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ABSTRACT

Aims. We present a method for refining photometric redshift galaxy catalogs based on a comparison of their color-space matching
with overlapping spectroscopic calibration data. We focus on cases where photometric redshifts (photo-z) are estimated empirically.
Identifying galaxies that are poorly represented in spectroscopic data is crucial, as their photo-z may be unreliable due to extrapolation
beyond the training sample.
Methods. Our approach uses a self-organizing map (SOM) to project a multidimensional parameter space of magnitudes and colors
onto a 2D manifold, allowing us to analyze the resulting patterns as a function of various galaxy properties. Using SOM, we compared
the Kilo-Degree Survey’s bright galaxy sample (KiDS-Bright), limited to r < 20 mag, with various spectroscopic samples, including
the Galaxy And Mass Assembly (GAMA).
Results. Our analysis reveals that GAMA tends to underrepresent KiDS-Bright at its faintest (r & 19.5) and highest-redshift (z & 0.4)
ranges; however, no strong trends are seen in terms of color or stellar mass. By incorporating additional spectroscopic data from
the SDSS, 2dF, and early DESI, we identified SOM cells where the photo-z values are estimated suboptimally. We derived a set of
SOM-based criteria to refine the photometric sample and improve photo-z statistics. For the KiDS-Bright sample, this improvement
is modest, namely, it excludes the least represented 20% of the sample reduces photo-z scatter by less than 10%.
Conclusions. We conclude that GAMA, used for KiDS-Bright photo-z training, is su�ciently representative for reliable redshift
estimation across most of the color space. Future spectroscopic data from surveys such as DESI should be better suited for exploiting
the full improvement potential of our method.
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1. Introduction

Deep wide-angle imaging of the sky gives access to key
probes of cosmology. Among these, weak gravitational lens-
ing by the large-scale structure stands out as it allows
us to study the distribution of both dark and luminous
matter, as well as the overall properties of the Universe
(Bartelmann & Schneider 2001; Hoekstra & Jain 2008). Cur-
rent ‘Stage-III’ imaging surveys such as the Dark Energy Sur-
vey (DES, The Dark Energy Survey Collaboration 2005), Hyper
Suprime-Cam Subaru Strategic Program (HSC, Aihara et al.
2018), and Kilo-Degree Survey (KiDS, Kuijken et al. 2019) have

? Corresponding author; priyajalan14@gmail.com,
pjalan@cft.edu.pl

already covered thousands of square degrees and cataloged hun-
dreds of millions of galaxies. The operational Euclid telescope
(Amiaux et al. 2012) and soon-to-be-launched Legacy Survey of
Space and Time (Ivezić et al. 2019) at Vera Rubin Observatory
will mark the advent of the Stage-IV era, when most of the extra-
galactic sky will be covered, providing observations of billions
of galaxies.

The most powerful cosmological signal from deep imaging
surveys is the cosmic shear (see Kilbinger 2015, for a review):
the e↵ect of coherent shape distortions of background galaxies
(sources) due to the gravitational potentials of the large-scale
matter distribution. Cosmic shear studies with these observa-
tions are most suitable for constraining two key cosmological
parameters: the total non-relativistic matter density, ⌦m, and the
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amplitude of its fluctuations at 8 Mpc/h scales, where �8 is usu-
ally combined into S8 ⌘ �8

p
⌦m/0.3 (e.g., Asgari et al. 2021;

Amon et al. 2022; Li et al. 2023a,b; Dark Energy Survey and
Kilo-Degree Survey Collaboration 2023).

The constraints on ⌦m and �8 from cosmic shear are degen-
erate, so extra measurements are needed to separate them. This
is in particular possible thanks to the so-called multiprobe
approach, where other observables are also used. Among these,
the 3⇥ 2-point approach has been successfully applied (e.g.,
Heymans et al. 2021; Abbott et al. 2022; Miyatake et al. 2023).
It combines cosmic shear, galaxy-galaxy lensing (GGL; shape
distortions of background sources by foreground lenses), and
clustering of the lenses.

The two main ways of selecting foreground galaxies for mul-
tiprobe analyses are either to use spectroscopic data that overlap
(at least partly) with the imaging survey or by extracting these
galaxies from the photometric sample itself. This former method
presents several advantages, such as access to high-precision
spectroscopic redshift estimates (spec-z) and the ability to mea-
sure redshift-space distortions and baryon acoustic oscillations
from 3D clustering. This allows us to strengthen the cosmolog-
ical constraints and break degeneracies between cosmological
parameters. However, until now, the overlap of imaging datasets
with appropriate wide-angle spectroscopic surveys for cosmic
shear analysis and the number densities of the latter have been
far from ideal. This leads, for instance, to the GGL signal being
sub-dominant with respect to cosmic shear and clustering (e.g.,
Heymans et al. 2021), e↵ectively reducing the analysis to 2⇥ 2-
point if the spectroscopic foreground is used.

In this context, selecting the foreground galaxies directly
from the imaging survey is often beneficial, as it o↵ers full-
survey coverage, dense sampling, and control over the sample
selection function. This comes at the cost, however, of redshift
estimate precision: photometric redshift estimates (photo-z),
derived directly from multiband imaging datasets, are typically
of considerably lower quality than spectroscopic estimates. This,
in turn, allows us to measure only two-dimensional (projected)
clustering in redshift bins. In addition, foreground galaxy selec-
tion from photometric data risks propagating observational sys-
tematic selection e↵ects from the imaging into the lens sample,
which can a↵ect the clustering signal and redshift estimates. Fur-
thermore, such systematics are generally more di�cult to com-
pensate for in photometric than in spectroscopic redshift surveys,
due to a lack of precise information on the radial dimension.
When using photometric galaxies for clustering measurements
or as lenses in GGL, the quality requirements for their photo-z
are more stringent than those for source galaxies. Source galax-
ies are typically grouped in relatively broad redshift bins, mak-
ing it crucial to constrain the population redshift distributions
accurately. Conversely, for lenses, it is important to have precise
knowledge of individual photo-z and their uncertainties.

Several approaches exist for selecting photometric fore-
ground galaxies for multiprobe analyses. The simplest method
(conceptually) is a flux-limited selection, as applied in KiDS
(Bilicki et al. 2018, 2021, hereafter B18; B21). As shown in
these papers, statistically accurate and precise photo-z via an
empirical (machine-learning) approach is possible for such
a flux-limited foreground galaxy selection, provided that the
appropriate calibration (or, rather, training) for the data is
available.

In this work, we present a method to further calibrate the
overlap between spectroscopic training and photometric target
data and apply it to KiDS. In particular, we focus on the ‘KiDS-
Bright’ galaxy sample, which constitutes one of the foreground

photometric datasets used in KiDS for GGL (Brouwer et al.
2021; Georgiou et al. 2021; Burger et al. 2023; Dvornik et al.
2023), the other being luminous red galaxies (Vakili et al. 2019,
2023). Our approach can be used to assess the representative-
ness of spec-z samples with respect to the photometric ones and
also to improve the photo-z precision of the latter; for instance
by discarding those galaxies for which photo-z performance is
poor. We chose to perform such cleaning of galaxies in color-
space, using a self-organizing map (SOM, Kohonen 1982, 2001)
by identifying galaxies in the photometric catalog that do not
have counterparts in the available spec-z sample.

Using KiDS Data Release 3 (DR3, de Jong et al. 2017) and
DR4 (Kuijken et al. 2019), respectively, B18 and B21 selected
flux-limited galaxy samples at r < 20 (mean z ⇠ 0.23) with a
negligible overall photo-z bias and a scatter of��z ⇠ 0.018(1+z).
The resulting KiDS-Bright dataset1 from the latter work covers
the full DR4 footprint and contains roughly 1 million galaxies of
surface density ⇠1000 deg�2. Both the selection of KiDS-Bright
galaxies and the derived photo-z were calibrated on the Galaxy
And Mass Assembly spectroscopic survey (GAMA, Driver et al.
2011). For its equatorial fields (which are fully covered by KiDS)
GAMA o↵ers close to 100% complete spectroscopic measure-
ments down to r ⇠ 19.8 in SDSS Petrosian magnitude (rPetro).
Thanks to the color-independent flux-limited galaxy selection
both in GAMA and in KiDS-Bright, B21 were able to obtain
high-quality photo-z in the latter not only for red galaxies but
also for the blue ones, generally known to perform more poorly
in this context. This was done by employing an artificial neural
network approach (ANNz2, Sadeh et al. 2016), taking advantage
of the very good match between the GAMA training set and the
output KiDS-Bright sample. Furthermore, in a recent follow-up
William et al. (2023) and John William et al. (in prep.) improved
these photo-z further (reducing scatter by ⇠20%) by employing
deep-learning methodologies.

