
Applied Mathematics, 2024, 15, 687-708 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2024.1510040  Oct. 11, 2024 687 Applied Mathematics 
 

 
 
 

Alternative Methods of Regular and Singular 
Perturbation Problems 

Boampong Asare1*, Manohar Sah1, Ram Krishna Hona2 

1Department of Engineering, United Tribes Technical College, Bismarck, North Dakota, USA 
2Department of Environmental Science, United Tribes Technical College, Bismarck, North Dakota, USA 

 
 
 

Abstract 
Making exact approximations to solve equations distinguishes applied math-
ematicians from pure mathematicians, physicists, and engineers. Perturbation 
problems, both regular and singular, are pervasive in diverse fields of applied 
mathematics and engineering. This research paper provides a comprehensive 
overview of algebraic methods for solving perturbation problems, featuring a 
comparative analysis of their strengths and limitations. Serving as a valuable 
resource for researchers and practitioners, it offers insights and guidance for 
tackling perturbation problems in various disciplines, facilitating the advance-
ment of applied mathematics and engineering. 
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1. Introduction 

Perturbation theory is a comprehensive collection of mathematical methods used 
to obtain approximate solutions to problems without closed-form analytical solu-
tions. These methods work by breaking down a challenging problem into an infi-
nite sequence of relatively straightforward problems that can be solved analyti-
cally. Perturbation problems involve a small positive parameter, significantly af-
fecting the problem, causing rapid solution variations in specific regions (inner 
regions) [1] [2] and slow variations in others. Singularly perturbed boundary 
value problems exhibit boundary or interior layers [2] [3] characterized by rapid 
solution changes near endpoints or interior points, posing computational chal-
lenges. In contrast, regular perturbation [2] problems have smooth solution var-
iations as the perturbation parameter approaches zero. However, singular 
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perturbation problems exhibit abrupt solution changes, potentially leading to so-
lution nonexistence, infinity, or degeneracy as the parameter approaches zero. 
Singular perturbations [1] [2] often occur when the small parameter multiplies 
the highest operator, fundamentally changing the problem’s nature. This can lead 
to unsatisfiable boundary conditions in differential equations and reduced solu-
tion numbers in algebraic equations.  

Singular perturbation theory [3] [4] is a vibrant and dynamic field of research, 
with various methods developed to tackle associated problems. These methods 
include asymptotic expansion [1] [4], the method of matched asymptotic expan-
sions [1] [2], Strained Coordinates [1] [2], the method of multiple scales [1] [2] 
[5] and Poincare-Lindstedt method [1] [3] [6]. This research paper aims to pro-
vide a comprehensive overview of perturbation theory, explaining mathematical 
methods for obtaining approximate analytical solutions to singular perturbation 
problems that lack exact solutions. Our objective is to equip young and established 
scientists and engineers with the skills to analyze equations encountered in their 
work. We present insights and techniques useful for tackling new problems, along 
with examples of singularly perturbed problems arising in physical contexts. While 
the material is available in various books and research articles, we have summa-
rized the essential content concisely and effectively, serving as an introduction for 
new researchers. Perturbation methods are thoroughly discussed in references. A 
concise and accessible introduction to the subject is provided in this paper. 

2. Materials and Methods 
2.1. Mathematical Framework 

The foundation of this research is based on the principles of perturbation theory, 
specifically focusing on both regular and singular perturbation problems. The meth-
ods employed in this study involve the application of various algebraic and analyti-
cal techniques that are well-established in applied mathematics. These include: 

1. Asymptotic Expansion: This technique involves expressing the solution as 
a series expansion in terms of a small parameter, typically denoted by ε. The series 
is then truncated to obtain an approximate solution. This method is particularly 
useful for regular perturbation problems. 

2. Method of Matched Asymptotic Expansions: This method is employed to 
solve singular perturbation problems, where different scales of the problem require 
different asymptotic expansions. The solutions obtained in different regions (e.g., 
inner and outer regions) are then matched in an overlapping region to ensure a 
smooth transition. 

3. Strained Coordinates: This technique modifies the independent variable(s) 
of the problem to capture the rapid changes in the solution within specific regions, 
often used in conjunction with other methods to handle singular perturbations. 

4. Method of Multiple Scales: This method is used to tackle problems with 
solutions exhibiting behavior on multiple time or spatial scales. By introducing 
multiple independent variables, each associated with a different scale, we can 
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derive a set of coupled differential equations that can be solved more easily. 
5. Poincaré-Lindstedt Method: This perturbation technique is used to remove 

secular terms (terms that grow without bound) in the solution series, thereby en-
suring the series remains uniformly valid over time. 

2.2. Analytical Techniques 

The mathematical methods were implemented using symbolic computation tools 
such as MATLAB and Wolfram Mathematica. These tools were employed to derive, 
manipulate, and simplify the resulting expressions from the perturbation techniques. 
Additionally, numerical simulations were performed to verify the accuracy of the an-
alytical solutions, particularly in cases where exact solutions are known. 

2.3. Comparative Analysis 

A comparative analysis of the strengths and limitations of the aforementioned 
methods was conducted. This analysis involved applying each method to canoni-
cal perturbation problems, including regular and singular perturbations. The per-
formance of each method was evaluated based on: 
• Accuracy: The closeness of the approximate solution to the exact or numer-

ical solution. 
• Computational Efficiency: The time and resources required to obtain the 

solution. 
• Applicability: The range of problems for which the method is suitable. 
• Ease of Implementation: The complexity of the mathematical operations 

and the level of expertise required to apply the method. 

2.4. Case Studies 

Several case studies were selected from physical contexts, including fluid dynam-
ics, quantum mechanics, and elasticity theory, where singular perturbation prob-
lems naturally arise. These case studies were used to demonstrate the practical 
application of the methods and to highlight the importance of selecting the ap-
propriate technique based on the nature of the problem. 

2.5. Validation 

The validity of the approximate solutions obtained through the various perturba-
tion methods was confirmed by comparing them to known exact solutions (where 
available) or to high-precision numerical solutions. Convergence tests were con-
ducted to ensure that the truncated series solutions provided sufficiently accurate 
approximations as the perturbation parameter approached zero. 

