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1.1 Introduction

Data is continuously harvested from nearly every facet of our lives by corpora-
tions, service providers, and public institutions. Whether through smartphones,
social media interactions, internet use, healthcare visits, or financial transactions,
information is continuously gathered, shaping the foundation of the modern econ-
omy. Private companies leverage this vast pool of data to evaluate loan candidates,
optimize transportation networks, improve supply chains, personalize services, and
predict market demands, all to enhance decision making. Similarly, public policies
and government initiatives rely heavily on this data, guiding resource distribution,
monitoring public health crises, and driving urban development and sustainability
efforts.

However, these datasets also contain a large array of sensitive information,
including health, financial, or location data. Major privacy violations and breaches
are commonplace, and can have severe negative impacts, not only on consumers
and online users, but also on entire organizations and governments. For instance,
the 2017 Equifax data breach [Wik24a] exposed the personal information of 147
million individuals, including social security numbers, birth dates, and addresses,
leaving millions vulnerable to identity theft, fraud, and long-term financial harm.
Similarly, the 2016 Facebook-Cambridge Analytica scandal [Wik24b], in which
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the personal data of up to 87 million Facebook users was harvested without con-
sent for political advertising purposes, raised concerns about its possible influence
on the outcome of the 2016 presidential election.

Privacy concerns have become central in today’s society, driving significant
changes in government policy. Various regulatory frameworks have been estab-
lished, with the United States and Europe leading efforts toward stronger pri-
vacy practices. In Europe, the General Data Protection Regulation (GDPR) sets
strict standards for data management, focusing on consent and data minimization
[PE16], while in the U.S., regulations like Title 13 [Uni98] govern the handling of
census data and laws like the Health Insurance Portability and Accountability Act
(HIPAA) and the California Consumer Privacy Act (CCPA) offer protections for
health and consumer data [Cen96; Leg18]. This movement was further emphasized
in October 2023 when the Biden administration issued an Executive Order on Al,
ensuring the enforcement of consumer protection laws and introducing safeguards
against privacy violations in Al systems. Government actions, such as the release of
the Al Bill of Rights Blueprint [Hou23] in the US, underscore the increasing focus
on privacy in both policy and technology.

Public policy has also devoted extensive research into technical solutions for pri-
vacy. Over the past three decades, this research has explored a wide range of privacy
definitions and techniques, but one has emerged as a pivotal framework: Differen-
tial Privacy (DP) [Dwo+06]. DP has gained widespread recognition and adoption,
not only by leading technology companies like Apple, Meta, Google, and LinkedIn,
but also by the U.S. government, most notably in its landmark 2020 Census data
release.

Differential Privacy is now widely regarded as the gold standard for privacy pro-
tection in statistical analyses and dataset releases. Its strength lies in providing a
formal and mathematical definition of privacy, offering precise and provable guar-
antees. This is in stark contrast to historically ad-hoc and loosely defined privacy
methods, which have repeatedly failed under attacks aimed at reconstructing part of
the original dataset or identifying individuals in said datasets. As privacy challenges
evolve, so too does Differential Privacy, expanding across diverse fields to meet new
demands. This book aims at providing a comprehensive introduction to DD, partic-
ularly within the novel challenges brought by Al applications. It explores its foun-
dational theories, applications in machine learning, and practical implementations,
equipping readers with the knowledge to leverage this critical technology effectively.

Overview of the Chapter

This chapter is structured to provide an introduction to Differential Privacy. It
begins by illustrating various attempts to protect data privacy, emphasizing where
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and why they failed, and providing the key desiderata of a robust privacy defi-
nition (Section 1.2). It then defines the key actors, tasks, and scopes that make
up the domain of privacy-preserving data analysis (Section 1.3). Following that,
Section 1.4, formalizes the definition of DP and its inherent properties, includ-
ing composition, post-processing immunity, and group privacy. The chapter also
reviews the basic techniques and mechanisms commonly used to implement Differ-
ential Privacy in Sections 1.4 to 1.6. Finally, Section 1.8 concludes with an overview
of Differential Privacy applications and some future directions in this field.

1.2 A Historical Perspective on Privacy

This section begins by posing a fundamental question: What are the key desider-
ata and properties that a robust privacy definition must guarantee? To address this, it
examines historical failures of previous and current privacy definitions, highlighting
the necessity for well-defined and formal guarantees. This section first outlines the
main properties satisfied by Differential Privacy—these properties will be formally
detailed later in this chapter. It then delves into specific examples of major pri-
vacy breaches over the past 30 years, identifying for each how adherence to certain
privacy desiderata could have prevented the failure.

A central argument of this book is the importance of well-defined and formal
privacy guarantees. A major weakness in many privacy techniques arises when the
protections themselves are poorly specified, particularly when they fail to clearly
define the classes of attacks they are designed to resist. Over the past three decades,
numerous privacy attacks have exploited such ambiguities, often by applying pri-
vacy notions beyond their intended use cases. To address these challenges, this chap-
ter focuses on four main desiderata that a strong privacy definition should satisfy:

1. Desiderata 1: Compositionality. A good privacy definition should ensure
that its protections gracefully degrade when applied multiple times, whether
across several datasets or through repeated private data analyses. In a data-
driven world, where datasets are frequently analyzed multiple times and may
contain overlapping information about individuals, composition is crucial.
Without it, repeated analyses can cumulatively erode privacy safeguards and
ultimately compromise individual privacy.

2. Desiderata 2: Post-processing immunity. Once data has been privatized
using a privacy-preserving mechanism, any further data analyses should not
degrade its privacy guarantees, provided that the original, non-privatized
data remains inaccessible. This property assures that subsequent steps or
transformations applied to the privatized output cannot compromise privacy.
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Post-processing immunity offers a strong guarantee that allows data analysts
to abstract away potential attack models, effectively providing fizure-proof
protection against privacy violations.

3. Desiderata 3: Group privacy. Group privacy aims at controlling how pri-
vacy guarantees degrade when considering groups of individuals rather than
single individuals. It ensures that a privacy mechanism does not arbitrarily
fail to protect privacy beyond the individual level when data from multi-
ple users is combined. While it is inevitable that privacy guarantees weaken
as group sizes increase, since more information is encoded about them, the
degradation should be controlled and quantifiable.

4. Desiderata 4: Quantifiable privacy-accuracy trade-offs. There is no free
lunch in privacy: releasing accurate information about a group of people must
necessarily and statistically encode some information about individuals. As
privacy protection increases the accuracy of insights derived from the data
may decrease. A good privacy definition should provide quantifiable trade-
offs, allowing data analysts, decision-makers, and model builders to measure
how much accuracy is sacrificed for a given level of privacy. This enables them
to balance privacy and utility according to specific needs.

The following sections provide historical examples illustrating why privacy is com-
plex, where traditional methods have failed, and how the above desiderata are essen-
tial for guaranteeing robust privacy.

1.2.1 Data Anonymization

A standard technique for privacy protection in various domains is anonymization.
It involves the removal or masking of any identifying details to prevent the recov-
ery of personal identities. Anonymization has been employed in areas such as the
release of medical datasets under the Health Insurance Portability and Account-
ability Act (HIPAA) standards. In the mid-1990s, the Massachusetts Group Insur-
ance Commission (GIC), a government agency responsible for purchasing health
insurance for state employees, sought to promote medical research by releasing
anonymized health data. The GIC approach involved removing what they con-
sidered “explicit” identifiers such as names, addresses, and social security numbers,
while retaining hundreds of other attributes deemed non-identifiable. Supported by
then-Governor William Weld, this initiative aimed at balancing data utility with
privacy protection. However, in 1997, Dr. Latanya Sweeney, then a graduate stu-
dent at MIT, set out to challenge the effectiveness of this anonymization. Using
publicly available information, she re-identified Governor Weld’s medical records
within the dataset and sent them to his office, starkly demonstrating the vulnera-
bility of supposedly anonymized data.
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How was Dr. Sweeney able to uncover Governor Weld’s personal medical
information from the GIC’s released data? One might assume that such an
attack required sophisticated techniques and significant resources. In reality, her
de-anonymization attack cost only $20 and limited time. The GIC’s dataset
included three crucial attributes for each individual: sex, zip code, and date of
birth. Dr. Sweeney purchased voter registration records from Cambridge, Mas-
sachusetts, which contained names, addresses, zip codes, and dates of birth. By
cross-referencing these two datasets, she found that only six people in Cambridge
shared Governor Weld’s birth date. Of those, only three were male, and just one
resided in his zip code—uniquely identifying his medical records. This type of
attack, known as a linkage attack, re-identifies individuals by linking anonymized
data with external public records. In a subsequent report [Swe00], Dr. Sweeney
demonstrated that her attack extended far beyond a single high-profile individual.
She found that “87% of the population in the United States had reported character-
istics that likely made them unique based only on 5-digit ZIP, gender, date of birth.”
Even at broader geographic levels, significant portions of the population could be
uniquely identified with minimal information. “About half of the U.S. population
are likely to be uniquely identified by only place, gender, date of birth, where place
indicates the city, town, or municipality in which the individual resides.”