At low redshifts, the lensing e�ciency increases with the
depth of the foreground sample. Therefore B21 chose to push
to slightly fainter limits than allowed by GAMA completeness,
taking the risk of including some galaxies not well matched to
GAMA spectroscopy. Going slightly deeper than GAMA com-
pleteness was possible as that dataset includes a number of
“filler” targets at rPetro > 19.8 (Baldry et al. 2010). Therefore,
B21 could still train photo-z rather robustly at the very faint end
of KiDS-Bright.

Even very accurate and precise photo-z values may present
variations with galaxy properties, such as color, magnitude, and
type. Indeed, B21 confirmed that red galaxies in KiDS-Bright
have considerably better photo-z than the blue ones. Some possi-
ble r-band magnitude dependence in photo-z quality could also
be observed at the faint end. Such dependencies often need to
be identified and quantified for subsequent applications (e.g.,
Burger et al. 2023), while this may not always be possible if the
spectroscopic calibration data do not fully represent the photo-
metric sample in terms of magnitude or color.

In this work, we develop a method to quantify the complete-
ness of the GAMA spectroscopic calibration data, for use in the
photometric selection of KiDS-Bright foreground galaxies. We
also show how a color-space comparison can be used to clean up
the galaxy sample and remove objects that do not meet a given
criterion, for instance, the photo-z quality. For that purpose,
we used the self-organizing map (SOM): a well-established
tool for dimensionality reduction that allows us to project a

1 Available for download at https://kids.strw.leidenuniv.nl/
DR4/brightsample.php
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multidimensional parameter space onto a two-dimensional (2D)
manifold, while maintaining local associations between the
objects from the original distribution in higher dimensional
space. Unlike supervised machine learning, which uses spectro-
scopic data as the training dataset here in unsupervised machine
learning, we used the photometric sample as the training dataset.
Therefore, to avoid confusion, we refer to the spectroscopic data
as the “calibration data”.

Our approach follows on earlier applications in photo-
metric surveys. Masters et al. (2015) utilized a SOM to iden-
tify photometric galaxies lacking spectroscopic representation
for further observational follow-up, leading to the conception
of the Complete Calibration of the Color-Redshift Relation
(C3R2) Survey (Masters et al. 2017, 2019), carried out in the
context of Euclid (Stanford et al. 2021; Euclid Collaboration
2022), 4-meter Multi-Object Spectrograph Telescope (4MOST,
Gruen et al. 2023), and Dark Energy Spectroscopic Instrument
(DESI, McCullough et al. 2024). Wright et al. (2020a) devel-
oped a SOM-based framework to calibrate redshift distribu-
tions for weak lensing shear catalogs, and identify sources
that were not represented in spectroscopic calibration data,
resulting in a “gold” galaxy selection for weak lensing. This
approach has been used extensively for KiDS analyses of cos-
mic shear (see, e.g., Wright et al. 2020b; Hildebrandt et al. 2021;
van den Busch et al. 2022). Furthermore, SOMs have also been
utilized in the context of redshift calibration for DES (see, e.g.,
Buchs et al. 2019; Myles et al. 2021).

In our study, we first show how SOMs can be used to com-
pare color-space coverage between KiDS-Bright and GAMA.
We then extended the spectroscopic sample by adding various
surveys overlapping with the main KiDS footprint and several
external ‘KiDZ’ fields (Wright et al. 2024). As each SOM cell
has associated average properties of a given sample (e.g., magni-
tudes, colors, redshifts), a comparison between, for instance, the
mean photo-z of KiDS-Bright and mean spec-z of the calibration
data can be used to eliminate those photometric galaxies where
redshifts have been estimated poorly, similarly to what was done
in the KiDS Gold selection (Wright et al. 2020a). Finally, by
identifying those SOM cells where the spectroscopic represen-
tation in KiDS-Bright is still poor, we can select the photometric
galaxies for possible future spectroscopic follow-ups, similar to
the C3R2 survey.

The paper is organized as follows. Section 2 describes the
terminologies of the self-organizing maps and their astrophysical
application. In Sect. 3, we present the datasets utilized in this
work. The projection of SOM and the completeness of GAMA
with respect to KiDS is detailed in Sect. 4.1. This is followed
by SOM comparison of the photometric and spectroscopic data
in Sect. 4.2 that allows us to remove the galaxies with worst-
constrained photo-zs. We present our conclusions and summary
in Sect. 5. In the appendix, we discuss some further details of
galaxy removal based on photo-z performance.

2. Self organizing maps

A SOM is a form of artificial neural network utilizing unsu-
pervised learning. The main goal of SOM is to transform high-
dimensional input into a lower dimensional representation called
a map or grid. This is achieved via the construction of an opti-
mally representative manifold in nD, which can be subsequently
visualized in two dimensions. The manifold can be planar or
toroidal, the latter of which produces a map that wraps hori-
zontally and vertically and is used in this study to avoid edge
e↵ects. Additionally, each cell within the map can be rectangu-

Fig. 1. Illustration of the projection of the X-input vector on a 2D SOM,
based on Fig. 1 from Fortela et al. (2020). The red dot shows the best-
matching unit.

lar or hexagonal in shape: hexagonal cells being generally pre-
ferred, as they allow metrics (such as cell distance) to be com-
puted between more neighbor cells (six compared to four for
rectangular cells), thereby providing a finer and more detailed
mapping of the input space. Thus, this study uses a toroidal map
with hexagonal cells to enhance data representation and analysis.

The SOM consists of nodes (or neurons) arranged in a 2D lat-
tice, as shown in Fig. 1. Each node in the map is associated with
a weight vector to represent the input patterns. At each training
epoch, the algorithm computes the Euclidean distances between
the input vector and the weight vectors of all neurons on the
map. The node with the weight vector closest to the input vec-
tor (i.e., with the smallest Euclidean distance) is identified as the
best-matching unit (BMU). The weight vector of this cell (and
a subset of the map within the immediate vicinity of the BMU),
are adjusted accordingly. During the training process, the learn-
ing rate controls the step size of weight adjustments and the cell
shape defines the arrangement and connectivity of the nodes in
the map, and the neighborhood function determines the extent of
influence a BMU has on its neighboring nodes. The most com-
monly used neighborhood function is a Gaussian, which assigns
weights to each node that are decreasing with its distance from
the BMU according to the bell curve. As the training progresses,
the gradual reduction of the radius of the neighborhood function
focuses on smaller regions of the map, promoting finer adjust-
ments and improving convergence.

Figure 1 demonstrates this process, whereby an input dataset
X, containing n+ 1 sources, is used to train a SOM. Each source
Xj is tagged with m + 1 parameters ✏, which are used to train
the 2D map. After training, the sample can be visualized in one
parameter (which may or may not have been used during train-
ing) by projecting said parameter onto the SOM.

SOMs have been shown to be particularly useful in cali-
brating redshift distributions and accessing color space match
in the photometric and spectroscopic samples (Sánchez et al.
2020; Wright et al. 2020b; Hildebrandt et al. 2021; Razim et al.
2021; Stölzner et al. 2023; Jafariyazani et al. 2024). This is pos-
sible because, in addition to photometric data, features from the
calibration spectroscopic sample can also be projected onto the
SOM. Thanks to this, we can directly identify the cells occupied
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by both photometric and spectroscopic samples with similar
properties.

The cells showing significant deviations between photomet-
ric and spectroscopic redshifts indicate the types of galaxies for
which the derived photo-z are estimated poorly or the spec-z is
not well sampled in the cell. Identifying and removing such cells
can help to refine the sample. They may also be used to single out
potential candidates for spectroscopic follow-up to improve the
parameter constraints. Therefore, the SOM can be utilized not
only to identify a comprehensive representative calibration sam-
ple but also to discern clustering among similar galaxies within
the feature space, based on their photometric data.

In this work, we use the SOMOCLU2 (Wittek et al. 2017)
Python package for training SOMs on large data sets. We note
that SOMs can be computationally intensive to train and SOMO-
CLU is a highly e�cient, parallel, and distributed algorithm to
train such maps.

3. Data

For our analysis, we combined photometric data originating
from the VST and VISTA telescopes with spectroscopic red-
shifts taken from a number of surveys. Here, we provide details
of the particular datasets.

3.1. Photometric data

Our photometric data are based primarily on the Kilo-Degree
Survey (KiDS, de Jong et al. 2013) observations and associ-
ated data products. KiDS3 obtained optical imaging in four
bands (ugri) with the OmegaCAM instrument mounted at
the Cassegrain focus of ESO’s VLT Survey Telescope (VST,
Capaccioli & Schipani 2011) at Cerro Paranal, Chile. These
optical data are combined with their infrared ZY JHKs coun-
terparts from the VIsta Kilo degree INfrared Galaxy survey
(VIKING, Edge et al. 2013), obtained using the Visible and
InfraRed CAMera (VIRCAM) formerly mounted on ESO’s
4m VISTA telescope also on Cerro Paranal. The combined
KiDS+VIKING dataset is very well matched in terms of the
depth and sky coverage (e.g., Wright et al. 2019).

