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Abstract

An interactive narrative is bound by the context of the
world where its story takes place. However, most work
in interactive narrative generation takes its story world
design and mechanics as given, which abdicates a large
part of story generation to an external world designer.
In this paper, we close the story world design gap with
an evolutionary search framework for generating inter-
active narrative worlds and mechanics. Our framework
finds story world designs that accommodate multiple
distinct player roles. We evaluate our system with an
action agreement ratio analysis that shows worlds gen-
erated by our framework provide a greater number of
in-role action opportunities compared to story worlds
randomly sampled from the generative space.

Introduction
There is a long history and broad diversity of approaches
to automatically generating interactive stories for game en-
vironments, from sequenced story beats(Mateas and Stern
2002), to search(Nelson and Mateas 2005), automated plan-
ning(Riedl, Saretto, and Young 2003), optimization(Nelson
et al. 2006), and many more. These systems are called expe-
rience managers(Riedl and Bulitko 2013) because they pro-
vide a targeted interactive experience for an end-user, who
typically plays the role of a character within an interactive
story. However, the properties and quality of stories these
systems generate are influenced by the game worlds where
the stories unfold. No matter how fast, elegant, or complex
an experience manager is, its output is bound by the context
and affordances provided by its story world design.

In procedural content generation (PCG) there is a much
larger focus on the process of game level and mechanic
generation, grounded in how these design choices influence
gameplay possibilities. One popular approach to procedu-
rally generating game levels and mechanics is evolutionary
search(Togelius et al. 2011), which explores a generative
space of design artifacts by optimizing an evaluation func-
tion that maps designs to gameplay outcomes. Additionally,
there is work that mixes ideas from experience management
and PCG. For example, the Planning Domain Definition
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Language (PDDL)(McDermott et al. 1998), a common rep-
resentation for plan-based story worlds, was used to model
automated game mechanic generation(Zook and Riedl 2014)
and evolutionary search was used to find role-specific inter-
active plot graphs(Giannatos et al. 2011). However, no work
both: 1.) generates novel interactive narrative world designs;
and 2.) uses an evaluation function to find designs that max-
imize desirable gameplay outcomes.

In this paper, we bridge the gap between PCG and ex-
perience management with a software architecture that per-
forms evolutionary search through a space of narrative world
designs, specified in PDDL. Evolutionary search is guided
by an evaluation function that maximizes the utility of dis-
tinct artificial player personas, similar to those presented by-
Holmgård et al.(2015). We evaluate the world designs found
with evolutionary search by comparing them to a second set
of PDDL artifacts randomly sampled from the generator’s
generative space. Artifacts are compared in terms of an Ac-
tion Agreement Ratio (AAR)(Holmgård et al. 2014) metric
between different personas. We find that evolutionary search
produces story world artifacts that better accommodate the
different play styles when compared to a random sample,
leading to lower agreement between personas in the evolu-
tionary search worlds.

Related Work
Much work in the space of automated level and mechanic
design is focused on action-based game genres, with a few
outliers that merge PCG ideas with narrative generation. In
this section, we start with an overview of traditional game
level and mechanic PCG, then discuss work that has applied
PCG techniques to narrative generation.

Level PCG Early work in the area of game level PCG
applied evolutionary search to generating race car tracks
that maximize entertainment value relative to a partic-
ular player(Togelius, De Nardi, and Lucas 2007). Poly-
morph, another early level PCG system, generated 2D plat-
former game levels at different difficulty levels based on a
model of player skill(Jennings-Teats, Smith, and Wardrip-
Fruin 2010). These are both examples of experience-driven
PCG, where game content is generated based on its pre-
dicted effect on the player. These early themes of evolu-
tionary search(Togelius et al. 2011) and experience-driven
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PCG(Yannakakis and Togelius 2011) have come to be dom-
inant themes within the level generation community. Our
system fits within both of these approaches: we use evolu-
tionary search to find interactive narrative game worlds that
accommodate multiple playstyles human players can adopt.

Mechanic PCG Another common topic within the PCG
community is generating mechanics that govern how game
worlds behave. An early system in this area is Game-o-
Matic(Treanor et al. 2012), which created playable game
metaphors for a given concept map data structure, pro-
vided by a human author. Another early system is Mechanic
Miner(Cook et al. 2013), which used reflection and evolu-
tionary search to dynamically change mechanics for a plat-
former game based on online player interactions. Nielsen
et al.(2015) also used evolutionary search to generate me-
chanics, defined in the Video Game Description Language
(VGDL)(Ebner et al. 2013). More recent approaches in-
clude Angelina(Cook, Colton, and Gow 2016) and Gem-
ini(Summerville et al. 2018). Both systems generated game
mechanics based on a semantic understanding of the rules.
Like several of these approaches, we use evolutionary search
paired with a declarative language model to generate world
mechanics. The main difference is: we generate worlds for
interactive narratives instead of action-based games.

