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Abstract

Making exact approximations to solve equations distinguishes applied math-
ematicians from pure mathematicians, physicists, and engineers. Perturbation
problems, both regular and singular, are pervasive in diverse fields of applied
mathematics and engineering. This research paper provides a comprehensive
overview of algebraic methods for solving perturbation problems, featuring a
comparative analysis of their strengths and limitations. Serving as a valuable
resource for researchers and practitioners, it offers insights and guidance for
tackling perturbation problems in various disciplines, facilitating the advance-
ment of applied mathematics and engineering.
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1. Introduction

Perturbation theory is a comprehensive collection of mathematical methods used
to obtain approximate solutions to problems without closed-form analytical solu-
tions. These methods work by breaking down a challenging problem into an infi-
nite sequence of relatively straightforward problems that can be solved analyti-
cally. Perturbation problems involve a small positive parameter, significantly af-
fecting the problem, causing rapid solution variations in specific regions (inner
regions) [1] [2] and slow variations in others. Singularly perturbed boundary
value problems exhibit boundary or interior layers [2] [3] characterized by rapid
solution changes near endpoints or interior points, posing computational chal-
lenges. In contrast, regular perturbation [2] problems have smooth solution var-

iations as the perturbation parameter approaches zero. However, singular
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perturbation problems exhibit abrupt solution changes, potentially leading to so-
lution nonexistence, infinity, or degeneracy as the parameter approaches zero.
Singular perturbations [1] [2] often occur when the small parameter multiplies
the highest operator, fundamentally changing the problem’s nature. This can lead
to unsatisfiable boundary conditions in differential equations and reduced solu-
tion numbers in algebraic equations.

Singular perturbation theory [3] [4] is a vibrant and dynamic field of research,
with various methods developed to tackle associated problems. These methods
include asymptotic expansion [1] [4], the method of matched asymptotic expan-
sions [1] [2], Strained Coordinates [1] [2], the method of multiple scales [1] [2]
[5] and Poincare-Lindstedt method [1] [3] [6]. This research paper aims to pro-
vide a comprehensive overview of perturbation theory, explaining mathematical
methods for obtaining approximate analytical solutions to singular perturbation
problems that lack exact solutions. Our objective is to equip young and established
scientists and engineers with the skills to analyze equations encountered in their
work. We present insights and techniques useful for tackling new problems, along
with examples of singularly perturbed problems arising in physical contexts. While
the material is available in various books and research articles, we have summa-
rized the essential content concisely and effectively, serving as an introduction for
new researchers. Perturbation methods are thoroughly discussed in references. A

concise and accessible introduction to the subject is provided in this paper.

2. Materials and Methods

2.1. Mathematical Framework

The foundation of this research is based on the principles of perturbation theory,
specifically focusing on both regular and singular perturbation problems. The meth-
ods employed in this study involve the application of various algebraic and analyti-
cal techniques that are well-established in applied mathematics. These include:

1. Asymptotic Expansion: This technique involves expressing the solution as
a series expansion in terms of a small parameter, typically denoted by €. The series
is then truncated to obtain an approximate solution. This method is particularly
useful for regular perturbation problems.

2. Method of Matched Asymptotic Expansions: This method is employed to
solve singular perturbation problems, where different scales of the problem require
different asymptotic expansions. The solutions obtained in different regions (e.g.,
inner and outer regions) are then matched in an overlapping region to ensure a
smooth transition.

3. Strained Coordinates: This technique modifies the independent variable(s)
of the problem to capture the rapid changes in the solution within specific regions,
often used in conjunction with other methods to handle singular perturbations.

4. Method of Multiple Scales: This method is used to tackle problems with
solutions exhibiting behavior on multiple time or spatial scales. By introducing

multiple independent variables, each associated with a different scale, we can
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derive a set of coupled differential equations that can be solved more easily.
5. Poincaré-Lindstedt Method: This perturbation technique is used to remove
secular terms (terms that grow without bound) in the solution series, thereby en-

suring the series remains uniformly valid over time.

2.2. Analytical Techniques

The mathematical methods were implemented using symbolic computation tools
such as MATLAB and Wolfram Mathematica. These tools were employed to derive,
manipulate, and simplify the resulting expressions from the perturbation techniques.
Additionally, numerical simulations were performed to verify the accuracy of the an-

alytical solutions, particularly in cases where exact solutions are known.

2.3. Comparative Analysis

A comparative analysis of the strengths and limitations of the aforementioned

methods was conducted. This analysis involved applying each method to canoni-

cal perturbation problems, including regular and singular perturbations. The per-

formance of each method was evaluated based on:

e Accuracy: The closeness of the approximate solution to the exact or numer-
ical solution.

e  Computational Efficiency: The time and resources required to obtain the
solution.

e Applicability: The range of problems for which the method is suitable.

e  Ease of Implementation: The complexity of the mathematical operations

and the level of expertise required to apply the method.