Here we use KiDS Data Release 4 (DR4, Kuijken et al.
2019), which covers roughly 1000 deg2 and includes nine-
band photometric information. The source detection was per-
formed on r-band imaging using the Source Extractor
(Bertin & Arnouts 1996) software, which also provides Kron-
like AUTO magnitudes. Images are also post-processed to
measure the Gaussian aperture and PSF (GAaP, Kuijken 2008)
magnitudes. These were designed to yield accurate colors of
galaxies (Kuijken et al. 2015) and, hence, they are most appro-
priate for deriving color-sensitive quantities, such as photo-z (see
e.g., B18). Therefore, we used GAaP magnitudes also to build
our feature space employed by the SOM. However, as discussed
in Kuijken et al. (2019), for instance, GAaP magnitudes do not
provide a good measurement of the total flux, especially for
galaxies with large angular sizes, as in the case of KiDS-Bright.
For the sample selection, we then followed B21 and used the r-
band AUTO magnitudes to apply a flux limit. In the following,
we have retained only the objects that have rauto < 20. We also
require nine-band GAaP measurements to be available. To obtain
a galaxy (i.e., extended source) selection, this is accompanied

2
https://somoclu.readthedocs.io/en/stable/download.

html
3
http://KiDS.strw.leidenuniv.nl

by the following cuts4: CLASS_STAR < 0.5, SG2DPHOT = 0 and
SG_FLAG = 1. The KiDS catalog also provides mask informa-
tion, which encodes (in particular) the areas a↵ected by various
artifacts. We followed the general recommendations for the DR4
selection and removed objects with (MASK& 28668)> 0. Finally,
from the KiDS-Bright sample, we removed any objects that were
assigned zphot < 0 (a rare artifact of the ML model, usually high-
lighting issues with photometry).

For our analysis, we supplemented the KiDS DR4 photomet-
ric data with optical+NIR measurements of similar quality as in
KiDS+VIKING (KV) from the so-called “KiDZ” fields. These
are areas mostly external to the KiDS footprint, which were tar-
geted with VST and VISTA observations both by independent
surveys and via dedicated observations of the KiDS team. These
fields overlap with various deep spectroscopic surveys, which
allows the KiDS team to calibrate redshift distributions with
direct approaches (such as DIR, Hildebrandt et al. 2017, 2020,
or SOM, Wright et al. 2020b; Hildebrandt et al. 2021) thanks
to their having joint information of nine-band photometry and
spectroscopy. For details of the KiDZ fields, see Wright et al.
(2024). The data in the KiDZ fields include, for the vast major-
ity of our sources, two separate measurements in the i-band
to mimic the situation in KiDS DR5 (Wright et al. 2024). To
homogenize these with the single i-band pass of DR4, we take
the arithmetic mean of the magnitudes, which is a good approx-
imation of mean flux for these bright objects with a high signal-
to-noise ratio, especially given the two magnitudes are usually
very consistent. If only one pass is available in KiDZ (a very rare
occurrence, at a 0.02% level), we used it as the i-band measure-
ment. We also implemented masking and star removal, which
slightly di↵er from KiDS DR4 and are more in line with the
DR5 post-processing.

This study focuses on the KiDS-Bright sample (B21), a flux-
limited galaxy dataset selected from KiDS DR4 as discussed
above. The sample is accompanied by photo-z generated with
the neural network code ANNz2 (Sadeh et al. 2016), where the
training set was derived from a cross-match between the KiDS
and GAMA equatorial datasets. These photo-z are based on nine-
band GAaP magnitudes and show very good statistical accuracy
and precision, namely, mean bias (residual) h�zi = 5 ⇥ 10�4 and
scatter (scaled median absolute deviation from median, SMAD)
��z = 0.018(1 + z). In the following, we compare these photo-z
with spectroscopic redshifts via a SOM projection.

In addition to the photo-z, in B21 a number of physical
galaxy properties were derived for the KiDS-Bright dataset by
employing the LePhare code (Arnouts et al. 1999; Ilbert et al.
2006) on the KV fluxes. Here, we use one of these properties
(galaxy stellar masses), which were shown in B21 to be con-
sistent with the more accurate derivations from GAMA spec-
troscopy (e.g. Taylor et al. 2011). Stellar masses are relevant for
our study, as these were employed by Dvornik et al. (2023) to
bin the lens sample extracted from KiDS-Bright and to link the
observed clustering and lensing signal of galaxies with the the-
oretical framework of the halo model (via the conditional stellar
mass function).

3.2. Spectroscopic data

Our methodology relies on combining photometric data with
redshift measurements. We obtain the latter from a number of
spectroscopic surveys and datasets overlapping with KiDS DR4
and the KiDZ fields.

4 See de Jong et al. (2015) for details of these morphological flags.
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3.2.1. GAMA

The basic spectroscopic dataset we use is derived from the
Galaxy And Mass Assembly (GAMA, Driver et al. 2009) final
Data Release 4 (Driver et al. 2022). The GAMA survey observed
⇠300 000 galaxies down to r . 19.8 over 286 deg2 using
the AAOmega multi-object spectrograph on the 4m Anglo-
Australian Telescope. This includes five fields, of which four
are fully contained within KiDS: three equatorial fields (G09,
G12 and G15; Baldry et al. 2010), and one southern field (G23).
The last GAMA field (G02, Liske et al. 2015) partly overlaps
with KiDZ. In addition, a dedicated small-area, deeper sur-
vey lies within the G15 field (G15-Deep, Driver et al. 2022).
Of these, the most spectroscopically complete are the equato-
rial fields (GAMA-eq hereafter), where redshift targets were
originally selected from SDSS as flux-limited to rPetro < 19.8
(with no color preselection) plus some additional filler targets
fainter than this limit. The estimates of GAMA-eq complete-
ness were originally at the level of 98.5% for its fiducial flux
limit (Liske et al. 2015). However, subsequent adoption of KiDS
photometry for GAMA galaxies (Bellstedt et al. 2020) led to
this being revised to 98% at rKiDS < 19.6 (Driver et al. 2022),
where ‘KiDS’ refers to flux measurements made with the code
ProFound (Robotham et al. 2018). Bellstedt et al. (2020) then
revised this completeness estimate to 95% at rKiDS < 19.72
(Driver et al. 2022).

The GAMA-eq sample was used to calibrate the KiDS-
Bright selection and photo-z estimation in B21, and we will
employ it as the main spectroscopic reference for our study.
The other GAMA fields (G02 and G23; GAMA-noneq here-
after), have brighter flux limits and much less complete sampling
than GAMA-eq (Liske et al. 2015), and only serve as extensions
together with other spec-z samples discussed below. In all cases,
GAMA redshifts were selected with the quality flag NQ � 3 and
with z > 0.002 to avoid stellar contamination.

3.2.2. Extended spectroscopic compilation

In addition to the GAMA data detailed above, we used a num-
ber of other spectroscopic datasets overlapping with KiDS DR4
and KiDZ. Most of these are the same as used in KiDS cos-
mic shear studies and detailed in previous papers (Wright et al.
2024; van den Busch et al. 2022). However, we also added a few
others. Also, most importantly, our cuts on the photometric data
are di↵erent. The properties of these additional redshift samples
are provided in Table 1. The numbers and statistics in the table
are applicable after a cross-matching with KiDS/KiDZ photo-
metric data, cutting down to rauto < 20 to mimic the KiDS-
Bright selection and keeping only unique objects5. The datasets
are listed in descending order of the number of sources within
KiDS DR4+KiDZ after the KiDS-Bright selections have been
applied. We denote this extended and matched spectroscopic
compilation as ‘Espec’.

As detailed in Table 1, the largest contributions in terms of
total numbers of galaxies come from wide-angle surveys over-
lapping with KiDS or KiDZ. After requiring our r < 20 selec-
tion, most of these surveys become e↵ectively shallower than
GAMA, even if they originally included deeper, higher-redshift
sources. This is because, as in the case of SDSS or 2dFLenS, the
higher-z sources are typically color-preselected and/or sparsely
sampled, while the more complete, magnitude-limited samples

5 The matching is done within 100 radius. See Wright et al. (2024) for
details on how duplicates are handled.

typically employ magnitude limits brighter than used by GAMA.
The remaining contributions to our extended compilation are
from small-area, deep surveys, which typically have (consid-
erably) larger mean redshifts than GAMA, even after our flux
limit is applied. However, these samples have very limited over-
lap with our photometric data, given their small on-sky areas.
Finally, in between these extremes, there is the DESI Early Data
Release (EDR), which is generally deeper than the wide-angle
surveys and spans a relatively large area on-sky. However, the
DESI EDR only intersects with approximately 44 sq. deg of the
KiDS/KiDZ footprint, which limits the influence of these spec-
tra. Future releases from DESI, with greater intersection with
KiDS, will greatly improve the influence of DESI in analyses of
KiDS data such as ours.

