S. Matsumoto and C. McSwiggen (2023) “Moments of Random Quantum Marginals via Weingarten Calculus,”
International Mathematics Research Notices, Vol. 2023, No. 22, pp. 19306-19339

Advance Access Publication May 24, 2023

https://doi.org/10.1093/imrn/rnad105

Moments of Random Quantum Marginals via Weingarten
Calculus

Sho Matsumoto! and Colin McSwiggen?*

!Graduate School of Science and Engineering, Kagoshima University,
Kagoshima 890-0065, Japan and *Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012, USA

*Correspondence to be sent to: e-mail: csm482@nyu.edu

The randomized quantum marginal problem asks about the joint distribution of the
partial traces (“marginals”) of a uniform random Hermitian operator with fixed spectrum
acting on a space of tensors. We introduce a new approach to this problem based
on studying the mixed moments of the entries of the marginals. For randomized
quantum marginal problems that describe systems of distinguishable particles, bosons,
or fermions, we prove formulae for these mixed moments, which determine the joint
distribution of the marginals completely. Our main tool is Weingarten calculus, which
provides a method for computing integrals of polynomial functions with respect to Haar
measure on the unitary group. As an application, in the case of two distinguishable
particles, we prove some results on the asymptotic behavior of the marginals as the

dimension of one or both Hilbert spaces goes to infinity.

1 Introduction

In classical mechanics, a system is just the sum of its parts. For a system comprised
of two classical particles, if one knows the state (i.e., position and momentum) of
each individual particle, then one knows everything about the system. In quantum
mechanics, this is not the case. Due to the phenomenon of entanglement, the state of
a quantum mechanical system contains more information than the combined states of

its subsystems do.
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Mathematically, we can express this fact in terms of operators on Hilbert spaces.
The formalism of quantum mechanics associates, to a given physical system S, a Hilbert
space H(S). (In this paper, we will deal only with finite-dimensional Hilbert spaces,
although the problems we study can be posed in greater generality.) The tensor product
postulate of quantum mechanics states that if S is a composite system formed from
disjoint subsystems S; and S,, then 7 (S) = H(S;) ® H(S,).

States of the system S can be identified with their density matrices, which are
positive semidefinite Hermitian operators on #(S) with trace 1.If e, ..., e, is a basis of
H(S)) and fi,...,f, is a basis of H(S,), then the tensors e; ® f; form a basis of H(S) =
H(S;) ® H(Sy). Accordingly, we write the matrix entries of a density matrix M on H(S)

using double indices 11,12, ..., mn, ordered lexicographically:
M = My 1) k=11

The partial traces of such a matrix are matrices x; (M) and 7, (M), which are density

matrices acting on H(S;) and #(S,), respectively, with entries

n
nl(M)i,kZZMij,kjr l,kI 1,...,m,
j=1

m
my(M);y =D Mgy, — jl=1,...,n

i=1

These partial traces are also called the marginals of M, and they have a physical meaning.
If the system S is in the state M and we observe only the individual subsystem S,
then S; will appear to be in the state 7; (M). Likewise, if we observe only the individual
subsystem S,, then S, will appear to be in the state 7, (M). However, an easy dimension
count reveals that in general it is not possible to reconstruct the matrix M given only
7, (M) and m,(M). This is the mathematical expression of the idea that in quantum
mechanics, a system is more than the sum of its parts.

Even though we cannot hope to recover M from =;(M) and n,(M), we can ask
a more basic question: given a density matrix A on 7(S;) and another density matrix
B on H(S,), is there a density matrix M on #H(S) with n;(M) = A and 7,(M) = B?
Typically, we make the further stipulation that M must have given eigenvalues A =
(Ay1s---1rpyy,) € R™™ This question is a fundamental problem in quantum mechanics
known as the quantum marginal problem (or as the N-representability problem in
theoretical chemistry). It asks whether the states A and B are compatible, in the sense
that S; could be in state A and S, could be in state B while the composite system S is

some state M with the required spectrum A.
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The quantum marginal problem was first posed at least as early as the 1960s and
has been an active topic of research in the decades since [6, 28, 29]. In the case where
H(S;) and #H(S,) are both finite dimensional, the problem was solved in 2004 by Klyachko
[23], who proved that the set of compatible pairs (4, B) of density matrices on #(S;) and
H(S,) is determined by a certain system of linear inequalities on the eigenvalues of A
and B and on . (However, despite these explicit compatibility criteria, actually checking
whether they hold is computationally difficult on both classical and quantum computers
[24, 25].) See [22] for a review of Klyachko's solution in the finite dimensional case, as well
as [30, 33] for more recent general reviews of quantum marginal problems from a physics
perspective.

The setup where H(S) = H(S;) ® H(S,) is appropriate for describing a sys-
tem of two distinguishable particles, where each particle corresponds to one of the
subsystems S; or S,. However, many physical systems of interest consist of indistin-
guishable bosons (whose states are constrained to be invariant under permutations of
the particles) or indistinguishable fermions (whose states change sign when any two
of the particles are exchanged). That is, for a system of k indistinguishable bosons
or fermions, states correspond to density matrices on Sym*C" or A¥C™, respectively,
where C" represents the Hilbert space associated to any given single-particle subsystem.
Identifying (C")®k = (C”k, we can regard such density matrices as n¥-by-n* matrices
that satisfy a symmetry or antisymmetry constraint; single-particle marginals are
obtained by taking the partial trace over all but one leg of the k-fold tensor product.
The quantum marginal problem in this setting asks: given A € R" and a density
matrix A on C", does there exist an n¥-by-n¥ density matrix M with eigenvalues
A, satisfying the (anti)symmetry constraint, with a single-particle marginal equal
to A?

The above problems are qualitative in character. They all ask a yes-no question:
does a state of the composite system with the given spectrum and marginals exist? In
this paper, we study random matrix ensembles that can be regarded as quantitative
versions of these quantum marginal problems. Concretely, we ask: given a uniform
random Hermitian matrix acting on C™ @ C" (or, in the case of bosons or fermions,
on Sym*C" or AKC™) with fixed eigenvalues, what is the probability distribution of
its partial traces? This is a refinement of the original quantum marginal problem, in
the sense that the original problem asks only about the support of this distribution,
whereas now we would like to describe the distribution completely. (In mathematical
treatments of quantum marginal problems, it is standard to drop the requirement

that the matrices in question be density matrices, i.e. positive semidefinite Hermitian
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matrices with trace 1, and instead study the partial traces of Hermitian matrices with
arbitrary fixed spectra. From here on, we will follow this convention.)

To illustrate this randomized version of the problem in more detail, we consider
the example of two distinguishable particles. Here we take integers m,n > 2 represent-
ing the dimensions of the Hilbert spaces of the single-particle subsystems, and we fix a
vector of eigenvalues A € R™". Recall that the Haar probability measure on any compact
Lie group is the unique probability measure that is invariant under both the left and
right actions of the group on itself; a random group element distributed according to
the Haar probability measure can be regarded as “uniformly distributed” on the group.
Let U be arandom mn x mn unitary matrix distributed according to the Haar probability

measure on U(mn), and set
H = (Hy ) [=y, = Udiag)U". (1)

Then H is a uniform random mn x mn Hermitian matrix with eigenvalues A. The
randomized quantum marginal problem in this case asks for a description of the joint
distribution of the marginals (r; (H), 7, (H)).