Narrative PCG Finally, there are examples of PCG sys-
tems that use concepts from the narrative generation com-
munity. Zook and Riedl(2014) generate high-level game me-
chanics, modeled in PDDL. The system does not have any
narrative reasoning or application. It is included here be-
cause of its use of PDDL, which is a common modelling
language in the plan-based narrative generation community.
The more direct example of narrative PCG is Giannatos
et al.(2011), a system that uses evolutionary search to evolve
story graph data structures that maximize suspense. How-
ever, this approach is focused on evolving stories rather than
the world and mechanics in which the story takes place.
In this paper, we use evolutionary search to generate story
worlds for interactive narratives to take place inside.

System Overview
Our goal is to search a space of game world designs to find
instances that afford given playstyles. To accomplish this
goal, we built a system that performs evolutionary search
through a space of generated PDDL worlds, using Monte
Carlo tree search (MCTS) personas to score world designs.
This system consists of three components:

1. A PDDL(McDermott et al. 1998) world generator that
combines 32 individual fragments together to produce a
generative space of 1024 unique combinations.

2. A set of four MCTS-based player personas, similar to
those presented inHolmgård et al.(2015): the Warrior,
Collector, Sneaker, and Speedrunner.

3. An evolutionary search process that navigates the gener-
ative PDDL world space based on the utility scores of the
four MCTS personas on the world designs.

Illinois

Entrance Hallway

Bad Loot Room

Good Loot Room

Exit

Pricey 
Artifact

Figure 1: A diagram of the base world. There are five rooms:
the Entrance, Hallway, Good Loot Room, Bad Loot Room,
and Exit. The player, as Illinois, begins at the Entrance.
The Pricey Artifact is located at the Good Loot Room. The
player’s goal is to grab the Pricey Artifact and reach the Exit.

We present the details of each system component before
providing an Action Agreement Ratio (AAR)(Holmgård
et al. 2014) analysis to evaluate the results.

Story World Generation
The first step of evolutionary search is to create a space of
world design artifacts. In our case, these artifacts are game
worlds, consisting of initial states and action mechanics,
specified in PDDL. To create this pool of artifacts, we built
a custom PDDL world generator with a generative space of
1024 artifacts. The generator is an additive process that com-
bines 32 different hand-authored PDDL fragments together
with a base world. The different possible combinations of
the 32 fragments mixed with the base world results in the
generative space of 322 = 1024 full PDDL world variations.

Base World The base world is the simplest PDDL game
world in the generative space. It is the template from which
all other worlds are built:

1. There is one hero character controlled by the player,
named Illinois Smith. Illinois can: (a) move between con-
nected rooms; (b) pick up items; and (c) attack enemies.

2. There are five rooms: the Entrance, Hallway, Good Loot
Room, Bad Loot Room, and Exit. The player begins at
the Entrance. The Entrance is connected to the Hallway.
The two loot rooms are connected in a diamond pattern
between the Hallway and Exit.

3. There is a Pricey Artifact at the Good Loot Room.

The base world is pictured in Figure1. The player’s objec-
tive is to grab the Pricey Artifact and reach the Exit. How-
ever, the base world is just one of the 1024 possible PDDL
world designs the generator is capable of creating.

PDDL Fragments In addition to the base world, we de-
fined 32 PDDL fragments. Rather than full playable worlds,
these fragments contain isolated action and state definitions
meant to be combined with the base world and each other
to create new variations. These additions include: objects,
initial state literals, predicates, and actions. Additionally, if
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any two actions defined in separate fragments have the same
name and set of terms, the two actions are merged into a sin-
gle definition by performing a union of the precondition and
effect sets. The rule we followed when designing the frag-
ments is: all information is strictly additive, so all possible
combinations of PDDL fragments work together.

Fragments include: placing multiple enemies at different
locations; a coffin that can be opened to find an artifact; a
sand pit that can be dug into with a shovel to find an artifact;
a bottomless pit that requires a whip to cross with, an enemy
on the other side; a lever that opens a secret tunnel at the
Entrance leading straight to the Good Loot Room; a dog that
can be petted; the ability to be tired and take a nap; a portable
cassette tape player that plays music; etc. A short description
of all 32 fragments is given in the Appendix.

Many of the mechanics in the PDDL fragments interact
with the player personas defined in the next section. Many
others do not, but could interact with other possible per-
sonas. For example, the dog fragment will not change any
of our persona utilities, but would increase the potential util-
ity of a persona maximizing the number of animals petted
before reaching the Exit with the Pricey Artifact.

Player Personas
Similar toHolmgård et al.(2015), we define four Monte
Carlo tree search (MCTS) player personas to automatically
playtest and score our worlds based on their persona-specific
goals. Our four personas share the same overall MCTS
search algorithm, but use different utility functions to score
the results of their playtraces. All four personas share the
base objectives of taking the Pricey Artifact and reaching
the Exit. Additionally, each persona has at least one other
individualized goal:

1. Warrior (W): is rewarded for each enemy it attacks.
When an enemy is attacked, it becomes vanquished. The
Warrior receives a reward relative to the number of van-
quished enemies in the final state.