3. Regular and Singular Perturbation Theory 

Perturbation theory encompasses two distinct categories: regular and singular 
perturbation problems. A regular perturbation problem is characterized by a 
power series expansion in ε with a nonvanishing radius of convergence, ensuring 
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a smooth transition to the unperturbed solution as ε approaches zero. For a dif-
ferential equation ( ) ( )L y N yε= , where ε is a small parameter, the solution is 
expanded as: 

( ) 2
0 1 2;ε ε ε= + + +y x y y y  

In contrast, singular perturbation problems exhibit a more complex behavior, 
with perturbation series that may not be power series or have a vanishing radius 
of convergence [7]. In such cases, the exact solution may not exist or exhibit fun-
damentally different qualitative features when ε equals zero, compared to arbi-
trarily small but nonzero ε values. Moreover, the zeroth-order solution and the 
unperturbed problem's solution may differ, with the former potentially depending 
on ε and existing only for nonzero ε [8] [9]. In singular perturbation theory, care-
ful distinction between these two solutions is crucial. When ε causes rapid changes, 
the solution is split into regions (inner and outer). The outer solution is: 

( ) ( ) ( )outer outer 2 outer
outer 0 1 2;ε ε ε= + + +y x y x y x y  

The inner solution is usually around the boundary layers and can be expressed 
as: 

( ) ( ) ( ) ( )2
inner 0 1 2;ε ξ ε ξ ε ξ= + + +y x Y Y Y  

where αξ
ε

=
x

, is a rescaled variable. Let's illustrate these concepts by exploring  

examples of both regular and singular perturbation problems. 

3.1. Consider a Regular Perturbation Problem x x2 1 0ε+ − = ,  
1ε   

3.1.1. Exact Solution 
A solution that can be expressed in a closed form, using a finite number of oper-
ations, including addition, subtraction, multiplication, division, roots, and ele-
mentary functions, such as trigonometric functions, exponential functions, and 
logarithmic functions, without any approximation or truncation. In other words, 
an exact solution is a precise and explicit solution that can be written down ex-
actly, without any error or approximation, using a finite combination of basic 
mathematical operations and functions. For example, the solution to the equation 

2 6 9 0x x+ + =  is 3x = − , which is an exact solution because it can be expressed 
precisely and explicitly without any approximation [6] [10]. 

We begin solving the quadratic equation in x containing the parameter ε, 
2 1 0x xε+ − = . 
This equation has exact solutions using the quadratic formula  

2 4
2

b b acx
a

− ± −
=  is given by 

2 2 24 1 4 1 1
2 2 4 2 4

ε ε ε εε ε− ± + +
= = − ± = − ± +x  

These solutions can be expanded using the binomial expansion for small ε   
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( ) ( ) ( )( )2 31 1 2
1 1

2! 3!
− − −

+ ≈ + + + +n n n n n n
x nx x x  

1
2 2 2

1 1
4 4
ε ε 

+ = + 
 

, valid for 1n <   

1
2 2 2

2 32 2 2

22 2
2 4

1 1
4 4

1 1 1 1 11 1 2
2 2 2 2 21

2 4 2! 4 3! 4

1 1
1 12 21 1

8 2! 4 8 128

ε ε

ε ε ε

ε ε ε ε

 
+ = + 

 
    − − −           ≈ + + + +   ×    

 −    ≈ + + ≈ + − + 
 





x

x

 

Thus, the exact solution 
2

2 44 1 1 11
2 2 8 128

ε ε ε ε ε− ± +  = = − ± + − + 
 

x  

( )

( )

2 4 6

2 4 6

1 1 11
2 8 128
1 1 11
2 8 128

ε ε ε ε

ε ε ε ε

+ − + − += 
− − − + +


O
x

O
 

These binomial expansions converge if 2ε < . 
Now, suppose we did not know the exact solution, how could we generate the 

approximate solutions for 1ε  ? 

4. Expansion Method 

Many physical problems involving the function ( ),u x ε  can be represented 
mathematically by the differential equation ( ), , 0L u x ε =  and the boundary 
condition ( ), 0B u ε = , where x is an independent variable and ε is a parameter. 
Since an exact solution is often impossible, we seek an approximate solution 
for small ε. To do this, we assume a solution expansion in powers of ε: 
( ) 2

0 1 2;u x u u uε ε ε= + + +  where ( )nu x  is independent of ε and ( )0u x  is 
the solution for   0ε = . We then substitute this expansion into the differential 
equation ( ), , 0L u x ε =  and boundary condition ( ), 0B u ε = , expand for small 
ε, and collect coefficients of each power of ε. Since these equations must hold for 
all ε values, each coefficient of ε must vanish independently. This usually yields 
simpler equations governing ( )nu x , which can be solved successively. This ap-
proach, called perturbation theory, is useful when an exact solution is impossible. 
The next two examples demonstrate this method [1] [11]. 

4.1. Expansion in the Power Series in ε 
2 1 0ε+ − =x x  

Given that   0ε =  then, we have 2 1 0x − =  and the solution is 1x = ± .  
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Now, let’s try 2
1 21x x xε ε= + + +  disregarding ( )3O ε . 

Substituting x into 2 1 0x xε+ − =  we have 

( ) ( )22 2
1 2 1 21 1 1 0ε ε ε ε ε+ + + + + + + − = x x x x  

( ) ( )22 2 2
1 2 1 21 1 1 0 0 0ε ε ε ε ε ε ε+ + + + + + + − = + + +  x x x x  

Equating the coefficients of each power of ε 

( )2 2 2 2
1 2 1 11 2 2 1 0 0 0ε ε ε ε ε ε+ + + + + − = + + + x x x x  

1
1 1

12
2

: 1 0,ε + = = −x x  

2
2 2 1 1

2 1 1 2

1 1
14 22 0,:

2 2 8
ε

−+
+ + = = − = − =

x xx x x x  

Thus 2
1 21 ε ε= + + +x x x , 21 11

2 8
ε ε= − + +x . 