Randomized quantum marginal problems have been studied in the literature
using two different approaches. In a seminal paper, Christandl, Doran, Kousidis, and
Walter [5] used techniques from symplectic geometry to give an algorithm for com-
puting the spectral distributions of marginals for distinguishable particles, bosons,
and fermions. In later work, Collins and the second author [10] used Fourier analysis
techniques to derive integral formulae for these same distributions and to prove various
properties of their densities. While each of these approaches offers a solution to these
problems in a certain sense, the existing results are not easily amenable to every type of
analysis one would like to perform, and many unanswered questions remain.

This paper introduces a third approach, based on computing the mixed moments
of the entries of the marginals. A major advantage of this approach is that, at least
in the case of distinguishable particles, the theorems are much more amenable to
asymptotic analysis, providing a way to study the limiting behavior of the marginals
as the dimensions of the Hilbert spaces go to infinity. Our method exploits the fact that
any compactly supported probability measure on R™ is completely characterized by its

mixed moments, that is, expectations of monomials

p
E[Hxi]}, @iy, ip) €{1,...,n}"P,
j=1

for all p > 1, where x;,...,x, are the standard coordinates on R". For probability

measures on the line, this fact was first observed by Hausdorff [19]. The distribution of
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the random matrix H in (1) is compactly supported due to the compactness of the unitary
group; therefore the distribution of (; (H), 7, (H)) is also compactly supported, since the
partial traces are linear maps. Accordingly, all information about the joint distribution

of the marginals is contained in the mixed moments

p q
E|[]m @i, - [ 7@, 2)
a=1 B=1

for all p,gq > 0, il,...,ip,kl,...,k e {1,2,...,m}, andjl,...,jq,ll,...,lq e {1,2,...,n}.
(Note that the space of n xn complex Hermitian matrices is an n?-dimensional real vector
space, and (2) indeed captures the expectations of all monomials in the coordinates.) A
formula for computing the mixed moments (2) can thus be regarded as a third type of
solution to the randomized quantum marginal problem, complementary to those given
in [5] and [10].

The main contributions of this paper are formulae of this type. Specifically,
we derive a formula for (2), as well as analogous formulae for mixed moments of
single-particle marginals for systems of k distinguishable particles, k indistinguishable
bosons, or k indistinguishable fermions. The proofs of these formulae rely on Weingarten
calculus, a set of techniques for computing integrals of polynomial functions with
respect to invariant measures on compact groups and symmetric spaces [7, 8]. As an
application, in the case of two distinguishable particles, we prove some results on the
asymptotic behavior of the marginals as the dimension of one or both Hilbert spaces

goes to infinity.

Remark 1.1. Beyond quantum information theory, randomized quantum marginal

problems are a natural object of study from at least three different points of view:

¢ Inquantum statistical mechanics, a significant body of research has studied
the properties of “typical” quantum states, that is, random states that are
uniformly distributed conditional on certain information [3, 26, 31, 32, 37].

e In algebraic combinatorics, the randomized quantum marginal problem for
two distinguishable particles with n-dimensional Hilbert spaces is a semi-
classical approximation for the tensor product multiplicities of irreducible
representations of the symmetric group S,,; see [23, §5], [5, §7], [10, §4]. These
multiplicities are known as Kronecker coefficients. Aside from their intrinsic
combinatorial and representation-theoretic interest, they have also been a
central object of study in the Geometric Complexity Theory program [4, 20,
211].
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¢ Randomized quantum marginal problems are examples of random matrix
ensembles derived from projections of invariant measures on coadjoint orbits
of compact Lie groups, a family of models that has recently attracted a
great deal of interest in random matrix theory. Other ensembles of this
type include the randomized Horn's problem [2, 11-14, 17, 27, 34, 35], the
randomized Schur’s problem [2, 12, 15], and the orbital corners process [1,
16, 36]. This class of random matrix ensembles has recently been studied at

a high level of generality in [10].

1.1 Organization of the paper

In §2, we treat the randomized quantum marginal problem for distinguishable par-
ticles. After reviewing the necessary background on Weingarten calculus, we derive
formulae for the mixed moments of entries of single-particle marginals for systems
of two distinguishable particles (Theorem 2.3) and then for k distinguishable particles
(Theorem 2.5).

In §3, we consider systems of k indistinguishable bosons or fermions. Here
again we prove formulae for the mixed moments of entries of single-particle marginals
(Theorems 3.2 and 3.4). We conclude with some observations that explain why the
formulae for bosons and fermions appear to be less analytically tractable than those
obtained for distinguishable particles.

In §4, we return to the case of two distinguishable particles and study the
asymptotic behavior of the marginals in two regimes: the regime where the dimension
of one Hilbert space goes to infinity while the dimension of the other remains fixed,
and the regime where the dimensions of both Hilbert spaces go to infinity while their
ratio remains fixed. We prove formulae for the leading-order contribution to each mixed
moment in both of these regimes (Theorems 4.2 and 4.5), and in the first regime we also
prove a law of large numbers for the limiting distribution of the finite-dimensional

marginal (Theorem 4.4).

2 Distinguishable Particles
2.1 The marginal problem for two distinguishable particles

We first study the mixed moments of the single-particle marginals of a quantum
mechanical system consisting of two distinguishable particles. Concretely, we address

the following problem.
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Let m,n > 2 be integers, which we take to represent the dimensions of the Hilbert
spaces for each of two particles. Fix A = (&;; Z?:nu € R™” where ij and kl stand for double
indices with i,k € {1,2,...,m}and j,l € {1,2,...,n}. Let U be a Haar-distributed unitary

matrix of size mn. We consider a random Hermitian matrix given by

H = (Hj ) = Udiag(W)U". (3)
Define the m x m Hermitian matrix 7, (H) = (7,(H);;) and n x n Hermitian matrix
772(H) = (ﬂz(H)j,l) bY
n m
m(H)p = D Hyyy  To(H)jp= > Hyy. (4)
j=1 i=1

Our aim is to provide a formula for the mixed moments
p q
E|[]m@i k- []7®),, (5)
a=1

p=1

foril,...,ip,kl,...,kpe{l,2,...,m} andjl,...,jq,ll,...,lqe{l,2,...,n}.

2.2 Notation for symmetric groups

Let d be a positive integer and let &; be the symmetric group on d elements. For
a permutation ¢ € &, and two sequences of d positive integers a = (a;,...,ay),
b= (,,...,by), we define

d .
1 ifa =b, forallr=1,2,...,d,
5,@b) =[] 8@, b,) = om 6)
r=1 0 otherwise.
Here 4(i, j) stands for Kronecker’s delta. (We avoid the use of the standard notation (Sij, as

it would force us to write unsightly symbols like 8%2 ey .) In some cases, it is convenient

to apply the cycle decomposition of o. For a cycle ¢ = (a; oy ... «3) of o, we define

8c(a,b) = 8(@y,, by, )8(agy, byy) - 8(@y, by, 8@y, by,) (7)

o’ Oh—1

if h > 2,0rd.(ab) =4(a,,, b, ) if h =1. Then it is immediate that

o1’

5,(a,b) =]]s:ab), (8)

where the product runs over all cycles cin o.
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For example, if d = 10 and

(12345678910
o =

): (13)(27649)(5)(810), 9)
3 7195 46 10 2 8

we see that
8,(@b) =68(as, b))é(a;, by)é(a,, by)é(ag, by)é(as, bs)
- 8(ay, bg)d(ag, b7)8(ayy, bg)d(ay, bg)d(ag, byo)
= {8(az,b))8(a;, by)} - {8(a;,by)é(ag, by)8(a,, bg)d(ag, by)d(ay, by)}
-{8(as, bs)} - {8(ayg, bg)d(ag, byg)}
=381 3@b)-837649(@b) 5@b) dgig@b).