2.4. Case Studies

Several case studies were selected from physical contexts, including fluid dynam-
ics, quantum mechanics, and elasticity theory, where singular perturbation prob-
lems naturally arise. These case studies were used to demonstrate the practical
application of the methods and to highlight the importance of selecting the ap-

propriate technique based on the nature of the problem.

2.5. Validation

The validity of the approximate solutions obtained through the various perturba-
tion methods was confirmed by comparing them to known exact solutions (where
available) or to high-precision numerical solutions. Convergence tests were con-
ducted to ensure that the truncated series solutions provided sufficiently accurate

approximations as the perturbation parameter approached zero.

3. Regular and Singular Perturbation Theory

Perturbation theory encompasses two distinct categories: regular and singular
perturbation problems. A regular perturbation problem is characterized by a

power series expansion in & with a nonvanishing radius of convergence, ensuring
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a smooth transition to the unperturbed solution as ¢ approaches zero. For a dif-
ferential equation L( y) =&N ( y) , where ¢ is a small parameter, the solution is

expanded as:
y(x8)=y +en +ely, +oo

In contrast, singular perturbation problems exhibit a more complex behavior,
with perturbation series that may not be power series or have a vanishing radius
of convergence [7]. In such cases, the exact solution may not exist or exhibit fun-
damentally different qualitative features when & equals zero, compared to arbi-
trarily small but nonzero & values. Moreover, the zeroth-order solution and the
unperturbed problem's solution may differ, with the former potentially depending
on gand existing only for nonzero ¢[8] [9]. In singular perturbation theory, care-
ful distinction between these two solutions is crucial. When ¢ causes rapid changes,

the solution is split into regions (inner and outer). The outer solution is:
yomer (x;g) — y(())uter (X) + 8ylouter (x) + gZy;)uter T+

The inner solution is usually around the boundary layers and can be expressed

as:
Vi (1:8) =Yy (£) + 61, (£) + &Y, (&) -+

x
where & =—is arescaled variable. Let's illustrate these concepts by exploring
&

examples of both regular and singular perturbation problems.

3.1. Consider a Regular Perturbation Problem xI+ex—-1=0,
exl1

3.1.1. Exact Solution
A solution that can be expressed in a closed form, using a finite number of oper-
ations, including addition, subtraction, multiplication, division, roots, and ele-
mentary functions, such as trigonometric functions, exponential functions, and
logarithmic functions, without any approximation or truncation. In other words,
an exact solution is a precise and explicit solution that can be written down ex-
actly, without any error or approximation, using a finite combination of basic
mathematical operations and functions. For example, the solution to the equation
X2 +6x+9=0 is x=-3,which is an exact solution because it can be expressed
precisely and explicitly without any approximation [6] [10].

We begin solving the quadratic equation in x containing the parameter &
¥ +ex—1=0.

This equation has exact solutions using the quadratic formula

‘o —b+b* —4ac

is given b
2a g Y

PRIy P 2 2
O L S S L S S /1+€_
2 2 4 2 4

These solutions can be expanded using the binomial expansion for small &
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-1 —1)(n-2
(1+x)"z1+nx+n(n )x2+n(n ) )x3+-~
2! 3!

Thus, the exact solution

RPN N
x:g_—M:_%gi(l+lg2 _Lg4+...J

2 8 128
Lol L +0(56)
= 2 8 128
—1—18—1{;‘2 +L54 +0(56)
2 8 12

These binomial expansions converge if ¢ <2.
Now, suppose we did not know the exact solution, how could we generate the

approximate solutions for & <« 1?

4. Expansion Method

Many physical problems involving the function u(x,&) can be represented
mathematically by the differential equation L(u,x,£)=0 and the boundary
condition B(u,&)=0,where xis an independent variable and £is a parameter.
Since an exact solution is often impossible, we seek an approximate solution
for small & To do this, we assume a solution expansion in powers of &
u(x;s) =u, +&u, +& U, + where u, (x) is independent of & and u,(x) is
the solution for £=0. We then substitute this expansion into the differential
equation L(u,x,g) =0 and boundary condition B (u,e) =0, expand for small
& and collect coefficients of each power of & Since these equations must hold for
all & values, each coefficient of £ must vanish independently. This usually yields
simpler equations governingu, (x), which can be solved successively. This ap-
proach, called perturbation theory, is useful when an exact solution is impossible.

The next two examples demonstrate this method [1] [11].