2. Collector (C): is rewarded for each artifact it collects.
When an artifact is picked up, the character has the arti-
fact. The Collector receives a reward relative to the num-
ber of artifacts they have in the final state.

3. Sneaker (S): is punished for being in a room with an en-
emy. The Sneaker is co-located with an enemy if they are
at the same location. The Sneaker receives a punishment
relative to the number of states in their playtrace where
they are co-located with an enemy.

4. Speedrunner (R): is punished for each action it takes.
This punishment is relative to the number of actions
in their playtrace. The Speedrunner punishment can be
combined with the other personas, to create a Warrior
(WR), Collector (CR), and Sneaker (SR) that are incen-
tivized to minimize their actions.

Together, these personas are used to score PDDL worlds
during evolutionary search and perform the final AAR anal-
ysis. The baseline versions of the personas are used during
evolutionary search and the speedrunner variants (WR, CR,
and SR) are used during the AAR analysis. This is done to

amplify the secondary objective reward signal during evolu-
tionary search, then converge on the Speedrunner behavior
in the absence of other objectives during the final analysis.
This convergence will lead to high AAR values if individual
goals are not satisfied in the game world.

Evolutionary Search
The final component is to run evolutionary search on our
generative space to find PDDL world artifacts that support
each of our four personas. For evolutionary search to be
effective, each artifact needs a corresponding genotype at
some level of directness, and locality must exist between
the artifacts. A genotype is an abstract representation of
generated artifacts that can be manipulated by evolutionary
search. Directness is how closely the genotype represents
its corresponding artifact. Locality means that changes to an
individual gene correspond to equal and consistent changes
to its artifact. Search also needs an evaluation function to
score the different artifacts produced and search parameters
to control the size of the population and offspring.

Representation Our narrative world genome is repre-
sented as a string with up to 32 unique characters. Each
character represents a PDDL fragment and toggles the frag-
ment’s presence in the full PDDL artifact. If a character is
present in a given genome string, the corresponding frag-
ment is combined with the base world and all other present
fragments to create the final PDDL artifact. If a character is
not in the string, the corresponding fragment is ignored. In
this way, all 1024 PDDL worlds can be represented with a
string of up to 32 unique characters. This representation is
mostly indirect, which reduces the search space complexity.
It is similar to sequencing hand-crafted level “chunks” in
traditional game level PCG. The representation has strong
locality, as toggling an individual character on or off in the
genome string represents adding or modifying a small num-
ber of action mechanics and initial state changes.

Evaluation We use a simulation-based evaluation to score
worlds during search: the game worlds are played by artifi-
cial agents and ranked according to playtrace metrics. In our
case, each of the four MCTS personas explore each world
and then record the utility of their final playtrace. These four
utilities are then combined into a final fitness function that
represents how well the PDDL world accommodates per-
sona goals. To ensure each persona contributes equally to the
final fitness score, we track the highest and lowest score for
each persona across all worlds encountered over all search
sessions. We then normalize each persona’s utility to a deci-
mal value between 0 and 1 based on where the score falls in
the persona’s range of observed utility values. We multiply
each normalized utility by 25 and add the values together,
which gives a final fitness score in the range of 0 to 100,
with each persona contributing between 0 and 25 points.

Search Parameters and Details The codebase is im-
plented in C#. All tests took place on a PC laptop with a
12th Gen Intel Core i7-12700H processor, 32GB RAM, and
a 930GB hard drive. Search sessions took place over a 14
day window. In this time, the PDDL fragments were tested

128



and expanded. Data was collected for the score ranges used
in the fitness function. The final search session was run for
96 hours with a µ and λ of 10, where µ is the size of the
population kept between generations and λ is the size of the
population generated through reproduction. This leads to a
total population of 20 artifacts in each generation.

Each MCTS persona was allowed 1,000 search iterations
for each generated world using the UCT formula and an ex-
ploration parameter of

√
2. Random rollouts ended when-

ever Illinois reached the Exit room. Final utilities were cal-
culated according to the persona’s evaluation function based
on the playtrace and final state, then added to the MCTS
“win” column during backpropagation. After 1,000 itera-
tions, a final search was conducted with the MCTS explo-
ration parameter set to 0. The utility of this final search was
normalized and summed with the other personas, according
to the search evaluation procedure.

Search Results
After 96 hours, evolutionary search completed 28 itera-
tions, explored 274 unique worlds (26.76% of the generative
space), and converged on a 100-score world at iteration 22.
The average score of the first population was 34.35, while
the average score of the 28th population was 91.80.

Before testing, we predicted the best genes would contain
the characters (!, $, a, c, e, p, s, t) and not contain the char-
acters (g, i, j, k, l, o, q, r, u, z). Figure2 shows a diagram
of !$acepst, which is the world in this predicted optimal set
with the fewest active genes. We found four genes with per-
fect scores. These genes all contain/exclude the predicted
characters, along with variations of the neutral characters
(with respect to our personas) m and n.