Let p, g be nonnegative integers with p + g > 1. We define projections

pr; 6, , > 6,

pry:6,,, > G,

as follows. For each 0 € & we let pr;(0) € &, be the permutation on p elements

+qr
obtained by decomposing op fnto a product of cycles and erasing letters p + 1,p +
2,...,p + q from each cycle. For example, for p = g = 5 and o given in (9), we obtain
(13)(27 64 9)(5)(8.10),

Similarly, we let pry(o) € &, be the permutation on g elements obtained by
decomposing o into a product of cycles, erasing the letters 1,2, ..., p, and replacing the
remaining letters p+1,p+2,...,p+qby 1,2,...,q, respectively. For example, for again
the same p, g and o, the elimination of letters 1,2, 3,4, 5 provides (X2 (Z7649) ()8 10),
When we replace letters 6,7,8,9,10 by 1,2,3,4,5, respectively, we obtain pry(c) =
(214)(35) € S,

Next we define quantities «; () and «,(o) for o € Spiq in the following way.

* k,(0) is the number of cycles ¢ in ¢ satisfying cN {1,2,...,p} = @, the latter
of which means that the orbit of the cycle c is included in the set {p + 1,p +
2,...,p+q}

* «y(0) is the number of cycles c in o satisfyingcN{p+1,p+2,...,p+q} = 9.

For example,let p =q=>5,0 = (1 3)(2 7 6)(4)(5 9)(8 10). Then:

e Two cycles (1 3) and (4) contribute to «,(0), because the orbits {1, 3} and {4}
of o are included in {1, 2, 3,4, 5}.
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* One cycle (8 10) contributes to «,(c), because the orbit {8,10} is included in
(6,7,8,9,10}.

We therefore have «,(0) = 2,k (c) = 1.

For any permutation ¢ € &;, we write « (o), with no subscript, for the total

number of cycles in the cycle decomposition of o.

2.3 Background on Weingarten calculus

Our main tool in what follows will be Weingarten calculus, a set of techniques for
computing integrals of polynomial functions with respect to invariant measures on
compact groups and symmetric spaces. Weingarten calculus was introduced in [7] and
has since been developed by numerous authors. Here we merely recall some basic
definitions and facts from Weingarten calculus, and refer the reader to [8] for a more
comprehensive introduction and survey of the literature.

Recall that for d a positive integer, the irreducible representations of &, are
indexed by partitions A I d, that is, weakly decreasing sequences of nonnegative integers
(Ay,...,Ap) suchthat A; +---+1; = d (See e.g. [18] for background on the representation
theory of symmetric groups). For each such partition A = (A,...,4;), we write £(A) =l for
the length of A and x* for the corresponding irreducible character of . For a positive
integer N, set

() A

cany=T]T]w+j-0d.

i=1j=1

The unitary Weingarten function Wgy, ; : &5 — C is defined by

1 x*ddg)x* (o)
Wey,q(0) = — ;d Can o €6y, (10)
CL(IV)#0

where id; € &, is the identity permutation. Where the value of d can be understood
from context, we will usually suppress the explicit dependence on d in the notation and
simply write Wgy for Wgy ;.

Some explicit values for Wgy, ; are as follows:

1
Wgy,1((1) = N (11)
1
Wgy 2 ((1)(2) = NiDW -1’ (12)
-1
Wgy 2 ((12)) = . (13)

NN+ 1)V —1)
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The asymptotics of Wgy ; as N grows large are well understood. Notably, the

following corollary of [7, Theorem 2.2] describes the leading-order behavior.

Lemma 2.1. For a fixed positive integer d and o € &5, as N — oo,

N 4. 1+0W1Y)) ife=idy,,
Wgy q(0) = d (14)
onN—4-1) otherwise.

Weingarten calculus gives a method for writing the expectations of polynomial
functions of the entries of a Haar-distributed random unitary matrix in terms of values
of Wgy,. In particular, below we will make extensive use of the following result, which is

a special case of [9, Theorem 3.1].

Lemma 2.2. Let N, d be positive integers. Fix a real Hermitian matrix A of size N.Let U
be a Haar-distributed matrix from the unitary group U(V). For a random matrix W given
by W = (Wy)¥,_, = UAU" and for two sequences

i=Gy,...,ig), k=(k,....ky) €{1,2,...,N}*¢,
we have

E[Wil,kl Wiz,kz T Widlkd] = Z 80- (i, k) WgN(O‘ilf) TI‘T (A).

U,tEGd

Here

* §,(i,k) is defined in (6);
e Wpgy is the unitary Weingarten function defined in (10);

e Ifthecycletypeoft e &, is (g, iy, ...), seL
Tr, (4) = [ | Tra"). (15)
j>1
2.4 The moment formula for two distinguishable particles

We are now ready to state our first main result. Let A, H, 7, (H), 7, (H) be as in §2.1.

Theorem 2.3. Let p, g be nonnegative integers. For sequences of indices
i= (il,iz,...,ip), k: (kl,kz,...,kp) S {1,2,...,m}><p,

j= (jlljZl"‘!jq)I 1= (llll21"'llq) € {llzr‘--/n}xqr
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we have the formula

p q
El [T m® ik [T 2@ty = D 8pr,0) 1K) Spry (@) G, D n2 @ m @ We (071 0) Tre (),
a=1 p=1 0,71€6p1q

(16)
with the following notation:
¢ Jis defined in (6);
* DIy, Pry, ki, ky are defined in §2.2;
e Wg,,, and Tr, are defined in §2.3, but Tr_ (%) := Tr_(diag(})).
2.5 Examples
If we set ¢ = 0 or p = 0 in Theorem 2.3, then we find, respectively:
- p _
El[[m@Ein, |= D 8,000 P Wg,, (0 " 1) Tr, (1), (17)
La=1 _ 0,1€6p
- _
El[]m@E | = D, 8,6 Dm ) We,, (6~ 1) Tr, (), (18)
| B=1 _ 0,1€64q

where « (o) indicates the total number of cycles in o, as defined in §2.2. In particular,

using (11),
E[r,(H); ] = 8@, km ' Tr), E [nz(H)J-yl] = 5G,)n" 1 Tr(v), (19)

where Tr(A) = Ayp +Agg + - + Ay
Next, if we set p = g = 1 in Theorem 2.3, then

E [y (D), o 0y (D | = 86,0 5, ) (mm) ™ ()2 (20)
To see this, note that for each o € &,, we have pr,(c) = pry(c) = (1) € &, so that
SPIH (U) (l, k)(sprz(a,) (j, l) == 8(1, k)(s (j, l)
Theorem 2.3 implies

E |7y (H); o (H) 1 | = 8G, 008G, D] nmWeg,,, (1)(2)) Tty 2) (M) + W (1 2)) Tr (g2 (2)
J

o=1=(1)(2) o=(12), 7=(1)(2)

R W (1 2) Tr(p 2 (1) + Wi (1D2) Trg (1) |-

o=(1)(2), t=(1 2) o=1=(1 2)
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Using (12) and (13), we have
1
mnWg,,,(1)(2)) + Wg,,,((1 2)) = o
mnWg,,, (1 2)) + Wgy,,((1)(2)) = 0.