4.1. Expansion in the Power Series in £
X’ +ex—1=0

Given that £=0 then, wehave x> —1=0 and the solutionis x=+1.
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Now, let’s try x=1+e&x, +&°x, +--- disregarding 0(53 ) )

Substituting xinto x> +&x—1=0 we have
2
(1+8x]+82x2+--~) +g(1+gx]+gzx2+---)—1:0
2 2 2 2
(1+8x]+$ x2+-~) +g(1+gxl+s x2+---)—1:0+0£+0£ 4o

Equating the coefficients of each power of ¢

1+25x1+g2(2x2+x12)+g+g2xl—1---=0+Og+052+~--
1 1
& :2x +1=0,x, =——
2

11
qtw_ 4 2 1

2 2
2%, +x; +x,=0,x, =~
' 2 8

1 1
Thus x=1+e¢x, +&°x, +-, x=1—58+§52+-~-.

Now, let’s try x=—1+¢&x, +&°x, +--- disregarding 0(53 ) .
Substituting xinto x* +&x—1=0 we have

(—1+gx1 +&’x, +---)2 +g(—1+,9x1 +&'x, +---)—1:0
(—1+gx1 +82X2+"')2+€(—1+{;‘x1+82x2+"')—1=0+08+082 o

Equating the coefficients of each power of ¢

1-2¢ex, —2x,6" +&°x7 —e+&°x,—1--=0+0e+0&” +---
| 1
& :=2x-1=0,x, =——
2

1 1
x+x 4 2 1
£ 2x, +xl+x =0, =1 =4 2~
2 2 8

Thus x=1+e&x, +&°x, +++

x=—1—lg—lg2 4o
2 8

4.2. Features of the Method: It’s Simple to Solve for x1, x2, ...

But we need to guess the form x=x, +&x, +&°x, ++-- which is the asymptotic
sequence.

Let’s guess the asymptotic sequence {1,8,52 & ,} by substituting
X=x,+&x, +&°x, +- into the equation x* +&x—1=0

2
(x0+gx1 +&°x, +) +g(x0+gx1 +&°x, +---)—1:0
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2
(x0+sxl+52x2+---) +g(1+gxl+32x2+---)—1:0+Og+032+---
2 2 2.2 2 2
Xy +2ex,x, +2x, %,  +&°x +e+e7x, —1---=0+0c+ 08" +---
2 2 2 2 2
Xy —1+2ex,x, + ¢ <2x0x2+xl)+8+5 X =0+0s+0&" +---

Equating coefficients

g :xg —1=0,x, =+1

1
g 2x,x, +1=0,x, ==

1 1
x+x o4 2 1
& 2xx, + X, +x, =0, x, :—%:_%zg

2
Thus x=x,+¢&x, +&7x, +--

x=lotesder o
2 8

5. Iteration Method

Iteration refers to a method for improving the accuracy of the approximation by
repeatedly applying the perturbation correction to the previous solution. Begin
with an initial solution (usually the zeroth-order solution) and calculate the first-
order correction using the perturbation equations. Add the first-order correction
to the initial solution to obtain a new improved solution. Repeat steps with the
new solution as the starting point, calculating the next higher-order correction.

Continuing this process until the desired level of accuracy is achieved.
X +ex—1=0

Rewriteas x> =1—¢x.

Let'stry x,,, =*1-&x, withinitial condition x,=1.

Consider +,/1—-¢x, to find when x,=1, the solution is perturbed.

x,=1,when n=0
Xo, =+l - &,

X, =+vJ1—-¢ and by using the binomial expansion as before

X, zl—%g—égz—--'

1
We realize that the coefficient of &* which is r disagrees with that of the

1
coefficient of the exact solution which is e That is to compare

1 1 1 1
x=l-—g+—g"+- with x~xl-—g——g" -
2 8 2 8

Therefore, we truncate after 0(82)

X, zl—%g+0(52)
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1
Now for n=1, x zl—Eg +0(82) substituting into x, =,/1-¢&x, , we ob-
tain

5 :m:[l_g(l_%ﬁo(aﬂz :{1—5+%52 +o(53)}

=

:1_15.{1_1)52 +O(s3)
2 4 8
:1—%g+%gz +O(g3)

We can see that the exact solution, approximate, and iteration are all the same
for the positive results. Features: This correctly generates the form of the series
automatically but requires an increase in the amount of work to higher-order

terms. Earlier iterations gave the wrong higher-order terms.