4. Color space analysis of KiDS-Bright galaxies

In this section, we use the SOM to compare the consistency
between the color-spaces of the KiDS-Bright sample and the
available spectroscopic sources, to evaluate how complete and/or
representative the latter are with respect to the former. Initially,
we examine the completeness of the GAMA-eq data in compar-
ison to KiDS-Bright. Subsequently, we explore the potential of
extending the spectroscopic sample to aid in selecting subsam-
ples with the most reliable photo-z.

We trained a 30⇥ 30 hexagonal-cell SOM with toroidal
topology using the KiDS-Bright photometric sample of ⇠1 mil-
lion galaxies. This gave us on average ⇠1000 galaxies per cell,
which provides su�cient sampling per cell for our analysis. We
trained our SOM using nine magnitudes and 36 colors as our
feature space and run the training for 100 epochs, which gave an
optimal balance between acceptable map convergence and main-
taining reasonable computational runtime. The learning scale
was initialized with a value of 0.1 and is gradually reduced to
0.01 in the final epoch. The SOM, therefore, provides us with
a 2D projection of the full 45 dimensions of KiDS-Bright color-
magnitude space, which we utilized for our subsequent analyses.
Furthermore, we also mapped various other parameters not used
in the training of our SOM, including details of the spectroscopic
samples discussed previously in Sect. 3.2.

4.1. Comparison of KiDS-Bright and GAMA

We start by analyzing how various KiDS-Bright galaxy proper-
ties are mapped on the SOM. This allows us to make a qualita-
tive comparison of how these quantities are correlated, includ-
ing both the features employed to train the SOM and addi-
tional ones. In Fig. 2, we show four of them: r-band magni-
tude (first panel), g � r color (second panel), stellar mass (third
panel), and photometric redshift (fourth panel). The two former
are taken directly from the observations (Kuijken et al. 2019),
the two latter were derived from KiDS+VIKING photometry as
described in B21. Stellar masses (M⇤) were obtained using LeP-
hare (Arnouts et al. 1999; Ilbert et al. 2006), and photo-z were
estimated using ANNz2 (Sadeh et al. 2016). Finally, we here-
after refer to r-band AUTO magnitudes simply as r magnitudes,
while colors are based on GAaP photometry.

The visualization reveals distinct feature clustering patterns.
Fainter galaxies tend to gather in the central region of the map,
while brighter ones cluster towards the edges (which are inter-
connected in toroidal mapping). Additionally, as expected, we
see segregation in color space – one group tending towards
bluer and the other towards redder. We see similar trends in all
the nine optical and infrared bands and the corresponding 36
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Table 1. Surveys used in the extended spectroscopic compilation (Espec).

Survey Median Median Count Selection References
redshift r-mag criteria

GAMA-eq 0.220 19.16 145 908 NQ � 3, z > 0.002 Baldry et al. (2010)
2dFGRS 0.117 17.85 48 294 q_z � 3, z > 0.002 Colless et al. (2001)
GAMA-noneq 0.207 18.96 41 612 NQ � 3, z > 0.002 Liske et al. (2015)
SDSS DR14 0.152 17.54 30 029 zWarning = 0, 0 < zErr < 0.001,

zErr/z < 0.01, z > 0.001 Abolfathi et al. (2018)
2dFLenS 0.229 18.64 19 710 qual < 6, z > 0.001 Blake et al. (2016)
DESI EDR 0.261 19.82 12 767 ZCAT_PRIMARY, zWarn = 0, z > 0.002 DESI Collaboration (2024)
DEVILS 0.217 19.39 888 zBestType = spec, starFlag = 0,

mask = 0, artefactFlag = 0 Davies et al. (2018)
COSMOS 0.221 19.49 675 3  Q_f  5, or 13  Q_f  15, or

23  Q_f  25, or Q_f 2 {6, 10}, z > 0.002 priv. comm. (M. Salvato)
OzDES 0.200 18.72 516 qop 2 {3, 4}, z > 0.002 Lidman et al. (2020)
WIGGLEZ 0.388 19.87 362 Q � 3, z > 0.001, Dz/z < 0.1 Drinkwater et al. (2010)
VVDS 0.228 19.55 212 ZFLAGS 2 {3, 4, 23, 24} Le Fèvre et al. (2005, 2013)
HCOSMOS 0.222 19.50 178 None Damjanov et al. (2018)
ACES 0.181 19.29 173 Z_QUALITY � 3, zErr/z < 0.01 Cooper et al. (2012)
G15-DEEP 0.250 19.91 106 Z_QUAL � 3, z > 0.001 Driver et al. (2022)

Notes. The table is arranged based on the descending number of sources within the KiDS DR4+KiDZ bright sample coverage area. All the
numbers apply after cross-matching the input spec-z samples with the photometric data limited at r < 20 mag and removing duplicates between
surveys. We list only those surveys that have at least 100 cross-matched objects each.

Fig. 2. 30⇥ 30 hexagonal-cell SOMs with toroidal topology trained using the KiDS-Bright photometric sample (9 magnitudes+36 colors) of ⇠1
million galaxies. These plots show a few example properties of the KiDS-Bright photometric sample projected on the SOM. From left to right: (1)
r-band AUTO magnitude, (2) g� r color, (3) logarithm of stellar mass in solar units, and (4) photometric redshift derived with ANNz2. Properties
(1) and (2) are taken from the KiDS DR4 photometric dataset (Kuijken et al. 2019), while (3) and (4) were obtained for the KiDS-Bright sample
by B21. Colors indicate the mean value of a given property per SOM cell.

Fig. 3. Comparison of the number density of the KiDS-Bright photometric sample (left), GAMA spectroscopic (middle), both expressed as
average sky-projected density per SOM cell and the ratio of the latter to the former (right), giving a measure of GAMA completeness with respect
to KiDS-Bright. The ratio above unity can appear as a result of the cosmic variance between GAMA and KiDS datasets.

colors. Remembering that the respective cells in di↵erent pan-
els of Fig. 2 correspond to the same sets of galaxies, we can
observe a correlation between galaxy color and stellar mass.
Moreover, at higher redshifts, galaxies of predominantly higher
stellar masses, as well as redder and fainter, are prevalent,
whereas at lower redshifts, a wider distribution of various stel-

lar masses and colors is evident. All these patterns are in line
with the expected properties of a flux-limited sample, such as
KiDS-Bright.

Next, we make a direct comparison between KiDS-Bright
and GAMA using our SOM. To reiterate, the GAMA equa-
torial spectroscopic sample was utilized by B21 both to
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Fig. 4. Dependence of the GAMA completeness (w.r.t. KiDS) on selected properties of the KiDS-Bright sample, based on SOM projections. The
completeness is expressed as the per-cell ratio of GAMA and KiDS-Bright surface density. The panels show from left to right: r-band AUTO
magnitude, g � r color, logarithm of stellar mass, and ANNz2 photometric redshifts. Each orange dot represents one SOM cell, while the blue
points are median values with central 68-percentile error bars. Binning is done by preserving the same number of averaged cells per bin. The
pink-shaded regions show the bootstrap error from 10 000 bootstrap samples, as an approximation to the uncertainty on the median.

calibrate the selection of KiDS-Bright and to derive its photo-z
through an ML approach. Consequently, our objective here is to
examine whether, and to what extent, GAMA-eq might exhibit
incompleteness (and/or non-representativeness) in relation to the
KiDS-Bright galaxies. In the subsequent paragraph, we will dis-
cuss how this potential incompleteness could impact the accu-
racy of KiDS-Bright photo-z.

We start by noting that the projections from Fig. 2 look
very similar between KiDS-Bright and GAMA, so we are not
showing them here for the latter sample. However, more strik-
ing di↵erences start to appear if we move to other quantities. An
example is the number density (N), which we obtain by dividing
the galaxy counts of each SOM cell by the e↵ective survey area
(777 deg2 for KiDS-Bright and 142 deg2 for GAMA). The result
is plotted in Fig. 3 (left and middle panels). By comparing these
with the left-hand side panel of Fig. 2, we see that the number
density in the GAMA survey is much lower than in KiDS-Bright
at the faint end of the latter. This is expected because the adopted
KiDS-Bright flux limit of rauto < 20 mag was slightly fainter than
the GAMA-eq completeness limit of rpetro . 19.8.

