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The randomized quantum marginal problem asks about the joint distribution of the

partial traces (“marginals”) of a uniform random Hermitian operator with fixed spectrum

acting on a space of tensors. We introduce a new approach to this problem based

on studying the mixed moments of the entries of the marginals. For randomized

quantum marginal problems that describe systems of distinguishable particles, bosons,

or fermions, we prove formulae for these mixed moments, which determine the joint

distribution of the marginals completely. Our main tool is Weingarten calculus, which

provides a method for computing integrals of polynomial functions with respect to Haar

measure on the unitary group. As an application, in the case of two distinguishable

particles, we prove some results on the asymptotic behavior of the marginals as the

dimension of one or both Hilbert spaces goes to infinity.

1 Introduction

In classical mechanics, a system is just the sum of its parts. For a system comprised

of two classical particles, if one knows the state (i.e., position and momentum) of

each individual particle, then one knows everything about the system. In quantum

mechanics, this is not the case. Due to the phenomenon of entanglement, the state of

a quantum mechanical system contains more information than the combined states of

its subsystems do.
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Moments of Random Quantum Marginals 19307

Mathematically, we can express this fact in terms of operators on Hilbert spaces.

The formalism of quantum mechanics associates, to a given physical system S, a Hilbert

space H(S). (In this paper, we will deal only with finite-dimensional Hilbert spaces,

although the problems we study can be posed in greater generality.) The tensor product

postulate of quantum mechanics states that if S is a composite system formed from

disjoint subsystems S1 and S2, then H(S) ∼= H(S1) ⊗ H(S2).

States of the system S can be identified with their density matrices, which are

positive semidefinite Hermitian operators on H(S) with trace 1. If e1, . . . , em is a basis of

H(S1) and f1, . . . , fn is a basis of H(S2), then the tensors ei ⊗ fj form a basis of H(S) ∼=
H(S1) ⊗ H(S2). Accordingly, we write the matrix entries of a density matrix M on H(S)

using double indices 11, 12, . . . , mn, ordered lexicographically:

M = (Mij,kl)
mn
ij,kl=11.

The partial traces of such a matrix are matrices π1(M) and π2(M), which are density

matrices acting on H(S1) and H(S2), respectively, with entries

π1(M)i,k =
n∑

j=1

Mij,kj, i, k = 1, . . . , m,

π2(M)j,l =
m∑

i=1

Mij,il, j, l = 1, . . . , n.

These partial traces are also called the marginals of M, and they have a physical meaning.

If the system S is in the state M and we observe only the individual subsystem S1,

then S1 will appear to be in the state π1(M). Likewise, if we observe only the individual

subsystem S2, then S2 will appear to be in the state π2(M). However, an easy dimension

count reveals that in general it is not possible to reconstruct the matrix M given only

π1(M) and π2(M). This is the mathematical expression of the idea that in quantum

mechanics, a system is more than the sum of its parts.

Even though we cannot hope to recover M from π1(M) and π2(M), we can ask

a more basic question: given a density matrix A on H(S1) and another density matrix

B on H(S2), is there a density matrix M on H(S) with π1(M) = A and π2(M) = B?

Typically, we make the further stipulation that M must have given eigenvalues λ =
(λ11, . . . , λmn) ∈ Rmn. This question is a fundamental problem in quantum mechanics

known as the quantum marginal problem (or as the N-representability problem in

theoretical chemistry). It asks whether the states A and B are compatible, in the sense

that S1 could be in state A and S2 could be in state B while the composite system S is

some state M with the required spectrum λ.
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19308 S. Matsumoto and C. McSwiggen

The quantum marginal problem was first posed at least as early as the 1960s and

has been an active topic of research in the decades since [6, 28, 29]. In the case where

H(S1) and H(S2) are both finite dimensional, the problem was solved in 2004 by Klyachko

[23], who proved that the set of compatible pairs (A, B) of density matrices on H(S1) and

H(S2) is determined by a certain system of linear inequalities on the eigenvalues of A

and B and on λ. (However, despite these explicit compatibility criteria, actually checking

whether they hold is computationally difficult on both classical and quantum computers

[24, 25].) See [22] for a review of Klyachko’s solution in the finite dimensional case, as well

as [30, 33] for more recent general reviews of quantum marginal problems from a physics

perspective.

The setup where H(S) ∼= H(S1) ⊗ H(S2) is appropriate for describing a sys-

tem of two distinguishable particles, where each particle corresponds to one of the

subsystems S1 or S2. However, many physical systems of interest consist of indistin-

guishable bosons (whose states are constrained to be invariant under permutations of

the particles) or indistinguishable fermions (whose states change sign when any two

of the particles are exchanged). That is, for a system of k indistinguishable bosons

or fermions, states correspond to density matrices on SymkCn or ∧kCn, respectively,

where Cn represents the Hilbert space associated to any given single-particle subsystem.

Identifying (Cn)⊗k ∼= Cnk
, we can regard such density matrices as nk-by-nk matrices

that satisfy a symmetry or antisymmetry constraint; single-particle marginals are

obtained by taking the partial trace over all but one leg of the k-fold tensor product.

The quantum marginal problem in this setting asks: given λ ∈ Rnk
and a density

matrix A on Cn, does there exist an nk-by-nk density matrix M with eigenvalues

λ, satisfying the (anti)symmetry constraint, with a single-particle marginal equal

to A?

The above problems are qualitative in character. They all ask a yes–no question:

does a state of the composite system with the given spectrum and marginals exist? In

this paper, we study random matrix ensembles that can be regarded as quantitative

versions of these quantum marginal problems. Concretely, we ask: given a uniform

random Hermitian matrix acting on Cm ⊗ Cn (or, in the case of bosons or fermions,

on SymkCn or ∧kCn) with fixed eigenvalues, what is the probability distribution of

its partial traces? This is a refinement of the original quantum marginal problem, in

the sense that the original problem asks only about the support of this distribution,

whereas now we would like to describe the distribution completely. (In mathematical

treatments of quantum marginal problems, it is standard to drop the requirement

that the matrices in question be density matrices, i.e. positive semidefinite Hermitian
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Moments of Random Quantum Marginals 19309

matrices with trace 1, and instead study the partial traces of Hermitian matrices with

arbitrary fixed spectra. From here on, we will follow this convention.)

To illustrate this randomized version of the problem in more detail, we consider

the example of two distinguishable particles. Here we take integers m, n ≥ 2 represent-

ing the dimensions of the Hilbert spaces of the single-particle subsystems, and we fix a

vector of eigenvalues λ ∈ Rmn. Recall that the Haar probability measure on any compact

Lie group is the unique probability measure that is invariant under both the left and

right actions of the group on itself; a random group element distributed according to

the Haar probability measure can be regarded as “uniformly distributed” on the group.

Let U be a random mn×mn unitary matrix distributed according to the Haar probability

measure on U(mn), and set

H = (Hij,kl)
mn
ij,kl=11 = Udiag(λ)U†. (1)

Then H is a uniform random mn × mn Hermitian matrix with eigenvalues λ. The

randomized quantum marginal problem in this case asks for a description of the joint

distribution of the marginals (π1(H), π2(H)).

Randomized quantum marginal problems have been studied in the literature

using two different approaches. In a seminal paper, Christandl, Doran, Kousidis, and

Walter [5] used techniques from symplectic geometry to give an algorithm for com-

puting the spectral distributions of marginals for distinguishable particles, bosons,

and fermions. In later work, Collins and the second author [10] used Fourier analysis

techniques to derive integral formulae for these same distributions and to prove various

properties of their densities. While each of these approaches offers a solution to these

problems in a certain sense, the existing results are not easily amenable to every type of

analysis one would like to perform, and many unanswered questions remain.

This paper introduces a third approach, based on computing the mixed moments

of the entries of the marginals. A major advantage of this approach is that, at least

in the case of distinguishable particles, the theorems are much more amenable to

asymptotic analysis, providing a way to study the limiting behavior of the marginals

as the dimensions of the Hilbert spaces go to infinity. Our method exploits the fact that

any compactly supported probability measure on Rn is completely characterized by its

mixed moments, that is, expectations of monomials

E
[ p∏

j=1

xij

]
, (i1, . . . , ip) ∈ {1, . . . , n}×p,

for all p ≥ 1, where x1, . . . , xn are the standard coordinates on Rn. For probability

measures on the line, this fact was first observed by Hausdorff [19]. The distribution of
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19310 S. Matsumoto and C. McSwiggen

the random matrix H in (1) is compactly supported due to the compactness of the unitary

group; therefore the distribution of (π1(H), π2(H)) is also compactly supported, since the

partial traces are linear maps. Accordingly, all information about the joint distribution

of the marginals is contained in the mixed moments

E

⎡

⎣
p∏

α=1

π1(H)iα ,kα
·

q∏

β=1

π2(H)jβ ,lβ

⎤

⎦ (2)

for all p, q ≥ 0, i1, . . . , ip, k1, . . . , kp ∈ {1, 2, . . . , m}, and j1, . . . , jq, l1, . . . , lq ∈ {1, 2, . . . , n}.
(Note that the space of n×n complex Hermitian matrices is an n2-dimensional real vector

space, and (2) indeed captures the expectations of all monomials in the coordinates.) A

formula for computing the mixed moments (2) can thus be regarded as a third type of

solution to the randomized quantum marginal problem, complementary to those given

in [5] and [10].