5.1. Consider the Singular Problem ex’+x-1=0, ex1

We begin with the quadratic equation in x containing the parameter ¢,

ext+x-1=0, e <1

5.1.1. Exact Solution
If e=0,then x—1=0, x=1.
There are two roots if ¢ = 0. This equation has exact solutions using the quad-

ratic formula

_ —b++/b* —4ac

X
2a
—1+4/
coiEVIH4e 1 1
2¢ 2¢ 2¢

These solutions can be expanded using the binomial expansion for small &

n(n—l)x2 . n(n—l)(n—Z)x3
21

(1+x)nz1+nx+ 3

- )(=2)(n-3)
41

(1+4¢)2 :1+%(4g)+M(45)2 +M(43)3

1
(1+4¢)2 =1+2e-2¢" +4& —10&" +---

Therefore,
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1144 11

X=———=——+—1/l+4¢
2¢ 2¢ 2¢

:-iii[l+2g—252+4g3 —1054+--~]
2¢  2¢

Thus, the exact solution

+1-2e+28" 58 +---

x={ 1
———l+e-2&"+5&" +--
£

Realize the singular second root evaporates off to x =00 in thelimit £=0.

. 1
lim———1+&-2&"+5&" +- =
>0 ¢

Now, suppose we did not know the exact solution, how could we generate the

approximate solutions for &<1?

5.1.2. Using the Expansion Method
when an exact solution is impossible. The next two examples demonstrate this
method.
ex’ +x-1=0

If =0 then x—1=0,x=1.

But for £#0 even &<, we have two roots. There is a big qualitative
change. Typical of singular perturbation. The other root —>® as &£—0

Dominant balance: Maybe the term &x” is big for this missing root.

We now find the first root by letting x=a+be +ce” +dg* +--

Substituting into the perturbation problem, we obtain
g(a+bg+cg2 +de’ +---)2 +(a+bg+cg2 +déet +---)—1=0
g(a’® +2abs +2ace” +2ads’ + b’ + 2bce’ +---)
+(a+bg+cg2 +de’ +ec’ +~~~)—1=0
Equating Coefficients of equal powers of & we obtain
e a-1=0,a=1
g:a’>+b=0b=-1
e :2ab+c¢=0,c=2
& 2ac+b*+d=0,d =-5
Thus, the first rootis x=1—g+2&> =58> +---.
5.1.3. We Now Find the Second Root by Using the Rescaling Method
Rescaling is a technique to simplify the analysis of a perturbed problem by intro-
ducing new variables or parameters that absorb the small perturbation parameter
& Rescaling involves multiplying or dividing the original variables or parameters

by appropriate powers of & effectively “rescaling” them to reduce the complexity

of the equations or expressions. We find the second root of the equation (1.3) by
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X . . .
rescaling, we let substituting x=—-into the perturbation problem, and we obtain
£

ex’ +x—1=0

2
XY X
g(—j +—-1=0
gn n
X +e" X -1=0

Extracting the exponents of the first two terms, we have
1-2n=-n

l=n
Therefore this &' X*+&"X —-1=0 becomes,
X +e'X-1=0
Multiply by & we have
X +X-e=0
=0
X +4X=0,X(X+1)=0,X=0, X=-1
Let X =-l+ag+be” +--.
Substituting into X+ X —£=0 , we obtain,
(—1+ag+b52 +ce’ +det +-~-)2 +(—1+ag+bg2 +ce’ +det +---)—g:0
(1-2as-2b8" +a’&” + 2abe’ ~ 2c&” + 2ace* +b’e* - 2de* )
+(—1+ag+bgz+cg3+dg4+-~-)—g:0
Equating Coefficients of equal powers of & we obtain
g :1-1=0
g 2a+a-1=0,a=-1
e :2b+b+a’=0,b=1
& :2ab+c-2¢=0,c=-2
&*:2ac+b>-2d+d=0,d=5
Therefore, the first rootis X =—1—¢+&> —2&> +5&% +---.
But xzzn, n=1.
£

X -1- *-2¢’ e 1
Therefore x=—= £xe & +5e + = l4e-282458 4.
£ £ £

Thus, the solution from the expansion method equals the exact solutions.

+1-2e+28" =58 +---
X =
SRR I I
&

The same as the exact solution.
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6. Iteration Method
2
ex +x-1=0
Keeping the term £x” as a main term rather than as a small correction, hence x

must be large. Therefore, at leading order, the -1 term in the equation will be neg-

ligible when compared with the x term.
Therefore, as ex’ +x—1=0.
Rewrite as x(£x+ 1) =0, x=0,——.
&
Using the rearrangement of the quadratic equation, we have

e’ +x—1=0, ex’=1-x

x(ex)=1-x

b 1 1 . . g e .
Let’stry x, ,, =——+—— with initial condition x,=-——.
& &x &

n

1 1 1
Consider x,,, =——+—— to find when x, =——, the solution is perturbed.
& &x, £