AAR Evaluation
In the final stage of this work, we perform an analysis to
show the worlds we find through evolutionary search better
afford the playstyles of our four personas when compared
to a pool of worlds randomly sampled from the generative
space. To perform this analysis, we use the Action Agree-
ment Ratio (AAR)(Holmgård et al. 2014) metric. We cal-
culate AAR on persona playtraces across the two sets of
worlds, then perform a series of statistical tests. The statis-
tical tests broadly support our hypothesis: that worlds found
by evolutionary search will have a lower AAR compared to
worlds randomly sampled from the generative space.

Action Agreement Ratio
AAR is a ratio that represents how often two personas
choose the same action. AAR begins with a playtrace gener-
ated from some persona A. For every state in the playtrace, a
second persona B is queried for the action it would perform
in the given state. AAR is the final ratio between the num-
ber of times A and B choose the same action, divided by the
total number of states in the playtrace. A score of 1.0 rep-
resents two personas that agree on every decision in a play-
trace, while a score of 0.0 represents perfect disagreement.
In this analysis, we will use the Speedrun personas (WR,
CR, SR, and R) so that Illinois will default to completing

the base objectives as quickly as possible in the absence of
secondary persona objectives.

Hypothesis
If evolutionary search has correctly identified worlds that
maximally accommodate secondary persona goals, then ran-
domly sampled worlds will have less secondary goals for
personas to complete compared to worlds found with evo-
lutionary search. Without the presence of secondary goals,
personas will default to completing the main objectives as
quickly as possible. This will result in higher AAR agree-
ment in worlds without secondary objectives compared to
worlds that accommodate persona-specific goals. This leads
to an empirical hypothesis:

General Hypothesis: If evolutionary search has found
worlds that accommodate each of our player personas, then
the AAR between personas in the worlds found by evolution-
ary search will be lower than the AAR of worlds randomly
sampled from the generative space.

Data Collection
To collect the AAR data, two sets of game worlds were used:
1. worlds produced by evolutionary search and 2. worlds
randomly sampled from the generative space. We used 10
worlds for each set. For each world, AAR values were col-
lected by first running each of the Speedrun personas (WR,
CR, SR, and R) for 5,000 search iterations using the UCT
formula and an exploration parameter of

√
2. A full play-

trace was then run using an exploration parameter of 0,
which is the exemplar playtrace. Each state within the play-
trace is given to the four personas, who have 1 second to per-
form exploratory search before running a final round with an
exploration parameter of 0. The final result is returned as an
action to take in the given state. If the action matches the one
taken by the original persona in the exemplar playtrace, 1 is
added to the AAR numerator. In either case, 1 is added to
the AAR denominator for each playtrace action.

One important aspect of AAR is self-agreement between
two runs of the same persona. Since our worlds are deter-
ministic and the MCTS exploration parameter is set to 0,
two playtraces of the same persona on the same world will
yield identical action sequences until a state is reached that
has not been added to the MCTS tree, triggering a random
rollout. Once a random rollout begins, AAR will reflect how
likely the same action can be chosen at random twice in a
given state, which is based on the branching factor. How-
ever, if self-agreement is 1 then all actions reflect choices
made by the persona based on MCTS information. For the
AAR analysis to be accurate, it is important that the self-
agreement of both world sets is comparable to reflect the
same mix of MCTS signal vs. random rollout noise.

The average self-agreement across all personas in the 10
Evolutionary Search worlds is 99.42%. This number is high
because the worlds found by evolutionary search have an av-
erage 9.2 out of 32 gene positions active, which are worlds
that are easier for MCTS to exhaustively search. When ran-
domly sampling worlds for the second set, it is important to
sustain a self-agreement similar to the Evolutionary Search
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Figure 2: A diagram of world !$acepst. It contains 4 different enemies for the Warrior to vanquish, 5 different artifacts for the
Collector to find, a path with no enemies for the Sneaker to navigate, and a minimum sequence of 4 actions for the Speedrunner.

AAR in Evolutionary Search Worlds WR CR SR R
Warrior Speedrun (WR) 1.000 0.328 0.403 0.373
Collector Speedrun (CR) 0.261 1.000 0.284 0.306

Sneaker Speedrun (SR) 0.452 0.484 1.000 0.661
Speedrunner (R) 0.186 0.372 0.558 0.977

Table 1: AAR between all personas (WR, CR, SR, and
R) within worlds found with Evolutionary Search. Shows
worlds found via evolutionary search trend toward lower
than coin-flip AARs (i.e., 0.500) between different personas,
with the exception of the SR and R personas.

set. To this end, we rejected any world that caused aver-
age self-agreement across the Random Sample worlds to be
further than 1% away from that of the Evolutionary Search
set. This selection criteria biases the random sample towards
worlds with a similar state complexity as the evolutionary
search set, but ensures an apples-to-apples MCTS signal
to rollout noise ratio. Using this process, the final average
Random Sample self-agreement value is 99.35%, which is
0.07% less than the Evolutionary Search set.

AAR data for worlds found with Evolutionary Search
is summarized in Table1. The data for Randomly Sampled
worlds is summarized in Table2. The full AAR dataset is
provided in the Appendix.