Thus, we have proved (20).

2.6 Proof of Theorem 2.3
We start by introducing some notation to simplify handling the sequences of indices
i= (05,0, k=(ky, ky, ... kp) € {1,2,..., my*P,
i=Gudar i 1=, L) € {1,2,...,n}"4.

We write i U s for the sequence (i;,i,,...,i,,51,59, ... ,sq) of length p + g, and we define

i

pl

kUs,tUj, and t Ul analogously. We also define sequences of double indices,
iUusltuj =ty ..., p p,Sljl,...,quq),

kusjtul = (kltl,...,kptp,slll,...,sqlq).

From (4) we have

p q
H”l(H)ia,ka'H”Z(H)jﬂrlﬂ - Z Z H lata Kata ” H spipsplp | (21)
a=1

B=1 < tp=181,...,8¢q=1

Note that in each term in the sum above, the row index sequence in the quantity in
brackets
p

H lota Kate H spip.splp

a=1

is iU s|t Uj, while the column index sequence is k U s|t Ul. Applying Lemma 2.2 to each
term, the right-hand side of (21) then becomes

> > > 5,iUs kUs) 8, (tUj,tUDWg,,, (0~ 1) Tr, (3.

t1,..., tp=151,...,.5q=1 O',T€6p+q

Changing the order of sums, the above expression is equal to

m n
> > 8,(ius,kuUs) > 8, U, tUl) | x Wg,, (07 1) Tr,(3).
0,7€8p1q | S1,--/Sq= t1,...tp=1

Therefore, Theorem 2.3 follows from the lemma below.
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Lemma 2.4. Leti,j, k,1be asin Theorem 2.3. For each o € 6p+q, we have
m
> 8,iUskUS) =6, 1, Km ), (22)
S1,--Sqg=1
n
> s,tujtul = Spry (o) G, D2, (23)

Proof. By symmetry, it is enough to show the first equation (22). From (8), we obtain the

decomposition
m
Z 8,(ius,kUs) = H Z s, (ius,kus)|, (24)
S1-/Sq=1 ceC(o) \(sp):p+Bec

where C(0) is the set of all cycles in o, and the sum on the right-hand side is over all sg
such that the letter p + 8 appears in c and 8 € {1,2,...,q}. For example, forp = g =5

and o given in (9), we have

m m m
S1,..,55=1 52,51,54=1 s3,55=1

(Here s,,s;,s, appear for the cyclec = (27 6 4 9) becausep+2,p+1,p+4withp=5
appear in c.)

Now we compute

Z s,4Us, kUs)

(sp):p+pBec

for each cycle c in 0. There are three possible cases.

(i) Suppose that ¢ c {1,2,...,p}. Then there is no B8 such that p + 8 € ¢c. We

therefore have

> 8.(iUs,kUs)=6,1Us kUs)=5,3iKk).
(sp):p+Bec

(ii) Supposethatc C{p+1,p+2,...,p+ q} and write

c=@P+p P+By ... P+B.
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If h=1 (i.e,, p + B; is a fixed point of o), then

m m
> 8.(Us,kUs)= D 8,,4,(iUskUSs) = > 8(sy,55) =m.
(sg):p+pBec sp; =1 sg =1

If h > 1, then

m

Z 5,iUs kUs) = Z 8,4Us, kUs)

(sp):p+Bec Sy By 1Sy =1

m

= Z 5(sﬁ2'sﬂ1)’"S(Sﬁh’sﬁhq)s(sﬁl’sﬁh) =m.

Spy ,5‘52...,Sﬂh=l

(iii) Supposethatcn{l,2,...,p} #¥andalsocn{p+1,p+2,...,p+q} # ¥. Then

> 8(UskUSs) =6, 0k), (25)
(sp):pt+Bec

where we extend the definition of pr; : 6,,,, > &, tocycleson{l,2,...,p+q}

p
in the natural way. For any cycle c in ¢, the image pr, (¢) is a cycle of pr; (o).
An illustrative example serves to show why (25) must hold in this case. Let
p=gq=5andc=(27649)=(2 p+2 p+1 4 p+4). Then, by the definition

of §,(1Us, kUs), we can see that

m

> sUskUS) = D 8(sy,ky) 8(sy,55) 8(ig, 1) (54, ky) 80y, S,).
(sp):p+Bec 52,51,54=1

Only one term with k, = s, = s; =i, and k, = s, = i, survives. This survivor

corresponds to the elimination

2 4 paa )
( —~ p\.\/—*’j pé/ —~ ——
i2/ks sy sq ig/kg Sa

for c. Hence, the above summation equals §(iy, ky)3 (15, ky) = (5 41, k).

Returning to (24) and using the formulae for the three cases above, we have

H Z s,(iUs,kUs) | = H 8,1, k) x H 8pr, (o) (1 K) X H m.
)

ceC(o) \(sp):p+Bec c: case (i) c: case (iii) c: case (ii
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The number of cycles in case (ii) is «; (¢) by definition. It is easy to check that

prio)= [] ¢ [] pn.

c: case (i) c: case (iii)

Hence, we have completed the proof of (22). |

2.7 More than two distinguishable particles

An immediate generalization of Theorem 2.3 gives a formula for the mixed moments of
entries of single-particle marginals for a system of k distinguishable particles. Here we
choose integers ny,...,n; > 2 representing the dimensions of the Hilbert spaces for each

of the individual particles, and we set N = ]_[J’-c:1 n;. Identifying
k
cV =), (26)
j=1

we label the coordinates of N-dimensional vectors by k-component multi-indices
(iy,...,1;), where each ij runs from 1 to n; and the multi-indices are ordered

lexicographically. Fix 1 = (A;, ;)i ;" | € R, and let U be a Haar-distributed N-by-N

unitary matrix. We consider a random Hermitian matrix given by

H = (H,

: T
llu-ik:jl---jk) = Udlag(k)U . (27)

Forl=1,...,k, define the n; x n; Hermitian matrix m;(H) = (my(H)y, ) by

ns
m(H)y, 5, = Z ZHil~--il~-ik,i1---jl-~ik’ (28)

1<s<kis=1
s#1L
that is, m;(H) is obtained by taking the partial trace of H over all legs of the tensor
product (26) except C™. Fix nonnegative integers p,,...,py. Foro € 6p1+-~+pk' we make

the following definitions, which are analogous to those in §2.2:

* k(o) is the number of cycles ¢ in ¢ satisfying

-1

!
cﬂ[1+2pj, Zp]] = .
j=1

j=1
* pri(o) € Gy is the permutation on p; elements obtained by decomposing ¢ as

a product of cycles, erasing all elements except for i+Z§;11 pjfori=1,....p,

and then replacing each of the remaining elements i + 25;11 p; with i.
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An identical argument to the proof of Theorem 2.3 yields the following formula

for the mixed moment

k D
E|TTTT=m@0 0 (29)
=1 a=1
(1 (D (1 (1
fOI‘lg),...,ll(,l),]g),...,]l(,l) ef{l,2,...,n}:
Theorem 2.5. Fix k > 2 and let p;,...,p; be nonnegative integers. Forl = 1,...,k, fix

sequences of indices
. .(l (1 . .(l (1
ib = (L(l),...,lél)), jO = (](1),...,]15,1)) €{1,2,...,n}*P