When n=0, x,=——
&

Yo = H——=——+ T
£ &x, £ "{_1j £
&
I 1 1 1 1 1 1 1
Xy=——F—=——t————=——+ =——-
& &x, & g(_l_lj e —l-¢ ¢ l+¢
&

Using the binomial expansion as before, we have

! (1+e) ' =1-s+&* &+

I+¢
1 1 1 1 1
X,=——t—=—————=l-gtg g ==l -+
£ &x e l+¢ £

Realize a slight difference between the exact solution and the Iteration

method.
6.1. Find the First Three Terms for All Three Roots of

ex’+x’+(2+&)x+1=0

6.1.1. Expansion Method
Solving the perturbation problem, we find the first root by letting

x=a+be+ce +--.
Substituting into the perturbation problem, we obtain

697 Applied Mathematics
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£(a+b€+c<92+---)3+(a+b£+082+---)2 +(2+g)(a+bg+cgz+---)+1:0
g(a3 +3a’be +3a’ce’ +3ab’e’ +6abes” +be +)
+(a® +2abe + 2acg® +b°&” +2bce’ +---)+(2+ &) (a+be+ce” +-+)+1=0

Equating Coefficients of equal powers of & we obtain
e :d’ +2a+1=0,a=-1,-1
| —a(a2 +1)
gia’+a+2b+2ab=0,b=—— L=
2(1+a)
Thus, we now let x =—1+5+6” +--+, where &=5(¢).

g(—1+5+52+---)3+(—1+5+52+---)2+(2+g)(—1+5+52+---)+1:0
(—1+35—552+---)+(—1—25—52+~--)2+(2+g)(—1+5+52+--~)+1:O
2e+57 +4e5 4857 =0

Extracting the dominant terms, we have

1
26+87=0,5 =+/2¢2

1 1
Therefore, we let x=-1+V262 +2ce+--- and x=-1-2&2 —2ce+---.

1
Substituting x =—1++/2¢&2 +2ce+--- into the equation

1 3 | 2
6‘{—1+\/§£2 +2cg+-~-} +(—1+«/§gz +205+---]

1
+(2+8)(—1+\/§82 +2cg+-~J+l:O

1 3 1 3
g[—1+3\/§gz —6¢ +2:2¢2 +6cg+---j+[l—2«/§gz +26—4ce +4c2e? +J

1
+(2+5)[—1+\/§£2 +2cs+---j+1:0

Equating Coefficients of equal powers of & we obtain
g% :1-2+1=0
g i=1+2-dc—1+4c=0

3
232 +4c2 +2=0,c=-1
1

Thus, one root is x :—1+\/§8? —2&+:--.
Also substituting x=-1— V262 —2ce+--- into the equation

1 3 1 2
({—1+\/§gz —20£+---] +[—1+\/§g2 —205+---J

1
+(2+g)(—1+\/§g2 —2c€+---]+1=0
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1 3 3
g[—1—3\/552 — 66 -23262 —6ce +12¢cé? +]
1 3
+[1+2\/§gz +2¢6 +4ce +4c2e? +J

1
+(2+5)(—1—\/§gz—2cg+---]+1:0

Equating Coefficients of equal powers of & we obtain
g :1-2+1=0
g i=1+2-4dc+4c-1=0

3
e :-3V2 +4cV2 -2 =0,c=1
1
Thus, the second rootis * =1~ V282 ~25 4 .
We find the third root by using the method of rescaling.

X
Welet x=—.
£

Substituting into the perturbation problem, we obtain
3 2
X X X
g(—n] +(—nj +(2+g)(—"j+1=0=0
& & &
EX e X +(2+6)e "X +1=0

Extracting the exponents of the first two terms, we have

1-3n=-2n,n=1

Therefore this € 7" X*+&2"X* + (2+€)e"X+1=0 becomes.

X+ X +(2+46)e' X +1=0
Multiply by &, we have
X+ X +(2+¢6)eX+6° =0
Setting & =0, we have
X’ +X?=0,X*(X+1)=0,X=0,X=-1

Let X =—1+ag+be’ +--.
Substituting into X’ +X* +(2+&)eX +&” =0 we obtain

(—l+a5+bg2 +---)3 +(—1+ag+bg2 +---)+g2 =0
(~1+3ac+3b-3a’c” +3b’c" —6abs’ +---)
+(1—2a(9—2bg2 +a’e’ +2abe’ +~-)+g2 =0

Equating Coefficients of equal powers of & we obtain
g :-1+1=0

e':3a-2a-2=0,a=2
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el 2b+b+a*=0,b=1
& :3b-3a>-2b+a’ —1+1=0,b=4
Therefore, the first rootis X =—1+2¢+4g> +---.