The main contributions of this paper are formulae of this type. Specifically,

we derive a formula for (2), as well as analogous formulae for mixed moments of

single-particle marginals for systems of k distinguishable particles, k indistinguishable

bosons, or k indistinguishable fermions. The proofs of these formulae rely on Weingarten

calculus, a set of techniques for computing integrals of polynomial functions with

respect to invariant measures on compact groups and symmetric spaces [7, 8]. As an

application, in the case of two distinguishable particles, we prove some results on the

asymptotic behavior of the marginals as the dimension of one or both Hilbert spaces

goes to infinity.

Remark 1.1. Beyond quantum information theory, randomized quantum marginal

problems are a natural object of study from at least three different points of view:

• In quantum statistical mechanics, a significant body of research has studied

the properties of “typical” quantum states, that is, random states that are

uniformly distributed conditional on certain information [3, 26, 31, 32, 37].

• In algebraic combinatorics, the randomized quantum marginal problem for

two distinguishable particles with n-dimensional Hilbert spaces is a semi-

classical approximation for the tensor product multiplicities of irreducible

representations of the symmetric group Sn; see [23, §5], [5, §7], [10, §4]. These

multiplicities are known as Kronecker coefficients. Aside from their intrinsic

combinatorial and representation-theoretic interest, they have also been a

central object of study in the Geometric Complexity Theory program [4, 20,

21].
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Moments of Random Quantum Marginals 19311

• Randomized quantum marginal problems are examples of random matrix

ensembles derived from projections of invariant measures on coadjoint orbits

of compact Lie groups, a family of models that has recently attracted a

great deal of interest in random matrix theory. Other ensembles of this

type include the randomized Horn’s problem [2, 11–14, 17, 27, 34, 35], the

randomized Schur’s problem [2, 12, 15], and the orbital corners process [1,

16, 36]. This class of random matrix ensembles has recently been studied at

a high level of generality in [10].

1.1 Organization of the paper

In §2, we treat the randomized quantum marginal problem for distinguishable par-

ticles. After reviewing the necessary background on Weingarten calculus, we derive

formulae for the mixed moments of entries of single-particle marginals for systems

of two distinguishable particles (Theorem 2.3) and then for k distinguishable particles

(Theorem 2.5).

In §3, we consider systems of k indistinguishable bosons or fermions. Here

again we prove formulae for the mixed moments of entries of single-particle marginals

(Theorems 3.2 and 3.4). We conclude with some observations that explain why the

formulae for bosons and fermions appear to be less analytically tractable than those

obtained for distinguishable particles.

In §4, we return to the case of two distinguishable particles and study the

asymptotic behavior of the marginals in two regimes: the regime where the dimension

of one Hilbert space goes to infinity while the dimension of the other remains fixed,

and the regime where the dimensions of both Hilbert spaces go to infinity while their

ratio remains fixed. We prove formulae for the leading-order contribution to each mixed

moment in both of these regimes (Theorems 4.2 and 4.5), and in the first regime we also

prove a law of large numbers for the limiting distribution of the finite-dimensional

marginal (Theorem 4.4).

2 Distinguishable Particles

2.1 The marginal problem for two distinguishable particles

We first study the mixed moments of the single-particle marginals of a quantum

mechanical system consisting of two distinguishable particles. Concretely, we address

the following problem.
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19312 S. Matsumoto and C. McSwiggen

Let m, n ≥ 2 be integers, which we take to represent the dimensions of the Hilbert

spaces for each of two particles. Fix λ = (λij)
mn
ij=11 ∈ Rmn, where ij and kl stand for double

indices with i, k ∈ {1, 2, . . . , m} and j, l ∈ {1, 2, . . . , n}. Let U be a Haar-distributed unitary

matrix of size mn. We consider a random Hermitian matrix given by

H = (Hij,kl) = Udiag(λ)U†. (3)

Define the m × m Hermitian matrix π1(H) = (π1(H)i,k) and n × n Hermitian matrix

π2(H) = (π2(H)j,l) by

π1(H)i,k =
n∑

j=1

Hij,kj, π2(H)j,l =
m∑

i=1

Hij,il. (4)

Our aim is to provide a formula for the mixed moments

E

⎡

⎣
p∏

α=1

π1(H)iα ,kα
·

q∏

β=1

π2(H)jβ ,lβ

⎤

⎦ (5)

for i1, . . . , ip, k1, . . . , kp ∈ {1, 2, . . . , m} and j1, . . . , jq, l1, . . . , lq ∈ {1, 2, . . . , n}.

2.2 Notation for symmetric groups

Let d be a positive integer and let Sd be the symmetric group on d elements. For

a permutation σ ∈ Sd and two sequences of d positive integers a = (a1, . . . , ad),

b = (b1, . . . , bd), we define

δσ (a, b) =
d∏

r=1

δ(aσ (r), br) =

⎧
⎨

⎩
1 if aσ (r) = br for all r = 1, 2, . . . , d,

0 otherwise.
(6)

Here δ(i, j) stands for Kronecker’s delta. (We avoid the use of the standard notation δij, as

it would force us to write unsightly symbols like δaα2 ,bα1
.) In some cases, it is convenient

to apply the cycle decomposition of σ . For a cycle c = (α1 α2 . . . αh) of σ , we define

δc(a, b) = δ(aα2
, bα1

)δ(aα3
, bα2

) · · · δ(aαh
, bαh−1

)δ(aα1
, bαh

) (7)

if h ≥ 2, or δc(a, b) = δ(aα1
, bα1

) if h = 1. Then it is immediate that

δσ (a, b) =
∏

c

δc(a, b), (8)

where the product runs over all cycles c in σ .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/22/19306/7179405 by guest on 25 N
ovem

ber 2025



Moments of Random Quantum Marginals 19313

For example, if d = 10 and

σ =
(

1 2 3 4 5 6 7 8 9 10

3 7 1 9 5 4 6 10 2 8

)

= (1 3)(2 7 6 4 9)(5)(8 10), (9)

we see that

δσ (a, b) = δ(a3, b1)δ(a7, b2)δ(a1, b3)δ(a9, b4)δ(a5, b5)

· δ(a4, b6)δ(a6, b7)δ(a10, b8)δ(a2, b9)δ(a8, b10)

= {δ(a3, b1)δ(a1, b3)} · {δ(a7, b2)δ(a6, b7)δ(a4, b6)δ(a9, b4)δ(a2, b9)}

· {δ(a5, b5)} · {δ(a10, b8)δ(a8, b10)}

= δ(1 3)(a, b) · δ(2 7 6 4 9)(a, b) · δ(5)(a, b) · δ(8 10)(a, b).

Let p, q be nonnegative integers with p + q ≥ 1. We define projections

pr1 : Sp+q → Sp,

pr2 : Sp+q → Sq

as follows. For each σ ∈ Sp+q, we let pr1(σ ) ∈ Sp be the permutation on p elements

obtained by decomposing σ into a product of cycles and erasing letters p + 1, p +
2, . . . , p + q from each cycle. For example, for p = q = 5 and σ given in (9), we obtain

.

Similarly, we let pr2(σ ) ∈ Sq be the permutation on q elements obtained by

decomposing σ into a product of cycles, erasing the letters 1, 2, . . . , p, and replacing the

remaining letters p + 1, p + 2, . . . , p + q by 1, 2, . . . , q, respectively. For example, for again

the same p, q and σ , the elimination of letters 1, 2, 3, 4, 5 provides .

When we replace letters 6, 7, 8, 9, 10 by 1, 2, 3, 4, 5, respectively, we obtain pr2(σ ) =
(2 1 4)(3 5) ∈ S5.

Next we define quantities κ1(σ ) and κ2(σ ) for σ ∈ Sp+q in the following way.

• κ1(σ ) is the number of cycles c in σ satisfying c ∩ {1, 2, . . . , p} = ∅, the latter

of which means that the orbit of the cycle c is included in the set {p + 1, p +
2, . . . , p + q}.