Why Did Anonymization Fail?

Anonymization failed because it lacked formal privacy guarantees. Dr. Sweeney’s
attack was remarkably simple, yet unanticipated due to the absence of a pre-
cise attack model. The lack of post-processing immunity meant that, once the
anonymized data was released, combining it with other publicly available datasets
could reveal more information than intended. If the privacy mechanism had been
robust to post-processing, additional analyses or data combinations would not have
compromised individual privacy beyond what was already publicly accessible. This
example motivates the need for formal privacy definitions that account for all poten-
tial avenues of data exploitation.

1.2.2 K-Anonymity

At this point, one might argue that the previous example does not represent a funda-
mental failure of anonymization as a privacy technique, but rather a misapplication
in that specific instance. Is it possible to thwart de-anonymization attacks by simply
withholding more attributes? For instance, would not releasing someone’s zip code,
date of birth, or gender resolve the issue? However, a significant challenge emerges
in determining which combinations of publicly available attributes could uniquely
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identify an individual. As the number of features in a dataset grows, it becomes prac-
tically impossible for modern computing to predict and guard against all potential
attack vectors. Moreover, sensitive attributes often correlate statistically with non-
sensitive ones, rendering anonymization susceptible to statistical attacks that can
probabilistically reconstruct sensitive information through these correlations—for
a particularly sensitive example involving genomic data, refer to [Hom+08].

Despite decades of deployment, anonymization has consistently failed to pro-
vide robust privacy protection. Other high-profile failures include the AOL search
data release [BZHO0G], the Netflix Prize dataset [NS06], and studies demonstrating
that individuals can be uniquely identified using just a few mobile phone location
points [DHVB13]. So, what is the next step? Can the concept of anonymization be
refined to address its shortcomings? A promising strategy might be to release only
partial information about each attribute. For example, in demographic or medi-
cal analyses, knowing that an individual falls within a certain age range, such as
“between 18 and 35,” might suffice. By revealing less precise information, can re-
identification attacks be made more difficule?

In 1998, Prof. Pierangela Samarati and Dr. Latanya Sweeney (the same
Dr.Sweeney who highlighted the failures of basic anonymization) introduced a
generalization called k-anonymity [SS98; Swe02]. A dataset satisfies k-anonymity
if, for every record, there are at least # — 1 other records with identical values in
a set of quasi-identifiers—attributes that could potentially be linked to external
data to re-identify individuals. In this framework, it should be impossible to dis-
tinguish between any of the 4 individuals sharing the same quasi-identifiers. In
particular, the larger the value of 4, the stronger the privacy guarantee. Consider,
for example, the dataset in Table 1.1 (left), containing information about state
employees. One approach is to release this dataset by replacing sensitive names
with random identifiers (see Table 1.1 (middle)). This technique provides only

Table 1.1. Three levels of anonymization on a demographic dataset. Left: original dataset.
Center: masking the sensitive names for T-anonymity. Right: generalizing Zip codes and
age attributes for 4-anonymity.

Original Dara Anonymized Data 4-anonymized Data

Name | Zip Code | Age ID | Zip Code | Age ID | Zip Code | Age
Rick 19456 67 1 19456 67 1 19%** 60-70
Nathan 30309 33 2 30309 33 2 30%** 30-40
Yani 19445 64 3 19445 64 3 19 60-70
Xiao 30457 35 4 30457 35 4 30%+* 30-40
Luciana 19456 67 5 19456 67 5 19%** 60-70
Anastasia | 30271 | 38 6 | 30271 | 38 6 | 30m | 30-40
Marcia 19456 31 7 19456 31 7 30%+* 30-40
Yuki 19456 62 8 19456 62 8 g 60-70




8 Overview and Fundamental Techniques

1-anonymity, which is essentially standard anonymization. However, each individ-
ual still has a unique combination of zip code and age, making them vulnerable
to singling-out attacks [Swe00; Swe02]. In contrast, the table on the right demon-
strates 4-anonymity: entries #1, 3, 5, and 8 are indistinguishable from each other, as
are entries #2, 4, 6, and 7. Individuals are grouped into clusters of four, where each
group shares the same generalized (zip code, age) attributes, significantly enhancing
privacy.

Remark 1.1 (Privacy vs. Utlity). In k-anonymization, increasing the value of k
enhances privacy by making it more difficult to distinguish between individuals, as they
are grouped into larger clusters with identical quasi-identifiers. However, this comes at
the expense of utility. As k increases, the information becomes less precise, reducing
the datasets usefulness for analysis. For instance, in the 4-anonymized version of our
dataset, the details about individuals zip codes and ages are less specific compared ro the
1-anonymized version. This trade-off between privacy and utility is a central theme in
privacy research and will be addressed in the context of Differential Privacy in subse-
quent chapters.

Where Does k-anonymization Fail? Reason #1: Lack of Group Privacy

At first glance, k-anonymity appears to address the shortcomings of basic
anonymization by preventing the singling out of any specific individual within a
dataset. In fact, for years, it was considered the state-of-the-art solution for pre-
venting re-identification attacks. However, k-anonymity suffers from a significant
limitation concerning the leakage of sensitive information, even when individuals
are not directly identified. The core issue is not merely the potential to link a data
subject to a specific record. Instead, the real problem lies in the exposure of sen-
sitive information associated with individuals without explicit re-identification, as
highlighted in [Des17]. In essence, one does not need to pinpoint a specific per-
son to infer personal, sensitive details about them. Consider the previous example,
but now suppose the dataset includes a sensitive attribute, such as credit scores
(see Table 1.2, Left). Even without directly identifying anyone, an adversary could
learn sensitive information about individuals based on the available data. Using the
same linkage approach that Dr. Sweeney employed in her de-anonymization of the
GIC medical records, one could cross-reference publicly available data to deduce
that entries #2, 4, 6, and 7 correspond to Nathan, Xiao, Anastasia, and Marcia.
Although it is impossible to match each person to their exact record, one can still
infer that all four individuals have a credit score in the “Fair” category. This rep-
resents a significant privacy breach, as sensitive information is disclosed without
explicit identification. Here, the property of group privacy is violated—the privacy
guarantee collapses when aggregating data from as few as four individuals—Ileading
to both group-level and individual-level harms.



A Historical Perspective on Privacy 9

Table 1.2. Two k-anonymized datasets augmented with credit score information. Left:
State Employee Dataset. Right: The Dataset of Company Z.

ID | Zip Code | Age | Credit Score

1 197 | 60-70 797

2 3(k* 30-40 650 ID | Zip Code | Age | Credit Score
3 19 60-70 755 A 30%** 30-40 815

4 30%** 30-40 590 B 30%** 30-40 613

5 19%** 60-70 767 C 30%+* 30-40 376

6 30%* 30-40 597 D 30%** 30-40 727

7 30 30-40 613

8 19%** 60-70 775

Where Does k-anonymization Fail? Reason #2: Lack of Composition

A more subtle issue with k-anonymity arises from the concept of composition,
described earlier in this chapter. Unfortunately, #-anonymity lacks fundamental
composition guarantees and fails when multiple datasets are released. In fact, even
releasing just two k-anonymized datasets can be sufficient to break its privacy pro-
tections in the worst-case scenario. To illustrate this, imagine a situation where it
is known that Marcia is a state employee included in a dataset that has been 4-
anonymized. Additionally, suppose that Marcia is a client of Company Z , which
aims at helping individuals improve their credit scores. Company Z sells a separate
4-anonymized dataset about its customers (see Table 1.2, Right). Knowing that
Marcia is present in both datasets, an adversary can cross-reference the state records
with Company Z’s records to find a #nigue match: the only individual appearing
in both datasets is someone in the 30-40 age range, residing in zip code 30***, and
having a credit score of 613. This individual must be Marcia, thereby uniquely iden-
tifying her. This scenario demonstrates a failure of composition: the privacy guaran-
tees of k-anonymity break down when datasets are combined. While this example
is simplified for clarity, extensive practical evidence has shown that the issues with
k-anonymity are real and pervasive [NS08]. These limitations underscore the need
for more robust privacy definitions that can withstand linkage attacks, data aggre-
gation, and the release of multiple datasets.

1.2.3 Any Perfectly Accurate and Deterministic Privacy Notion
Must Fail

Various strategies have been proposed to address the shortcomings 4-anonymity
without significantly reducing the utility of data for demographic and population-
level analyses. One such method is data swapping, which involves exchanging parts
of dataset entries among individuals to ensure that no single row corresponds
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directly to one person, while still preserving overall demographic counts like the
“number of people in dataset X that have property Y.” This technique was employed
in the release of U.S. Census data products prior 2020. Another approach is data
minimization, which focuses on collecting as little data as necessary and discarding
it after it has served its purpose. Despite these efforts, the challenge of ensuring
that privacy guarantees degrade gracefully and predictably under repeated queries
remains unresolved. To address this, it is important to highlight a fundamental
property that must be satisfied by any robust privacy definitions, helping us narrow
down the search for effective solutions. Specifically, the claim is that no perfectly
accurate and deterministic privacy technique can satisfy our requirements, and that
randomization is essential for privacy.