X
But xX=—, n=1.

)

2
Therefore x:£n: I+26+457+ :—l+2+4g+m.
€ £ £

1
14262 =26+

1
Thus, the three roots are x=9-1- \/582 25+

—l+2—28+"'
&

7. Find the First Three Terms for All Three Roots of
ex’+x’+(2-¢)x+1=0

7.1. Exact Solution
ex’ +x" +(2-¢)x+1=0
ex’ —ex+ x> +2x+1=0
gx(x2 —1)+x2 +2x+1=0
ex(x’ =1)+(x+1)" =0

2

0

8x(x—1)(x+1)+(x+l)

(x+1){x€(x—1)+(x+l)}

x+1=0,x=-1

0

xe(x=1)+(x+1)=0
ex’ —xe+x+1=0
ex’ +(1-¢)x+1=0

Thus, the first rootis x=-1.

Solving for the second and third roots by using the quadratic formula, we obtain
1

t(1—e)1- 4z
(e-1)2(1 >[1 (1_8)2]

e-1N)+4J(1-¢) —4e
(e-1)£(1-¢) _
2¢ - 2e

(5_1)i(1_g)[1_4g(1_g)2]5

2¢

X =

By using the Binomial Expansion
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n(n—-1) , n(n-1)(n-2) ,

(1+x)nz1+nx+ X+ X
2! 3!
NELCE R TCE FO

(1-&) 7 =142 +38> +4* +---

Therefore,

1

(=1t (1-2)[1-4(1+26+35" +42" +--)
2¢&

X =

(g—l)i(l—g)[l—4g—852ﬁ
2¢

X =

Using the binomial expansion once again, we obtain

1

(1-46-827)2 =1-26 65" +---

(e-1)x(1-¢)(1-26-627)

X =
2¢
—_— —_— —_— 2 e
ng 1+1-3¢—-4¢" + e ]—2p e
2¢
2
c=f 1-14+3e+4¢ + :_l+2+28+_“

2¢ &

7.2. Using the Expansion Method

To solve the perturbed problem, we find the first root by letting
x=a+be+ce +-oe.

Substituting into the perturbation problem, we obtain

g(a+be+ce +~-)3 +(a+be+ce’ +~--)2 +(2-¢)(a+be+ce” +-)+1=0
g(a’ +3a’be +3a’cs” +3ab’s’ + 6abes® +b'8’ +--)

+(a2 +2abe +2ace’ +b’e” +2bce’ +---)+(2—g)(a+bg+cg2 +~~-)+1=0
Equating Coefficients of equal powers of & we obtain

e a*+2a+1=0,a=—1,—1

a(l—a2>
e :d’—a+2b+2ab=0,b=——L =0
2(1+a)

Thus, we now let x=-1+8+65" +---, where §=5(¢)
g(—1+5+52+---)3+(—1+5+52+---)2+(2—g)(—1+5+52+---)+1:0
(-1436 =567 ++)+(1-26 =6 +-)+(2-&)(-1+6+6> +-+)+1=0

266 +68° — 686" =0
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Extracting the dominant terms, we have
2e5+6°=0,6=-2¢

Therefore, we let x=—1—2¢ +4bg” +---.

Substituting x=—1—2¢+4bg” +--- into the equation
e(-1-26+4be* +--) +(-1-26 +4be> +--)
+(2-¢)(-1-26+4bs” +---)+1=0
&(~1-65-12" +12bs> =82 +---)+(1+4s +45” —8bs” ~165" +-)
+(2+¢)(-1-26+4b” +--)+1=0
Equating Coefficients of equal powers of & we obtain
g’ :1-2+1=0
g i-1+4-4+1=0

& :—6+4-8h+8h+2=0

& :—12+12b—16b—4b:0,b:_%

Thus, one rootis x=—1-2&—6&" +---.
1 3
Finding the second root, we let x=-1+ag? +bs+ce? +--- and substituting

into the perturbed problem.

1 ER 1 ERE
g[—l+a52 +be +ce? +J +(—1+ag2 +be +ce? +j
1 3
+(2—5)[—1+a52 +be + ce? +~--]+1:O
3 1 1 3
3(—1+3b8—35a2 +a’e? —3ag? +---J+(—l—2bg—2a52 +d’e+2abe> +J

1 1
+(2+5)(—1+a52 + b +ce? +---J+1=0

Equating Coefficients of equal powers of & we obtain

e’ :1-2+1=0
1
&t:-2a+2a=0

elim1-2b+a* +2b+1=0,a=0

3
g?:3a+2ab+2c-a=0,c=0

e :3h=3a*-b=0,b=0
Thus, second rootis x=-1.
7.3. Rescaling

We find the third root by using the method of rescaling.
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X
Welet x=—-.
£
Substituting into the perturbation problem, we obtain
3 2
X X X
E(TJ +(—nj +(2_8)(_’7)+1:0:O
£ & &
X e X +(2-¢6)e "X +1=0

Extracting the exponents of the first two terms, we have
1-3n=-2n,n=1

Therefore this € 7" X +& "X + (2 - S)gan +1=0 becomes.