The right-hand panel of Fig. 3 illustrates the per-cell com-
pleteness defined as C ⌘ NGAMA/NKiDS. Here, completeness
implies the parametric completeness of GAMA with respect to
KiDS in magnitude. We note that this can be occasionally above
unity, as for a given SOM training, the number of GAMA galax-
ies in some cells can be higher than that number for KiDS. This
is due to two reasons: GAMA has more representative galaxies
in a given cell, and also due to cosmic variance between GAMA
and KiDS datasets. The faint-end incompleteness of GAMA,
visible in the center of the middle and right panels of Fig. 3,
does not need to mean that the KiDS-Bright photo-z derived in
B21 are unreliable there, provided that the GAMA selection at
r ⇠ 20 mag seems to sparsely sample the KiDS-Bright color
space (Fig. 2).

The completeness, C, measured from the right-hand panel of
Fig. 3, can be directly mapped to other properties through the use
of the SOM. Examples are provided in Fig. 4, where we show the
completeness as a function of the same quantities as visualized
in Fig. 2. Each individual point represents one SOM cell, and we
see considerable scatter among these. This scatter is the result
of a combination of sample variance, shot noise, and selection
e↵ects in the two samples. However, by averaging over the indi-
vidual cells in bins of the respective x-axes, we can trace the
overall patterns in the (in)completeness of GAMA-eq vs. KiDS-

Fig. 5. Distributions of selected galaxy properties for two example SOM
cells, one where GAMA completeness is very high (cell [18, 29], upper
panels) and one where it is low (cell [15, 22], lower panels). From left
to right, we show the observed r-band magnitude, g � r color, stellar
mass, and ANNz2 photometric redshift. Photometric KiDS-Bright data
is plotted as filled brown bars, while spectroscopic GAMA is given by
black lines. Vertical dashed lines indicate means: for KiDS-Bright in
red and for GAMA in black.

Bright. We illustrate this with the blue points indicating medians
with the error bars reflecting the (16, 84)th percentile range.

On the one hand, GAMA keeps its 98% completeness up
to r ⇠ 19.5. Taking into account the di↵erences between the
AUTO magnitudes we use and those from ProFound employed
by GAMA (Bellstedt et al. 2020), our findings are consistent
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with the 19.6 mag value in Driver et al. (2022) for the same com-
pleteness level. Beyond that range, the ratio plummets, in line
with the qualitative assessment we made above. Looking at the
same as a function of color, no clear trend emerges, though,
except for perhaps a suggestion of GAMA being a bit less com-
plete for blue rather than for red galaxies, driven by the fact that
faint things are preferentially blue. Similar trends with respec-
tive apparent magnitudes and colors are seen for other bands (not
shown here). More pronounced trends in GAMA incompleteness
emerge in KiDS-Bright stellar masses and photo-z, although it
is worth noting that, except for the most extreme bins (respec-
tively M⇤ ⇠ 109

M� and zphot ⇠ 0.4), the NGAMA to NKiDS ratios
are consistent with unity within 68-percentiles. An interesting
observation is that individual incomplete cells, which are prac-
tically all at the faint end (see the leftmost panel in Fig. 4), are
scattered all over the panels if we consider other quantities than
magnitudes. Still, it is reassuring to see that the completeness
stays (well) above 80% independently of, e.g., the g � r color.
This could be one of the reasons why in B21, the photo-z perfor-
mance was robust for both red and blue galaxies, even beyond
the GAMA completeness limit.

Finally in Fig. 5 we highlight two SOM cells: one boast-
ing over 97% GAMA completeness and the other at the lower
end, of approximately 15%. We depict per-cell histograms of
the same quantities as presented earlier in Figs. 2 and 4. The
filled brown bars represent KiDS-Bright, while the solid black
lines denote GAMA; vertical dashed lines indicate the mean.
The upper panel illustrates an instance of very high complete-
ness, where the mean values of the respective quantities over-
lap between KiDS-Bright and GAMA, which should result in a
very good correspondence between the estimated photo-z and
GAMA spec-z. However, even in cases of low completeness,
depicted in the bottom row, the photo-z estimates also align well
with the GAMA spec-z in the cell. Magnitudes and colors are
utilized both in the SOM training and in deriving photometric
redshifts, and hence it is expected that these training parameters
would be consistent across each cell, resulting in similar derived
parameters. These examples underscore the earlier findings of
unbiased photometric redshift measurements in B21 owing to
GAMA completeness and representative sampling in color.

4.2. Selection of a clean sample using SOM

In the previous section, we quantified the relative completeness
of the GAMA spectroscopic data with respect to the photomet-
ric KiDS-Bright as a function of several galaxy properties. We
observed that the GAMA completeness quickly drops at the
faintest and highest-z end, while no significant deterioration is
present with regard to colors or stellar mass. As GAMA was used
to train the KiDS-Bright photo-z, here we discuss how the SOM
comparison of the photometric and spectroscopic data could be
used to improve GAMA representation with respect to KiDS-
Bright. As a result, we may remove galaxies with ill-constrained
photo-z from the KiDS-Bright sample, as determined by direct
comparisons with both GAMA itself and the extended spectro-
scopic sample (Espec) presented in Sect. 3.2.2.

As the left-most panel of Fig. 4 suggests, the simplest way
to improve GAMA representation would be to lower the magni-
tude limit of KiDS-Bright (raise the flux threshold), as the major-
ity of the incomplete SOM cells are at the faintest end. This
would, however, a↵ect the usefulness of the photometric sam-
ple for lensing studies by decreasing its e↵ective depth, while
it would not necessarily lead to direct improvement in photo-z
quality, as redshift estimates depend on the full nine-band infor-

Fig. 6. The relative di↵erence Dz ⌘ �z/zspec between the KiDS-Bright
photometric and calibration spectroscopic redshifts, calculated in each
SOM cell. The left and right panel shows |Dz| for GAMA and Espec,
respectively.

Fig. 7. The absolute di↵erence �z ⌘ �z/(1 + zspec) between the KiDS-
Bright photometric and calibration spectroscopic redshifts, calculated
in each SOM cell. The left and right panel shows �z for GAMA and
Espec, respectively.

mation. We therefore compare such a more aggressive flux cut
with SOM-based analysis of photo-z quality, where we will con-
sider both relative and absolute photo-z errors as our test statis-
tics. The former is defined as

Dz ⌘ �z/zspec, (1)

namely, as a fractional di↵erence, expressed in percent, where
�z ⌘ zphot � zspec. As photo-z always have non-negligible uncer-
tainties, including at very low redshift, this relative error Dz is
expected to diverge as z ! 0, but otherwise be stable for most
of the redshift range. Our second statistic, the absolute photo-z
error, is defined as

�z ⌘ �z/(1 + zzspec), (2)

where we account for the fact that photo-z errors usually scale
with 1 + z. This metric should be relatively constant with photo-
metric redshift, but will vary with true spectroscopic one as well
as galaxy type.

Using the SOM projections discussed above, we can define
per-cell Dz and �z by replacing the respective zphot and zspec with
their SOM-based averages. This is illustrated in Fig. 6 for DzSOM
and in Fig. 7 for �zSOM ⌘ (hzphoticell � hzspecicell)/(1 + hzspecicell).
Each of the figures includes two panels: one for computing dif-
ferences with respect to GAMA-only spectra (left), and one for
computing di↵erences with respect to the full Espec compila-
tion (right). The first observation that we can make from these
figures is that, in most of the cells, both relative and absolute
photo-z errors are small. For Dz, the majority are within 10%,
while typically |�z| < 0.01 except for a small fraction of cells.
There are, however, some notable di↵erences between the cases
of GAMA-only spectra and Espec spectra. As only the former
was used for photo-z estimation, such deviations could indi-
cate the cells where GAMA does not provide su�ciently robust
redshift calibration. On the other hand, the overall consistency
between the respective left- and right-hand panels suggests that
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Fig. 8. Distribution of r magnitude, g � r color, stellar mass, and pho-
tometric redshifts for KiDS-Bright galaxies. Filled tan: before any cuts;
black: keeping the SOM cells with hri < 19.83; red: removed objects
from cells with hri > 19.83 (about 10.4% of all).

GAMA does provide su�ciently good photo-z calibration for
most of the KiDS-Bright sample.