• κ2(σ ) is the number of cycles c in σ satisfying c ∩ {p + 1, p + 2, . . . , p + q} = ∅.

For example, let p = q = 5, σ = (1 3)(2 7 6)(4)(5 9)(8 10). Then:

• Two cycles (1 3) and (4) contribute to κ2(σ ), because the orbits {1, 3} and {4}
of σ are included in {1, 2, 3, 4, 5}.
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19314 S. Matsumoto and C. McSwiggen

• One cycle (8 10) contributes to κ1(σ ), because the orbit {8, 10} is included in

{6, 7, 8, 9, 10}.
We therefore have κ2(σ ) = 2, κ1(σ ) = 1.

For any permutation σ ∈ Sd, we write κ(σ ), with no subscript, for the total

number of cycles in the cycle decomposition of σ .

2.3 Background on Weingarten calculus

Our main tool in what follows will be Weingarten calculus, a set of techniques for

computing integrals of polynomial functions with respect to invariant measures on

compact groups and symmetric spaces. Weingarten calculus was introduced in [7] and

has since been developed by numerous authors. Here we merely recall some basic

definitions and facts from Weingarten calculus, and refer the reader to [8] for a more

comprehensive introduction and survey of the literature.

Recall that for d a positive integer, the irreducible representations of Sd are

indexed by partitions λ ⊢ d, that is, weakly decreasing sequences of nonnegative integers

(λ1, . . . , λl) such that λ1 + · · · + λl = d (See e.g. [18] for background on the representation

theory of symmetric groups). For each such partition λ = (λ1, . . . , λl), we write ℓ(λ) = l for

the length of λ and χλ for the corresponding irreducible character of Sd. For a positive

integer N, set

Cλ(N) =
ℓ(λ)∏

i=1

λi∏

j=1

(N + j − i).

The unitary Weingarten function WgN,d : Sd → C is defined by

WgN,d(σ ) = 1
d!

∑

λ⊢d
Cλ(N) ̸=0

χλ(idd)χλ(σ )

Cλ(N)
, σ ∈ Sd, (10)

where idd ∈ Sd is the identity permutation. Where the value of d can be understood

from context, we will usually suppress the explicit dependence on d in the notation and

simply write WgN for WgN,d.

Some explicit values for WgN,d are as follows:

WgN,1((1)) = 1
N

, (11)

WgN,2((1)(2)) = 1
(N + 1)(N − 1)

, (12)

WgN,2((1 2)) = −1
N(N + 1)(N − 1)

. (13)
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The asymptotics of WgN,d as N grows large are well understood. Notably, the

following corollary of [7, Theorem 2.2] describes the leading-order behavior.

Lemma 2.1. For a fixed positive integer d and σ ∈ Sd, as N → ∞,

WgN,d(σ ) =

⎧
⎨

⎩
N−d · (1 + O(N−1)) if σ = idd,

O(N−d−1) otherwise.
(14)

Weingarten calculus gives a method for writing the expectations of polynomial

functions of the entries of a Haar-distributed random unitary matrix in terms of values

of WgN . In particular, below we will make extensive use of the following result, which is

a special case of [9, Theorem 3.1].

Lemma 2.2. Let N, d be positive integers. Fix a real Hermitian matrix A of size N. Let U

be a Haar-distributed matrix from the unitary group U(N). For a random matrix W given

by W = (Wik)N
i,k=1 = UAU† and for two sequences

i = (i1, . . . , id), k = (k1, . . . , kd) ∈ {1, 2, . . . , N}×d,

we have

E[Wi1,k1
Wi2,k2

· · · Wid,kd
] =

∑

σ ,τ∈Sd

δσ (i, k) WgN(σ−1τ ) Trτ (A).

Here

• δσ (i, k) is defined in (6);

• WgN is the unitary Weingarten function defined in (10);

• If the cycle type of τ ∈ Sd is (µ1, µ2, . . . ), set

Trτ (A) :=
∏

j≥1

Tr(Aµj). (15)

2.4 The moment formula for two distinguishable particles

We are now ready to state our first main result. Let λ, H, π1(H), π2(H) be as in §2.1.

Theorem 2.3. Let p, q be nonnegative integers. For sequences of indices

i = (i1, i2, . . . , ip), k = (k1, k2, . . . , kp) ∈ {1, 2, . . . , m}×p,

j = (j1, j2, . . . , jq), l = (l1, l2, . . . , lq) ∈ {1, 2, . . . , n}×q,
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19316 S. Matsumoto and C. McSwiggen

we have the formula

E

⎡

⎣
p∏

α=1

π1(H)iα ,kα
·

q∏

β=1

π2(H)jβ ,lβ

⎤

⎦=
∑

σ ,τ∈Sp+q

δpr1(σ )(i, k) δpr2(σ )(j, l) nκ2(σ )mκ1(σ ) Wgmn(σ−1τ ) Trτ (λ),

(16)

with the following notation:

• δ is defined in (6);

• pr1, pr2, κ1, κ2 are defined in §2.2;

• Wgmn and Trτ are defined in §2.3, but Trτ (λ) := Trτ (diag(λ)).

2.5 Examples

If we set q = 0 or p = 0 in Theorem 2.3, then we find, respectively:

E
[ p∏

α=1

π1(H)iα ,kα

]

=
∑

σ ,τ∈Sp

δσ (i, k) nκ(σ ) Wgmn(σ−1τ ) Trτ (λ), (17)

E

⎡

⎣
q∏

β=1

π2(H)jβ ,lβ

⎤

⎦ =
∑

σ ,τ∈Sq

δσ (j, l) mκ(σ ) Wgmn(σ−1τ ) Trτ (λ), (18)

where κ(σ ) indicates the total number of cycles in σ , as defined in §2.2. In particular,

using (11),

E
[
π1(H)i,k

]
= δ(i, k) m−1 Tr(λ), E

[
π2(H)j,l

]
= δ(j, l) n−1 Tr(λ), (19)

where Tr(λ) = λ11 + λ12 + · · · + λmn.

Next, if we set p = q = 1 in Theorem 2.3, then

E
[
π1(H)i,k π2(H)j,l

]
= δ(i, k) δ(j, l) (mn)−1 (Tr(λ))2 . (20)

To see this, note that for each σ ∈ S2, we have pr1(σ ) = pr2(σ ) = (1) ∈ S1, so that

δpr1(σ )(i, k)δpr2(σ )(j, l) = δ(i, k)δ(j, l).

Theorem 2.3 implies

E
[
π1(H)i,kπ2(H)j,l

]
= δ(i, k)δ(j, l)

{
nm Wgmn((1)(2)) Tr(1)(2)(λ)
︸ ︷︷ ︸

σ=τ=(1)(2)

+ Wgmn((1 2)) Tr(1)(2)(λ)
︸ ︷︷ ︸

σ=(1 2), τ=(1)(2)

+ nm Wgmn((1 2)) Tr(1 2)(λ)
︸ ︷︷ ︸

σ=(1)(2), τ=(1 2)

+ Wgmn((1)(2)) Tr(1 2)(λ)
︸ ︷︷ ︸

σ=τ=(1 2)

}
.
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Using (12) and (13), we have

mn Wgmn((1)(2)) + Wgmn((1 2)) = 1
mn

,

mn Wgmn((1 2)) + Wgmn((1)(2)) = 0.

Thus, we have proved (20).

2.6 Proof of Theorem 2.3

We start by introducing some notation to simplify handling the sequences of indices

i = (i1, i2, . . . , ip), k = (k1, k2, . . . , kp) ∈ {1, 2, . . . , m}×p,

j = (j1, j2, . . . , jq), l = (l1, l2, . . . , lq) ∈ {1, 2, . . . , n}×q.

We write i ∪ s for the sequence (i1, i2, . . . , ip, s1, s2, . . . , sq) of length p + q, and we define

k ∪ s, t ∪ j, and t ∪ l analogously. We also define sequences of double indices,

i ∪ s|t ∪ j = (i1t1, . . . , iptp, s1j1, . . . , sqjq),

k ∪ s|t ∪ l = (k1t1, . . . , kptp, s1l1, . . . , sqlq).