Data Analysis
As mentioned, our overall hypothesis is: the average AAR
between personas in worlds found by evolutionary search
will be lower than worlds randomly sampled from the gen-
erative space. The initial data reported in Tables 1 and 2

AAR in Randomly Sampled Worlds WR CR SR R
Warrior Speedrun (WR) 1.000 0.500 0.577 0.462
Collector Speedrun (CR) 0.521 1.000 0.589 0.479

Sneaker Speedrun (SR) 0.564 0.577 0.974 0.564
Speedrunner (R) 0.375 0.475 0.525 1.000

Table 2: AAR between all personas (WR, CR, SR, and R)
Randomly Sampled from the generative space. Unlike the
trend shown by Table1, this table shows most personas agree
with each other at a rate higher than coin-flip odds (i.e.,
0.500) in Randomly Sampled worlds.

confirm this trend: most personas agree at a rate lower than
coin-flip odds in the Evolutionary Search worlds and higher
than coin-flip odds in Randomly Sampled worlds. Our in-
depth evaluation tests whether these AAR proportions are
statistically-significant. We conduct two analyses for this
evaluation: one of the stratified (i.e., per persona) effect of
evolutionary search on persona-driven gameplay and an-
other on the cumulative effect.

Stratified Analysis Our stratified analysis compares the
AARs across Tables 1 and 2 on a per-persona basis. A given
reference persona is analyzed against all other comparison
personas (excluding self-comparison) by counting the num-
ber of times the reference and the comparison agreed on an
action over the number of actions taken. This stratified AAR
is computed twice: once for the worlds found via evolution-
ary search, and once for randomly sampled worlds. Thus,
a given persona X ∈ {WR,CR, SR,R} yields two AARs:
one AAR pX1 that represents its behavior as effected by the
evolutionary search, and another AAR pX2 representing its
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Persona Action Agreement Ratio (AAR) Two-Sample Test for Equality of Proportions Effect Size Analysis
Reference Comparison Evo Search: p1 Rand Sampling: p2 χ2 (df) using HA p-value [95% CI] p1 − p2 Cohen’s h

WR CR, SR, R 0.368 = 148/402 0.513 = 120/234 12.695(1) < .001∗[−1.000,−0.078] −0.145 0.2924807
CR WR, SR, R 0.284 = 114/402 0.530 = 116/219 36.819(1) < .001∗[−1.000,−0.179] −0.246 0.5070318
SR WR, CR, R 0.532 = 161/248 0.577 = 135/234 0.83788(1) .18[−1.000, 0.036] −0.045 0.08989863
R WR, CR, SR 0.372 = 48/129 0.458 = 55/129 1.9063(1) .08369[−1.000, 0.016] −0.086 0.1752595

Cumulative 0.3655 = 409/1119 0.528 = 426/807 50.338(1) < .001∗[−1.000,−0.125] −0.1625 0.3281354

* Significant under Bonferroni correction for multiple comparisons (α = 0.05; αBonferroni = 0.05/5 = 0.01).

Table 3: Data analysis results. The first four rows summarize the stratified analysis and the last row cumulative analysis.

behavior as effected by the randomly sampled worlds.
These two AARs are themselves compared using the

Two-Sample Test for Equality of Proportions(Cohen 1988).
For the four personas this means evaluating four individual
hypotheses, each of the following form:

H0 : pX1 = pX2 forX ∈ {WR,CR, SR,R}
HA : pX1 < pX2 usingα = 0.05(w/ Bonferroni correction)

To assess the magnitude of the difference between the pro-
portions, we relied on Cohen’s h, itself defined as the dif-
ference between the angular transformation of the propor-
tions(Cohen 1988):

hX = φX
1 − φX

2

where:φX
i = 2arcsin(

√
pXi )

Cumulative Analysis This is the aggregate of the strati-
fied analysis, and follows the same operationalized form of
the null/alternate hypotheses described earlier.

Results
All five operationalized hypotheses are evaluated with the R
statistical software package, version 4.3.0 (Already Tomor-
row). The results are presented in Table3. Cumulatively, we
found support for our hypothesis: the average AAR of Per-
sonas in worlds found by Evolutionary Search (i.e., p1) is
lower than the average AAR in Randomly Sampled worlds
(i.e., p2). The magnitude of this difference is small (Cohen’s
hWR ≈ 0.33) but statistically significant.

When stratified per persona, we see the largest effect
on the Collector Speedrun (CR) Persona (Cohen’s hCR ≈
0.51, medium difference), followed by the Warrior Speedrun
(WR) Persona (Cohen’s hWR ≈ 0.29, small difference);
neither the Sneaker Speedrun (SR) nor baseline Speedrun
(R) personas exhibited statistically-significant differences in
their behavior within worlds found by evolutionary search
relative to worlds found via random sampling. This suggests
that the strength of the cumulative effect is due in large part
to the WR and CR personas.