This crucial point can be illustrated with a simple example where the lack of ran-
domness leads to a failure in composition. Imagine a hypothetical company named
Gluble, which has 25 employees. Gluble publicly announces that the average salary
of its employees is $500,000, perhaps to attract top talent with its competitive
compensation. After hiring a 26th employee named Rick, the company updates
its public average salary to $505,000. From these two pieces of information, one
can deduce Rick’s salary. Using basic arithmetic, Rick’s salary x is obtained by solv-
ing (x+25><2+000) = 505,000, i.e., x = $630,000. This amount is significantly
higher than his colleagues’ salaries. This scenario shows a failure of composition:
while each individual data release seems innocuous, combining them allows an
adversary to infer sensitive information about an individual. Even with access to just
two queries, a differential attack reconstructed private data. Although this example
is simplified, Dinur and Nissim [DNO03] have shown that such differential attacks
can be executed in far more complex settings, even when the query language is
restricted. Importantly, the attack used no information about how the data was pri-
vatized. This vulnerability arises because the average salary at Gluble was released
deterministically and exactly. What would happen if noise was added to Gluble’s
salary reports? Suppose that the average salary before hiring Rick was reported as
approximately $500,000, and after hiring, it was approximately $505,000. It is no
longer clear question whether the change is due to Rick’s salary or simply a result of
the added randomness. After all, the introduction of noise creates uncertainty, pre-
venting exact inference of individual salaries. This concept of adding randomness
to data releases is a cornerstone of Differential Privacy.

Observe that providing Differential Privacy is more complex than “just” adding
noise. At a high level, the more noise is added, the better our privacy guarantees are
going to be; however, adding too much noise is undesirable, as it destroys the util-
ity of privately-released datasets and statistics. Therefore, noise must be carefully
calibrated to balance privacy protection with data utility, enabling us to provide
formal and provable privacy guarantees alongside precise privacy-utility trade-offs.
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In fact, three years before Differential Privacy was formally introduced by Dwork et
al. [DMNSO06], Dinur and Nissim [DN03] laid the groundwork for understanding
these trade-offs when incorporating privacy noise. Readers can consult their work,
as well as subsequent studies [CNSU20b; CNSU20a], for a deeper exploration of
the challenges in calibrating noise to protect against reconstruction attacks. The
following sections delve deeper into Differential Privacy, what it protects against,
its formal definition, guarantees, and the basic mechanisms to achieve it, provid-
ing a comprehensive understanding of the crucial role played by randomization in
safeguarding privacy.

1.2.4 A Side Note: Other Types of Privacy Breaches

The discussion above highlights the importance of our privacy desiderata and illus-
trates how previous techniques that failed to meet these criteria have led to sig-
nificant privacy failures. So far, the presentation relied on simple examples involv-
ing variants of anonymization techniques and the challenges associated with pri-
vatizing and releasing datasets. However, with the advent of increasingly complex
models and large-scale machine learning applications, privacy failures have begun
to emerge in more intricate and subtle ways—even when privatized datasets are
never directly released. In particular, recent research has demonstrated that privacy
can be compromised not only through released statistics but also via the models
themselves. A notable example is Federated Learning (FL) [LSTS20], discussed in
Chapter 8. The goal of FL frameworks is to protect privacy through decentral-
ization: each user retains their data on their local device, performs computations
locally, and only transmits aggregated updates (such as gradient information) to
a central server. The intent is that no central entity ever accesses individual user
data, thereby preserving privacy. Yet, recent work has shown that this is insuffi-
cient: the gradient updates themselves often encode sufficient information to be
able to guess the original user data with high accuracy [ZLH19]. This is the topic of
Chapter 8.

This issue is not confined to the training of machine learning models. Even after
a model is trained and the original data is ostensibly deleted, the released mod-
els can still encapsulate information about the training data. This can lead to pri-
vacy breaches where models inadvertently memorize and reproduce parts of their
training datasets, as discussed in Chapter 5. For instance, large language models
trained on extensive text corpora have been found to occasionally output verbatim
snippets from the training data when prompted in specific ways [Car+21]. A real-
world example involves a South Korean Al company Scatter Lab [Dob21]. Scatter
Lab used text and messaging data from users on South Korea’s biggest test mes-
saging company, KakaoTalk, to train a chatbot service. Despite efforts to remove
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personally identifiable information, the chatbot reproduced memorized conversa-
tions from the training data when users interacted with it, inadvertently disclos-
ing private and sensitive information about KakaoTalk users. These examples illus-
trate that privacy breaches can occur even without direct access to the underly-
ing datasets. Thus there is a need for privacy-preserving techniques that extend
beyond data anonymization and address the inherent risks in modern machine
learning practices. Differential Privacy offers a framework to mitigate these risks
by providing formal guarantees that limit the potential for information leakage,
even when models are trained on sensitive data and released publicly. Part IT of this
book explores how Differential Privacy can be applied to machine learning and
optimization tasks to safeguard individual privacy for increasingly complex data
analysis.

1.3 What Protections Does Differential Privacy Provide?

1.3.1 What Does Differential Privacy Promise?

This section examines and defines what Differential Privacy does and does not pro-
tect against. It considers the scenario of an analyst or data curator who aims at col-
lecting and aggregate personal and sensitive data for release in a privacy-preserving
manner. This release can take various forms, such as a synthetic version of the
dataset that masks private information, a set of sensitive population-level statis-
tics about individuals in the dataset, or a model trained on the sensitive data. The
common objective in all these cases is to release data that carefully conceal sensitive
attributes at the individual and group level while retaining sufficient information to
provide useful statistics or models at the population level. For example, an analyst
might wish to determine the fraction of a population with a particular disease or
calculate the average salary of employees in a company. In these instances, the data
pertaining to each individual is private and sensitive, and individuals may prefer to
keep it confidential.

First Attempt: No Information Leakage

Ideally, no information about any specific individual should be leaked through the

datarelease, i.e., “nobody can learn a7y information about a specific individual from

the privatized computation.” Achieving this level of privacy is theoretically straight-

forward: simply do not collect or use any data at all. However, this is impractical,

as it precludes any meaningful data analysis. Herein lies a fundamental tension high-

lighted earlier in this chapter: using more data enhances the accuracy and usefulness of
the models and statistics but potentially compromises individual privacy.
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Second Attempt: AlImost No Information Leakage

Rather than requiring that one learns nothing about any individual when conduct-
ing useful statistical analyses, perhaps one can accept learning as little as possible or
almost nothing about them. Recall the example from the introduction concerning
Rick’s salary and the addition of noise for privacy. If the company Rick works for
is large enough, adding a small amount of noise to the average salary can allow
for releasing an approximate estimate of the average salary, while making it diffi-
cult to deduce RicK’s specific salary. However, the problem here is subtle. It may
still be possible to learn significant information about Rick, for instance, that he
likely has a high salary because he works at a company where the average salary is
close to $500,000. This may seem innocuous if Rick is expected to hold a high-
paying position. But consider a more sensitive scenario: imagine that, in the early
1950s, Rick is a smoker participating in a novel medical study investigating the
link between smoking and cancer. The study concludes that smoking does cause
lung cancer. As a result, anyone who knows that Rick smokes now knows he is
at a higher risk of developing lung cancer. His insurance company might increase
his premiums or refuse coverage for cancer treatment, citing a pre-existing condi-
tion due to his smoking. Clearly, Rick has been harmed by the outcome of the
study.

Refining the Definition of Privacy

The perspective adopted in this book and by Differential Privacy is that the above
scenario does not constitute a privacy violation. Consider a counterfactual world
where Rick did not participate in the study. The medical study would still have
concluded that smoking causes cancer, and Rick would have faced the same poten-
tial harms. Rick’s decision to share his data had (@/most) no impact on the released
statistical inference that smoking causes cancer. This outcome is unavoidable: any
accurate statistical analysis revealing that smoking causes cancer would have had
the same effect on Rick. This book takes the point of view that it is important to
distinguish between harms arising from the ethical implications of certain statistical
inferences and privacy harms that result specifically from the collection and use of
an individual’s data. This redefines what good statistical privacy guarantees should
ensure and the refined desiderata: the goal is to ensure that one can learn almost
nothing new about an individual that could not have been inferred had they not shared
their data. It is important to emphasize that Differential Privacy is not an algorithm;
it is a definition or requirement for privacy. The remainder of this chapter aims at
accomplishing two goals: (i) to carefully formalize the definition and guarantees
provided by Differential Privacy, and () to cover basic algorithmic techniques and
building blocks for achieving Differential Privacy.
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Figure 1.1. Actors and models in the Privacy Preserving data processing pipeline. Central
privacy model (left) and Local privacy model (right).

1.3.2 Where to Guarantee Differential Privacy? Local vs Central
Models

Implementing Differential Privacy requires careful consideration of the context in
which privacy guarantees are applied, particularly regarding the underlying trust
model. The degree of trust placed in data curators or aggregators significantly influ-
ences the design and effectiveness of privacy-preserving mechanisms. This book
examines the two primary frameworks within privacy-preserving ecosystems: the
centralized model and the distributed (or local) model, each with distinct charac-
teristics and implications for privacy management.