From (4) we have

E

⎡

⎣
p∏

α=1

π1(H)iα ,kα
·

q∏

β=1

π2(H)jβ ,lβ

⎤

⎦ =
n∑

t1,...,tp=1

m∑

s1,...,sq=1

E

⎡

⎣
p∏

α=1

Hiαtα ,kαtα ·
q∏

β=1

Hsβ jβ ,sβ lβ

⎤

⎦ . (21)

Note that in each term in the sum above, the row index sequence in the quantity in

brackets
p∏

α=1

Hiαtα ,kαtα ·
q∏

β=1

Hsβ jβ ,sβ lβ

is i ∪ s|t ∪ j, while the column index sequence is k ∪ s|t ∪ l. Applying Lemma 2.2 to each

term, the right-hand side of (21) then becomes

n∑

t1,...,tp=1

m∑

s1,...,sq=1

∑

σ ,τ∈Sp+q

δσ (i ∪ s, k ∪ s) δσ (t ∪ j, t ∪ l) Wgmn(σ−1τ ) Trτ (λ).

Changing the order of sums, the above expression is equal to

∑

σ ,τ∈Sp+q

⎡

⎣
m∑

s1,...,sq=1

δσ (i ∪ s, k ∪ s)

⎤

⎦

⎡

⎣
n∑

t1,...,tp=1

δσ (t ∪ j, t ∪ l)

⎤

⎦ × Wgmn(σ−1τ ) Trτ (λ).

Therefore, Theorem 2.3 follows from the lemma below.
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19318 S. Matsumoto and C. McSwiggen

Lemma 2.4. Let i, j, k, l be as in Theorem 2.3. For each σ ∈ Sp+q, we have

m∑

s1,...,sq=1

δσ (i ∪ s, k ∪ s) = δpr1(σ )(i, k)mκ1(σ ), (22)

n∑

t1,...,tp=1

δσ (t ∪ j, t ∪ l) = δpr2(σ )(j, l)nκ2(σ ). (23)

Proof. By symmetry, it is enough to show the first equation (22). From (8), we obtain the

decomposition

m∑

s1,...,sq=1

δσ (i ∪ s, k ∪ s) =
∏

c∈C(σ )

⎛

⎝
∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s)

⎞

⎠ , (24)

where C(σ ) is the set of all cycles in σ , and the sum on the right-hand side is over all sβ

such that the letter p + β appears in c and β ∈ {1, 2, . . . , q}. For example, for p = q = 5

and σ given in (9), we have

m∑

s1,...,s5=1

δσ (i ∪ s, k ∪ s) = δ(1 3)(a, b) · δ(5)(a, b) ·
m∑

s2,s1,s4=1

δ(2 7 6 4 9)(a, b) ·
m∑

s3,s5=1

δ(8 10)(a, b).

(Here s2, s1, s4 appear for the cycle c = (2 7 6 4 9) because p + 2, p + 1, p + 4 with p = 5

appear in c.)

Now we compute

∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s)

for each cycle c in σ . There are three possible cases.

(i) Suppose that c ⊂ {1, 2, . . . , p}. Then there is no β such that p + β ∈ c. We

therefore have

∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s) = δc(i ∪ s, k ∪ s) = δc(i, k).

(ii) Suppose that c ⊂ {p + 1, p + 2, . . . , p + q} and write

c = (p + β1 p + β2 . . . p + βh).
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If h = 1 (i.e., p + β1 is a fixed point of σ ), then

∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s) =
m∑

sβ1=1

δ(p+β1)(i ∪ s, k ∪ s) =
m∑

sβ1=1

δ(sβ1
, sβ1

) = m.

If h > 1, then

∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s) =
m∑

sβ1 ,sβ2 ...,sβh=1

δc(i ∪ s, k ∪ s)

=
m∑

sβ1 ,sβ2 ...,sβh=1

δ(sβ2
, sβ1

) · · · δ(sβh
, sβh−1

) δ(sβ1
, sβh

) = m.

(iii) Suppose that c ∩ {1, 2, . . . , p} ̸= ∅ and also c ∩ {p+1, p+2, . . . , p+q} ̸= ∅. Then

∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s) = δpr1(c)(i, k), (25)

where we extend the definition of pr1 : Sp+q → Sp to cycles on {1, 2, . . . , p+q}
in the natural way. For any cycle c in σ , the image pr1(c) is a cycle of pr1(σ ).

An illustrative example serves to show why (25) must hold in this case. Let

p = q = 5 and c = (2 7 6 4 9) = (2 p+2 p+1 4 p+4). Then, by the definition

of δc(i ∪ s, k ∪ s), we can see that

∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s) =
m∑

s2,s1,s4=1

δ(s2, k2) δ(s1, s2) δ(i4, s1) δ(s4, k4) δ(i2, s4).

Only one term with k2 = s2 = s1 = i4 and k4 = s4 = i2 survives. This survivor

corresponds to the elimination

for c. Hence, the above summation equals δ(i4, k2)δ(i2, k4) = δ(2 4)(i, k).

Returning to (24) and using the formulae for the three cases above, we have

∏

c∈C(σ )

⎛

⎝
∑

(sβ ):p+β∈c

δc(i ∪ s, k ∪ s)

⎞

⎠ =
∏

c: case (i)

δc(i, k) ×
∏

c: case (iii)

δpr1(c)(i, k) ×
∏

c: case (ii)

m.
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19320 S. Matsumoto and C. McSwiggen

The number of cycles in case (ii) is κ1(σ ) by definition. It is easy to check that

pr1(σ ) =
∏

c: case (i)

c ·
∏

c: case (iii)

pr1(c).

Hence, we have completed the proof of (22). !

2.7 More than two distinguishable particles

An immediate generalization of Theorem 2.3 gives a formula for the mixed moments of

entries of single-particle marginals for a system of k distinguishable particles. Here we

choose integers n1, . . . , nk ≥ 2 representing the dimensions of the Hilbert spaces for each

of the individual particles, and we set N = ∏k
j=1 nj. Identifying

CN ∼=
k⊗

j=1

Cnj , (26)

we label the coordinates of N-dimensional vectors by k-component multi-indices

(i1, . . . , ik), where each ij runs from 1 to nj and the multi-indices are ordered

lexicographically. Fix λ = (λi1...ik)
n1...nk
i1...ik=1...1 ∈ RN , and let U be a Haar-distributed N-by-N

unitary matrix. We consider a random Hermitian matrix given by

H = (Hi1...ik,j1...jk) = Udiag(λ)U†. (27)

For l = 1, . . . , k, define the nl × nl Hermitian matrix πl(H) = (πl(H)il,jl) by

πl(H)il,jl =
∑

1≤s≤k
s ̸=l

ns∑

is=1

Hi1...il...ik,i1...jl...ik , (28)

that is, πl(H) is obtained by taking the partial trace of H over all legs of the tensor

product (26) except Cnl . Fix nonnegative integers p1, . . . , pk. For σ ∈ Sp1+···+pk
, we make

the following definitions, which are analogous to those in §2.2:

• κl(σ ) is the number of cycles c in σ satisfying

c ∩
{

1 +
l−1∑

j=1

pj, . . . ,
l∑

j=1

pj

}
= ∅.

• prl(σ ) ∈ Spl
is the permutation on pl elements obtained by decomposing σ as

a product of cycles, erasing all elements except for i+∑l−1
j=1 pj for i = 1, . . . , pl,

and then replacing each of the remaining elements i + ∑l−1
j=1 pj with i.
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An identical argument to the proof of Theorem 2.3 yields the following formula

for the mixed moment

E

⎡

⎣
k∏

l=1

pl∏

α=1

πl(H)i(l)α ,j(l)α

⎤

⎦ (29)

for i(l)1 , . . . , i(l)pl , j(l)1 , . . . , j(l)pl ∈ {1, 2, . . . , nl}:

Theorem 2.5. Fix k ≥ 2 and let p1, . . . , pk be nonnegative integers. For l = 1, . . . , k, fix

sequences of indices

i(l) = (i(l)1 , . . . , i(l)pl ), j(l) = (j(l)1 , . . . , j(l)pl ) ∈ {1, 2, . . . , nl}×pl .

We have the formula

E

⎡

⎣
k∏

l=1

pl∏

α=1

πl(H)i(l)α ,j(l)α

⎤

⎦ =
∑

σ ,τ∈Sp1+···+pk

WgN(σ−1τ ) Trτ (λ)

k∏

l=1

δprl(σ )(i
(l), j(l)) nκl(σ )

l . (30)

3 Bosons and Fermions

3.1 Bosons

Indistinguishable bosons are particles whose joint state is invariant when any two

of the particles are exchanged. Accordingly, we consider a “state” of a system of k

indistinguishable bosons to be a Hermitian operator on SymkCn, where Cn represents

the Hilbert space associated with an individual boson. By a standard construction,

described in more detail in [10, §2.3], we model SymkCn as the space of homogeneous

polynomials of degree k in n variables (x1, . . . , xn). We make this space into a Hilbert

space by choosing as an orthonormal basis the normalized monomials

vα = 1√
α!

n∏

i=1

xαi
i ,

as α runs over n-component multi-indices with |α| = ∑
i αi = k, and the multi-index

factorial is defined by α! = ∏
i αi!. As there are N =

(n+k−1
k

)
such multi-indices, this allows

us to identify SymkCn ∼= CN . The symmetric group Sk acts on the tensor product space

(Cn)⊗k ∼= Cnk
by permuting the legs of the tensor product, and there is an isometric

embedding S : SymkCn ↪→ (Cn)⊗k given by

S : vα 3→ 1√
k! α!