Discussion
We find cumulative support for our general hypothesis and
statistically-significant differences for the stratified WR and
CR personas. We don’t observe a difference for the SR and

R personas, but this is expected given the above coin-flip
(0.558 and 0.661) AAR ratios between the SR and R per-
sonas shown in Table1. The ratios between these two per-
sonas are high because there is not much difference be-
tween them, even when both of their individual goals are
accounted for. The Speedrun persona tries to grab the Pricey
Artifact and reach the Exit in as few turns as possible. The
Sneaker-Speedrun persona tries to do the same thing, while
also avoiding enemies. This often leads to these two per-
sonas having a small AAR delta, no matter the world.

Consider world !$acepst, shown in Figure2. The
Speedrunner will move to the Hallway, where there is an
enemy. This initial move will differ from the Sneaker, who
wants to avoid the enemy. However, the Speedrunner will
not enter another room with an enemy after this first move
to the Hallway, so the two personas will agree on actions for
the rest of the playtrace. Alternatively, the Sneaker will use
Lever1 to enter the Secret Passage to the Good Loot Room
to bypass Enemy2 at the Hallway. After the first two ac-
tions of opening and entering the Secret Passage, it will be
more expensive for the Speedrunner to go back to its origi-
nal route than to follow the Sneaker’s path forward. Once the
two personas converge on a path of action, they have per-
fect agreement to the end of the playtrace. And this series
of events is what happens for world !$acepst in our dataset:
the Speedrunner to Sneaker AAR is 3/4 and the Sneaker to
Speedrunner AAR for !$acepst is 4/6.

This similarity between the Sneaker and Speedrunner per-
sonas leads to the larger than coin-flip SR/R values in both
Table1 and Table2. It also explains why the stratified SR and
R analyses are not statistically significant: these high AAR
values between SR and R are not a product of evolution-
ary search, but a feature of all worlds across the generative
space. Additionally, the SR/R to WR/CR values in the same
rows are noticeably lower in the Evolutionary Search table
(0.452, 0.484, 0.186, 0.372) when compared to the Ran-
domly Sampled table (0.564, 0.577, 0.375, 0.475). This in-
dicates that a difference exists between both the SR and R
persona when compared to the WR and CR personas, but the
uniform similarity between the SR and R personas through-
out the generative space causes non-statistically-significant
SR and R persona outcomes.

Overall, we find support for our general hypothesis. The
design of randomly sampled words “coerce” personas into
taking actions similar to others, so these worlds do not af-
ford the expression of unique play-styles. However, worlds
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found by evolutionary search afford the simulation-based
expression of different gameplay types. This demonstrates
that careful construction of evolutionary-guided search can
yield meaningfully different design spaces—i.e., those that
support persona expression as measured by diverging AAR.

Limitations and Future Work
We have shown that evolutionary search is capable of finding
procedurally generated worlds that accommodate a range of
different playstyles, as implemented with MCTS personas.
There are a number of ways this work can be used mov-
ing forward, including: 1.) expanding the generative space
of the system to search through a larger collection of PDDL
worlds, and 2.) creating mixed initiative authoring tools for
human-machine co-creation. In this section, we discuss each
of these possible future directions.

Expanding Generative Space
One drawback of the current project is the size of the gen-
erated worlds and the scope of the generator. While 1024
possible worlds is strong for an initial system, it would be
nice to search through a larger portion of the PDDL possi-
bility space. There are both smaller, easier changes that can
be made to the current indirect generator as well as larger
modifications that will make the representation more direct.

Fragment Generator The current PDDL generator can
be modified to add arbitrarily many high-level features,
like rooms, connections, enemies, etc. Some gene positions
could control what features are active, like the current frag-
ments, while other positions handle the number of objects
and how they are distributed across the map. This would
drastically widen the space of generative worlds without
changing the current PDDL fragment design.

Full PDDL Generation The size of generative space cor-
responds to how direct the genome representation is. Our
current representation and the above modification are rel-
atively indirect, meaning the genome representation is ab-
stracted away from the actual features of the final artifacts.
Our artifacts are text-based PDDL documents, so the most
direct representation would be the individual ASCII char-
acters and their location in the artifact document. However,
this would lead to a generative space of all text documents,
where many are not valid PDDL. A representation one step
more indirect is where all artifacts are valid PDDL but the
system can add or remove any kind of object, type, predi-
cate, action, precondition, effect, fluent, etc. that it wishes,
so the generative space is the set of all PDDL documents.

One problem with this approach is the issue of seman-
tics. All combinations of worlds in our current generative
space have an external narrative and game context of a galac-
tic treasure hunt. The objects, actions, and world configura-
tions in our PDDL fragments are hand-engineered to resem-
ble common tropes in the adventure and science fiction nar-
rative genres, along with common mechanics in text-based
and point-and-click adventure games. However, the vast ma-
jority of artifacts in the space of all PDDL documents do not
have this ludo-narrative information baked in.