In a centralized framework, all data collection, storage, and processing occur at
a single, central location managed by a trusted data curator. This central entity has
direct access to the raw data and is responsible for implementing and monitoring all
privacy-preserving mechanisms. The assumption here is that the data curator will
faithfully protect individual privacy and handle data responsibly. This setup rep-
resents the central model in Differential Privacy, as illustrated in Figure 1.1 (left).
Conversely, a distributed framework keeps data decentralized, residing at its point of
origin—such as personal devices or local databases. Privacy-preserving algorithms
are executed locally by the data contributors themselves, and only essential, pro-
cessed information is communicated to a central authority. For instance, in a typical
federated learning setup, raw user data remains on their devices, and only privatized
versions of the data—such as noisy data points or gradient updates—are sent to the
central aggregator. This approach embodies the local model in Differential Privacy,
depicted in Figure 1.1 (right). Both centralized and distributed frameworks offer
distinct advantages and challenges concerning privacy.

Centralized systems concentrate data in one location, creating a single point of
failure. If the central entity fails to protect the data—due to a breach or misuse—it
can lead to widespread privacy violations affecting all users. Moreover, centralized
frameworks require users to #7ust that the platform will implement privacy mea-
sures correctly and not exploit the data for unintended purposes. However, the



What Protections Does Differential Privacy Provide? 15

centralized setting offers significant advantages in terms of data utility and algorith-
mic flexibility. Because the data curator has access to the raw data, they can inject
carefully calibrated noise at the aggregate level, often requiring much less noise to
achieve the same privacy guarantees compared to the local setting. This means that
analyses and models derived in the centralized setting can be of higher quality and
accuracy. Additionally, the centralized model allows for the development of more
complex algorithms that require inspecting the data and estimating joint statistics
before adding noise—a process that is often challenging or infeasible in the local
model.

In contrast, the distributed model reduces the need for trust in a central authority
since privacy is enforced locally by each user. Even if the central aggregator is com-
promised, the attacker gains access only to the noisy, privacy-protected data that
users have shared. This mitigates the risk associated with a central point of fail-
ure and enhances individual control over personal data. However, while the dis-
tributed model enhances privacy by minimizing trust requirements, it also intro-
duces additional complexity in implementing privacy-preserving protocols. Each
user must correctly execute the algorithms, which may involve sophisticated com-
putations. Additionally, because each user adds noise to their data independently,
the aggregated results may suffer from reduced accuracy due to the accumula-
tion of noise. The centralized model, on the other hand, allows for more effi-
cient privacy-utility trade-offs. Since the data curator has access to the raw data,
they can add carefully calibrated noise at the aggregate level, achieving the desired
privacy guarantees with potentially less impact on data utility. This centralized
addition of noise can result in higher-quality data analyses compared to the dis-
tributed approach. An in-depth discussion of the local model of DP is provided in
Chapter 2.

Distinguishing Data Privacy From Data Security

It is important to differentiate between data privacy and data security within the
landscape of privacy-preserving technologies. Data security focuses on preventing
unauthorized access to data, implementing measures such as encryption, authenti-
cation protocols, and intrusion detection systems to safeguard against breaches and
cyber threats. These measures are designed to protect data from external attackers
and unauthorized insiders. However, security alone is insufficient to prevent the
inference of individual-level sensitive information from released data. In contrast,
data privacy, as addressed in this book, aims at preventing inference of individual
information when data, statistics, or machine learning models are released. Even
when cryptographic security is fully implemented, computing a statistic or train-
ing a machine learning model can still allow an attacker to infer individual-level
information from the computed statistics or the released model alone, without ever



16 Overview and Fundamental Techniques

breaching the system or accessing the original data. How this can occur was illus-
trated through our earlier example of a differential attack recovering Rick’s salary
or health status. Differential Privacy thus provides an orthogonal and complementary
layer of protection to traditional data security techniques. While data security aims
at preventing unauthorized data access, Differential Privacy limits the potential harm
[from running inference or reconstruction attacks on released databases, statistics, and
models.

1.4 Differential Privacy: Formal Definition, Techniques,
and Properties

Differential Privacy is a mathematical framework for measuring and bounding the
individuals’ privacy risks in a computation. The concept, first introduced in 2006
by Dwork, McSherry, Nissim, and Smith in [DMNS06], informally states that the
presence or absence of any individual record in a dataset should not significantly
affect the outcome of a mechanism. In this book, a mechanism is defined as any
computation that can be performed on the data. Differential Privacy deals with
randomized mechanisms, and a mechanism is considered differentially private if
the probability of any outcome occurring is nearly the same for any two datasets
that differ in only one record.

In this context, an adversary is any entity attempting to infer sensitive informa-
tion about individuals from the output of a data analysis. Remarkably, the privacy
guarantee of Differential Privacy holds even if the adversary possesses unlimited
computing power and complete knowledge of the algorithm and system used to
collect and analyze the data. Thus, even if the adversary were to develop new and
sophisticated methods, including the attack methods discussed earlier, as well as
new attacks that do not yet exist today, or even if new additional external informa-
tion becomes available, Differential Privacy provides the exact same level of protec-
tion. In this sense, Differential Privacy is considered fizure-proof-

The section, next, reviews Randomized Response, a classic method adopted in
surveys for ensuring the privacy of respondents. Originally developed as a sur-
vey technique to encourage honest responses to sensitive questions, Randomized
Response leverages randomness to protect individual privacy while still allowing
researchers to estimate population characteristics accurately. This method serves
as a foundational example of how randomness can be systematically used to
achieve Differential Privacy, illustrating the principles that guide more complex
privacy-preserving mechanisms discussed later in this section, and throughout the

book.
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Randomized Response

Randomized response [War65] was proposed by Warner in 1965 to privately survey
respondents for a potentially sensitive property. The setup is as follows: one wishes
to test for how many individuals in a set of respondents have a certain property,
P, which might be a controversial one to possess, and this might ordinarily lead to
a subset of respondents becoming what Warner described as a “non-cooperative”
group, who might refuse to be surveyed or provide a dishonest answer, introduc-
ing unwanted bias in the survey results. To simultaneously ensure that respon-
dents answer honestly (and, as a result, avoid bias due to the aforementioned non-
cooperation) and that their privacy is not violated, randomized response provides
respondents the ability to deny their response while also preserving the quality of
the summary statistics inferred. This is ensured by introducing randomness into
the process of surveying as follows.

1. The respondent takes a fair coin and flips it;
2. If tails is obtained, then the respondent answers truthfully, and if heads is
obtained, the respondent flips the coin again and

(a) Responds affirmatively if the outcome is heads;
(b) Responds negatively if the outcome is tails.

Note that here the outcomes and numbers of coin flips are only known to the
respondent. The property of plausible deniability allows respondents to be able to
deny their responses, and this provides them with privacy guarantees (as it will be
elaborated later). While the responses are partly perturbed due to this process, an
analyst can recover the expected number of “Yes” responses accurately as follows,

1
E[Yes] = Zn(has P) + Zn(does not have P),

where [E[Yes] is the expected number of affirmative responses, and 7#(X) is the num-
ber of respondents who claimed to satisfy property X.

As will become clear later in this section, the plausible deniability property of
randomized response has a strong connection with Differential Privacy.

1.4.1 Differential Privacy, Formally

Prior to defining Differential Privacy formally, this section formalizes what this pri-
vacy notion aims at protecting (dataset) and the means by which an analyst interacts
with data (queries).
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Dataset D
City Age Gender

New York 18 M query

New York 21 : (D) = 'SELECT COUNTE)FROMD 1
Los Angeles 33 other <t

Madrid 41 M + DP noise
San Diego 29 F fiD) —> 2 "||||' — 3
St. Louis 38 M

Figure 1.2. Example dataset and query.

Datasets and Queries

A dataset D is a multi-set of elements in the data universe U. The set of every possible
dataset is denoted D. The data universe U is a cross product of multiple azzributes
Ui, ..., U, and has dimension n. For example, Figure 1.2, illustrates a dataset D
with three attributes: city, age, and gender. If C is the set of all cities considered,
the interval A = [0, 100] the set of all ages considered, and G = {M, F, other},
thenU = C x A x G. A numeric query is a function f : D — R C R’ that maps
a dataset in some real vector space. For instance, the query f(D) could be an SQL
statement that counts the number of male individuals over the age of 18 in dataset
D, as illustrated in Figure 1.2.

The concept of adjacency is fundamental in DP. It frames the unit of change that
Differential Privacy seeks to protect against, ensuring that the presence or absence of
any single individual’s data does not significantly alter the outcomes of data analysis.
There are two common ways to define adjacency in the context of Differential
Privacy, reviewed next.

Definition 1.2 (Add/remove adjacency). Two datasets D and D' are said adjacent
under the add/remove notion, denoted as D ~ D/, if | DAD'| = 1, where A\ is the

symmetric difference of two sets.