∑

σ∈Sk

σ (e⊗α1
1 ⊗ · · · ⊗ e⊗αn

n ), (31)
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19322 S. Matsumoto and C. McSwiggen

where e1, . . . , en are the standard basis vectors of Cn, and we use the convention ei⊗e⊗0
j =

ei. To verify that (31) is an isometry, note that the stabilizer of e⊗α1
1 ⊗ · · · ⊗ e⊗αn

n in

Sk has order α!. Therefore, the sum in (31) includes k! /α! distinct pairwise orthogonal

vectors of length α!, so that its magnitude is equal to
√

(k! /α! )α!2 =
√

k! α!. Thus, Svα

is indeed a unit vector in (Cn)⊗k. It is obvious that if α ̸= β, then Svα and Svβ are

orthogonal.

Using (31), we can write down the matrix elements of S with respect to the basis

{vα} of SymkCn and the standard basis

e⊗i = ei1 ⊗ · · · ⊗ eik , i = (i1, . . . , ik) ∈ {1, . . . , n}×k

of (Cn)⊗k. For i ∈ {1, . . . , n}×k, write tab(i) for the n-component multi-index such that,

for each j ∈ {1, . . . , n}, the jth component tab(i)j is equal to the multiplicity with which j

occurs in i. Then the entries of S, regarded as an nk-by-N matrix, are

Si,α =
√

α!
k!

δ(tab(i), α), (32)

where δ(tab(i), α) = 1 if tab(i) = α and 0 otherwise. This matrix has an N-by-nk

pseudoinverse (Cn)⊗k → SymkCn, which is obtained by first projecting onto the span

of the vectors Svα, and then mapping Svα 3→ vα. In fact, since S is an isometry with real

entries, this pseudoinverse is just the transpose ST ; it is easily verified from (31) and (32)

that STSvα = vα.

The map H 3→ SHST embeds the space of N-by-N Hermitian matrices into the

space of nk-by-nk Hermitian matrices. Our main objects of study in this section are the

single-particle marginals of the state H, which are the n-by-n matrices πi(SHST), 1 ≤ i ≤
n, where πi is the ith marginal of a Hermitian operator on (Cn)⊗k as previously defined

in (28). However, since span{Svα} ∼= SymkCn is invariant under the action of Sk, we have

πi(SHST) = πj(SHST) for all 1 ≤ i, j ≤ k. Without loss of generality, we therefore restrict

our attention to π(H) = π1(SHST).

We pose the following problem. Let λ = (λα)|α|=k ∈ RN , and let U be a Haar-

distributed random N-by-N unitary matrix. Set H = Udiag(λ)U†. Fix a nonnegative

integer p and two sequences of indices (i1, . . . , ip), (j1, . . . , jp) ∈ {1, . . . , n}×p. We want

to derive a formula for the mixed moment

E
[ p∏

k=1

π(H)ik,jk

]

.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/22/19306/7179405 by guest on 25 N
ovem

ber 2025



Moments of Random Quantum Marginals 19323

In the next lemma, we write the entries of π(H) in terms of the entries of H, which

will enable us to solve this problem using Weingarten calculus. First we introduce some

further notation. Given two n-component multi-indices α, β, we define their sum α + β

componentwise, as though α and β were vectors in Rn: (α + β)j = αj + βj. We write ej

for the multi-index with a 1 in the jth position and all other entries equal to 0. Thus,

(α + ej)j = αj + 1, and (α + ej)i = αi for i ̸= j.

Lemma 3.1.

π(H)i,j = 1
k

∑

|γ |=k−1

√
(γi + 1)(γj + 1) Hei+γ ,ej+γ , (33)

where the sum runs over n-component multi-indices γ satisfying |γ | = k − 1.

Proof. As a first step, we compute the entries of SHST . For i, j ∈ {1, . . . , n}×k, (32) gives

(SHST)i,j =
∑

|α|=k

Si,α

∑

|β|=k

Hα,βST
β,j =

√
tab(i)! tab(j)!

k!
Htab(i),tab(j).

Then from the definition (28), we have

π(H)i,j = π1(SHST)i,j =
n∑

l1,...,lk−1=1

(SHST)il1...lk−1, jl1...lk−1

=
n∑

l1,...,lk−1=1

√
tab(i, l1, . . . , lk−1)! tab(j, l1, . . . , lk−1)!

k!
Htab(i,l1,...,lk−1),tab(j,l1,...,lk−1).

Clearly, we can write tab(i, l1, . . . , lk−1) = ei + γ , tab(j, l1, . . . , lk−1) = ej + γ for a unique

multi-index γ with |γ | = k − 1. Namely, γ = tab(l1, . . . , lk−1). Each such γ appears in the

sum above with multiplicity equal to the number of distinct permutations of any given

(k − 1)-tuple (l1, . . . , lk−1) with tab(l1, . . . , lk−1) = γ . The stabilizer of such a (k − 1)-tuple

in Sk−1 has order γ !, so there are (k − 1)! /γ ! distinct permutations. Thus, we find

π(H)i,j =
∑

|γ |=k−1

(k − 1)!
γ !

√
(ei + γ )! (ej + γ )!

k!
Hei+γ ,ej+γ ,

from which (33) follows by the observation that (ei + γ )! = γ ! (γi + 1). !

Combining Lemmas 2.2 and 3.1, we have shown the desired formula:
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19324 S. Matsumoto and C. McSwiggen

Theorem 3.2. The mixed moments of the entries of a single-particle marginal for a

system of k indistinguishable bosons are given by

E
[ p∏

s=1

π(H)is,js

]

=
∑

σ ,τ∈Sp

WgN(σ−1τ ) Trτ (λ)-n,k
σ (i, j) (34)

with

-n,k
σ (i, j) = 1

kp

∑

γ (1),...,γ (p)

p∏

s=1

√
(γ

(s)
is

+ 1)(γ
(s)
js

+ 1)

× δσ

(
(ei1 + γ (1), . . . , eip + γ (p)), (ej1 + γ (1), . . . , ejp + γ (p))

)
, (35)

where each γ (s) runs over n-component multi-indices such that the sum of their compo-

nents is k − 1.

3.1.1 Bosons: A simple example

Consider the case p = 1. Then, for the unique permutation id1 ∈ S1,

-n,k
id1

(i, j) = 1
k

∑

|γ |=k−1

√
(γi + 1)(γj + 1) δid1

(ei + γ , ej + γ ).

It is easy to see that this equals

-n,k
id1

(i, j) = δ(i, j)
k

∑

γ1+···+γn=k−1

(γi + 1).

By symmetry, we have

∑

γ1+···+γn=k−1

(γi + 1) =
∑

γ1+···+γn=k−1

(γ1 + 1)

=
k−1∑

a=0

(a + 1)
∑

γ2+···+γn=k−1−a

1

=
k−1∑

a=0

(a + 1)

(
n − 1 + (k − 1 − a) − 1

k − 1 − a

)
.
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One can check (e.g., using Mathematica) that this equals
(n+k−1

k−1

)
. Therefore, we have

obtained

-n,k
id1

(i, j) = δ(i, j)
1
k

(
n + k − 1

k − 1

)
(36)

for p = 1.

From (34), we now have

E
[
π(H)i,j

]
= WgN(id1) Trid1

(λ)-n,k
id1

(i, j) = 1
N

Tr(λ) δ(i, j)
1
k

(
n + k − 1

k − 1

)
.

With N =
(n+k−1

k

)
, it is immediate to see that

E
[
π(H)i,j

]
= Tr(λ)

δ(i, j)
n

, (37)

exactly as one would expect.

3.2 Fermions

Indistinguishable fermions are particles whose joint state is anti-invariant (i.e., changes

sign) when any two of the particles are exchanged. Accordingly, we consider a “state” of

a system of k indistinguishable fermions to be a Hermitian operator on ∧kCn, where Cn

represents the Hilbert space associated with an individual fermion. As explained in [10,

§2.4], we assume that 1 < k < n − 1, as otherwise the quantum marginal problem for

fermions is trivial. Define

Ak =
{
(a1, . . . , ak) ∈ {1, . . . , n}×k ∣∣ a1 < . . . < ak

}
.