Now, let’s try 2
1 21 ε ε= − + + +x x x  disregarding ( )3εO . 

Substituting x into 2 1 0ε+ − =x x  we have 

( ) ( )22 2
1 2 1 21 1 1 0ε ε ε ε ε− + + + + − + + + − = x x x x  

( ) ( )22 2 2
1 2 1 21 1 1 0 0 0ε ε ε ε ε ε ε− + + + + − + + + − = + + +  x x x x  

Equating the coefficients of each power of ε 
2 2 2 2 2

1 2 1 11 2 2 1 0 0 0ε ε ε ε ε ε ε− − + − + − = + + + x x x x  

1
1 1: 12 1 0,

2
ε − − = = −x x  

2
2 2 1 1

2 1 1 2

1 1
14 22 0,

2 8
:

2
ε

−+
− + + = = = = −

x xx x x x  

Thus 2
1 21 ε ε= + + +x x x  

21 11
2 8
ε ε= − − − +x  

2

2

1 11
2 8
1 11
2 8

ε ε

ε ε

+ − + += 
− − − +






x  

4.2. Features of the Method: It’s Simple to Solve for x1, x2, … 

But we need to guess the form 2
0 1 2ε ε= + + +x x x x  which is the asymptotic 

sequence. 
Let’s guess the asymptotic sequence { }2 31, , , ,ε ε ε   by substituting 

2
0 1 2ε ε= + + +x x x x  into the equation 2 1 0ε+ − =x x  

( ) ( )22 2
0 1 2 0 1 2 1 0ε ε ε ε ε+ + + + + + + − = x x x x x x  
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( ) ( )22 2 2
0 1 2 1 21 1 0 0 0ε ε ε ε ε ε ε+ + + + + + + − = + + +  x x x x x  

2 2 2 2 2 2
0 0 1 0 2 1 12 2 1 0 0 0ε ε ε ε ε ε ε+ + + + + − = + + + x x x x x x x  

( )2 2 2 2 2
0 0 1 0 2 1 11 2 2 0 0 0ε ε ε ε ε ε− + + + + + = + + + x x x x x x x  

Equating coefficients 
0 2

0 0: 1 0, 1ε − = = ±x x  

1
0 1 1

12 1 0,:
2

ε + = = −x x x  

2
2 2 1 1

0 2 1 1 2

1 1
14 22 0,

2
:

2 8
ε

−+
+ + = = − = − =

x xx x x x x  

Thus 2
0 1 2ε ε= + + +x x x x  

21 11
2 8
ε ε= − + +x  

5. Iteration Method   

Iteration refers to a method for improving the accuracy of the approximation by 
repeatedly applying the perturbation correction to the previous solution. Begin 
with an initial solution (usually the zeroth-order solution) and calculate the first-
order correction using the perturbation equations. Add the first-order correction 
to the initial solution to obtain a new improved solution. Repeat steps with the 
new solution as the starting point, calculating the next higher-order correction. 
Continuing this process until the desired level of accuracy is achieved. 

2 1 0ε+ − =x x  

Rewrite as 2 1 ε= −x x . 
Let’s try 1 1 ε+ = ± −n nx x  with initial condition 0 1=x . 
Consider 1 ε+ − nx  to find when 0 1=x , the solution is perturbed. 

0 1=x , when 0=n  

0 1 01 ε+ = + −x x  

1 1 ε= + −x  and by using the binomial expansion as before 

2
1

1 11
2 8
ε ε≈ − − −x  

We realize that the coefficient of 2ε  which is 1
8

−  disagrees with that of the 

coefficient of the exact solution which is 1
8

. That is to compare  

21 11
2 8

x ε ε= − + +   with  2
1

1 11
2 8
ε ε≈ − − −x  

Therefore, we truncate after ( )2εO  

( )2
1

11
2
ε ε≈ − +x O  
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Now for 1=n , ( )2
1

11
2
ε ε≈ − +x O  substituting into 2 11 ε= −x x , we ob-

tain 

( ) ( )

( )

( )

1 1
2 22 2 3

2 1

2
2 2

2 3

2 3

1 11 1 1 1
2 2

1 1 1 11
2 2 8 2
1 1 11
2 4 8
1 11
2 8

ε ε ε ε ε ε ε

ε ε ε ε

ε ε ε

ε ε ε

    = − = − − + = − + +        

   = + − + − − + +      
 = − + − + 
 

= − + +



x x O O

O

O

 

We can see that the exact solution, approximate, and iteration are all the same 
for the positive results. Features: This correctly generates the form of the series 
automatically but requires an increase in the amount of work to higher-order 
terms. Earlier iterations gave the wrong higher-order terms. 

5.1. Consider the Singular Problem x x2 1 0ε + − = , 1ε   

We begin with the quadratic equation in x containing the parameter ε, 
2 1 0, 1ε ε+ − = x x  

5.1.1. Exact Solution 
If 0ε = , then 1 0− =x , 1=x .  

There are two roots if 0ε ≠ . This equation has exact solutions using the quad-
ratic formula 

2 4
2

− ± −
=

b b acx
a

 

1 1 4 1 1 1 4
2 2 2

ε ε
ε ε ε

− ± +
= = − ± +x  

These solutions can be expanded using the binomial expansion for small ε 

( ) ( ) ( )( )

( )( )( )

2 3

4

1 1 2
1 1

2! 3!
1 2 3

4!

− − −
+ ≈ + + +

− − −
+ +

n n n n n n
x nx x x

n n n n
x

 

( ) ( ) ( ) ( )

( )

1 2 3
2

4

1 1 1 1 11 1 2
1 2 2 2 2 21 4 1 4 4 4
2 2! 3!

1 1 1 11 2 3
2 2 2 2 4

4!