In other words, two datasets are defined as adjacent if one can be obtained from the
other by either adding or removing the data of a single individual. This model is
particularly relevant when considering the impact of an individual’s participation

or absence in the dataset.

Definition 1.3 (Exchange adjacency). Two datasets D and D' are said adjacent
under the exchange notion, denoted as D ~= D, if D' is obtained from D by succes-
sively removing one record and then adding a (possibly different) record. That is, there
exist elements d € D and d' € U such that: D' = (D \ {d}) U{d'}. This implies that
|D| = |D'| and |DAD'| = 2.
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In this notion, adjacent datasets differ in the data of exactly one individual but
have the same size. This definition is suited to scenarios where the alteration of
data within a constant-size dataset is the primary concern, and can be viewed as the
removal followed by the addition of one individual.

The choice between add/remove or exchange adjacency has some implications
for how Differential Privacy is applied as it directly affects the computation of global
sensitivity, introduced next, which measures the maximum change in the output
of a function for adjacent datasets. This chapter, and generally the book unless
specified otherwise, adhere to the add/remove notion of adjacency.

Global Sensitivity

The impact of a single individual’s data on the overall analysis is measured through
the concept of global sensitivity. Formally, the global sensitivity of a function f :
D — R is defined as the maximum difference in the output of f over all pairs of
adjacent datasets D ~ D' € D, measured with respect to the £ » norm:

Ayf = max I[f(D) = £ (D). (1.1)

In simpler terms, it measures how much the output of a function can change when
an individual’s data is added or removed from the dataset. This measurement pro-
vides a basis for determining the amount of noise that needs to be added to the
function’s output to achieve privacy. For example, the query considered in Figure
1.2 that counts the number of individuals satisfying a certain property in a dataset
has global sensitivity 1, since adding or removing a single individual in the dataset
can affect the final count by at most 1. Suppose instead that the task is to compute
the average age of all individuals in the dataset. Then the global sensitivity of this
average function would be

max(4) — min(4) 100
|D| |D|’

Apf =

where A represents the range of possible ages (assuming ages range from 0 to 100).
In this chapter, the £;-sensitivity A1f is denoted with Af.

Differential Privacy

These examples illustrate how a single individual’s data can influence the output of a
function applied to a dataset. This influence is central to the concept of Differential
Privacy. The impact of adding or removing an individual’s data varies depending
on the type of function in question—whether it’s calculating sums, averages, or
any other measure of the data. This sensitivity measurement tells us how much the
output of the target function need to be adjusted in order to protect an individual’s
privacy. Differential Privacy achieves this by adding noise to the function’s output,
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by an amount calibrated to the function sensitivity. This approach ensures that the
presence or absence of any single individual’s data does not significantly alter the
output, thereby masking their participation.

Definition 1.4 (Differential Privacy [DMNSO06]). A randomized mechanism M :
D — R with domain D and range R is (¢, 6)-differentially private if, for any event
S C R and any pair D, D' € D of adjacent datasets:

PrIM(D) € S] < exp(e) PrIM (D) € S]+ 4, (1.2)
where the probability is calculated over the randomness of M.

A differentially private mechanism maps a dataset to a distribution over the possible
outputs because, e.g., it adds random noise or makes randomized choices. The
released DP output is a single random sample drawn from this distribution. The
level of privacy is controlled by the parameter ¢ > 0, called the privacy loss, with
values close to 0 denoting strong privacy, and a secondary parameter 6 which can
be loosely interpreted as a margin of error.

First, observe that the inequality:

PriM(D) € §] < exp(e)Pr[/\/l(D/) e S,

(here with 6 = 0 for simplicity of exposition) holds for any D and D'. In particular,
since it holds for any pair of neighboring databases, it also holds when swapping the
roles of D and D' in the above definition. Hence, an (g, 0)-differentially private
algorithm must also satisfy

PrIM(D') € S] < exp(e)Pr[M(D) € S].
This directly implies the “stronger” inequality below:
exp(—&)Pr[M(D') € S] < PrIM(D) € S] < exp(e)PrM(D) € S], (1.3)

which highlights that the probabilities of any event § under M applied to D and
D' are close to each other, controlled by ¢.

To intuitively understand these parameters, think of & as a knob controlling the
level of privacy. Lowering & enhances privacy by making the outputs less sensitive to
changes in any individual’s data. As & approaches zero (with 6 = 0), the inequality
in Equation (1.3) forces the distributions M (D) and M(D') to become nearly
identical. This means more privacy, as distinguishing between D and I, which is
necessary to recover the data of the individual that differs across both databases,
becomes harder. When ¢ = 0, Pr[M(D) € §] = Pr[M(D') € S] for all S;
i.e., the output is independent of and does not use the input dataset, providing
perfect privacy, but no utility—mathematically, an easy implication of & = 0 is that
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\Jlogpp(z)

p(a) g ()

T T

Figure 1.3. An illustration of the ¢-DP guarantee (here, using the Laplace mechanism of
Section 1.4.3). The log-probability of a value to be output by a mechanism given two
neighboring datasets is bounded by «.

our mechanism must have a (trivially) constant output across all datasets. When
& — 00, the inequality is always satisfied by any mechanism and 7o privacy is
guaranteed.

The parameter J serves as a margin of error. It is typically a small number close
to zero that defines a failure threshold allowing the DP guarantee not to hold with a
probability of up to d'. In practice, J is chosen to be a negligible value, often much
smaller than ﬁ, where /V is the size of the dataset. This ensures that the likelihood
of disclosing sensitive information about any individual remains extremely low. A
mechanism satisfying (&, 0)-differential privacy is said to satisfy pure Differential
Privacy or ¢-Differential Privacy.

The guarantees of Differential Privacy are illustrated in Figure 1.2, which shows
the distribution of outputs from a differentially private mechanism applied to two
adjacent datasets D and D'. The blue and red curves represent the probability dis-
tributions of the outputs for D and D/, respectively. The left figure shows how
the probability distributions over outputs must be close to each other for adjacent
datasets. The right figure quantifies the difference between the probabilities, show-
ing that the log-probabilities of any outcome x differ by at most &. This means
that the ratio of probabilities is bounded by ¢°, as required by the definition. One
can see that requiring a smaller € forces the distributions to be closer to each other
across D and D', making it harder to distinguish between the two databases and
hence providing stronger privacy protections.

1.4.2 Formal Properties of Differential Privacy

This section formalizes the properties guaranteed by Differential Privacy, and how
they match the desirata described in Section 1.2. The composition, group privacy,

1. (&,0)-DP most of the time, except with probability J, and (g, 0)-DP are closely related but not exactly
equivalent.
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and post-processing properties are derived directly from the direction of Differential
Privacy, and do not assume a specific mechanism like Randomized Response. As
such, composition. group privacy, and post-processing hold for any differentially
private mechanism, i.e. any mechanism that satisfies requirement (1.2).

Composition

Composition ensures that a combination of differentially private mechanisms
(whether the mechanisms release privatized data, statistics on data, or learning mod-
els) preserves Differential Privacy. Composition is a key concept that enables the
construction of complex algorithms by combining simpler primitives. It facilitates
privacy accounting, the rigorous analysis of the overall privacy loss of a composite
and potentially complex algorithm by aggregating the privacy guarantees of indi-
vidual primitives. More formally, it can be stated as follows [DR14]:

Theorem 1.5 (Composition). Let M; : D — R; be an &;-differentially pri-
vate mechanism for i € {1,2}. Then, their composition, defined as M(D) =
(M1 (D), Ma(D)), is (1 + &2)-differentially private.

Proof. For any (R}, R;) C R x R and any two neighboring datasets D ~ D/,

LriMD) € (R, Ry)] _ PriMi(D) € RiIPrIMa(D) € Ry
P?’[M(D/) S (Rl,Rz)] Pr[Ml(D/) (S Rl]Pr[./\/lz(D’) S Rz]

B (Pr[Ml(D) € R ) (Pr[Mz(D) € R )
A\ 2M (D) € Ri1) \PrIMo(D) € Ry

< exp(e1) exp(e2)
= exp(e1 + €2). ]

This argument can be generalized to for 4 differentially private mechanisms by
induction. More precisely, if M; : D — R, is an ¢;-differentially private mecha-
nism for7 = 1,..., k. Then, the composition M(D) = (M (D), ..., Mp(D)) is
(Zle g;)-differentially private. The result above is also called simple composition,
as it deals with pure Differential Privacy mechanisms. An extensive treatment of
composition in Differential Privacy is deferred to Chapter 3.

Group Privacy

The Differential Privacy notions discussed so far bound differences in output distri-
butions of the mechanism for any pairs of adjacent datasets, i.e. for datasets D, D’
such that [DAD'| = 1. However, what is not immediately clear is the case when
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two datasets differ in more than one individual’s data. Fortunately, Differential Pri-
vacy yields group privacy guarantees that bound this difference for datasets that
differ in % entries, for £ > 0:

Theorem 1.6 (Group privacy). Let M : D — R be an e-differentially private
algorithm. Suppose D and D' are two datasets that differ in exactly k entries. Then, for
all S CR:

PrIM(D) € 8] < exp(ke)PrIM(D') € S].