X+ X +(2-¢)e' X +1=0
Multiply by &*, we have
X+ X +(2-¢)eX+&* =0
Setting & =0, we have
X’ +X2=0,X(X+1)=0,X=0,X=-1

Let X =-1+ag+be’ +---.
Substituting into X + X* +(2—S)€X+82 =0 we obtain

(—1+ag+b,92+~-)3+(—1+a.9+bgz+~~-)2

+(2—s)(—1+a5+b€2+---)s+52:0

(~1+3ag+3bs> —3d’" +b’c" —6abs’ +---)

+(1—2a£—2b52+a2£2+2abg3+---?+‘92=0
Equating Coefficients of equal powers of & we obtain

e -1+1=0
e':3a-2a-2=0,a=2
£:3b-3a’ -2b+a’ +2a+1+1=0,b=2
& :3b-3a>-2b+a’ -1+1=0,b=4
Therefore, X =—1+2&+2&% +---.
But xzin, n=1.
£

Therefore

2
x:£: 1+26+2& + :_l+2+zg+...

n

& & &

—1-2¢-6&" +--

Thus, the three roots are x = -1

—l+2+25+---
£
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8. Model Problem: George Carrier

The function f(x,&) satisfies the equation (x+&f)f'+f=1 0<x<l and
is subject to the boundary condition f (1) =2 . Find the exact solution.

Exact solution:

(x+ef)f'+f=1

1
d(xf)+d(2gf )=1
dx dx

xf+%gf2 =x+C
Applying the boundary condition f(1)=2, we have
xf+%5f2 =x+C
1~f(1)+%gf2(1):1+c
1+C=1~2+%-g4—>C=1+25
xf+%‘5‘f2 =2(x+1+28), 2xf+gf2—2(x+1+25)=0

Solving, we obtain

ef?+2xf =2(x+1+2¢)=0

f_—2x+\/(2x)2+4~5-2(x+1+28)
B 2¢g

2¢e 2¢

Therefore, the exact solution is

- x4 4x +85(x+1+28) 2y +/4x’ +8xz+86+ 162"

—x+\/x2 +2xe+2¢ +48°

f:
&
2
f:ﬁJr\/(fj L2
& & £
Note that
2
0)=.|=+4
10)= 2+
2 1 2
For large x, f(x)=—£+£\/l+ g(x;L )"'Lz
& & X &

Using the binomial Expansion

R e
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2
For x>1, f(x)=—£+£{1+28(x+1)+”}:_£ X X Hx 1
E &

2
For x<1, f(x)=—f—f{1+28(“1)+..}=_2_x_uz_2_x_1_1

8.1. Expansion Method

Treating it as a singular perturbation problem
Let f(x)=f,(x)+&f(x)+ and f,(1)=2
o (x)+ fo(x) =
d(xfo (x)) _
dx
xy(x)=x+C

Applying the boundary condition
2=1+C—>C=1
1 1
Therefore, singularat x=0, fo( ) Rl 1+—.
x x
This is not surprising because as ¢ —0, f(x) exact value becomes singular

at x=0.

8.2. Consider the Van Der Pol Oscillator Equation
X+x= gic(l—xz) with x(O): 1, x(0) =0 .'x'+x—£5c(1—x2) =0
Using the perturbation method, we let
x(t)=x,(¢)+&ex,(¢)+--- so that
x(t) =% (1) +ex, (1) +-
(1) =%, (1) +ex (1) +
Substituting into the DE, we obtain
[, (£)+ &%, (£) +-- ]+ [ x, (£) + &3, (£) + -]
— & % (1) +ex, (¢ +---][1—{x0(t)+5x1 (t)+---}2J=O
Equating coefficient of equal powers of & we obtain
e % (1) +x,(1)=0
g%, (1) +x0x, (£) = %, (£) + %, ()% (t)=0
Thus, the solution to ¥, (7)+x,(¢)=0 is
x,(t)= Acost + Bsint

X, (t)=—Asint + Bcost

Using the initial condition, x(0)=1
x%,(0)=Acos(0)+ Bsin(0), A=1
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%,(0)=—4sin(0)+ Bcos(0), B=0