ε ε ε ε

ε

    − − −    
    + = + + +

   − − −   
   + +

 

( )
1

2 3 421 4 1 2 2 4 10ε ε ε ε ε+ = + − + − +  

Therefore, 
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2 3 4

1 1 4 1 1 1 4
2 2 2

1 1 1 2 2 4 10
2 2

ε ε
ε ε ε

ε ε ε ε
ε ε

− ± +
= = − ± +

 = − ± + − + − + 

x
 

Thus, the exact solution 
2 3

2 3

1 2 2 5
1 1 2 5

ε ε ε

ε ε ε
ε

+ − + − +
= 
− − + − + +





x  

Realize the singular second root evaporates off to = ∞x  in the limit 0ε = . 

2 3

0

1lim 1 2 5
ε

ε ε ε
ε→

− − + − + + = ∞  

Now, suppose we did not know the exact solution, how could we generate the 
approximate solutions for 1ε  ? 

5.1.2. Using the Expansion Method 
when an exact solution is impossible. The next two examples demonstrate this 
method. 

2 1 0ε + − =x x  

If 0ε =  then 1 0− =x , 1=x . 
But for 0ε ≠  even 1ε  , we have two roots. There is a big qualitative 

change. Typical of singular perturbation. The other root →∞  as 0ε →  
Dominant balance: Maybe the term 2ε x  is big for this missing root. 
We now find the first root by letting 2 4ε ε ε= + + + +x a b c d  
Substituting into the perturbation problem, we obtain 

( ) ( )22 4 2 4 1 0ε ε ε ε ε ε ε+ + + + + + + + + − = a b c d a b c d  

( )
( )

2 2 3 2 2 3

2 3 4

2 2 2 2

1 0

ε ε ε ε ε ε

ε ε ε ε

+ + + + + +

+ + + + + + − =





a ab ac ad b bc

a b c d e
 

Equating Coefficients of equal powers of ε, we obtain 
0 : 1 0, 1ε − = =a a  

1 2: 0, 1ε + = = −a b b  
2 : 2 0, 2ε + = =ab c c  

3 2: 2 0, 5ε + + = = −ac b d d  

Thus, the first root is 2 31 2 5ε ε ε= − + − +x . 

5.1.3. We Now Find the Second Root by Using the Rescaling Method 
Rescaling is a technique to simplify the analysis of a perturbed problem by intro-
ducing new variables or parameters that absorb the small perturbation parameter 
ε. Rescaling involves multiplying or dividing the original variables or parameters 
by appropriate powers of ε, effectively “rescaling” them to reduce the complexity 
of the equations or expressions. We find the second root of the equation (1.3) by  
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rescaling, we let substituting 
ε

= n
Xx  into the perturbation problem, and we obtain 

2 1 0ε + − =x x  
2

1 0ε
ε ε

  + − = 
 n n
X X

 

1 2 2 1 0ε ε− −+ − =n nX X  

Extracting the exponents of the first two terms, we have 
1 2− = −n n  

1= n  

Therefore this 1 2 2 1 0ε ε− −+ − =n nX X  becomes, 
1 2 1 1 0ε ε− −+ − =X X  

Multiply by ε, we have 
2 0ε+ − =X X  

0ε =  

( )2 0, 1 0, 0, 1+ = + = = = −X X X X X X  

Let 21 ε ε= − + + +X a b . 
Substituting into 2 0ε+ − =X X  , we obtain, 

( ) ( )22 3 4 2 3 41 1 0ε ε ε ε ε ε ε ε ε− + + + + + + − + + + + + − = a b c d a b c d  

( )
( )

2 2 2 3 3 4 2 4 4

2 3 4

1 2 2 2 2 2 2

1 0

ε ε ε ε ε ε ε ε

ε ε ε ε ε

− − + + − + + −

+ − + + + + + − =

a b a ab c ac b d

a b c d
 

Equating Coefficients of equal powers of ε, we obtain 
0 :1 1 0ε − =  

1 : 2 1 0, 1ε − + − = = −a a a  
2 2: 2 0, 1ε − + + = =b b a b  

3 : 2 2 0, 2ε + − = = −ab c c c  
4 2: 2 2 0, 5ε + − + = =ac b d d d  

Therefore, the first root is 2 3 41 2 5ε ε ε ε= − − + − + +X . 

But 
ε

= n
Xx , 1=n . 

Therefore 
2 3 4

2 31 2 5 1 1 2 5ε ε ε ε ε ε ε
ε εε

− − + − + +
= = = − − + − + +



n
Xx . 

Thus, the solution from the expansion method equals the exact solutions. 
2 3

2 3

1 2 2 5
1 1 2 5

ε ε ε

ε ε ε
ε

+ − + − +
= 
− − + − + +





x  

The same as the exact solution. 
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6. Iteration Method 
2 1 0ε + − =x x  

Keeping the term 2ε x  as a main term rather than as a small correction, hence x 
must be large. Therefore, at leading order, the -1 term in the equation will be neg-
ligible when compared with the x term. 

Therefore, as 2 1 0ε + − =x x . 

Rewrite as ( )1 0ε + =x x , 
10,
ε

= −x . 

Using the rearrangement of the quadratic equation, we have 
2 1 0ε + − =x x , 2 1ε = −x x  

( ) 1ε = −x x x  

1
ε ε

= − +
xx
x x

 

1 1
ε ε

= − +x
x

 

Let’s try 1
1 1
ε ε+ = − +n

n

x
x

 with initial condition 0
1
ε

= −x . 

Consider 1
1 1
ε ε+ = − +n

n

x
x

 to find when 0
1
ε

= −x , the solution is perturbed. 

When 0=n , 0
1
ε

= −x  

0 1
0

1 1 1 1 1 1
1  ε ε ε εε
ε

+ = − + = − + = − −
 − 
 

x
x

 

2
1

1 1 1 1 1 1 1 1
1 1 11ε ε ε ε ε ε εε
ε

= − + = − + = − + = − −
− − + − − 

 

x
x

 

Using the binomial expansion as before, we have 

( ) 1 2 31 1 1
1

ε ε ε ε
ε

−= + = − + − +
+

  

2 3 2 3
2

1

1 1 1 1 11 1
1

ε ε ε ε ε ε
ε ε ε ε ε

= − + = − − = − + − + = − − + − + +
+

 x
x

 

Realize a slight difference between the exact solution and the Iteration 
method. 