We make ∧kCn into a Hilbert space by choosing as an orthonormal basis the
(n

k

)

k-vectors

e∧a = ea1
∧ · · · ∧ eak

, a = (a1, . . . , ak) ∈ Ak.

Then we have an isometric embedding A : ∧kCn ↪→ (Cn)⊗k defined by

Ae∧a = 1√
k!

∑

σ∈Sk

sgn(σ ) σ (ea1
⊗ · · · ⊗ eak

),
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where Sk acts on (Cn)⊗k by permuting the legs of the tensor product. For i ∈ {1, . . . , n}×k,

set sgn(i) = 0 if not all entries of i are distinct; otherwise, set sgn(i) = sgn(σ ), where

σ ∈ Sk is the unique permutation such that σ (i)1 < . . . < σ (i)k. Then the matrix entries

of A with respect to the basis {e∧a}a∈Ak
of ∧kCn and the basis {e⊗i}i∈{1,...,n}×k of (Cn)⊗k

are

Ai,a = sgn(i)√
k!

δ(sr(i), a),

where the map sr sorts the entries of a vector in nondecreasing order, that is,

{sr(i)1, . . . , sr(i)k} = {i1, . . . , ik}, sr(i)1 ≤ . . . ≤ sr(i)k.

The transpose AT is a pseudoinverse such that ATAe∧a = e∧a, and the map H 3→ AHAT

embeds the space of
(n

k

)
-by-

(n
k

)
Hermitian matrices into the space of nk-by-nk Hermitian

matrices. For an
(n

k

)
-by-

(n
k

)
Hermitian matrix H, define π(H) = π1(AHAT).

We can now state the quantum marginal problem for k indistinguishable

fermions. Let λ = (λa)a∈Ak
∈ R(n

k), and let U be a Haar-distributed random
(n

k

)
-by-

(n
k

)

unitary matrix. Set H = Udiag(λ)U†. Fix a nonnegative integer p and two sequences of

indices (i1, . . . , ip), (j1, . . . , jp) ∈ {1, . . . , n}×p. We want to derive a formula for the mixed

moment

E
[ p∏

k=1

π(H)ik,jk

]

.

To solve this problem using Weingarten calculus, we will need the following

expression for the entries of π(H) in terms of the entries of H.

Lemma 3.3.

π(H)i,j = 1
k

∑

l∈Ak−1
{l1,...,lk−1 }̸∋i,j

sgn(i, l) sgn(j, l) Hsr(i,l),sr(j,l), (38)

where sgn(i, l) means sgn(i, l1, . . . , lk−1) and sr(i, l) means sr(i, l1, . . . , lk−1).

Proof. We first compute

(AHAT)i,j =
∑

a∈Ak

Ai,a

∑

b∈Ak

Ha,bAT
b,j = sgn(i) sgn(j)

k!
Hsr(i),sr(j),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/22/19306/7179405 by guest on 25 N
ovem

ber 2025



Moments of Random Quantum Marginals 19327

where we set Hsr(i),sr(j) = 0 if i or j has repeated entries. Then we have

π(H)i,j =
n∑

l1,...,lk−1=1

(AHAT)(i,l),(j,l) =
n∑

l1,...,lk−1=1

sgn(i, l) sgn(j, l)
k!

Hsr(i,l),sr(j,l)

= 1
k!

∑

l∈Ak−1
{l1,...,lk−1 }̸∋i,j

Hsr(i,l),sr(j,l)

∑

σ∈Sk−1

sgn(i, σ (l)) sgn(j, σ (l)).

Observing that

sgn(i, σ (l)) sgn(j, σ (l)) = sgn(i, l) sgn(j, l) sgn(σ )2 = sgn(i, l) sgn(j, l)

for all σ ∈ Sk−1, we obtain (38). !

Similarly to the bosonic case, from Lemmas 2.2 and 3.3, we obtain the desired

formula:

Theorem 3.4. The mixed moments of the entries of a single-particle marginal for a

system of k indistinguishable fermions are given by

E
[ p∏

s=1

π(H)is,js

]

=
∑

σ ,τ∈Sp

WgN(σ−1τ ) Trτ (λ)-n,k
σ (i, j)

with

-n,k
σ (i, j) = 1

kp

∑

l(1)∈Ak−1
l(1) ̸∋i1,j1

· · ·
∑

l(p)∈Ak−1
l(p) ̸∋ip,jp

p∏

s=1

{sgn(is, l(s))sgn(js, l(s))}

× δσ

((
sr(i1, l(1)), . . . , sr(ip, l(p))

)
,
(
sr(j1, l(1)), . . . , sr(jp, l(p))

))
. (39)

This --function may be decomposed into the cycles of σ as in (8).

3.2.1 Fermions: A simple example

Again consider the case p = 1. Then, for the unique permutation id1 ∈ S1,

-n,k
id1

(i, j) = 1
k

∑

l∈Ak−1
l̸∋i,j

sgn(i, l)sgn(j, l)δ
(
sr(i, l), sr(j, l)

)
= δ(i, j)

1
k

∑

l∈Ak−1
l̸∋i

1 = δ(i, j)
1
k

(
n − 1
k − 1

)
.
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19328 S. Matsumoto and C. McSwiggen

(Here we have identified the strictly increasing sequence l = (l1 < l2 < · · · < lk−1) with

the set {l1, l2, . . . , lk−1}.) Therefore, just as in the bosonic case, we find

E
[
π(H)i,j

]
= Tr(λ)

δ(i, j)
n

.

More generally, for the identity permutation idp ∈ Sp, we can see that

-n,k
idp

(i, j) = 1
kp δ(i, j)

(
n − 1
k − 1

)p

= δ(i, j)
[

1
n

(
n
k

)]p

. (40)

3.3 Some further observations

Lemma 3.5. For the transposition (1 2) ∈ S2, the fermionic --function defined in (39)

is given by

-n,k
(1 2)

(
(i1, i2), (j1, j2)

)
= δ(i1, j1) δ(i2, j2)

1
k2

(
n − 2
k − 2

)
+ δ(i1, j2) δ(i2, j1)

1
k2

(
n − 2
k − 1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
k2

(n−1
k−1

)
if i1 = i2 = j1 = j2,

1
k2

(n−2
k−1

)
if i1 = j2 ̸= i2 = j1,

1
k2

(n−2
k−2

)
if i1 = j1 ̸= i2 = j2,

0 otherwise.

Proof. The definition of -n,k
σ

(
i, j

)
implies that

-n,k
(1 2)

(
(i1, i2), (j1, j2)

)
= 1

k2

∑

l(1)∈Ak−1
l(1) ̸∋i1,j1

∑

l(2)∈Ak−1
l(2) ̸∋i2,j2

2∏

s=1

sgn(is, l(s))sgn(js, l(s))

× δ
(
sr(i1, l(1)), sr(j2, l(2))

)
× δ

(
sr(i2, l(2)), sr(j1, l(1))

)
.

Only the terms such that

sr(i1, l(1)) = sr(j2, l(2)) and sr(j1, l(1)) = sr(i2, l(2)) (41)

contribute.
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(i) First, suppose that i1 = j2. Then, by (41), l(2) must coincide with l(1), and so

i2 = j1. Hence, in this case,

-n,k
(1 2)

(
(i1, i2), (j1, j2)

)
= 1

k2

∑

l(1)∈Ak−1
l(1) ̸∋i1,j1

1 =

⎧
⎨

⎩

1
k2

(n−1
k−1

)
if i1 = j1,

1
k2

(n−2
k−1

)
if i1 ̸= j1.

(ii) Next, suppose that i1 ̸= j2. Then, by (41), the following equations all hold.

i2, j2 ∈ l(1), l(2) = l(1) ∪ {i1} \ {j2} = l(1) ∪ {j1} \ {i2}.

This is only valid when i1 = j1 and i2 = j2. Hence, since i1 ̸= i2(= j2), we have

-n,k
(1 2)

(
(i1, i2), (j1, j2)

)
= 1

k2

∑

l(1)∈Ak−1
l(1)∋i2, l(1) ̸∋i1

1 = 1
k2

(
n − 2
k − 2

)
.

!

Lemma 3.5 indicates that -n,k
σ (i, j) is not of the form δσ (i, j)×Xn,k

σ . This fact, which

holds as well for the bosonic --function defined in (35), poses an obstacle to further

simplifying the formulae in Theorems 3.2 and 3.4. We suspect that it is computationally

difficult to calculate the general moments in both cases.

4 Asymptotic Analysis

We now return to the setting of two distinguishable particles, introduced in §2.1. As an

application of Theorem 2.3, we study the asymptotics of the moments in two regimes:

the limit as m → ∞ with n fixed, and the limit as n → ∞ with m = ⌈cn⌉ for c > 0.