A middle ground between our fragment approach and
navigating the full space of PDDL documents would be a
system capable of generating novel ludo-narrative PDDL
objects to populate the fragment pool. This approach is
similar to recent work in the interactive narrative planning
community, which has automatically generated narrative ac-
tions(Porteous et al. 2015) and object types(Porteous et al.
2020) using linguistic information from WordNet(Christiane
1998). These techniques could be used to automatically gen-
erate novel PDDL objects with a consistent narrative theme
to constrain a larger generative space to narrative-oriented
PDDL documents.

Authoring Tools
Extensions to our system could allow human designers to
benefit from MCTS personas and evolutionary search, and
vice-versa. These extensions could include a state visual-
izer/editor. Although humans can directly edit PDDL files,
like we have, it would be easier to have a state visualizer.
Given a PDDL world, the visualizer could make a diagram
of the world layout and mechanics. This is similar to work in
the interactive narrative planning community that automati-
cally visualizes game states based on an underlying PDDL
state representation(Robertson and Young 2015). The inter-
face could also allow human authors to reconfigure the de-
sign of the initial state and actions to create new world de-
signs. If the editor is capable of translating editor designs
back into PDDL documents, the document could be used as
the starting point for new evolutionary search sessions.

Conclusion
In this paper, we showed that evolutionary search can find in-
teractive narrative worlds that uniquely accommodate player
personas. We created a world generator that combines 32
different PDDL fragments into 1024 possible worlds. We
introduced four different MCTS personas that optimize dif-
ferent goals and use these personas to guide evolutionary
search. Finally, we ran an Action Agreement Ratio analysis
to show that worlds found through evolutionary search have
lower AARs compared to worlds randomly sampled from
the generative space. This shows that the worlds found with
evolutionary search better accommodate the playstyles rep-
resented by MCTS personas compared to worlds sampled
from the generator.

PDDL Fragments
There are a total of 32 PDDL fragments that can be com-
bined with each other and the base world for a total of 1024
different world designs. Each fragment is associated with a
character that is added or removed from the genome, which
is represented by a string of enabled fragments. This section
provides a detailed account of each fragment, listed by its
corresponding gene character:

! Places an artifact called the Cheap Artifact at the Bad
Loot Room. This gene gives the Collector persona an addi-
tional artifact to collect, which raises its utility.
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Evolutionary Search Data
Persona !$acemnpst !$acenpst !$acepst !$acempst !$acenps !$abcenps !$acemnps !$acempqst !$acehkmpst !$acekpst Total

WW 14 / 14 14 / 14 12 / 12 12 / 12 13 / 13 14 / 14 13 / 13 14 / 14 14 / 14 14 / 14 134 / 134
WC 3 / 14 5 / 14 3 / 12 2 / 12 4 / 13 4 / 14 6 / 13 9 / 14 6 / 14 2 / 14 44 / 134
WS 6 / 14 5 / 14 3 / 12 5 / 12 4 / 13 7 / 14 7 / 13 7 / 14 5 / 14 5 / 14 54 / 134
WR 5 / 14 5 / 14 5 / 12 5 / 12 8 / 13 6 / 14 5 / 13 4 / 14 3 / 14 4 / 14 50 / 134

CW 2 / 12 2 / 12 2 / 12 4 / 12 3 / 13 5 / 14 4 / 13 4 / 14 5 / 17 4 / 15 35 / 134
CC 12 / 12 12 / 12 12 / 12 12 / 12 13 / 13 14 / 14 13 / 13 14 / 14 17 / 17 15 / 15 134 / 134
CS 2 / 12 2 / 12 2 / 12 3 / 12 3 / 13 4 / 14 5 / 13 4 / 14 7 / 17 6 / 15 38 / 134
CR 4 / 12 4 / 12 3 / 12 4 / 12 4 / 13 3 / 14 4 / 13 3 / 14 8 / 17 4 / 15 41 / 134

SW 3 / 7 3 / 7 3 / 6 2 / 6 2 / 5 4 / 6 2 / 5 2 / 6 4 / 7 3 / 7 28 / 62
SC 3 / 7 4 / 7 2 / 6 4 / 6 2 / 5 2 / 6 2 / 5 4 / 6 3 / 7 4 / 7 30 / 62
SS 7 / 7 7 / 7 6 / 6 6 / 6 5 / 5 6 / 6 5 / 5 6 / 6 7 / 7 7 / 7 62 / 62
SR 4 / 7 4 / 7 4 / 6 4 / 6 4 / 5 4 / 6 4 / 5 4 / 6 3 / 7 6 / 7 41 / 62

RW 0 / 4 0 / 4 1 / 4 2 / 4 2 / 4 0 / 4 1 / 4 1 / 5 1 / 5 0 / 5 8 / 43
RC 3 / 4 2 / 4 1 / 4 2 / 4 2 / 4 1 / 4 1 / 4 2 / 5 1 / 5 1 / 5 16 / 43
RS 1 / 4 2 / 4 3 / 4 2 / 4 3 / 4 3 / 4 3 / 4 3 / 5 2 / 5 2 / 5 24 / 43
RR 3 / 4 4 / 4 4 / 4 4 / 4 4 / 4 4 / 4 4 / 4 5 / 5 5 / 5 5 / 5 42 / 43