Following the considerations above, we propose three pos-
sible ways of cleaning up the KiDS-Bright sample to improve
its match with overlapping spectroscopic datasets. The first is a
simple flux cut in the r-band, namely adopting rlim lower than the
original r < 20 mag selection. The second is a threshold in |Dz|,
while the third one assumes a cut in |�z|. For a direct compari-
son, each of these cuts are implemented on the SOM, based on
per-cell averages: that is, we remove from KiDS-Bright all the
galaxies belonging to the cells where the respective cell-average
is above the given threshold. This means, in particular, that the
flux limit selection will not perform an exact cut at r < rlim, as
each cell has some non-zero intrinsic scatter in r-band magni-
tudes. Furthermore, we define our thresholds in such a way as to
remove approximately the same fraction of KiDS-Bright galax-
ies with each selection. We choose this fraction to be roughly
10%, which leads to the following cuts applied on the SOM cells:
1. hri < 19.83 mag;
2. |Dz| < 5.97%;
3. |�z| < 0.01;
4. A combination of the above criteria: all the SOM cells that

have hri < 19.86 mag AND |Dz| < 10.05% AND |�z| <
0.015;

where the values are calculated using per SOM cell averages and
the particular cuts are applied separately one at a time. We also
reiterate that the criteria [2]–[4] could use either GAMA-only
or Espec to compute Dz and �z. To keep the fraction ⇠10%, the
above constraints changes slightly when Espec is used instead of
GAMA. In option [4], each of the particular selections removes
roughly 4�5% of galaxies, but their combination gives about
10%, as in the separate cuts [1]–[3]. This is due to consider-
able overlap between removed SOM cells, especially between
the Dz and �z based selections. We illustrate this in Fig. A.5 for
a combination of 20% galaxies removed.

In Figs. 8–10 we show the distributions of the same galaxy
properties as analyzed earlier in Sect. 4.1, but now compar-
ing three cases in each panel: before any cuts to the KiDS-
Bright dataset (filled tan), after the cuts (black), and additionally
what is removed by the cuts (red). Fig. 8 applies to the SOM
cells with the faintest sources being removed (item [1] above),
Fig. 9 depicts the case where the cells with the largest relative
photo-z error Dz are taken out (item [2]), while Fig. 10 illus-

Fig. 9. Upper panels: Same as Fig. 8, but the black lines indicate galax-
ies with SOM cells where |Dz| = |zphot � zspec|/zspec < 5.97% (relative
redshift error), while red illustrates objects (⇠10%) from removed cells.
GAMA is used as the source of spectroscopic redshifts. Lower panels:
Spec-z taken from Espec compilation (|Dz| < 6.23%).

trates the removal of the biggest absolute photo-z errors (�z,
item [3]). Finally, Fig. 11 illustrates the joint condition [4] dis-
cussed above. For item [4], we also show the histograms for the
objects discarded by the individual cuts that are combined, each
of which culls about 4�5% of KiDS-Bright galaxies. Figures 9–
11 are composed of two sets of panels each, those in the top
based on using GAMA only as spec-z calibration, while the bot-
tom ones employ the entire Espec compilation for the cuts. We
can summarize the results as follows:
1. Removing the SOM cells at the faint end a↵ects mostly

galaxies that are redder, have higher stellar masses, and are
at higher redshifts than the rest of the KiDS-Bright sample.
This is expected for a flux-limited dataset, where the (obser-
vationally) faint end is dominated by intrinsically bright, red,
massive galaxies, which are typically observed at higher red-
shifts than the sample mean.

2. Discarding the cells with the largest relative photo-z residu-
als, Dz, a↵ects galaxies at a range of magnitudes, but mainly
at the faint end. Unlike in case [1], however, the removed
objects are mostly blue, of low stellar mass, and at lower red-
shifts. This is consistent with the fact that the relative photo-
z errors become very large at low redshift and additionally
indicates that Dz is typically larger for low-mass, blue, and
intrinsically faint galaxies.

3. Cleaning up the KiDS-Bright sample of the SOM cells
that have the largest absolute photo-z errors, �z, also gives
quite di↵erent outcomes than cases [1] and [2]. While it is
still preferably galaxies at the fainter (observed) magnitudes
that are a↵ected, and practically all the bluest objects are

A177, page 9 of 17



Jalan, P., et al.: A&A, 692, A177 (2024)

Fig. 10. Same as Fig. 8 but the black lines indicate galaxies with SOM
cells where |�z| = |zphot�zspec|/(1+zspec) < 0.01 (absolute redshift error),
while red illustrates objects (⇠10%) from removed cells. Upper panels:
GAMA is used as the source of spectroscopic redshifts. Lower panels:
Spec-z taken from Espec compilation.

discarded this way, the distributions of the g� r color, stellar
mass, and photo-z of the removed sources otherwise sam-
ple these parameters much more uniformly. In other words,
requiring a fixed cut in absolute photo-z error seems to
remove galaxies equally as a function of color, stellar mass,
and photo-z. It is however important to note that this is not
equivalent to a sparse sampling, as the distributions of the
removed objects are very di↵erent from those of the entire
input population.

4. Finally, combining the three above types of cuts into one
condition, but keeping ⇠90% of galaxies, again preferen-
tially removes the objects at the faint end, but their distri-
bution in other properties is also more uniform than in cases
[1]–[3].

Moreover, we conclude that none of these cuts heavily influences
the completeness curve presented in Fig. 4.

By comparing the upper and lower panels of Figs. 9–11, we
can see some di↵erences between the galaxies a↵ected by the
cuts when using GAMA versus Espec as calibration. This can
indicate situations where GAMA does not provide su�cient cal-
ibration for KiDS-Bright color space and additional data, such
as from Espec, should be used to purify the photometric sam-
ple. However, as discussed below, interchanging between the
two spectroscopic datasets for cleanup has very little influence
on the resulting photo-z statistics.

The e↵ect of the KiDS-Bright sample cleanup on its photo-
z properties is quantified in Table 2. As expected, the average
redshift of the sample decreases if a brighter flux cut is adopted,

Fig. 11. Same as Fig. 8, but the black lines indicate galaxies with SOM
cells kept after the joint condition on hri mag, Dz and �z is applied (see
text for details), while red illustrates objects from all the removed cells.
Here we additionally show the distribution for each individual removal
from the combination: for r mag in green, Dz-based in purple, and for
�z in blue. The combined criteria remove ⇠10% of the objects. Upper
panels: GAMA is used as the source of spectroscopic redshifts. Lower
panels: Spec-z taken from Espec compilation.

while it goes up if the galaxies with the largest relative photo-z
error Dz (Eq. 1) are discarded. It remains largely unchanged if
the cleanup is based on the largest absolute errors �z. The photo-
z statistics are calculated for the KiDS-Bright sample cross-
matched with GAMA-eq. The reduction in the mean photo-z
residuals (Eq. 2, columns 4–5) is by a factor of a few or even
more (in absolute terms) for redshift-based cuts while interest-
ingly they stay almost intact for a more aggressive magnitude
cut. Furthermore, each of the analyzed cuts lowers the scat-
ter in photo-z errors, both in terms of standard deviation and
SMAD, when compared to the original sample case: the for-
mer is reduced by ⇠6% (when implementing cleanup in Dz or
�z), whereas the latter decreases by ⇠3% (cut in Dz based on
the Espec calibration). It is worth noting that a larger relative
reduction in SD than in SMAD means that the photo-z residuals
become more Gaussian after our proposed cuts, due to a reduc-
tion in outliers. Still, the fact that SD is still much larger than
SMAD indicates that there are still considerable non-Gaussian
wings and/or outlier populations in the photo-z error distribution
(see, e.g., the discussion in B21).

Finally, we note that the same general observations hold
when we use more conservative selection cuts and remove twice
as many galaxies (i.e., 20%) from the sample; see Appendix A.
In fact, one would need to remove the faintest half of the dataset
(cutting at r . 19.4 mag) to obtain only 10% reduction in photo-z
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Table 2. Statistics of photometric redshift performance for the KiDS-Bright sample cross-matched with GAMA-eq. Numbers in columns (4)–(7)
refer to subsamples kept after applying the cuts in the first column.