To pose questions about the asymptotics of the moments, we will need to

consider sequences of spectra λ(k) = (λ
(k)
ij )mn

ij=11 ∈ Rmn, where m = m(k) and n = n(k) for

k = 1, 2, 3, . . ., and we will generally need to impose some kind of convergence condition

on λ(k) as k → ∞. To this end, it is useful to introduce the empirical spectral measure

µ[λ(k)] = 1
mn

mn∑

ij=11

δ
λ

(k)
ij

, (42)

where δ
λ

(k)
ij

is a Dirac mass at λ
(k)
ij ∈ R. We then can make the further assumption that

µ[λ(k)] converges weakly to some compactly supported probability measure µ on R,
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19330 S. Matsumoto and C. McSwiggen

which will allow us to describe the asymptotic behavior of the quantum marginals in

terms of the moments of this limiting measure µ. Recall that for p ≥ 1, the pth moment

of a probability measure µ on R is the quantity

Mp(µ) =
∫ ∞

−∞
xp dµ(x). (43)

If (µk)k≥1 is a sequence of probability measures supported in some bounded interval

[−K, K] ⊂ R and µ is another probability measure supported in [−K, K], then µk converges

weakly to µ if and only if Mp(µk) → Mp(µ) for all p = 1, 2, 3, . . . as k → ∞.

Recall that for a permutation σ ∈ Sd, we write κ(σ ) for the total number of cycles

in its cycle decomposition. Let (c1, . . . , cκ(σ )) be the cycle type of σ . We define

Mσ (µ) =
κ(σ )∏

j=1

Mcj
(µ). (44)

Our calculations below will make use of the following fact.

Lemma 4.1. Let σ ∈ Sd. For λ = (λij)
mn
ij=11 ∈ Rmn, define the empirical spectral measure

µ[λ] as in (42). Then

Trσ (λ) = (mn)κ(σ )Mσ (µ[λ]). (45)

Proof. Again write (c1, . . . , cκ(σ )) for the cycle type of σ . By definition,

Trσ (λ) =
κ(σ )∏

l=1

Tr(diag(λ)cl),

so it suffices to show that Tr(diag(λ)cl) = mn · Mcl
(µ[λ]). Indeed, we find

Tr(diag(λ)cl) =
mn∑

ij=11

λ
cl
ij = mn ·

∫ ∞

−∞
xcl d

(
1

mn

mn∑

ij=11

δλij
(x)

)
,

as desired. !

4.1 Large m, fixed n

Here we take n fixed and consider the limit as m → ∞. Recall that in the setting

of §2.1, H is a random Hermitian matrix given by H = (Hij,kl) = Udiag(λ)U†, where
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λ = (λij)
mn
ij=11 ∈ Rmn and U is a Haar-distributed unitary matrix of size mn. The marginals

of H are the m × m Hermitian matrix π1(H) = (π1(H)i,k) and n × n Hermitian matrix

π2(H) = (π2(H)j,l) defined by

π1(H)i,k =
n∑

j=1

Hij,kj, π2(H)j,l =
m∑

i=1

Hij,il.

For sequences of indices

i = (i1, i2, . . . , ip), k = (k1, k2, . . . , kp) ∈ {1, 2, . . . }×p,

j = (j1, j2, . . . , jq), l = (l1, l2, . . . , lq) ∈ {1, 2, . . . }×q,

we define

s(i, k) = max
{
κ(σ )

∣∣ σ ∈ Sp, σ (i) = k
}
,

s(j, l) = max
{
κ(τ )

∣∣ τ ∈ Sq, τ (j) = l
}
.

Theorem 4.2. Let p, q be nonnegative integers. Fix n ≥ 2 and take sequences of indices

i = (i1, i2, . . . , ip), k = (k1, k2, . . . , kp) ∈ {1, 2, . . . }×p,

j = (j1, j2, . . . , jq), l = (l1, l2, . . . , lq) ∈ {1, 2, . . . , n}×q.

Let m = max{i1, . . . , ip, k1, . . . , kp} and choose a sequence (λ(m))m≥m, where λ(m) ∈ Rmn.

Set H(m) = U(m)diag(λ(m))U(m)†, where U(m) is an mn×mn Haar unitary. Suppose that

the measures µ[λ(m)] all have support contained in some bounded interval [−K, K] ⊂ R,

satisfy a uniform bound |Mk(µ[λ(m)])| < C for all k and m, and converge weakly to a

probability measure µ. Then as m → ∞,

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,lβ

⎤

⎦

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp
κ(σ )=s(i,k)

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) Mσ (µ)Mτ (µ)

⎤

⎥⎥⎥⎦
n2s(i,k)+s(j,l)−p−q ms(i,k)+2s(j,l)−p−q

·
(
1 + o(1)

)
. (46)
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19332 S. Matsumoto and C. McSwiggen

Proof. We use Theorem 2.3:

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,lβ

⎤

⎦

=
∑

σ ,τ∈Sp+q

δpr1(σ )(i, k) δpr2(σ )(j, l) nκ2(σ )mκ1(σ ) Wgmn(σ−1τ ) Trτ (λ
(m)).

We pick up the leading term in the limit m → ∞. From Lemma 2.1, we have

Wgmn(σ−1τ ) =

⎧
⎨

⎩
(mn)−p−q(1 + O(m−1)) if σ = τ ,

O(m−p−q−1) otherwise.

Observe that for σ such that pr2(σ )(j) = l, we have

mκ1(σ ) =

⎧
⎨

⎩
ms(j,l) if σ ∈ Sp × Sq and κ(pr2(σ )) is maximal,

O(ms(j,l)−1) otherwise,

where we regard Sp × Sq as a subgroup of Sp+q in the usual way. For σ = (σ1, σ2) ∈
Sp × Sq, we have κ1(σ ) = κ(σ2), κ2(σ ) = κ(σ1), and Trσ (λ(m)) = Trσ1

(λ(m)) Trσ2
(λ(m)).

Therefore, we see that, as m → ∞,

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,lβ

⎤

⎦

=
∑

σ∈Sp

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) nκ2((σ ,τ ))ms(j,l)(mn)−p−q Tr(σ ,τ )(λ
(m)) ·

(
1 + O(m−1)

)

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) nκ(σ )−(p+q) Trσ (λ(m)) Trτ (λ
(m))

⎤

⎥⎥⎥⎦
ms(j,l)−(p+q) ·

(
1+O(m−1)

)

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) nκ(σ )−(p+q) (mn)κ(σ )Mσ (µ[λ(m)]) (mn)s(j,l)Mτ (µ[λ(m)])

⎤

⎥⎥⎥⎦

· ms(j,l)−(p+q) ·
(
1 + O(m−1)

)
,

(47)
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where in the last equality we have used Lemma 4.1. Again discarding lower-order terms

in m, we find that the outer sum can be restricted only to σ ∈ Sp with κ(σ ) = s(i, k),

giving

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,lβ

⎤

⎦

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp
κ(σ )=s(i,k)

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) Mσ (µ[λ(m)]) Mτ (µ[λ(m)])

⎤

⎥⎥⎥⎦
n2s(i,k)+s(j,l)−(p+q)

· ms(i,k)+2s(j,l)−(p+q) ·
(
1 + O(m−1)

)
.

The desired result then follows from the assumption that µ[λ(m)] converges weakly to µ,

so that as m → ∞, Mk(µ[λ(m)]) → Mk(µ) for all k ≥ 1. !

Example 4.1. If p = 0, the group Sp is trivial, and (46) gives

E

⎡

⎣
q∏

β=1

π2(H(m))jβ ,lβ

⎤

⎦ =

⎡

⎢⎢⎢⎣
∑

τ∈Sq
κ(τ )=s(j,l)

δτ (j, l) Mτ (µ)

⎤

⎥⎥⎥⎦
ns(j,l)−q m2s(j,l)−q ·

(
1 + o(1)

)
. (48)

Similarly, for q = 0, we have

E
[ p∏

α=1

π1(H(m))iα ,kα

]

=

⎡

⎢⎢⎣
∑

σ∈Sp
κ(σ )=s(i,k)

δσ (i, k) Mσ (µ)

⎤

⎥⎥⎦ n2s(i,k)−p ms(i,k)−p ·
(
1 + o(1)

)
. (49)

Corollary 4.3. The fastest possible asymptotic growth of the mixed moment in Theorem

4.2, with p and q fixed, occurs when i = k and j = l. In this case, as m → ∞, we

have

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,jβ

⎤

⎦ = M1(µ)p+q np mq ·
(
1 + o(1)

)
. (50)

Proof. When i = k and j = l, we have s(i, k) = p and s(j, l) = q, the largest values these

quantities can take. In this case the sums in (46) include only the term with σ = idp and

τ = idq, with Mσ (µ) = M1(µ)p and Mτ (µ) = M1(µ)q, so that (46) simplifies to (50). !
The above results imply the following concentration theorem, analogous to a law

of large numbers for the scaled marginal π2(m−1H(m)).
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19334 S. Matsumoto and C. McSwiggen

Theorem 4.4. In the setting of Theorem 4.2, the random matrix π2(m−1H(m)) converges

in probability to the deterministic value M1(µ)In, where In is the n × n identity matrix.