6.1. Find the First Three Terms for All Three Roots of  
( )x x x3 2 2 1 0ε ε+ + + + =  

6.1.1. Expansion Method 
Solving the perturbation problem, we find the first root by letting 

2x a b cε ε= + + + . 
Substituting into the perturbation problem, we obtain 
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( ) ( ) ( )( )3 22 2 22 1 0ε ε ε ε ε ε ε ε+ + + + + + + + + + + + + =  a b c a b c a b c  

( )
( ) ( )( )

3 2 2 2 2 2 3 3 3

2 2 2 2 3 2

3 3 3 6

2 2 2 2 1 0

ε ε ε ε ε ε

ε ε ε ε ε ε ε

+ + + + + +

+ + + + + + + + + + + + =



 

a a b a c ab abc b

a ab ac b bc a b c
 

Equating Coefficients of equal powers of ε, we obtain 
0 2: 2 1 0, 1, 1ε + + = = − −a a a  

( )
( )

2
1 3

1
: 2 2 0,

2 1
ε

− +
+ + + = = = ∞

+

a a
a a b ab b

a
 

Thus, we now let 21x δ δ= − + + + , where ( )δ δ ε= . 

( ) ( ) ( )( )3 22 2 21 1 2 1 1 0ε δ δ δ δ ε δ δ− + + + + − + + + + + − + + + + =    

( ) ( ) ( )( )22 2 21 3 5 1 2 2 1 1 0δ δ δ δ ε δ δ− + − + + − − − + + + − + + + + =    

2 22 4 4 0ε δ εδ εδ− + + − =  

Extracting the dominant terms, we have 
1

2 22 0, 2ε δ δ ε− + = = ±  

Therefore, we let 
1
21 2 2x cε ε= − + + +  and 

1
21 2 2x cε ε= − − − + . 

Substituting 
1
21 2 2x cε ε= − + + +  into the equation 

( )

3 21 1
2 2

1
2

1 2 2 1 2 2

2 1 2 2 1 0

ε ε ε ε ε

ε ε ε

   
− + + + + − + + +      
   

 
+ + − + + + + =  

 

 



c c

c

 

( )

1 3 1 3
2 2 2 2

1
2

1 3 2 6 2 2 6 1 2 2 2 4 4 2

2 1 2 2 1 0

ε ε ε ε ε ε ε ε ε

ε ε ε

   
− + − + + + + − + − + +      
   

 
+ + − + + + + =  

 

 



c c c

c

 

Equating Coefficients of equal powers of ε, we obtain 
0 :1 2 1 0ε − + =  

1 : 1 2 4 1 4 0ε − + − − + =c c  
3
2 : 3 2 4 2 2 0, 1ε + + = = −c c  

Thus, one root is 
1
21 2 2x ε ε= − + − + . 

Also substituting 
1
21 2 2x cε ε= − − − +  into the equation 

( )

3 21 1
2 2

1
2

1 2 2 1 2 2

2 1 2 2 1 0

ε ε ε ε ε

ε ε ε

   
− + − + + − + − +      
   

 
+ + − + − + + =  

 

 



c c

c
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( )

1 3 3
2 2 2

1 3
2 2

1
2

1 3 2 6 2 2 6 12

1 2 2 2 4 4 2

2 1 2 2 1 0

ε ε ε ε ε ε

ε ε ε ε

ε ε ε

 
− − − − − + +  
 
 

+ + + + + +  
 

 
+ + − − − + + =  

 







c c

c c

c

 

Equating Coefficients of equal powers of ε, we obtain 
0 :1 2 1 0ε − + =  

1 : 1 2 4 4 1 0ε − + − + − =c c  
3
2 : 3 2 4 2 2 0, 1ε − + − = =c c  

Thus, the second root is 
1
21 2 2ε ε= − − − +x . 

We find the third root by using the method of rescaling. 

We let n

Xx
ε

= . 

Substituting into the perturbation problem, we obtain 

( )
3 2

2 1 0 0ε ε
ε ε ε

     + + + + = =     
     n n n
X X X

 

( )1 3 3 2 2 2 1 0ε ε ε ε− − −+ + + + =n n nX X X  

Extracting the exponents of the first two terms, we have 

1 3 2 , 1− = − =n n n  

Therefore this ( )1 3 2 2 2 2 1 0ε ε ε ε− − −+ + + + =n n nX X X  becomes. 

( )2 3 2 2 12 1 0ε ε ε ε− − −+ + + + =X X X  

Multiply by 2ε , we have 

( )3 2 22 0ε ε ε+ + + + =X X X  

Setting 0ε = , we have 

( )3 2 20, 1 0, 0, 1+ = + = = = −X X X X X X  

Let 21X a bε ε= − + + + . 
Substituting into ( )3 2 22 0X X Xε ε ε+ + + + =  we obtain 

( ) ( )32 2 21 1 0ε ε ε ε ε− + + + + − + + + + = a b a b  

( )
( )

2 2 3 3 3

2 2 2 3 2

1 3 3 3 3 6

1 2 2 2 0

ε ε ε ε

ε ε ε ε ε

− + + − + − +

+ − − + + + + =





a b a b ab

a b a ab
 

Equating Coefficients of equal powers of ε, we obtain 
0 : 1 1 0ε − + =  

1 : 3 2 2 0, 2ε − − = =a a a  
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2 2: 2 0, 1ε − + + = =b b a b  

3 2 2: 3 3 2 1 1 0, 4ε − − + − + = =b a b a b  

Therefore, the first root is 21 2 4ε ε= − + + +X . 

But 
ε

= n
Xx , 1=n . 

Therefore 
21 2 4 1 2 4ε ε ε

ε εε
− + + +

= = = − + + +


n
Xx . 