We have the formula

k pi k
E H H ”Z(H)i&l’,jé’) = Z WgN(U_IT) Tr, (1) H 3Prl(o)(i(l)’j(l)) n/;l(U)' (30)
I=1a=1 0,7€8p . tpy =1

3 Bosons and Fermions
3.1 Bosons

Indistinguishable bosons are particles whose joint state is invariant when any two
of the particles are exchanged. Accordingly, we consider a “state” of a system of k
indistinguishable bosons to be a Hermitian operator on Sym*C", where C" represents
the Hilbert space associated with an individual boson. By a standard construction,
described in more detail in [10, §2.3], we model Sym*C™ as the space of homogeneous
polynomials of degree k in n variables (xy,...,x,). We make this space into a Hilbert

space by choosing as an orthonormal basis the normalized monomials

n
v —LllXai
* \/oz!.ll’
i=

as « runs over n-component multi-indices with |¢| = > ;«; = k, and the multi-index
factorial is defined by a! = []; o;!. As there are N = (”Hg*l) such multi-indices, this allows
us to identify Sym*C" = CV. The symmetric group B, acts on the tensor product space
(CM®k =~ cnt by permuting the legs of the tensor product, and there is an isometric
embedding S : Sym*C" — (C")®* given by

1
S:v,— m Z U(e?al Q- ®e%dn)’ (31)

foeBy
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wheree, ..., e, are the standard basis vectors of C", and we use the convention ei®eJ®0 =

®an

e;. To verify that (31) is an isometry, note that the stabilizer of ef’“l ® - Qex* in

S, has order «!. Therefore, the sum in (31) includes k! /a! distinct pairwise orthogonal

vectors of length «!, so that its magnitude is equal to /(k! /a!)a!?2 = vk! «!. Thus, Sv,
is indeed a unit vector in (C™)®¥. It is obvious that if « # B, then Sv, and Svy are
orthogonal.

Using (31), we can write down the matrix elements of S with respect to the basis
{v,} of Sym*C" and the standard basis
i=Gy, i) efl,... npk

epi=6;, ® - ®e

11 ik’
of (C")®k Fori e {1,..., n}Xk, write tab(i) for the n-component multi-index such that,
foreachj € {1,...,n}, the jth component tab(i); is equal to the multiplicity with which j

occurs in i. Then the entries of S, regarded as an nk—by—N matrix, are

al
Si = \/; s(tab(d), @), (32)

where §(tab(i),e) = 1 if tab(i) = « and O otherwise. This matrix has an N-by-n*
pseudoinverse (C")®F — SymFC”, which is obtained by first projecting onto the span
of the vectors Sv,, and then mapping Sv,, — v,. In fact, since S is an isometry with real
entries, this pseudoinverse is just the transpose ST; it is easily verified from (31) and (32)
that STSv, = v,,.

The map H — SHST embeds the space of N-by-N Hermitian matrices into the
space of n¥-by-n¥ Hermitian matrices. Our main objects of study in this section are the
single-particle marginals of the state H, which are the n-by-n matrices 7;(SHST),1 < i <
n, where 7; is the ith marginal of a Hermitian operator on (C™)®* as previously defined
in (28). However, since span{Sv,} = Symk(C" is invariant under the action of &;, we have
7;(SHST) = nj(SHST) for all 1 < i,j < k. Without loss of generality, we therefore restrict
our attention to 7 (H) = m; (SHST).

We pose the following problem. Let A = (i,) 4 € R", and let U be a Haar-
distributed random N-by-N unitary matrix. Set H = Udiag(A\)U". Fix a nonnegative
integer p and two sequences of indices (il,...,ip), (jl,...,jp) e {1,...,n}*P. We want

to derive a formula for the mixed moment

14

k=1
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In the next lemma, we write the entries of 7 (H) in terms of the entries of H, which
will enable us to solve this problem using Weingarten calculus. First we introduce some
further notation. Given two n-component multi-indices «, 8, we define their sum « + 8
componentwise, as though « and g were vectors in R": (« + B); = a; + B;. We write e;
for the multi-index with a 1 in the jth position and all other entries equal to 0. Thus,

(a +eJ)] = OlJ+ 1, and (a + ej)i = fori ;é_]
Lemma 3.1.

n(H)i,j = ()/l + 1)()/] + 1)H€i+)/,€j+y’ (33)

where the sum runs over n-component multi-indices y satisfying |y| =k — 1.

Proof. As a first step, we compute the entries of SHST. Fori,j € {1, ..., n}*¥, (32) gives
T T J/tab()! tab()!
(SHS™ )5 = Z Si Z H, sSg; = T Haba)tabi)-
la|=k 1Bl1=k

Then from the definition (28), we have

n
m(H);;j=m,(SHST);; = > (SHST)
l1,...,lk,1:1

< \/tab(i,ll,...,lk_l)!tab(j,ll,...,lk_l)!H
- Z kI tab(ily,...lx_1),tab(ly ... lg_1)"

LTI T

l] ,,,,, lk,lzl

Clearly, we can write tab(i,l;,...,l_;) = ¢; +y, tab(j,l;,..., [_;) = e+vy for a unique
multi-index y with |y| = k — 1. Namely, y = tab({,,...,l;_;). Each such y appears in the
sum above with multiplicity equal to the number of distinct permutations of any given
(k— 1)-tuple (y,...,l;_;) with tab(l;,...,l;,_;) = y. The stabilizer of such a (k — 1)-tuple

in &;_; has order y!, so there are (k — 1)! /y! distinct permutations. Thus, we find

(k—1)! \/(ei + )t (e +y)!

n(H);; = Z )1 kil Hei+y,ej+y'
lyl=k—1
from which (33) follows by the observation that (e; + y)!= y! (y; + 1). |

Combining Lemmas 2.2 and 3.1, we have shown the desired formula:
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Theorem 3.2. The mixed moments of the entries of a single-particle marginal for a

system of k indistinguishable bosons are given by

p
E|:Hn(H)iSJS:|= > Wgy(o 'n) Tr, WAM*GE,)) (34)
s=1

0,1€6p

with

co 1 E
AEAH =5 D [1/02 + 062 +1)

Y,y @ s=1

.....

x 8, (e, +v ™, ey +v P (e, +v ™, e +v D), (35)

where each y® runs over n-component multi-indices such that the sum of their compo-

nents is k — 1.

3.1.1 Bosons: A simple example

Consider the case p = 1. Then, for the unique permutation id; € &,,

1
MfaD =7 2 Jrt Do+ Do, ety e+ ).

lyl=k—1

It is easy to see that this equals

. . 8(ilj)
AlgiaD == > i+D.
Y1+ +yn=k—1

By symmetry, we have

> wt+b= D> n+D

Vittyn=k-1 Vittyn=k-1

k—1
=> (a+1) > 1
a=0

vet-tym=k—1-a

k—1
=Z(a+l)(n_1+(k_1_a)_l).
= k—1—-a
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One can check (e.g., using Mathematica) that this equals ("Z’f;l) Therefore, we have
obtained
n'k.._ ..]- n+k_].
Aidl (LIJ) = 3@/])%( k—1 (36)
forp=1.
From (34), we now have
. Koo 1 . n+k—-1
E [JT(H)i,J'] = Wgy(id;) Triq, (M) Ai"dl @y = N Tr(2) S(W)E( k-1 )
With N = (”+,7§_1), it is immediate to see that
5@, j
E [n(H)ij] = ey 2D (37)
- n

exactly as one would expect.