Proof. Let DO 2 Dand D® 2 ), and let DO, DOV, DE=D DK pe 4
sequence of datasets where DO ~ pU+D for i = 0,1,...,k— 1. The datasets in
this sequence can be thought of as “intermediate” datasets when trying to obtain

D' by starting with D and changing one entry at a time successively. Then by the
DP guarantee of M, forany R C Rand i € [£— 1],

PrIM(DD) € R] < exp(e) PrIM(D D) € R).
Then, forany R C R,
PrIM(D) € R] = Pr(M(D©) e R

exp(e) PrIM(DV) € R]
exp(2¢) PrIM(D?) € R]

IA

IA

exp(ke) PrIM(D®) € R]
= exp(ke)PrIM (D) € R]. O

IA

Post-processing

Another key property of Differential Privacy is post-processing immunity. It ensures
that privacy guarantees are preserved by arbitrary data-independent post-processing
steps [DR14]:

Theorem 1.7 (Post-Processing Immunity). Let M : D — R be a mechanism that
is e-differentially private and ¢ : R — R’ be a data-independent mapping. The
mechanism g o M is e-differentially private.
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Proof. The proof first considers a deterministic mapping ¢ : R — R’. Let § £
{re R:g(r) € S},VS C R'. Then for any two neighboring datasets D ~ IV,

Prlg o M(D) € S] = PrIM(D) € §]
< exp(e) Pr[M(D') € S]
= exp(e)Pr[g o M(D') € S].

This proves post-processing immunity for deterministic functions. To extend this
guarantee to randomized functions, note that randomized functions can be viewed
as a distribution over deterministic functions, and, in particular as a convex combi-
nation of deterministic functions. Given that a convex combination of differentially
private mechanisms (here each mechanism is obtained by composing each deter-
ministic function with the mechanism M) is also differentially private, the result

follows. O

This property ensures that, once Differential Privacy guarantees are applied, any
further analysis or manipulation of the protected results will not compromise its
privacy guarantees. Post-processing significantly expands the scope and applicabil-
ity of Differential Privacy algorithms in real-world applications, as shown in Part III.

Quantifiable Privacy-accuracy Trade-offs

The last important property, mentioned in Section 1.2, the trade-off between
privacy and accuracy can be quantified exactly. Privacy-accuracy trade-offs are
mechanism-level properties: each mechanism has its own trade-off. The privacy-
accuracy trade-offs of the main building blocks are described later in this section,
including the privacy-accuracy trade-offs of Randomized Response in Section 1.7,
of the Laplace Mechanism in Section 1.4.3, and of the Gaussian Mechanism in
Section 1.5.1.

1.4.3 The Laplace Mechanism

The Laplace Distribution with 0 mean and scale & has a probability density function

Lap(x|b) = zlbe_%. The Laplace mechanism is a differentially private mechanism
based on the Laplace distribution for answering numeric queries [DMNS00]. It is
a fundamental building block for many DP algorithms described in this book, and
itfunctions by simply computing the output of the query f and then perturbing
each coordinate with noise drawn from the Laplace distribution. The scale & of the
noise is calibrated to the query sensitivity Af divided by &:

Definition 1.8 (The Laplace Mechanism). Ler f : D — R C R? be a numer-
ical query, with d being a positive integer. The Laplace mechanism is defined as
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MLap(D§f> €) = f(D) + Z where Z € R is a vector of i.i.d. samples drawn from
Lap(%).

The Laplace mechanism adds random noise drawn from the Laplace distribution
independently to each of the 4 dimensions of the query response.

Theorem 1.9 (Differential Privacy of The Laplace Mechanism). 7he Laplace mech-
anism, My, achieves (¢, 0)-Differential Privacy.

Proof. Let D ~ D' be any two neighboring datasets in D, and let pp and pyy be the
probability density functions of M, (D;f,¢) and MLap(D’; f€), respectively.
Then for any » € R,

d _elfD)i—rnl
pp(r) P ( Af )
po(r) exp (_Slf(DA/])(i_’ﬂ)

a e(f(D); = ril — |F(D); — nil)
[Tew ( Af )

(8(V(D/);;f(D)i|))

H exp (8 : (”f(D)A}f(D/)“ 1)) (By the definition of Af")

=1

.
I]ex
d

~

IA

(By the triangle inequality.)

e}

i—1

~

1

~

< exp(¢).

The proof is similar for 1;)1;' ((:)) < exp(e). O]

A graphical representation of the densities and log density of two Laplace distri-
butions associated with neighboring datasets D and D)’ are provided in Figure 1.3,
respectively. Note how the difference between the log probabilities for x for each of
the neighboring datasets D ~ D is bounded by ¢.

Accuracy Guarantee of the Laplace Mechanism

The accuracy guarantees of the Laplace Mechanism is characterized by the following
result.

Theorem 1.10. For any numerical query f : D — R C R?, and any darabase

DeD,
Pr [V(D) — Miy(Difs6)| > In (%) - (AT]F)] < B.
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Proof. The proofis for 4 = 1 for simplicity, but it generalizes for 4 > 1. The proof
follows from characterizations of the tails of the Laplace distribution. For a random
variable Z ~ Lap(b) and a real number o > 0,

Pr|Z] > a] = exp (—a/b).

Therefore, given that /(D) — M Lﬂp(D; [ €) is Laplace with parameter 6 = ATf, it
follows that

P?’[lf(x) - MLﬂp(D;f§ 3)\ > a] = exp (—0[ . Aif') L ﬂ

Solving for a in exp (—a : ALf) = f leads to

a.gpzln(%),

<o) (%)

This concludes the proof. O

hence

The accuracy guarantee of the Laplace Mechanism provides a practical way to
understand how the added noise affects the utility of the released data while ensur-
ing differential privacy. Essentially, it quantifies the expected deviation between the
true value of a numerical query and the noisy output produced by the mechanism.

1.4.4 Answering Private Queries in Practice

Next, we present two examples to illustrate how the Laplace Mechanism can be
applied in practice.

Example 1: Computing the Average Age

Consider a dataset containing the ages of 10,000 individuals, with ages ranging
from 0 to 100 years. The task is to compute the average age while ensuring differ-
ential privacy. A practical procedure follows the following steps:

1. Determine the query function and its sensitivity. In this task the query function
is the average age,

n

f(data) = % Z age,,

i=1



Differential Privacy: Formal Definition, Techniques, and Properties 27

where 7 is the number of individuals in the dataset. The global sensitivity
Af of the average function is the maximum change in the output when one
individual is added or removed. Since the age can vary between 0 and 100,
adding the data about a single individual can affect the sum by at most 100
units. Therefore, the sensitivity is:

max age — min age _ 100 -0

= = 0.01.
n 10,000

Af =

2. Apply the Laplace Mechanism. The next step is to select the privacy parameter
¢ and add noise drawn from the Laplace distribution with scale parameter

Ag—f. Selecting & = 0.5 to obtain a strong privacy guarantee adds the following

) Af 0.01
noise ~ Lap { — ) = Lap s )= Lap(0.02).
€ .

noise:

The private query thus reports f'(data) + noise.

3. Analyze the error bound. Additionally, by setting a confidence level f = 0.05
(meaning that one is 95% confident in the error bound), the error bound
can be computed as,

A 1 0.01 1
Error Bound = Af In{-)=—1In{—=) = 0.06 years.
€ 0 0.5 0.05

This means that, with 95% confidence, the noisy average age returned by
the Laplace Mechanism will differ from the true average age by no more
than approximately 0.06 years. If the privacy parameter is set to ¢ = 1,
allowing for slightly less privacy in exchange for greater accuracy, the error
bound decreases to about 0.03 years. Thus, selecting & and f appropriately
ensures that the released data remains both useful and privacy-preserving.

Example 2: Releasing a Histogram

Suppose a statistical agency wants to release a histogram showing the number of
individuals in different age groups, segmented by gender and region, from a dataset
containing a large number of respondents. The age groups could be categorized in
intervals (e.g., 0-9, 1019, ..., 90+). The goal is to release this histogram while
ensuring differential privacy. Note that this is different from the previous task where
a single quantity wasreleased. The procedure again follows the the three same steps:

1. Determine the query function and its sensitivity. The query function is the
count of individuals in each combination of age group, gender, and region.
For count queries, the global sensitivity Af is 1 because adding or removing
one individual can change the count in one category by at most 1.
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2. Apply the Laplace Mechanism. The next step consists in selecting a privacy
parameter ¢ = 0.5 for each count in the histogram and adding independent
Laplace noise to each cell (i.e., each combination of age group, gender, and
region) in the histogram. Let ¢; ok be the true count for age group 7, gender j,
and region %, and ¢; j 4 is the private counterpart to be released. The counts
are linked by the following formula:

A
Cijk = cijrtNoise;jz,  where Noise;j; ~ Laplace (?f) = Laplace(2).