Thus, the three roots are 

1
2

1
2

1 2 2

1 2 2
1 2 2

ε ε

ε ε

ε
ε


− + − +

= − − − +

− + − +








x  

7. Find the First Three Terms for All Three Roots of  
( )x x x3 2 2 1 0ε ε+ + − + =  

7.1. Exact Solution 

( )3 2 2 1 0ε ε+ + − + =x x x  

3 2 2 1 0ε ε− + + + =x x x x  

( )2 21 2 1 0ε − + + + =x x x x  

( ) ( )22 1 1 0ε − + + =x x x  

( )( ) ( )21 1 1 0ε − + + + =x x x x  

( ) ( ) ( ){ }1 1 1 0ε+ − + + =x x x x  

1 0, 1+ = = −x x  

( ) ( )1 1 0ε − + + =x x x  

2 1 0ε ε− + + =x x x  

( )2 1 1 0ε ε+ − + =x x  

Thus, the first root is 1= −x . 
Solving for the second and third roots by using the quadratic formula, we obtain 

( ) ( )
( ) ( )

( )

( ) ( ) ( )

1
2

2 2

1
2 2

41 1 1
1 1 4 1

2 2

1 1 1 4 1

2

εε ε
ε ε ε ε

ε ε

ε ε ε ε

ε

−

 
− ± − − 

− ± − − −  = =

 − ± − − − =

x  

By using the Binomial Expansion 
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( ) ( ) ( )( )

( )( )( )

2 3

4

1 1 2
1 1

2! 3!
1 2 3

4!

− − −
+ ≈ + + +

− − −
+ +

n n n n n n
x nx x x

n n n n
x

 

( ) 2 2 31 1 2 3 4ε ε ε ε−− = + + + +  

Therefore, 

( ) ( ) ( )
1

2 3 21 1 1 4 1 2 3 4

2

ε ε ε ε ε ε

ε

 − ± − − + + + + =


x  

( ) ( )
1

2 21 1 1 4 8

2

ε ε ε ε

ε

 − ± − − − =x  

Using the binomial expansion once again, we obtain 

( )
1

2 221 4 8 1 2 6ε ε ε ε− − = − − +  

( ) ( )( )21 1 1 2 6

2

ε ε ε ε

ε

− ± − − −
=x  

21 1 3 4 1 2
2

ε ε ε ε
ε

− + − − +
= = − − +



x  

21 1 3 4 1 2 2
2

ε ε ε ε
ε ε

− − + + +
= = − + + +



x  

7.2. Using the Expansion Method 

To solve the perturbed problem, we find the first root by letting  
2ε ε= + + +x a b c . 

Substituting into the perturbation problem, we obtain 

( ) ( ) ( )( )3 22 2 22 1 0ε ε ε ε ε ε ε ε+ + + + + + + + − + + + + =  a b c a b c a b c  

( )
( ) ( )( )

3 2 2 2 2 2 3 3 3

2 2 2 2 3 2

3 3 3 6

2 2 2 2 1 0

ε ε ε ε ε ε

ε ε ε ε ε ε ε

+ + + + + +

+ + + + + + + − + + + + =



 

a a b a c ab abc b

a ab ac b bc a b c
 

Equating Coefficients of equal powers of ε, we obtain 
0 2: 2 1 0, 1, 1ε + + = = − −a a a  

( )
( )

2
1 3

1
: 2 2 0,

2 1
ε

−
− + + = = = ∞

+

a a
a a b ab b

a
 

Thus, we now let 21 δ δ= − + + +x , where ( )δ δ ε=  

( ) ( ) ( )( )3 22 2 21 1 2 1 1 0ε δ δ δ δ ε δ δ− + + + + − + + + + − − + + + + =    

( ) ( ) ( )( )2 2 21 3 5 1 2 2 1 1 0δ δ δ δ ε δ δ− + − + + − − + + − − + + + + =    

2 22 6 0εδ δ εδ+ − =  
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Extracting the dominant terms, we have 
22 0, 2εδ δ δ ε+ = = −  

Therefore, we let 21 2 4ε ε= − − + +x b . 
Substituting 21 2 4ε ε= − − + +x b  into the equation 

( ) ( )
( )( )

3 22 2

2

1 2 4 1 2 4

2 1 2 4 1 0

ε ε ε ε ε

ε ε ε

− − + + + − − + +

+ − − − + + + =

 



b b

b
 

( ) ( )
( )( )

2 2 3 2 2 3

2

1 6 12 12 8 1 4 4 8 16

2 1 2 4 1 0

ε ε ε ε ε ε ε ε ε

ε ε ε

− − − + − + + + + − − +

+ + − − + + + =

 



b b

b
 

Equating Coefficients of equal powers of ε, we obtain 
0 :1 2 1 0ε − + =  

1 : 1 4 4 1 0ε − + − + =  
2 : 6 4 8 8 2 0ε − + − + + =b b  

3 3: 12 12 16 4 0,
2

ε − + − − = = −b b b b  

Thus, one root is 21 2 6ε ε= − − − +x . 

Finding the second root, we let 
1 3
2 21 ε ε ε= − + + + +x a b c  and substituting 

into the perturbed problem. 

( )

3 21 3 1 3
2 2 2 2

1 3
2 2

1 1

2 1 1 0

ε ε ε ε ε ε ε

ε ε ε ε

   
− + + + + + − + + + +      
   

 
+ − − + + + + + =  

 

 



a b c a b c

a b c

 

( )

3 1 1 3
2 3 22 2 2 2

1 1
2 2

1 3 3 3 1 2 2 2

2 1 1 0

ε ε ε ε ε ε ε ε ε

ε ε ε ε

   
− + − + − + + − − − + + +      
   

 
+ + − + + + + + =  

 

 



b a a a b a a ab

a b c

 

Equating Coefficients of equal powers of ε, we obtain 
0 :1 2 1 0ε − + =  

1
2 : 2 2 0ε − + =a a  

1 2: 1 2 2 1 0, 0ε − − + + + = =b a b a  
3
2 : 3 2 2 0, 0ε + + − = =a ab c a c  

2 2: 3 3 0, 0ε − − = =b a b b  

Thus, second root is 1= −x . 