3.2 Fermions

Indistinguishable fermions are particles whose joint state is anti-invariant (i.e., changes
sign) when any two of the particles are exchanged. Accordingly, we consider a “state” of
a system of k indistinguishable fermions to be a Hermitian operator on AKC”, where C”
represents the Hilbert space associated with an individual fermion. As explained in [10,
§2.4], we assume that 1 < k < n — 1, as otherwise the quantum marginal problem for

fermions is trivial. Define
Ae={@y,....ap €(1,...,n)* | a; <... < qy}.

We make AKC™ into a Hilbert space by choosing as an orthonormal basis the (Z)

k-vectors

€ra=€q N Aeq, a=(a;, ...,ap) € A

Then we have an isometric embedding A : AKC™ < (C™)®k defined by

1
Ae,, = —— Z sgn(o)o(e,, ® - ®ey),
JEI

foeBy
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where G, acts on (C™)®k by permuting the legs of the tensor product. Fori € {1,...,n}*k,
set sgn(i) = 0 if not all entries of i are distinct; otherwise, set sgn(i) = sgn(o), where

o € 6, is the unique permutation such that ¢ (i); < ... < o(i);. Then the matrix entries

of A with respect to the basis {e,,}ac 4, Of AKC™ and the basis {egiticq1, . ny<k Of (Cm®k
are
sgnd) .
Aja= N d(sr(i),a),

where the map sr sorts the entries of a vector in nondecreasing order, that is,

{sr(@),,... st} ={iy, .-, iz} sr(i); <...<sr(@);.

The transpose AT is a pseudoinverse such that ATAe,, = e,,, and the map H — AHAT
embeds the space of (})-by-(}) Hermitian matrices into the space of n-by-n* Hermitian
matrices. For an (})-by-(}) Hermitian matrix H, define = (H) = =, (AHAT).

We can now state the quantum marginal problem for k indistinguishable
fermions. Let & = (ha)acq, € R(®), and let U be a Haar-distributed random (})-by-(F)
unitary matrix. Set H = Udiag(1)U". Fix a nonnegative integer p and two sequences of
indices (il,...,ip), (il,...,jp) € {1,...,n}*P. We want to derive a formula for the mixed

moment

p

k=1
To solve this problem using Weingarten calculus, we will need the following

expression for the entries of 7 (H) in terms of the entries of H.

Lemma 3.3.
1 . .
T )i =1 > sgn(,Dsgnl, D Heg s (38)
leAk,1
{1} 20J
where sgn(i,1) means sgn(i,l;,...,l;_;) and sr(i,1) means sr(i,[;,..., l;_;).

Proof. We first compute

T T sgn(i) sgn(j)
(AHA )i'j = ZA Ai,a bZA Ha,bAb,j = —kl Hsr(i),sr(]')'
acAg €A

GZ0Z JoquianoN Gz uo 3sonB AQ G0¥6/ 1 L/90E6 L/2Z/SZ0Z/3I0Ne/uiwlwod dno-olwspese)/:sdjy Wwolj papeojumoq



Moments of Random Quantum Marginals 19327
where we set H, ) o) = 0 if i or j has repeated entries. Then we have
n

T
nH )= Y, (AHAD) g ) =
yeidg_1=1 Ll 1=1

= sgn(i, 1) sgn(j,1)
Z kl sr(i,1),sr(j,1)

1 . .
- k! Z Hsr(i,l),sr(i'l) Z sgn(i, o (1)) sgn(j, o ).
T ledy, 0€Gg_
{h -1}

Observing that
sgn(i,o (1)) sgn(j,o (1)) = sgn(i,1) sgn(j,1) sgn(a)2 = sgn(i,1) sgn(j,1)
for all o € G;_,, we obtain (38). |

Similarly to the bosonic case, from Lemmas 2.2 and 3.3, we obtain the desired

formula:

Theorem 3.4. The mixed moments of the entries of a single-particle marginal for a

system of k indistinguishable fermions are given by

p
E|:Hn(H)is,js:|= > Wgy (o~ 11) Tr, (1) AP, )
s=1

0,1€6p

with

1 2 . .
A?:k(i,j):ﬁ Z Z H{Sgn(ls,1(5))Sgn(]S,l(S))}

l(l)eAk,l l(p)eAk,l s=1
D07 1P 3,5

x 8, ((sr(iy 1M, ..., 57 1P), (s7Gy 1D, . 576, 1)) (39)
This A-function may be decomposed into the cycles of o as in (8).

3.2.1 Fermions: A simple example

Again consider the case p = 1. Then, for the unique permutation id; € &,,

koo 1 . . . . 1 L. 1/mn-1
Ai”dl @) = % z sgn(i, l)sgn(],l)S(sr(z, 1),sr(],l)) = 5(1,])E Z 1= a(L,J)E(k B 1),
le Ar_, le Ax_q
10,5 131
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(Here we have identified the strictly increasing sequencel = (I; <1, < --- < [;_;) with

the set {l;,l,,...,l;_;}.) Therefore, just as in the bosonic case, we find

5(1 J)

E 7)) = Tr)

More generally, for the identity permutation id,, € &,,, we can see that

n,k.._]- ..n_lp_ . . lnp

3.3 Some further observations

Lemma 3.5. For the transposition (1 2) € &,, the fermionic A-function defined in (39)

is given by

C e s 1 (n—2 n—2
A?lykZ)((llllZ)r (]1!.]2)) = 8(11“]1)8(12,]2)@(]6 _ 2) + 8(11!J2)8(121J1)k2 (k )

G- ifiy =i, =j, =ja,
(Z:f) ifil :f275i2 =f1r
(Ziﬁ) ifi) =j; #iy =Jo

otherwise.

Proof. The definition of Ag'k(i,j) implies that

Ad 2)((11,12) (1.J2) = Z z Hsgn(zs,l(s))sgn(]s 19

1<”eAk 11Pedy =1
1Dy 51 19z,

x 8(sr(iy, 1), sr(jy, 1%)) x 8(sr(iy, 1%), sr(jy , 1V)).
Only the terms such that
sr(iy, 1) = sr(j,,1?) and sr(j;, 1Y) = sr(iy,1¥) @1)

contribute.
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(i) First, suppose that i; = j,. Then, by (41), 12 must coincide with 1V, and so

i, =j,. Hence, in this case,

1 (n—1 oo .
1,1 iq 1 7=z — ifi; =j,,
Anl'kZ ((Llllz)r (]1,_]2)) = — E 1= k2 (k 1) 1 1
he k2 1 n—-2 ifi .
1D el ﬁ(k—l) if iy, #J;.
1(1)551'1,]'1

(ii) Next, suppose that i; # j,. Then, by (41), the following equations all hold.

ipjp €1V, 1@ =1V U i)\ (o) =1V U i)\ (i,

This is only valid when i, = j; and i, = j,. Hence, since i; # i,(=j,), we have

1 1 (n—-2
n,k . . . . _ _
A(l 2)((11r12)r (.]1/.]2)) - kz Z 1= kz (k _ 2)
1MeA,
W54y, 1W i, ]

Lemma 3.5 indicates that Ag'k(i,j) is not of the form 8, (i, j) xX;"k. This fact, which
holds as well for the bosonic A-function defined in (35), poses an obstacle to further
simplifying the formulae in Theorems 3.2 and 3.4. We suspect that it is computationally

difficult to calculate the general moments in both cases.