Selection Number of Mean Mean of Mean of St. dev. of SMAD of
galaxies redshift �z = zphot � zspec �z/(1 + zspec) �z/(1 + zspec) �z/(1 + zspec)

No cut 10.00 ⇥ 105 0.242 4.7 ⇥ 10�4 9.1 ⇥ 10�4 0.0232 0.0178
hri < 19.83 8.96 ⇥ 105 0.230 4.8 ⇥ 10�4 9.1 ⇥ 10�4 0.0230 0.0176
|Dz| (a) < 5.97% (GAMA-based) 8.97 ⇥ 105 0.250 �1.8 ⇥ 10�4 3.2 ⇥ 10�4 0.0219 0.0174
|Dz| < 6.23% (Espec-based) 8.98 ⇥ 105 0.248 �0.7 ⇥ 10�4 4.1 ⇥ 10�4 0.0217 0.0173
�z

(b) < 0.01 (GAMA-based) 8.96 ⇥ 105 0.240 �1.0 ⇥ 10�4 4.0 ⇥ 10�4 0.0218 0.0174
�z < 0.01 (Espec-based) 8.96 ⇥ 105 0.237 �0.2 ⇥ 10�4 4.6 ⇥ 10�4 0.0218 0.0174
Combined (GAMA-based) (1) 9.11 ⇥ 105 0.240 0.4 ⇥ 10�4 5.2 ⇥ 10�4 0.0220 0.0175
Combined (Espec-based) (2) 9.01 ⇥ 105 0.238 0.4 ⇥ 10�4 5.1 ⇥ 10�4 0.0219 0.0174

Notes. The cuts are based on the SOM cell averages. (a)
Dz ⌘ (hzphoticell � hzspecicell)/hzspecicell. (b)�z ⌘ (hzphoticell � hzspecicell)/(1 + hzspecicell).

(1)hri < 19.86 mag & |Dz| < 10.05% & �z < 0.015. (2)hri < 19.86 mag & |Dz| < 9.8% & �z < 0.017.

scatter, as we shortly discuss in Appendix B. Similarly, reducing
the mean residuals to ⇠0 would require rejecting over 30% of
the KiDS-Bright galaxies. Such aggressive cleanups would con-
siderably a↵ect the usefulness of the dataset, especially for GGL
science. Indeed, as shown in B21, for example, for this sample,
it is the actual number of galaxies used as lenses that drives the
uncertainties of the GGL measurements, rather than the photo-z
errors. In other words, to improve the scientific usefulness of the
KiDS-Bright dataset, it would be more desirable to increase its
number density, rather than to reduce it.

5. Summary and conclusions

In this paper, we employed self-organizing maps (SOMs) to
analyze how well the photometric KiDS-Bright galaxy sam-
ple, flux-limited at r < 20 mag, is matched in the color space
with the available overlapping spectroscopic data samples. This
analysis is particularly important because applications of the
KiDS-Bright sample often require robust photometric redshift
estimates. Therefore, it is crucial to validate the performance of
the current ANNz2-based photo-z (B21) across various galaxy
types and brightness ranges.

We first focused on the GAMA-Equatorial (GAMA-Eq)
spec-z sample, which was used by B21 as a training dataset in
ANNz2 to derive KiDS-Bright photo-z. GAMA-Eq was orig-
inally designed to be highly complete spectroscopically up
to r < 19.8 in Petrosian magnitude, as derived from SDSS
(Baldry et al. 2010). Its eventual completeness was, however,
established to be 98% at r < 19.6 using KiDS imaging
(Driver et al. 2022), which is 0.4 mag brighter than the KiDS-
Bright flux limit. Nonetheless, as GAMA includes galaxies
with spec-z measurements fainter than this limit (typically filler
targets), B21 was able to train KiDS-Bright photo-z beyond
the GAMA completeness limit. Our SOM analysis shows
that while GAMA-Eq completeness, relative to KiDS-Bright,
quickly declines for magnitudes fainter than r ⇠ 19.5, there is
no significant trend in relative incompleteness with multiwave-
length colors or stellar mass. This suggests that, despite missing
many faint-end galaxies, GAMA-Eq does provide a good repre-
sentation of the KiDS-Bright galaxy population over the color
space.

Having compared the KiDS-Bright and GAMA in the color
space using SOM, we next proposed a possible approach to
further enhance the photo-z quality of the former, by clean-
ing the target sample to force a better match with the overlap-

ping spectroscopy. Here, we extend our study beyond GAMA,
by adding spec-z from several other datasets overlapping with
KiDS, as well as with external calibration fields dubbed
“KiDZ”.

By comparing KiDS color-space projections with those
from spectroscopic samples, we identified the SOM cells where
KiDS-Bright photo-z di↵ered the most from the true redshifts,
both in absolute and relative terms. This allowed us to pro-
pose four possible criteria for KiDS-Bright cleanup: [1] based
on reduced magnitude limit; [2] removing the cells with the
largest |Dz| ⌘ |zphot� zspec|/zspec; [3] cutting out those cells where
|�z| ⌘ |zphot � zspec|/(1 + zspec) is the biggest; and finally [4] a
combination of the three previous options. For each criterion, we
chose to remove SOM cells such that roughly 10% of galaxies
are discarded from the KiDS-Bright sample. This fraction can
of course be adjusted based on the specific scientific goals of an
analysis, balancing between the statistical power of the dataset
(in terms of the total number of galaxies retained) and the accu-
racy and precision of the photo-z. In the appendix, we discuss
an alternative scenario of removing about 20% of input galaxies.
Finally, we note that each of the criteria [1]–[4] a↵ect di↵erent
galaxy types, in terms of their magnitudes, colors, stellar masses,
and/or photo-z.

We conclude that none of the cleanups that we analyzed led
to significant improvement in the overall photo-z quality of the
KiDS-Bright sample. The SMAD values are never reduced to
below 3%, even after 10% reduction in the sample. On the one
hand, this may indicate that the current KiDS-Bright photo-z
are already close to being optimal for the set of passbands that
KiDS+VIKING provide.

Our findings presented here can be further scrutinized in
the near future by supplementing the spec-z data we used
here with additional redshifts. This could be done by either
selecting galaxies from the most under-represented cells for
targeted spectroscopic follow-up (similarly as done in the
C3R2 projects, Masters et al. 2017) or by gradually supple-
menting these cells with spec-z coming from large surveys.
In this latter respect, DESI looks particularly promising, as it
includes a Bright Galaxy Survey (Hahn et al. 2023), in which
the faint sub-survey is obtaining redshifts for sources up to
r < 20.175. In our work, we include DESI Early Data
Release galaxies (DESI Collaboration 2024), but their over-
lap with our photometric sample is evidently too small to
considerably influence our findings. We hope to be able to
further test our approach with the forthcoming DESI Data
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Release 1 from the main survey. On a longer term, the 4-meter
Multi-Object Spectroscopic Telescope (4MOST, de Jong et al.
2019) will undertake a number of surveys that should pro-
vide a good match to KiDS both in sky coverage and color
space.

In this work, we focused on the KiDS DR4 Bright Sam-
ple, but our framework can be adapted to any galaxy dataset
where such an analysis is relevant. In particular, we plan to
employ the selection of foreground galaxies from the final data
of KiDS DR5 (Wright et al. 2024), where a new version of the
KiDS Bright Sample will be designed as the main dataset for
GGL and clustering in KiDS 3⇥ 2 pt analyses. Furthermore,
our methodology will be relevant for forthcoming deep wide-
area surveys such as from Euclid or LSST. While a fraction
of galaxies detected by these surveys will have been covered
by spectroscopy from DESI, 4MOST, or Euclid itself, on their
full area the most complete selection of foreground galaxies
for clustering and galaxy-galaxy lensing may still be possible
only from photometry. It will be then natural to apply simi-
lar approaches to photo-z derivation for, for instance, KiDS-
Bright (i.e., by training some ML models), which will equally
need quantification of the match between spectroscopic train-
ing sets and target photometrically selected samples. Our frame-
work presented here could be practically directly employed once
these new data become available. We can then follow up with
an appropriate clean-up of the photometric datasets and obser-
vational proposals to obtain spectroscopy for the least complete
SOM cells.
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Appendix A: Removing 20 percent of the
KiDS-Bright sample

In Sect. 4.2, we present a method for cleaning up the KiDS-
Bright sample for three main criteria, based on magnitude limit
and photo-z performance, and on their combination. In each
case, we adjust the cuts in such a way as to remove roughly
10% of the galaxies from the input dataset. Here we present the
results of the same procedure, but for the case when we remove
about 20% objects from KiDS-Bright. The outcome is illustrated
in Figs. A.1-A.4 and summarize in Table A.1, which are coun-
terparts of those shown in Sect. 4.2 for the ⇠ 10% removal. We
illustrate the SOM distribution of the removed cells in Fig. A.5
for a combination of 20% galaxies removed. As can be seen,
even such a more aggressive cut of keeping ⇠ 80% of galaxies
does not lead to an enormous improvement in photo-z quality in
terms of scatter (SMAD of �z/(1+z)), which is never reduced by
more than 5% despite removing 1/5th of the KiDS-Bright galax-
ies. The completeness ratio shown in Fig. A.6 also shows the
negligible improvement of the completeness ratio in stellar mass
and photo-z as compared to Fig. 4.