Proof. From (48) and Corollary 4.3, for j = (j1, j2, . . . , jq) ∈ {1, 2, . . . , n}×q, we find

E

⎡

⎣
q∏

β=1

π2(m−1H(m))jβ ,jβ

⎤

⎦ = M1(µ)q + o(1)

as m → ∞, where we have used the linearity of both π2 and E. All other mixed moments

of entries of π2(m−1H(m)) are o(1). These statements imply the limits

E[π2(m−1H(m))j,l] → M1(µ) δ(j, l),

Var[π2(m−1H(m))j,l] → 0

for j, l = 1, . . . , n. The theorem then follows from Chebyshev’s inequality. !

Remark 4.1. The assumptions of Theorem 4.2 on convergence of moments of the

empirical measures are natural from the point of view of random matrix theory. However,

density matrices of physical quantum mechanical systems are constrained to be positive

semidefinite and have trace 1. Accordingly, in physical applications, it is more realistic

instead to make the much stronger assumptions

Tr(diag(λ(m))) = 1,

Tr(diag(λ(m))k) → Tk ≥ 0 as m → ∞, (51)

with a uniform bound | Tr(diag(λ(m))k)| < C for all m and k. It is easy to see that

these assumptions imply that the empirical measures µ[λ(m)] converge in distribution

to a Dirac mass at 0. However, the results above are easily adjusted to this setting. In

particular, in place of (46), we find

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,lβ

⎤

⎦

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) nκ(σ )−p−q Tσ Tτ

⎤

⎥⎥⎥⎦
ms(j,l)−p−q ·

(
1 + o(1)

)
, (52)

where for σ ∈ Sd with cycle type (c1, . . . , cκ(σ )), we define Tσ = ∏κ(σ )
j=1 Tcj

. The asymptotic

formula (52) follows directly from the third line of (47). Note that here we cannot restrict

the sum over Sp to include only σ with κ(σ ) = s(i, k).
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Additionally, in this setting, all moments of the entries of the marginals are

O(1) as m → ∞. For fixed p, the slowest-decaying moments are those for which j = l,

irrespective of whether i = k. In place of (50), we find

E

⎡

⎣
p∏

α=1

π1(H(m))iα ,kα
·

q∏

β=1

π2(H(m))jβ ,jβ

⎤

⎦=

⎡

⎣
∑

σ∈Sp

δσ (i, k) nκ(σ )−p−q Tσ

⎤

⎦ m−p ·
(
1 + o(1)

)
, (53)

which implies that in this case the marginal π2(H(m)) itself, rather than its rescaling

π2(m−1H(m)), converges in probability to the deterministic value n−1In.

4.2 Large m and n

Here we study the limit as m and n both grow large with their ratio fixed. That is, we

send n → ∞ with m = ⌈cn⌉ for c > 0.

Theorem 4.5. Let p, q be nonnegative integers and fix some c > 0. Take sequences of

indices

i = (i1, i2, . . . , ip), k = (k1, k2, . . . , kp) ∈ {1, 2, . . . }×p,

j = (j1, j2, . . . , jq), l = (l1, l2, . . . , lq) ∈ {1, 2, . . . }×q.

Set m = m(n) = ⌈cn⌉ for n = 1, 2, . . ., and take n sufficiently large that

j1, . . . , jq, l1, . . . , lq ≤ n and i1, . . . , ip, k1, . . . , kp ≤ m(n).

Fix a sequence (λ(n))n≥n, where λ(n) ∈ Rmn. Set H(n) = U(n)diag(λ(n))U(n)†, where U(n) is

an mn × mn Haar unitary. Suppose that the measures µ[λ(n)] all have support contained

in some bounded interval [−K, K] ⊂ R, satisfy a uniform bound |Mk(µ[λ(n)])| < C for all k

and n, and converge weakly to a probability measure µ. Then as n → ∞,

E

⎡

⎣
p∏

α=1

π1(H(n))iα ,kα
·

q∏

β=1

π2(H(n))jβ ,lβ

⎤

⎦

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp
κ(σ )=s(i,k)

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) Mσ (µ)Mτ (µ)

⎤

⎥⎥⎥⎦
cs(i,k)+2s(j,l)−p−q

· n3(s(i,k)+s(j,l))−2(p+q) ·
(
1 + o(1)

)
. (54)
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Proof. The proof is similar to Theorem 4.2. We again use Theorem 2.3, along with the

fact that in this limiting regime, by Lemma 2.1,

Wgmn(σ−1τ ) =

⎧
⎨

⎩
(cn2)−p−q(1 + O(n−1)) if σ = τ ,

O(n−2(p+q+1)) otherwise,

to obtain

E

⎡

⎣
p∏

α=1

π1(H(n))iα ,kα
·

q∏

β=1

π2(H(n))jβ ,lβ

⎤

⎦

=
∑

σ∈Sp+q

δpr1(σ )(i, k)δpr2(σ )(j, l)nκ2(σ )(cn)κ1(σ )(cn2)−p−q Trσ (λ(n)) ·
(
1 + O(n−1)

)

=
∑

σ∈Sp+q

δpr1(σ )(i, k)δpr2(σ )(j, l) cκ(σ )+κ1(σ )−p−q n2κ(σ )+κ2(σ )+κ1(σ )−2(p+q)Mσ (µ[λ(n)])

·
(
1 + O(n−1)

)
,

(55)

where in the last equality we have used Lemma 4.1. The leading-order contribution

comes from σ ∈ Sp+q such that κ1(σ )+κ2(σ ) is maximized among σ satisfying pr1(σ )(i) =
k, pr2(σ )(j) = l. This can occur only when σ = (pr1(σ ), pr2(σ )) ∈ Sp × Sq with

κ(pr1(σ )) = s(i, k), κ(pr2(σ )) = s(j, l). Extracting only such terms from the sum and using

the convergence Mk(µ[λ(n)]) → Mk(µ) for all k ≥ 1 as n → ∞, we obtain the desired

result. !

Corollary 4.6. The fastest possible asymptotic growth of the mixed moment in Theorem

4.5, with p and q fixed, occurs when i = k and j = l. In this case, as n → ∞, we have

E

⎡

⎣
p∏

α=1

π1(H(n))iα ,iα ·
q∏

β=1

π2(H(n))jβ ,jβ

⎤

⎦ = M1(µ)p+q cq np+q ·
(
1 + o(1)

)
. (56)

Proof. For any i, j, k, l, we have s(i, k) ≤ p and s(j, l) ≤ q. These bounds are saturated

only when i = k and j = l, in which case the only leading-order term in (54) is the term

with σ = idp ∈ Sp and τ = idq ∈ Sq. !
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Remark 4.2. In this regime as well, we can make the alternative, stronger convergence

assumptions, analogous to (51):

Tr(diag(λ(n))) = 1,

Tr(diag(λ(n))k) → Tk ≥ 0 as n → ∞, (57)

with a uniform bound | Tr(diag(λ(n))k)| < C for all n and k. Again, these assumptions

imply that the empirical measures µ[λ(n)] converge in distribution to a Dirac mass at 0,

but the results above can be rescaled to apply in this setting. In place of (54), we find

E

⎡

⎣
p∏

α=1

π1(H(n))iα ,kα
·

q∏

β=1

π2(H(n))jβ ,lβ

⎤

⎦

=

⎡

⎢⎢⎢⎣
∑

σ∈Sp
κ(σ )=s(i,k)

∑

τ∈Sq
κ(τ )=s(j,l)

δσ (i, k) δτ (j, l) cs(j,l)−p−qTσ Tτ

⎤

⎥⎥⎥⎦
ns(i,k)+s(j,l)−2(p+q) ·

(
1 + o(1)

)
, (58)

as can be obtained directly from (55), while in place of (56), we find

E

⎡

⎣
p∏

α=1

π1(H(n))iα ,iα ·
q∏

β=1

π2(H(n))jβ ,jβ

⎤

⎦ = c−pn−p−q ·
(
1 + o(1)

)
. (59)
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