovery workflows.161 This

capability is especially valuable in thermal transport research, where high-fidelity data (e.g., experimental

or DFT-calculated) is often scarce and expensive to generate. Instead of training models in isolation, TL

allows knowledge reuse across properties, material systems, or simulation fidelities. For example, Gupta et

al.162 demonstrated that deep TL models trained on elemental fractions outperform baseline models across

numerous material properties, including experimental datasets. Such cross-property learning is well-suited

for TC, a property often lacking large, labeled datasets.

This layered approach, pretraining on computational data and fine-tuning on high-fidelity targets, also

encourages the integration of multi-fidelity datasets. While not an example of TL, the study by Carrete et

al.163 illustrates how high-throughput ab-initio modeling, combined with simple ML rules, can accelerate

the discovery of high-performance thermoelectric materials. Such e!orts highlight the potential of physics-

informed data pipelines to support downstream ML applications, including TL. Looking ahead, the real

opportunity lies in designing TL workflows aware of domain shifts across materials classes, property types,

or fidelity levels. As reviewed by Chen et al.161, the challenges include how to transfer knowledge and when

and what to transfer. Representational mismatch, model adaptability, and physical interpretability remain

open yet are increasingly tractable with emerging techniques in domain adaptation, meta-learning, and

uncertainty quantification. In thermal transport, where scarce labels and complex mechanisms often limit

models, TL could be a unifying framework, connecting simulations, experiments, and surrogate models under

a shared learning paradigm. Rather than discarding low-fidelity or auxiliary data, the next generation of

thermal models may treat them as stepping stones toward high-fidelity insight.
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5.5 AI agents

AI agents in scientific research are autonomous, goal-directed systems that perceive information and

execute multi-step plans. In AI, an agent is defined as “an autonomous intelligent entity capable of performing

appropriate and contextually relevant actions” to achieve goals.164 Such agents can iteratively plan and

execute complex workflows rather than returning a single prediction. For example, agents can automate

literature reviews by querying databases, retrieving relevant papers, and synthesizing insights.165 Agents

can also integrate predictive models to screen material candidates: for instance, an agent might propose

polymer structures or nanocomposite designs, use ML predictors for TC to rank them, and iterate until

promising candidates emerge. In experimental planning, an agent could recommend measurement strategies

(e.g., temperature sweeps) based on prior results, much like an automated active-learning approach. Similarly,

in computational workflows, an agent could orchestrate simulation pipelines: e.g., scheduling multiscale MD

or phonon calculations and analyzing outputs to inform the next steps. Crucially, these capabilities are

achievable with current technology. LLMs can serve as the reasoning core, and frameworks like LangChain

allow them to invoke external tools in a chain of actions. Retrieval-augmented generation can supply up-to-

date data from literature or repositories, grounding the agent’s reasoning in current knowledge. In essence, an

AI agent for thermal transport would continuously reason, plan and act - autonomously curating knowledge,

suggesting candidates and experiments, and tying together modeling tasks, in contrast to static ML models

that only output a single inference.165

5.6 Autonomous experimental labs

Autonomous experimental laboratories are redefining how materials discovery is conducted by coupling

ML, robotics, and AL into fully integrated platforms. These systems shift experimentation from human-

led trial-and-error to closed-loop, data-driven processes capable of designing, executing, and interpreting

experiments with minimal intervention. As scientific discovery increasingly depends on navigating high-

dimensional chemical and processing spaces, autonomous labs o!er a scalable solution to accelerate synthesis,

characterization, and optimization.166
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Recent advances have begun to demonstrate the practical potential of these systems. Szymanski et al.167

introduced A-Lab, an autonomous platform for solid-state synthesis that combined computational modeling,

historical data, and AL. Over 17 days, it synthesized 41 novel compounds and adapted its strategies based

on success and failure, showcasing the e!ectiveness of autonomous exploration in complex chemical spaces.

Beaucage et al.168 described the emergence of self-driving labs as a fundamental shift in experimental science.