4 Asymptotic Analysis

We now return to the setting of two distinguishable particles, introduced in §2.1. As an
application of Theorem 2.3, we study the asymptotics of the moments in two regimes:
the limit as m — oo with n fixed, and the limit as n — oo with m = [¢n] for ¢ > 0.

To pose questions about the asymptotics of the moments, we will need to
consider sequences of spectra PR (AEJI.C))ZTJ'.’:”U € R™" where m = m(k) and n = n(k) for
k=1,2,3,..., and we will generally need to impose some kind of convergence condition

on A® as k — oo. To this end, it is useful to introduce the empirical spectral measure

1 mn
PRG2) 8., 42
uh = — ,-jzl“l A0 (42)

where 8A(k) is a Dirac mass at )Lg.c) € R. We then can make the further assumption that
ij

wulr®] converges weakly to some compactly supported probability measure 1 on R,
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which will allow us to describe the asymptotic behavior of the quantum marginals in
terms of the moments of this limiting measure u. Recall that for p > 1, the pth moment

of a probability measure u on R is the quantity

M, (1) =/ xP du(x). (43)

—00

If (up)k>1 1s a sequence of probability measures supported in some bounded interval
[-K, K] C R and u is another probability measure supported in [-K, K], then u; converges
weakly to u if and only ifMp(,uk) — My (1) forallp=1,2,3,...as k —> oo.

Recall that for a permutation o € &, we write « (o) for the total number of cycles

in its cycle decomposition. Let (¢y, ..., C¢,(,)) be the cycle type of o. We define
k(o)

M, () = [ | Mg (). (44)
j=1

Our calculations below will make use of the following fact.

Lemma 4.1. Leto € &4. For A = (A;){i"; € R™", define the empirical spectral measure
1IA] as in (42). Then

Tr, (A) = (mn)* @M, (ulr]). (45)
Proof. Again write (cy, ..., ¢, () for the cycle type of o. By definition,

k(o)
Tr, (L) = H Tr(diag(1)%),
=1

so it suffices to show that Tr(diag(»)!) = mn - M, (ulIAD. Indeed, we find

ij=11 ij=11

mn 0o ] mn
. Cj
Tr(diag(A)%) = Z ki} = mn/ x4 d(% Z (Skij(X)),

as desired. [

4.1 Large m,fixed n

Here we take n fixed and consider the limit as m — oo. Recall that in the setting

of §2.1, H is a random Hermitian matrix given by H = (Hij) = Udiag(\)U', where
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A= (Al € R™" and U is a Haar-distributed unitary matrix of size mn. The marginals

of H are the m x m Hermitian matrix 7, (H) = (7;(H);;) and n x n Hermitian matrix
Ty (H) = (my(H)jp) defined by

n m
T (H)g = ZHij,kj' my(H)j = zHij,il'
j=1 i=1

For sequences of indices

i= (), dg,....0p) k= (ky, Ky, .., ky)  €{1,2,...1°P,

j= (jlljZl"’!jq)l 1= (l11l2r-~~/lq) € {1121~~'}er

we define
s@i, k) =max{k(o) | o € S, o) =k},

sG. D) =max {k(r) | T € &, 1() =1}.
Theorem 4.2. Let p, g be nonnegative integers. Fix n > 2 and take sequences of indices

i=(y,dg,....0p), k=(k;, Ky, ... k) €{1,2,...1°P,

J=Grdard 1=yl 1) €{1,2,..., "

Let m = max{ij,.. ky,...,k,} and choose a sequence (A™) =, Where A0 e R™,

.

r pI
Set H™ = U(m)diag(A\"™)U(m)", where U(m) is an mn x mn Haar unitary. Suppose that
the measures u[1"™] all have support contained in some bounded interval [-K, K] C R,
satisfy a uniform bound |Mk(u[k(m)])| < C for all k and m, and converge weakly to a

probability measure u. Then as m — oo,

P q
E H 771 (H(m))ia,ka ) H WZ(H(m))jﬂ,lﬁ
a=1 B=1

— Z Z 8, (1,%) 8, G, 1) M, ()M, (1) n2s4K)+sGD-p=q s k)+2sG)—p—q

0eBp 1eGy
k(0)=s{ k) k(0)=sGD

(1 +o0(1)). (46)

GZ0Z JoquianoN Gz uo 3sonB AQ G0¥6/ 1 L/90E6 L/2Z/SZ0Z/3I0Ne/uiwlwod dno-olwspese)/:sdjy Wwolj papeojumoq



19332 S. Matsumoto and C. McSwiggen

Proof. We use Theorem 2.3:

P q
E H ™ (H(m))ia,ku ) H WZ(H(m))jﬁ,lﬁ
a=1 B=1

= D Spr @K 8 ()G DM Wg, (07 ) Tr, ().

0,1€6Gp1q

We pick up the leading term in the limit m — oco. From Lemma 2.1, we have

B (mn)"P~9(1+0m™")) ifo=r,
Wg,..(o Iy =
O(m~P—a-1) otherwise.

Observe that for o such that pr,(o)(j) =1, we have

) _ msdb if o € &, x &, and «(pr,(0)) is maximal,

o(msD-1y  otherwise,

where we regard &, x &, as a subgroup of &, in the usual way. For o = (0y,0,) €

6, x 64, we have «;(0) = k(0y), ky(0) = k(0y), and Tr,(2"™) = Tr, (A™) Tr,, A ™).

Therefore, we see that, as m — oo,

p q
E|[Tm@& ™)k, - [T 7@,
a=1 B=1
=> > 5,053 nCImO )Pl (0.™) - (14 0(m™))

06y 1€6y
(t)=s(.D)

= Z Z 8, i, k) 810'1) nk©@)—-@+9 Tr, ()»(m)) Tr, ()»(m)) mSGrl)*(P+Q),(1+O(m*1))
0eGp €6y
K(@=sG.D)

= > D 8,0K8G)n P () @O, (ur ™)) (mn) IO M, (u ™))

0eGp 1€6y
x(t)=s(.D)

. msSib-@+9) | (1 + o(m—l)),
(47)
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where in the last equality we have used Lemma 4.1. Again discarding lower-order terms
in m, we find that the outer sum can be restricted only to o € S, with « (o) = s(@d, k),

giving

p q
E|[Tm@E ™), k- []m@E ™),
a=1 p=1

= Z Z 8,4,k 8. .G, hHM, (M[)L(m)]) M, (M[)L(m)]) n2s@K)+sG)—p+q)

0eGp 1€Gq
k(0)=s(1,k) k(r)=s(G,1)

. ms(i,l{)+25(]',1)—(p+q) . (1 + O(m_l)).