7.3. Rescaling 

We find the third root by using the method of rescaling. 
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We let 
ε

= n
Xx . 

Substituting into the perturbation problem, we obtain 

( )
3 2

2 1 0 0ε ε
ε ε ε

     + + − + = =     
     n n n
X X X

 

( )1 3 3 2 2 2 1 0ε ε ε ε− − −+ + − + =n n nX X X  

Extracting the exponents of the first two terms, we have 
1 3 2 , 1− = − =n n n  

Therefore this ( )1 3 2 2 2 2 1 0ε ε ε ε− − −+ + − + =n n nX X X  becomes. 

( )2 3 2 2 12 1 0ε ε ε ε− − −+ + − + =X X X  

Multiply by 2ε , we have 

( )3 2 22 0ε ε ε+ + − + =X X X  

Setting 0ε = , we have 

( )3 2 20, 1 0, 0, 1+ = + = = = −X X X X X X  

Let 21 ε ε= − + + +X a b .  
Substituting into ( )3 2 22 0ε ε ε+ + − + =X X X  we obtain 

( ) ( )
( )( )

3 22 2

2 2

1 1

2 1 0

ε ε ε ε

ε ε ε ε ε

− + + + + − + + +

+ − − + + + + =

 



a b a b

a b
 

( )
( )

2 2 2 3 3 3

2 2 2 3 2

1 3 3 3 6

1 2 2 2 ? 0

ε ε ε ε ε

ε ε ε ε ε

− + + − + − +

+ − − + + + + =





a b a b ab

a b a ab
 

Equating Coefficients of equal powers of ε, we obtain 
0 : 1 1 0ε − + =  

1 : 3 2 2 0, 2ε − − = =a a a  
2 2 2: 3 3 2 2 1 1 0, 2ε − − + + + + = =b a b a a b  

3 2 2: 3 3 2 1 1 0, 4ε − − + − + = =b a b a b  

Therefore, 21 2 2ε ε= − + + +X . 

But 
ε

= n
Xx , 1=n . 

Therefore 
21 2 2 1 2 2ε ε ε

ε εε
− + + +

= = = − + + +


n
Xx  

Thus, the three roots are 

21 2 6
1
1 2 2

ε ε

ε
ε

− − − +
−= 
− + + +





x  
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8. Model Problem: George Carrier 

The function ( ),εf x  satisfies the equation ( ) 1ε+ =′ +x f f f  0 1≤ ≤x  and 
is subject to the boundary condition ( )1 2=f . Find the exact solution. 

Exact solution: 

( ) 1ε+ =′ +x f f f  

( )
21dd 2 1

d d

ε 
 
 + =

fxf
x x

 

21
2
ε+ = +xf f x C  

Applying the boundary condition ( )1 2=f , we have 

21
2
ε+ = +xf f x C  

( ) ( )211 1 1 1
2
ε⋅ + = +f f C  

11 1 2 4 1 2
2
ε ε+ = ⋅ + ⋅ → = +C C  

( ) ( )2 21 2 1 2 , 2 2 1 2 0
2
ε ε ε ε+ = + + + − + + =xf f x xf f x  

Solving, we obtain 

( )2 2 2 1 2 0ε ε+ − + + =f xf x  

( ) ( )22 2 4 2 1 2
2
ε ε

ε
− + + ⋅ ⋅ + +

=
x x x

f  

( )2 2 22 4 8 1 2 2 4 8 8 16
2 2
ε ε ε ε ε
ε ε

− + + + + − + + + +
= =

x x x x x xf  

Therefore, the exact solution is 
2 22 2 4ε ε ε

ε
− + + + +

=
x x xf  

( )2 2 1
4

ε ε ε
+ = + + + 

 

xx xf  

Note that 

( ) 20 4
ε

= +f  

For large x, ( ) ( ) 2

2 2

2 1 41
ε ε

ε ε ε
+

= − + + +
xx xf x
x

. 

Using the binomial Expansion  

( ) ( ) ( )
1

2 2 2

2

2 1 2 1 2 1
4 4 1

ε
ε ε ε ε

 + + +    + + = + + = + +    
     



x x xx x
x
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For 1x , ( ) ( ) 2

2

2 1 11 1
ε

ε ε ε ε ε
+  +

= − + + + = − + + ≈ + 
 



xx x x x x xf x
xx

 

For 1x , ( ) ( ) 2

2

2 1 2 2 11 1
ε

ε ε ε ε ε
+  +

= − − + + = − − ≈ − − − 
 



xx x x x x xf x
xx

 

8.1. Expansion Method 

Treating it as a singular perturbation problem 
Let ( ) ( ) ( )0 1ε= + +f x f x f x  and ( )0 1 2=f  

( ) ( )0 0 1′ + =xf x f x  

( )( )0d
1

d
=

xf x
x

 

( )0 = +xf x x C  

Applying the boundary condition 
2 1 1= + → =C C  

Therefore, singular at 0=x , ( )0
1 11+

= = +
xf x
x x

. 

This is not surprising because as 0ε → , ( )f x  exact value becomes singular 
at 0=x . 

8.2. Consider the Van Der Pol Oscillator Equation  

( )x x x x21ε+ = −   with ( )x 0 1= , ( )x 0 0=  ( )x x x x21 0ε+ − − =   

Using the perturbation method, we let 
( ) ( ) ( )0 1ε= + +x t x t x t  so that 

( ) ( ) ( )0 1ε= + + 
x t x t x t  

( ) ( ) ( )0 1ε= + +  
x t x t x t  

Substituting into the DE, we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
0 1 0 1

2
0 1 0 11 0

ε ε

ε ε ε

+ + + + +      
 − + + − + + =     

 
 

 
 

x t x t x t x t

x t x t x t x t
 

Equating coefficient of equal powers of ε, we obtain 

( ) ( )0
0 0: 0ε + =x t x t  

( ) ( ) ( ) ( ) ( )1 2
1 0 1 0 0 0: 0ε + − + =  x t x x t x t x t x t  

Thus, the solution to ( ) ( )0 0 0+ =x t x t  is 

( )0 cos sin= +x t A t B t  

( )0 sin cos= − +x t A t B t  

Using the initial condition, ( )0 1=x  

( ) ( ) ( )0 0 cos 0 sin 0= +x A B , 1=A  
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( ) ( ) ( )0 0 sin 0 cos 0= − +x A B , 0=B  