They emphasized their role in studying rare phenomena, improving reproducibility, and redefining the role of

human researchers. The authors also highlighted the need for interdisciplinary collaboration, infrastructure

investment, and open data and hardware integration standards. Tom et al.166 provided a broad review of

self-driving laboratories (SDLs) across scientific domains. They detailed enabling technologies, real-world

implementations, and key challenges such as system interoperability and data representation. The review

emphasized SDLs’ potential to transform research and industrial applications.

Autonomous platforms could be pivotal in systematically exploring process-structure-property relation-

ships in thermal transport and materials design. Combined with predictive simulations and AL, they may

enable closed-loop workflows where hypotheses are tested, refined, and re-evaluated autonomously. As with

TL, integrating experimental autonomy does not replace human intuition. Instead, it expands the scope

of scientific exploration by allowing researchers to focus on reasoning and interpretation while delegating

routine experimentation to machines.

5.7 Optimizing nanocomposites and interfaces

High thermal performance in polymer nanocomposites depends on complex interactions between fillers,

matrices, and interfaces. Moving forward, the integration of ML with experiments and simulations is expected

to play a central role in predicting e!ective TC, estimating ITR, and guiding the rational design of composite

architectures. Recent works have shown that combining data-driven models with multiscale insights can

streamline the discovery and optimization of multifunctional nanocomposites.169

E!orts in this direction have begun to converge across di!erent modeling strategies and material systems.

For instance, Champa-Bujaico et al.170 emphasized the role of ML in designing polymer nanocomposites by

identifying critical features, enabling optimization, and supporting uncertainty quantification. Their review
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positioned ML as a predictive tool and a means to complement and extend traditional experimental and

computational approaches. Lu et al.171 proposed a framework that couples high-throughput simulations

with ML and minimal experimental input to estimate ITR in particulate-filled composites. Their approach

captures both polymer-filler, and filler-filler interactions, yielding physically grounded parameters that are

otherwise di”cult to access experimentally. A similar philosophy is evident in the work of Fathidoost et

al.,172 who linked microstructural image data with finite element simulations and ML to predict e!ective TC

in ultrahigh-temperature ceramic nanocomposites. Their method enabled inverse estimation of interfacial

resistance and strongly agreed with experimental data, supporting the development of robust surrogate mod-

els. These studies reflect a broader shift toward integrated, data-informed frameworks that unify structure,

processing, and property relationships.

6 Conclusion

The integration of ML into nanoscale thermal transport research marks a significant advancement,

overcoming traditional limitations of computational intensity and experimental complexity. By e!ectively

bridging physics-based insights and data-driven predictions, ML methods have demonstrated considerable

potential across polymers, interfaces, and nanostructured materials. ML techniques, particularly when cou-

pled with traditional methods such as DFT and MD, provide robust solutions for predicting and optimizing

material properties, accelerating the discovery of materials with tailored thermal characteristics.

Several emerging ML strategies have shown remarkable promise. TL and multi-fidelity models e!ectively

leverage limited high-quality data by incorporating extensive lower-fidelity information, significantly improv-

ing predictive accuracy. AL algorithms streamline data acquisition by strategically identifying the most

informative experiments or simulations, substantially reducing the time and resources required for thermal

property exploration. Furthermore, the recent development of PINNs addresses challenges in sparse-data

regimes by explicitly embedding governing physical equations into ML architectures, ensuring physically

consistent and interpretable outcomes.
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Despite these advances, challenges remain, notably in data quality, interpretability, and ensuring reliable

extrapolation beyond training datasets. Addressing these issues necessitates continued development of stan-

dardized, high-quality datasets, along with transparent models that can elucidate the underlying physics

driving thermal transport phenomena. Future directions include deeper integration of ML methods into

autonomous experimental setups, further development of generative models for inverse design, and greater

utilization of AI-driven optimization in designing advanced polymer composites and interfaces.

The ongoing integration of computational simulations, experimental methods, and ML will drive signif-

icant advancements in materials science. This interdisciplinary approach accelerates the identification and

deeper understanding of novel nanoscale thermal phenomena, paving the way toward robust, e”cient, and

sustainable solutions for next-generation thermal management technologies.
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