The desired result then follows from the assumption that x[1"] converges weakly to s,
so that as m — oo, My (u[A™]) — M () for all k > 1. [ |

Example 4.1. If p = 0, the group &, is trivial, and (46) gives

q
E an(H(m))jﬂ'lﬁ =| > 5GDM(w nsUD=am2sGh=a. (1 4 o(1)). (48)
B=1 1eGyq
k(1)=s@,1)

Similarly, for g = 0, we have

p
E[Hmmmna,@}: 3 6, GRM, G [ a0 P P (14 o1). 49
eSS
K(G):s(li),k)

a=1

Corollary 4.3. The fastest possible asymptotic growth of the mixed moment in Theorem
4.2, with p and q fixed, occurs when i = k and j = 1. In this case, as m — oo, we

have

p q
BN Tm@ ™, - [ 7@ ™)y | =M@ inPm - (1+01).  (50)
a=1 B=1

Proof. When i =k and j =1, we have s(i,k) = p and s(j,1) = g, the largest values these
quantities can take. In this case the sums in (46) include only the term with o = id, and
T = idq, with M, (u) = M; (w)P and M, (n) = M, (n)?, so that (46) simplifies to (50). |

The above results imply the following concentration theorem, analogous to a law

of large numbers for the scaled marginal 7,(m~1H™).
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Theorem 4.4. In the setting of Theorem 4.2, the random matrix 7,(m~!H) converges

in probability to the deterministic value M, (u)I,,, where I, is the n x n identity matrix.

Proof. From (48) and Corollary 4.3, forj = (j;.ja, . - - ,jq) €{1,2,...,n}*9, we find

q
E an(m—lﬂm))jm =M, ()% + o(1)
B=1

as m — oo, where we have used the linearity of both 7, and E. All other mixed moments

of entries of w,(m~H™) are o(1). These statements imply the limits
Elry(m™ H™); )1 — M, (1) 8G, 1),
Var[nz(m_lH(m))j’l] -0

forj,l=1,...,n. The theorem then follows from Chebyshev’s inequality. |

Remark 4.1. The assumptions of Theorem 4.2 on convergence of moments of the
empirical measures are natural from the point of view of random matrix theory. However,
density matrices of physical quantum mechanical systems are constrained to be positive
semidefinite and have trace 1. Accordingly, in physical applications, it is more realistic

instead to make the much stronger assumptions
Tr(diag(x™)) = 1,
Tr(diag(A™)*) — T, >0asm — oo, (51)

with a uniform bound | Tr(diag(A™)*)| < C for all m and k. It is easy to see that
these assumptions imply that the empirical measures u[A"™] converge in distribution
to a Dirac mass at 0. However, the results above are easily adjusted to this setting. In

particular, in place of (46), we find

p q
E|[Tm@E ™), - []7@E™),,,
a=1 p=1

= D> > 8,G0KsGYr P, T, | mUDP (14 0(1)), (52)
0eGp €6y
K(r)=s(,D)

where for o € &, with cycle type (cy, ..., C,(), we define T, = H;fl) T,,- The asymptotic

formula (52) follows directly from the third line of (47). Note that here we cannot restrict

the sum over S, to include only o with « (o) = s@, k).
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Additionally, in this setting, all moments of the entries of the marginals are
O(1) as m — oo. For fixed p, the slowest-decaying moments are those for which j =1,

irrespective of whether i = k. In place of (50), we find
p q
E|[[mE ™y x,  [17@™)5 =] 2 640 @P AT, | m™P. (1+0(1)), (53)
a=1 B=1 O'EGP
which implies that in this case the marginal m,(H™) itself, rather than its rescaling

m,(m~1H™), converges in probability to the deterministic value n'I,,.

4.2 Large mandn

Here we study the limit as m and n both grow large with their ratio fixed. That is, we

send n — oo with m = [¢n] for ¢ > 0.

Theorem 4.5. Let p,q be nonnegative integers and fix some ¢ > 0. Take sequences of

indices

i= (i, ip .. i) k= (ky Ky k) €{1,2,...)7P,

J=Grdar- o 1=yl 1) € (1,2,

Setm =m(n) = [cn] forn =1,2,..., and take n sufficiently large that

gl g <nand iy ip k.. K, < M),
Fix a sequence (A™),_, where 1" € R™" Set H™ = U(n)diag(A\™)U(n)", where U(n) is
an mn x mn Haar unitary. Suppose that the measures u[A] all have support contained
in some bounded interval [-K, K] C R, satisfy a uniform bound |[M; (1[1™])| < C for all k

and n, and converge weakly to a probability measure u. Then as n — oo,

p q
E H T (H(n))ia,ka : H ”Z(H(n))fﬁrlﬂ
a=1 p=1

= > > 5,G0%8.G.DM,WM, () | HRT2Eh-Pa
0eGp €6y
k(0)=s(i,k) k(r)=s({,1)

. n3(3(i,k)+5(i,1))—2(p+q) . (1 + 0(1))' (54)
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Proof. The proof is similar to Theorem 4.2. We again use Theorem 2.3, along with the

fact that in this limiting regime, by Lemma 2.1,

B (cn®>)P=9(1+0n 1)) ifo=r1,
Wg,, (0 11) =
O(n—2P+a+h) otherwise,

to obtain

p q
E|[]m@E™)y, i, - [ 7@,
a=1 p=1

Z Spr, o k)(sprz(a)(].rl)nkz(a)(cn)l(1 @) (cn*) P4 Tr, (™) - (1 + O(nil))
056p+q (55)

Z Sprl (0)(1, k)Sprz(o)(].' ) k@) +ri1(o)—p—q nZK(0)+K2(0)+K1(6)—2(P+CZ)MU (M[)\(n)])

O’EGp+q

(14+0m™),

where in the last equality we have used Lemma 4.1. The leading-order contribution

comes fromo € & such that «; (0) +«,(0) is maximized among o satisfying pr; (¢)(@i) =

p+a
k, pry(o)G) = 1. This can occur only when ¢ = (pr;(0),pry(o)) € S, x G, with
k(pry(0)) = s, k), k(pry(o)) = 5@, D). Extracting only such terms from the sum and using
the convergence M (u[A"™]) — M, (u) for all k > 1 as n — oo, we obtain the desired

result. u

Corollary 4.6. The fastest possible asymptotic growth of the mixed moment in Theorem

4.5, with p and q fixed, occurs when i = k and j = 1. In this case, as n — oo, we have

p q
B [Tm @™y, [T w5 | =MP ctn? e (1 +ow).  66)
a=1 =1

Proof. For any i,j,k,1, we have s(i, k) < p and s(j,1) < g. These bounds are saturated
only when i = k and j =1, in which case the only leading-order term in (54) is the term
with o = idp € Gp and T = idq € Gq. [ |
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Remark 4.2. In this regime as well, we can make the alternative, stronger convergence

assumptions, analogous to (51):
Tr(diag(x™)) =1,
Tr(diag(»™)*) - T, > 0 as n — oo, (57)

with a uniform bound |’I‘r(diag(k("))k)| < C for all n and k. Again, these assumptions
imply that the empirical measures u[1(™] converge in distribution to a Dirac mass at 0,

but the results above can be rescaled to apply in this setting. In place of (54), we find

P q
E H T (H™), b, H ”Z(H(n))fﬁ,lﬂ
a=1 p=1

_ Z Z 5, (1,%) 8, (G, 1) CSG'D_p_qTG T, nSER+sGD-2(p+q) | (1 + 0(1)), (58)
0eGp €6y
k(0)=s(i,k) k(r)=s(G,1)

as can be obtained directly from (55), while in place of (56), we find

14 q
E H T H™), H nz(H("))J-M-ﬁ =cPn P9 (1+0(1)). (59)
a=1 B=1
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