3. Post-processing to ensure valid counts. Notice that the application of real-valued
noise to each count may render the resulting privacy-preserving counterpart
negative or non-integers, thus producing invalid ouputs. These issues can
be corrected by applying a post-processing step, that set any negative noisy
counts to zero and round the noisy counts to the nearest integer. Such post-
processing steps do not alter the privacy guarantees of the original release and
are commonly applied in deployments [CDMS21].

4. Analyze privacy and utility. Each count is e-differentially private with ¢ =
0.5. Since each individual’s data affects only one count, and the counts are
disjoint, the overall privacy guarantee remains ¢ = 0.5. The added Laplace
noise has a mean of zero and a scale of 2 and thus the expected absolute
error for each count is 2. For categories with large counts, this noise has a
relatively small impact. However, for categories with small counts, especially
in less populated age groups or regions, the noise can significantly affect the
accuracy. A further analysis on disparate impacts of Differential Privacy on
different subpopulations is discussed in Chapter 17.

Note that other mechanisms can produce integer counts directly without addi-
tional rounding, by using discrete noise mechanisms, such as the Geometric mech-
anism [GRS12] and the discrete Laplace mechanism [KS12].

1.5 Approximate Differential Privacy

The discussion in the previous section focused on pure Differential Privacy and the
mechanisms and guarantees associated with it. The case where 6 > 0 for (¢, 0)-DP
constitutes a variant of Differential Privacy known as Approximate Differential Pri-
vacy. Recall that 6 € (0, 1) is the failure probability of the privacy loss bound in the
relaxed variant of pure DD, and is meant to be a cryptographically low quantity—
that is, so small it is considered negligible for practical purposes, often much less
than ﬁ where NV is the dataset size. This allows practitioners to apply other mech-
anisms which yields better utility than the Laplace mechanism in exchange for a
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marginal failure probability. Importantly, approximate Differential Privacy retains
the composition, group privacy, and post-processing immunity properties provided
by pure Differential Privacy.

1.51 The Gaussian Mechanism

The canonical mechanism for (&,0)-DP is the Gaussian mechanism [DR14].
Where the Laplace mechanism adds noise proportionally to the ¢; sensitivity of
a query f, Af, the Gaussian mechanism uses the £, sensitivity, denoted by A,f,
and defined as in Equation (1.1) with p = 2. The £, and ¢; norms enjoy the fol-
lowing relationship: for a vector x € R |Ixll2 < llxlli < ~/dllxll2 . Thus, the ¢;
sensitivity can be up to a factor /4 less than the £ sensitivity. The Gaussian distri-
bution with 0 mean and standard deviation ¢ has the probability density function

N(x|o) = \}7 exp (—(’C—_m)

/2 202

Definition 1.11 (Gaussian Mechanism). Lez [ : D — R be a numerical query.
The Gaussian mechanism is defined as M Guus(Ds f > €) = f(D) + z where z € R is

a vector of i.i.d. samples drawn from N (0, 6%1) where s > /2 ln(l'TZS)(Azf/e).

As with the Laplace mechanism, the numerical query response is 4-dimensional
for some integer 4 > 0 as well. Gaussian noise is added to each dimension of
the query response independently by the Gaussian mechanism. To highlight a key
distinction between the Laplace and Gaussian mechanisms, consider the context of
computing the mean of a multivariate dataset, revisited from [Kam20]. Consider a
dataset D € {0, 1}"*¢ aiming to compute the mean in a privacy-preserving manner,
denoted by (D) = }1 > %1 Di. The maximum discrepancy in f* across adjacent
datasets is %1, yielding a vector with €1 norm of % and £, norm of \/5% as the
{1 and ¢, sensitivities. The following theorem defines the (¢, 0)-DP guarantees for
the Gaussian mechanism.

Theorem 1.12. The Gaussian mechanism, M Guss> achieves (g, 6)-Differential Pri-
vacy, for € € (0,1] and J € [0, 1].

For the proof of this theorem, see Appendix A of [DR14]. Notice that, in the orig-
inal proposition, also reviewed in [DR14], the mechanism is restricted to use &
within (0, 1]. However, it is not uncommon to see values of & > 1 in practice,
including in various discussions in this book. This restriction was studied and over-
come in [BW18], which provided a more general analytical Gaussian mechanism
that holds for & > 1 as well. While the details of the DP guarantee of the analyti-
cal Gaussian mechanism are beyond the scope of this text, the mechanism and the
associated (&, d)-DP is defined as follows.
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Theorem 1.13. (Analytical Gaussian Mechanism [BW18]). Let f : D — R be a
numerical query with global €, sensitivity Aof . Y& > 0 and o € [0, 1], the Gaus-
sian mechanism M Guuss(D; f, €) = f(D) + z with z ~ N (0, o2I) satisfies (€,0)-
Differential Privacy if and only if

Where ®(z) = Pr[N(0,1) < #] = 127[ [fe™ / *dy is the CDF of the standard

univariate Gaussian distribution.

The reader is referred to [BW18] for the details on the analytical Gaussian mecha-
nism.

Discussion of Accuracy

The exact formal accuracy guarantees is left as an exercise to the reader. The proofis
similar to that of the accuracy guarantee for the Laplace mechanism, simply quanti-
fying tails on the Gaussian distribution. Note that, in high-dimensions, the Laplace
mechanism introduces noise scaled by % to each dimension, providing an e-DP

. . . 3/2 .
estimate of " with an £, error scaling as O(%) In contrast, the Gaussian mech-

. . . . dlog(1/6 . . . .
anism introduces noise with a scale of O( %) per dimension, resulting in

an (g, 0)-DP estimate of /* with £ error approximately O(%) Thus the Gaussian

mechanism shaves of a factor of O(«/Z) from the noise, improving accuracy signifi-
cantly for large 4 at a slight cost to the privacy guarantee, positing it as a potentially
more effective approach for multi-variate estimations.

1.6 Beyond Statistical Queries: Differentially Private
Selection

Numerical queries form an important class of computations over which privacy
can be enforced. However, in many natural situations, the goal may be to output
an object selected according to certain criteria among other objects, rather than just a
numerical value. Consider the following example, adapted from [DR14]. Suppose
that a retailer is selling an amount of items for which there are 3 potential buyers
A, B, and C. Each buyer has a maximum price they are willing to pay for the
item, known as their valuation. The buyers wish to keep their valuations private, to
avoid disclosing sensitive information about their purchasing strategies or financial
standing. Hence the task of the retailer is to set a sale price to maximize their total
revenue without revealing the valuations of the buyers in the process.
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Assume that the valuations of buyers 4, B and C are, respectively $1.00, $1.01,
and $3.01. Consider the possible pricing options:

® Price at $1.00: All three buyers are willing to purchase at this price, thus the
total revenue is $1.00 x 3 buyers = $3.00.

® Priceat $1.01: Buyers B and C are willing to purchase, thus the total revenue
is $1.01 x 2 buyers = $2.02.

® Price at $3.01: Only buyer C is willing to purchase, thus the total revenue
is $3.01 x 1 buyer = $3.01.

To maximize revenue, the retailer should set the price at $3.01. However, since the
buyers’ valuations are private, the seller cannot directly know the optimal price. The
seller needs to select a price in a privacy-preserving manner. One naive approach
might be for the seller to add random noise to the buyers’ valuations to preserve
their privacy. Suppose the seller adds noise to buyer C’s valuation, and it becomes,
say, $3.02. Based on this noisy valuation, the seller decides to set the price at $3.02
apiece. However, this approach leads to a problem: at a price of $3.02, none of
the buyers are willing to purchase the item, since their true valuations are all below
this price. Consequently, the total revenue would be $0, which is worse than any
of the previous pricing options. This illustrates that simply adding noise to the
valuations is not suitable for such a setting. Adding noise to the valuations can lead
to suboptimal pricing decisions. Small changes in the valuations (due to noise) can
result in significant differences in the optimal price, which may drastically reduce
the seller’s revenue or eliminate it altogether. This is particularly problematic when
the output is an object selection (the optimal price) rather than a simple numerical

query.
1.6.1 The Exponential Mechanism

To be able to perform selection privately while also preserving the quality of the
selection made, McSherry and Talwar defined the exponential mechanism [MT07].
Given a set of objects H, a dataset D € D, and ascore functions : DxH — R, the
exponential mechanism chooses an object 4 € H that maximizes the score function
in a differentially private manner.

Definition 1.14 (Exponential Mechanism). The exponential mechanism, denoted
by M ey, takes as input a dataset D € D, a set of objects H, and a score function
s: D x H — R and outputs h € H with probability proportional ro exp (%2),
where As £ maxyey maxpp |s(D, h) — s(D', h)|.