Therefore x,(t)=cost.
Solving the second equation

% () +x () =% () + % (1) x5 (1) =0, % (£)+x, (1) =%, (¢£) = %, (¢) % ()
% (1) +x,(¢)=sint —sinscos’t, %, (t)+x1(t)=sint(l—coszt)
% (¢)+x, (t) =sintsin®¢, % (1)+x,(¢)=sin’¢
But sin3t=2sint—lsin(3t)
4Ty
. .3 3. 1.
% (1) +x,(¢)=sin t=Zs1nt—Zs1n(3t)

Solving for the homogeneous solution ¥, (¢)+x,(¢) =0, we have
x,(t)=acost +bsint .
Finding a particular solution

X, (t)=Dtcost + Etsint + F cos 3t + Gsin3t + H
x,(t)=Dcost— Dtsint + Esint + Etcost —3F sin 3¢ + 3G cos 3t

X,(t)=—-Dsint - Dsint — Dtcost + Ecost + E cost — Et sint
—9Fsin3t —9Gsin 3¢

Xp(t):—ZDsint+2Ecost—Dtcost—Etsint—9Gcos3t—9Gsin3t
o . 3. 1.

Substituting into ¥, (1) +x, (1) = Zsmt - Zs1n(3t) , we have
—2Dsint+2FEcost — Dtcost — Etsint —9F cos3t —9G sin 3¢
+Dtcost+Etsint+Fcos3t+Gsin3t+H:%sint—%sin(%)

—2Dsint +2Ecost —9F cos3t —9Gsin3t + Fcos3t + Gsin3t + H
3. 1.
==sins——sin(3r)
4 4
Equating coefficients, we have
—2D=%, D=—§, 2E=0, E=0, ~9F +F =0, F=0

9G+G=—+, G=—L, H=0
4 32

3 1 .
Therefore, a particular solution is x, (¢)= —gt cost + ke 3t.
Thus, x,(7) =homogeneous solution + A particular solution

X, (t):acost+bsint—§tcost+3L2sin3t

) 3 3 . 3 .
X (1) =—=cost +=tsint +——cos3t —asint + bcos?
8 8 32

Applying the boundary conditions, x,(0)=1 to
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3 1 . .
x (t)=—=tcost+——sin3t +acost +bsint , we have
1 8 32

xl(o):_g(o)cos(o)+3izsin(3xo)+acos(o)+bsm(o)
1=

a
Applying the boundary conditions, % (0)=0 to

X, (t):—%cosﬂrgtsint+3%cos3t—asint+bcost , we have

%(0)= —%cos(O) + %(O)Sin(O) + %cos(3 x0)—sin(0)+bcos(0)
0=__+i , =_i
32 32
9

Therefore, x, (t)=—étcost+Lsin3t+cost——sint.
8 32 32
Thus, the solution is x(#)=x,(¢)+&x, (£)+--

3 1 . 9 .
x(t)=cost+&| —=tcost+——sin3t +cost ———sins |+
8 32 32

x(¢) =cost+5H1—étjcost+i(sint—9sin3t)}+---
8 32

8.3. Find the Exact Solution of the Perturbation Problem
ey + (1 + .9) '+ y=0, and Subject to the Boundary Condition

y(O) =0, y(l) =e
8.3.1. Exact Solution
Let y(x)=e™

Substituting into the equation, we obtain

sothat »'(x)=me™, y"(x)=m’e™
em’e™ +(1+&)me™ +e™ =0

gm2+(1+g)m+1=0, em*+em+m+1=0

gm(m+1)+(m+l):(), (8m+1)(m+1):0, m=-1, m=——

x

Therefore, the solution is y(x) =Ae " +Be ¢

Invoking the boundary condition, we have 4=-B at y(0)=0
1 1

e¢ e¢ 1

and B=- - , A=— at y(1)=ef
ef —e e —e
Thus,
1 _x
1 1 eflet—e”
e . es X
— _ & —
e e R
ef—e ef—e ef—e
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9, Conclusion

This paper presents a comparative analysis of various algebraic methods for solv-
ing perturbation problems, highlighting their strengths and limitations. By ex-
ploring techniques such as expansion, iteration, and exact solutions using quad-
ratic form and binomial expansion, researchers can select the most appropriate
approach for their specific challenges. Through practical examples of singularly
perturbed problems in physical contexts, the paper demonstrates the applicability
of these methods across disciplines. With detailed explanations and work exam-
ples, researchers gain the skills to analyze and solve complex equations. Serving as
a concise and comprehensive introduction to perturbation theory, this paper is an

ideal starting point for new researchers in the perturbation field.
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