Therefore ( )0 cos=x t t . 
Solving the second equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 0 0 0 1 1 0 0 00,+ − + = + = −     x t x t x t x t x t x t x t x t x t x t  

( ) ( ) ( ) ( ) ( )2 2
1 1 1 1sin sin cos , sin 1 cos+ = − + = − x t x t t t t x t x t t t  

( ) ( ) ( ) ( )2 3
1 1 1 1sin sin , sin+ = + = x t x t t t x t x t t  

But ( )3 3 1sin sin sin 3
4 4

= −t t t  

( ) ( ) ( )3
1 1

3 1sin sin sin 3
4 4

+ = = −x t x t t t t  

Solving for the homogeneous solution ( ) ( )1 1 0+ =x t x t , we have  
( )1 cos sin= +x t a t b t . 
Finding a particular solution 

( ) cos sin cos3 sin3= + + + +px t Dt t Et t F t G t H  

( ) cos sin sin cos 3 sin3 3 cos3= − + + − +px t D t Dt t E t Et t F t G t  

( ) sin sin cos cos cos sin

9 sin3 9 sin3

= − − − + + −

− −

p t D t D t Dt t E t E t Et t

F t G

x

t
 

( ) 2 sin 2 cos cos sin 9 cos3 9 sin3= − + − − − −px t D t E t Dt t Et t G t G t  

Substituting into ( ) ( ) ( )1 1
3 1sin sin 3
4 4

+ = −x t x t t t , we have 

( )

2 sin 2 cos cos sin 9 cos3 9 sin3
3 1cos sin cos3 sin3 sin sin 3
4 4

− + − − − −

+ + + + + = −

D t E t Dt t Et t F t G t

Dt t Et t F t G t H t t
 

( )

2 sin 2 cos 9 cos3 9 sin3 cos3 sin3
3 1sin sin 3
4 4

− + − − + + +

= −

D t E t F t G t F t G t H

t t
 

Equating coefficients, we have 

3 32 , , 2 0, 0, 9 0, 0
4 8

− = = − = = − + = =D D E E F F F  

1 19 , , 0
4 32

− + = − = =G G G H  

Therefore, a particular solution is ( ) 3 1cos sin3
8 32

= − +px t t t t . 

Thus, ( )1x t  = homogeneous solution + A particular solution 

( )1
3 1cos sin cos sin3
8 32

= + − +x t a t b t t t t  

( )1
3 3 3cos sin cos3 sin cos
8 8 32

= − + + − +x t t t t t a t b t  

Applying the boundary conditions, ( )1 0 1=x  to  
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( )1
3 1cos sin3 cos sin
8 32

= − + + +x t t t t a t b t , we have 

( ) ( ) ( ) ( ) ( ) ( )1
3 10 0 cos 0 sin 3 0 cos 0 sin 0
8 32

= − + × + +x a b  

1= a  

Applying the boundary conditions, ( )1 0 0=x  to 

( )1
3 3 3cos sin cos3 sin cos
8 8 32

= − + + − +x t t t t t a t b t , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
3 3 30 cos 0 0 sin 0 cos 3 0 sin 0 cos 0
8 8 32

= − + + × − +x b  

3 3 90 ,
8 32 32

= − + + = −b b  

Therefore, ( )1
3 1 9cos sin3 cos sin
8 32 32

= − + + −x t t t t t t . 

Thus, the solution is ( ) ( ) ( )0 1ε= + +x t x t x t  

( ) 3 1 9cos cos sin3 cos sin
8 32 32

ε  = + − + + − +  
x t t t t t t t  

( ) ( )3 1cos 1 cos sin 9sin3
8 32

ε   = + − + − +    
x t t t t t t  

8.3. Find the Exact Solution of the Perturbation Problem  
( )y y y1 0ε ε′′ ′+ + + = , and Subject to the Boundary Condition 

( )y 0 0= , ( )y 11 e−=  

8.3.1. Exact Solution 
Let ( ) e= mxy x  so that ( ) e′ = mxy x m , ( ) 2e′′ = mxy x m  

Substituting into the equation, we obtain 

( )2e 1 e e 0ε ε+ + + =mx mx mxm m  

( )2 1 1 0ε ε+ + + =m m , 2 1 0ε ε+ + + =m m m  

( ) ( )1 1 0ε + + + =m m m , ( )( )1 1 0ε + + =m m , 1= −m , 1
ε

= −m  

Therefore, the solution is ( ) e e ε
−−= +
x

xy x A B  

Invoking the boundary condition, we have = −A B  at ( )0 0=y  

and 

1

1
e

e e

ε

ε

= −
−

B , 

1

1
e

e e

ε

ε

=
−

A  at ( ) 11 e−=y  

Thus, 

( )

1
1 1

1 1 1

e e e
e ee e

e e e e e e

ε ε
ε ε

ε

ε ε ε

−−

−−

 
−  

 = − =
− − −

x
x

x
xy x  

https://doi.org/10.4236/am.2024.1510040


B. Asare et al. 
 

 

DOI: 10.4236/am.2024.1510040 708 Applied Mathematics 
 

9. Conclusion 

This paper presents a comparative analysis of various algebraic methods for solv-
ing perturbation problems, highlighting their strengths and limitations. By ex-
ploring techniques such as expansion, iteration, and exact solutions using quad-
ratic form and binomial expansion, researchers can select the most appropriate 
approach for their specific challenges. Through practical examples of singularly 
perturbed problems in physical contexts, the paper demonstrates the applicability 
of these methods across disciplines. With detailed explanations and work exam-
ples, researchers gain the skills to analyze and solve complex equations. Serving as 
a concise and comprehensive introduction to perturbation theory, this paper is an 
ideal starting point for new researchers in the perturbation field. 
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