In this pricing example, the seller defines a utility function #(D, p) that calculates
the total revenue generated by setting a price p, given the buyers’ valuations in
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the dataset D. The exponential mechanism then selects a price p with probability
proportional — the actual probability needs to be renormalized to sum to 1 — to:

e - u(D,p)
xp 2Au ’

where ¢ is the privacy parameter controlling the level of privacy, and A is the
global sensitivity of the utility function—that is, the maximum change in u(D, p)
when a single individual’s valuation in D is modified. The seller thus probabilistic-
ally chooses a price that is likely to yield high revenue. The probability of selecting a
particular price is influenced by the total revenue it generates, but is also smoothed
to prevent any single buyer’s data from having too much impact on the computa-
tion. This smoothing out is controlled by . When ¢ — 0, all prices become equally
likely independently of the buyers valuations D and the revenue #(D, p), leading
to perfect privacy. As ¢ increases, the mechanism introduces less smoothing out and
gives more importance to the revenue #(D, p), providing more utility—by putting
more mass on higher revenues—but less privacy. This mechanism thus allows the
seller to achieve a balance between maximizing revenue and preserving the privacy
of the buyers. The exponential mechanism provides Differential Privacy.

Theorem 1.15. The exponential mechanism, M oy, achieves (¢, 0)-Differential Pri-
vacy.

Proof- The proof assumes that H is a finite set. For any two neighbouring datasets
D ~ D' and some outcome » € H,

( exp(es(D:h)/2A5) )
PriMep(D) =hl  \3, 5, exp(es0F2as)

Pr[Mexp(D/ ) = 4] o ( exp(esD' h)/25) )

>y en exp(es@H))2n5)
— exp (E(S(D, h) —s(D/, h))) D e exp
2As D e €Xp
< op (£) ap (§) ZLBERLD
> e exp (8524

—_

es(DH)/25)
es(DA)/2As)

= exp(e).
The inequality follows due to the definition of As. O]

Accuracy Guarantee

For the exponential mechanism, accuracy is not measured in terms of how close
the mechanism is to the optimal hypothesis 4. Rather, the objective is to guarantee
that, with high probability, the output by the mechanism has a high score, as close
as possible to optimality.
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Theorem 1.16. Let us fix a database D, and let Hopr = {h* € H s.t. s(D, h) =
maxy, s(D, h)} be the set of elements in H that achieve the maximum possible utiliry
score. Then, the exponential mechanism guarantees

As
Pr [s(D,MW(D)) > 0PT =22 (In (|%|//3))] >1-4.

where OPT = maxy, s(D, b).
Proof. Take any ¢ € R. It follows that

2 (D)< P (€5(D, h) /2 As)
D ren exples(D, h) /2 As)
> (Dyhy<c €XP (ec/2As)
T 2 eHopr ©XP(EOPT/2As)
|H| exp(ec/2As)
~ |Hort| exp(eOPT /2 As)
|H| (8(C—OPT))
= exp | —————
[Horrl 2As

e(c—OPT

Pr [J(D,MCXP(D) < c] =

IN

The result follows by plugging in
2 0PT — 2285 n (11)9)
e

O]

Practically, this means that, although the mechanism introduces randomness to pro-
tect individual privacy (e.g., the buyers’ valuations in our example), it still ensures
that the selected output (the price) will yield a utility (the revenue) that is close to
the best possible. E.g., in our example, the maximum possible revenue was $3.01
at price $3.01). Moreover, the utility loss due to privacy is limited and can be con-
trolled by adjusting the privacy parameters.

1.7 Randomized Response, Revisited

Before concluding this chapter, it is useful to revisit the concept of randomized
response. Consider Figure 1.4: its left side presents a pixelated version of the
Mona Lisa, where each pixel is represented by either an ‘M’ or a °.” character.
By implementing a random process that flips each pixel with a probability of 0.25,
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Each bit is flipped
with probability 25%

Figure 1.4. A metaphor for private data analysis: Perturbing each bit of the image on the
left by flipping it with a random probability of 25% prevents inferring with high probability
whether each single bit was originally an "M" or a ".", while still allowing to observe con-
clusions from the big picture. Figure adapted from slides presentation of Ulfar Erlingsson
[Nam17].

the figure on the right emerges as locally perturbed yet retains the overall image,
enabling recognition of the iconic Mona Lisa painting. This metaphor demon-
strates that, although plausible deniability is afforded for the original value of
each pixel, the outcomes of data analysis can still be preserved with considerable
accuracy.

Revisiting Randomized Response

Figure 1.4 happens to be an instance of using randomized response to obscure
individual responses while providing accurate summary statistics. Indeed, there is
an equivalent formulation of randomized response that satisfies £-DP in a stronger
setting called local Differential Privacy, where instead of having a trusted curator that
perturbs raw data to provide Differential Privacy, each data contributor perturbs its
own data prior to its release. The topic of local DP is the subject of study of Chapter
2. Given ¢ > 0, for every private bit X, the mechanism is defined as follows:

X, with probability = M;
M) = POV Trer @)
1-— X, with probablhty = H—Tp(é‘)'

Privacy Guarantees

Randomized response has the following Differential Privacy guarantees.

Theorem 1.17. Randomized Response is (¢, 0)-differentially private.
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Proof Let p = 17 (;()F) for simplicity of exposition. The proof obligation is to
upper bound the probability of ratios of probabilities for the two possible outcomes
MX) = X and M(X) = 1 — X for any X € {0,1} and the neighbouring

X =1-X,1ie,

PrIMX)=X] P MX) =X]
PrIMX) =X] PIMO-X)=X]

and
PrMX)=1-X]  PrIMX)=1-X]
PPIMX)=1-X] PMQIA-X)=1-X]

Note that the first quantity is equal to % = exp(¢), while the second quantity is

equal to 1’%0 = exp(—¢). This is enough to conclude the proof. O

Accuracy of Randomized Response

To provide the accuracy guarantee of Randomized Response, consider a collection

of n data points X, . . ., X,,. The goal is to compute the average of these data points,
. A . . . . .

given by u = jiv > % 1 Xi. Consider the following simple linear estimator that

corrects for the bias introduced by flipping X to the wrong answer, 1 — X, with
exp(e)
1+exp(e)

. 1 -

Lemma 1.18. X is an unbiased estimator of u = % >%_ 1 Xi. Further, with proba-
bility at least 1 — B,

probability p =

A

VI/B
X_”‘ = 22— D)Jn

Before providing the proof of this accuracy bound, consider what Differential Pri-

vacy promises. Remember that p £ 1-7-)2:; f()e)' Plugging this in the bound above,
N (1+4+¢)
fmu (0D Y,
‘ a (z (¢ — 1) /n

Ase — 0, the 1 4+ exp(e) term goes to 1; the 1 —exp(e) term can be approximated
by & given a first-order Taylor expansion. Hence, it follows that, as & is small,

-al=o(27)
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1

In particular, given a small €, to obtain an accuracy of a, requires that n ~ —-

242

&
samples.

Proof. Note that

E[MX)] = PrIMX) = X] - X + PrIMX) =1—X] - (1 — X)
=pX+(10-p0-X)
=2p—DX+(1—=p).

Therefore,
EMX)]=2p—Du+1-p),

immediately implying unbiasedness of X. Now note that the variance of estimator
X is given by

N N
1 1 1
~ (2p—1)2N2 ;V“ ME)] = ; 42p — 1)2IN2 ~ 42p— 12N’

Vﬁri?]

where the first equality follows from the fact that Var[cX] = ¢*Var[X] and Var[X +
¢] = Var[X] for a constant ¢, and the inequality follows from the fact that M (X)
is a Bernoulli random variable and has variance at most 1/4. Using Chebyshev’s
inequality with & = \/LE, it follows that

il

The above bound is an example of privacy-accuracy trade-off. To obtain an accuracy

A J1/p
e v N

O]

level of @ (i.e., the estimator does not mis-estimate ¢ by more than a) with high
probability 1 — S, one needs to pick the value of p such that

_ YUk _,
200 =2p)/n =

This immediately gives the desired value of €, given us a trade-off between the accu-
racy level o and the privacy level €. Here, decreasing & towards 0 (or equivalently
decreasing p towards 1/2) yields a worse accuracy guarantee, as the denominator
decreases and eventually goes to 0. This goes in the expected direction: the more
privacy is required, the more the accuracy suffers.
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1.8 Concluding Remarks

This chapter discussed foundational concepts and mechanisms that are the bedrock
of Differential Privacy. Since its conceptual introduction, Differential Privacy has
seen considerable evolution, both in theoretical development and practical appli-
cations. Researchers have refined the mathematical guarantees, offering tighter
bounds on privacy leakage and more effective mechanisms for trading utility with
privacy. Practically, Differential Privacy has been applied across diverse sectors, from
healthcare to social science, to engineering systems, as reviewed in Part III. These
applications demonstrate the flexibility and robustness of Differential Privacy in
safeguarding personal information while maintaining data utility. The implica-
tions of adopting Differential Privacy extends beyond the technical realm, influ-
encing regulatory policies around data privacy [Exe23], as also discussed in Part
V of this book. As organizations increasingly rely on data-driven decision-making,
the implementation of DP can help build trust with stakeholders by demonstrating
a commitment to privacy-preserving practices. This trust is crucial for compliance
with international data protection regulations and for fostering a more privacy-
conscious data ecosystem. Furthermore, the principles of Differential Privacy can
guide ethical considerations in data usage, promoting a balance between innovation
and individual rights to privacy.
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