We know that GAMA-Eq completeness, relative to KiDS-
Bright, quickly declines for magnitudes fainter than r ⇠ 19.5.
Therefore, we also test the photo-z statistics for two subsets
r >= 19.5 and r < 19.5, as detailed in Table A.2. We find
that, for the brighter subsample (r < 19.5), the mean redshift
and deviations are generally lower, indicating better photometric
redshift performance. The mean �z/(1 + zspec) values are closer
to zero, and both the standard deviations and SMAD are smaller
compared to the fainter subsample. For the fainter subsample
(r � 19.5), the performance metrics show larger mean o↵sets
and greater scatter, indicating challenges in achieving accurate
photometric redshifts for these galaxies. Despite the selection
cuts, the standard deviations and SMAD remain higher than
those for the brighter subsample.

Fig. A.1. Same as Fig. 8, but here the black [red] histogram shows the
galaxies from the cells with the mean r magnitude to be less [more] than
19.75, removing ⇠ 20% galaxies.

Appendix B: Dependence of photo-z quality on the
percentage of removed galaxies

Here, we generalize the possible sample cleanup and check how
many galaxies we should remove from KiDS-Bright to obtain the
desired reduction in photo-z bias or scatter. This is summarized
in Fig. B.1, where we show the SMAD and mean photo-z resid-
ual (both based on GAMA) for various percentages of removed

Fig. A.2. Same as Fig. 9, but with 20% of the KiDS Bright galaxies
removed. Upper panels: Galaxies from the cells with the mean relative
di↵erence between photometric and spectroscopic redshift from GAMA
to be less [more] than 3.93%, shown as a black [red] histogram. Bottom

panels: Same as the upper panel, but the spectroscopic redshift is from
the Espec sample.

galaxies, starting from 5% up to as much as 50%, which ends
up reducing the dataset by half. As the left panel indicates, we
find that SMAD values are consistently lowered if we remove
the faint end, and this reduction is up to 10% but only when the
faintest half of the sample is removed (hri > 19.36 mag). On the
other hand, cuts �z or Dz hardly a↵ect the SMAD which changes
by less than 3% irrespective of the culled fraction. The picture
is reversed if we consider the change in mean residuals. In the
right panel of Fig. B.1 we can see that h�zi stays at the level of
⇠ 8 ⇥ 10�4 no matter how many faint galaxies are removed. On
the other hand, this photo-z residual goes down roughly linearly
with more aggressive cuts in SOM-based Dz and �z. In fact, at
around 40 - 45% of removed galaxies, it crosses the zero line and
becomes negative.
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Table A.1. Same as Table. 2 but removing 20% of the KiDS-Bright sample.

Selections Number of Mean Mean of Mean of St. dev. of SMAD of
galaxies redshift �z = zphot � zspec �z/(1 + zspec) �z/(1 + zspec) �z/(1 + zspec)

No cut 10.00 ⇥ 105 0.242 4.7 ⇥ 10�4 9.1 ⇥ 10�4 0.0232 0.0178
hri < 19.75 7.97 ⇥ 105 0.222 4.4 ⇥ 10�4 8.7 ⇥ 10�4 0.0227 0.0174
|Dz| < 3.93% (GAMA-based) 7.98 ⇥ 105 0.255 �3.0 ⇥ 10�4 2.3 ⇥ 10�4 0.0217 0.0174
|Dz| < 3.93% (Espec-based) 8.01 ⇥ 105 0.250 �2.5 ⇥ 10�4 2.5 ⇥ 10�4 0.0214 0.0170
�z < 0.006 (GAMA-based) 7.99 ⇥ 105 0.239 �2.8 ⇥ 10�4 2.5 ⇥ 10�4 0.0217 0.0174
�z < 0.007 (Espec-based) 8.00 ⇥ 105 0.230 �2.0 ⇥ 10�4 3.0 ⇥ 10�4 0.0214 0.0171
Combined (GAMA-based)1 8.07 ⇥ 105 0.237 �1.6 ⇥ 10�4 3.3 ⇥ 10�4 0.0215 0.0172
Combined (Espec-based)2 8.11 ⇥ 105 0.234 �1.0 ⇥ 10�4 3.8 ⇥ 10�4 0.0214 0.0172

1 hri < 19.84 & |Dz| < 6.48% & |�z| < 0.010.
2 hri < 19.84 & |Dz| < 6.48% & |�z| < 0.011.

Table A.2. Same as Table. A.1 but sample divided in two r bins r < 19.5 [r � 19.5].

Selections Number of Mean Mean of Mean of St. dev. of SMAD of
galaxies redshift �z = zphot � zspec �z/(1 + zspec) �z/(1 + zspec) �z/(1 + zspec)

(⇥105) (⇥10�4) (⇥10�4)

No cut 5.87 [4.13] 0.209 [0.288] 1.7 [13.3] 6.0 [17.6] 0.0216 [0.0273] 0.0166 [0.0216]
h r i <19.75 5.81 [2.16] 0.208 [0.260] 1.5 [16.1] 5.8 [19.9] 0.0214 [0.0270] 0.0166 [0.0211]
|Dz| <3.93% (GAMA-based) 4.81 [3.17] 0.221 [0.307] �6.8 [7.8] �1.4 [12.7] 0.0202 [0.0254] 0.0163 [0.0208]
|Dz| <3.93% (Espec-based) 4.87 [3.15] 0.221 [0.296] �6.1 [8.0] �0.9 [12.6] 0.0198 [0.0252] 0.0160 [0.0206]
�z <0.006 (GAMA-based) 5.08 [2.91] 0.210 [0.290] �5.4 [5.2] �0.1 [10.5] 0.0204 [0.0252] 0.0165 [0.0208]
�z <0.007 (Espec-based) 5.15 [2.85] 0.206 [0.274] �3.8 [3.9] 1.0 [9.3] 0.0201 [0.0250] 0.0162 [0.0206]
Combined (GAMA-based)1 5.42 [2.65] 0.214 [0.283] �4.6 [8.4] 0.4 [12.9] 0.0202 [0.0251] 0.0163 [0.0207]
Combined (Espec-based)2 5.39 [2.72] 0.214 [0.274] �4.0 [8.7] 0.9 [13.2] 0.0201 [0.0252] 0.0162 [0.0208]

1 hri < 19.84 & |Dz| < 6.48% & |�z| < 0.010.
2 hri < 19.84 & |Dz| < 6.48% & |�z| < 0.011.
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Fig. A.3. Same as Fig. 10, but removing 20% of galaxies with the
mean absolute di↵erence between photometric and spectroscopic red-
shift from GAMA to be less [more] than 0.006. The bottom panel shows
the same but the mean absolute di↵erence between photometric and
spectroscopic redshift from Espec is less [more] than 0.007.

Fig. A.4. Same as Fig. 11 but instead of 10% removal of galaxies,
removing ⇠19% galaxies. Upper panels: The tan histograms show
the distribution of KiDS galaxies versus r-magnitude, g-r color, stellar
mass, and photometric redshifts. The red histogram shows the galaxies
from the cells with either hri > 19.84 (green), |Dz| > 6.48% (purple),
and based on |�z| > 0.01 (blue), removing ⇠ 19% galaxies. The 80% of
the clean samples are shown in black. Bottom panels: Same as the upper
panel, but the spectroscopic redshift is the mean from the Espec sample
instead of GAMA in each SOM cell with |Dz| > 6.48% (purple), and
based on |�z| > 0.011, removing ⇠ 19% galaxies.
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Fig. A.5. Red SOM cells indicate the cells removed during the cut shown in Fig. A.4, removing 20% of the KiDS-Bright galaxies. The significant
overlap of cells in the Dz and �z cuts is evident. The spec-z are taken from GAMA.

Fig. A.6. Dependence of the GAMA completeness on selected properties of the KiDS-Bright sample, based on SOM projections. The completeness
is expressed as the per-cell ratio of GAMA and KiDS-Bright surface density. The gray data points are the same as in Fig. 4, illustrating binned
medians for the full KiDS-Bright. The other colors show the completeness after applying cuts on the photometric sample, each employing SOM
cell averages, namely: (i) based on hri < 19.75 (yellow), (ii) based on relative di↵erence |Dz| < 3.93% (green), (iii) based on |�z| < 0.006 (blue),
and finally (iv) a combined cut hri < 19.84, |Dz| < 6.48%, |�z| < 0.01 (red) removing ⇠ 20% KiDS-Bright galaxy sample for each case.

Fig. B.1. Relative change in the SMAD of �z/(1 + z) of the KiDS-Bright sample as a function of the fraction of removed galaxies (left), after
applying cuts (based on GAMA) on the photometric dataset, each employing SOM cell averages, based on hri (blue-circle), relative di↵erence |Dz|
(orange-square) and absolute |�z| (green-diamond). Right panel: Variation in the mean photo-z residual for the same setups as in the left panel.
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