Random Sample Data
Persona 23ltuv 4giknp 4bfsuvz ehopu 23bdfghjlpsy 12lortz !bipqsv dmntv afgnrs 1fmnr Total

WW 6 / 6 10 / 10 7 / 7 8 / 8 8 / 8 8 / 8 10 / 10 7 / 7 7 / 7 7 / 7 78 / 78
WC 3 / 6 5 / 10 2 / 7 3 / 8 1 / 8 8 / 8 5 / 10 5 / 7 3 / 7 4 / 7 39 / 78
WS 6 / 6 3 / 10 4 / 7 5 / 8 1 / 8 6 / 8 4 / 10 7 / 7 5 / 7 4 / 7 45 / 78
WR 2 / 6 3 / 10 4 / 7 3 / 8 2 / 8 5 / 8 4 / 10 4 / 7 4 / 7 5 / 7 36 / 78

CW 2 / 6 2 / 7 3 / 6 1 / 3 2 / 6 8 / 8 4 / 11 4 / 7 6 / 12 6 / 7 38 / 73
CC 6 / 6 7 / 7 6 / 6 3 / 3 6 / 6 8 / 8 11 / 11 7 / 7 12 / 12 7 / 7 73 / 73
CS 2 / 6 4 / 7 2 / 6 3 / 3 1 / 6 7 / 8 4 / 11 6 / 7 7 / 12 7 / 7 43 / 73
CR 3 / 6 3 / 7 3 / 6 3 / 3 1 / 6 6 / 8 4 / 11 4 / 7 3 / 12 5 / 7 35 / 73

SW 6 / 6 3 / 14 5 / 7 1 / 3 2 / 5 5 / 6 7 / 16 7 / 7 4 / 7 6 / 7 46 / 78
SC 5 / 6 5 / 14 4 / 7 3 / 3 1 / 5 5 / 6 4 / 16 6 / 7 5 / 7 7 / 7 45 / 78
SS 6 / 6 13 / 14 7 / 7 3 / 3 5 / 5 6 / 6 15 / 16 7 / 7 7 / 7 7 / 7 76 / 78
SR 4 / 6 6 / 14 5 / 7 3 / 3 3 / 5 3 / 6 7 / 16 5 / 7 3 / 7 5 / 7 44 / 78

RW 2 / 3 1 / 5 0 / 3 1 / 3 1 / 3 2 / 4 0 / 5 3 / 4 3 / 5 2 / 5 15 / 40
RC 2 / 3 2 / 5 1 / 3 3 / 3 1 / 3 2 / 4 1 / 5 3 / 4 1 / 5 3 / 5 19 / 40
RS 1 / 3 2 / 5 1 / 3 3 / 3 2 / 3 2 / 4 1 / 5 3 / 4 3 / 5 3 / 5 21 / 40
RR 3 / 3 5 / 5 3 / 3 3 / 3 3 / 3 4 / 4 5 / 5 4 / 4 5 / 5 5 / 5 40 / 40

$ Places an enemy named Enemy1 at the Bad Loot Room.
This gene gives the Warrior an enemy to attack, which raises
its utility. It also gives the Sneaker a room to avoid.

1 Creates a new room, called the Hidden Loot Room. Like
the other loot rooms, the Hidden Loot Room is connected in
a diamond pattern between the Hallway and Exit.

2 Creates a new room, called the Loop Room. The Loop
Room is connected to the Entrance and the Hallway, creating
a circuit between these initial three rooms.

3 Creates a new room, called the DK Room. The DK
Room is only connected to the Entrance. This room is named
after Donkey Kong Country, which allows players to back-
track from the start of levels to find collectables.

4 Creates a new room, called the Secret Room. The Se-
cret Room is connected to the Good Loot Room. This is an
additional alcove to hide collectables.

a Places an Altar object at the Bad Loot Room and allows
Illinois to perform the pray action. When Illinois prays in a
room with an altar, a hidden Holy Artifact is revealed. This
gene gives the Collector persona another artifact to collect.

b Places a beverage, called Slurm, in Illinois’ inventory
and introduces the thirsty status effect. A held beverage can
be consumed to remove the thirsty status effect.

c Places a closed coffin at the Good Loot Room. A Coffin
Artifact is inside the closed coffin. The coffin can be opened,
which allows access to the Coffin Artifact. This gives the
Collector persona another artifact to collect.

d Creates a dog, named Spot, at the Hallway. Illinois can
pet an animal if they are in the same room.

e Adds two additional enemies: Enemy2 is added to the
Hallway and Enemy3 to the Bad Loot Room. This gives the
Warrior persona two extra enemies to attack, but makes it
impossible for the Sneaker persona to reach the exit without
encountering an enemy (unless the ‘t’ gene is active).

f Illinois is holding a sandwich and is hungry. Hunger can
be alleviated by eating food.

g Adds a force field that prevents Illinois from taking arti-
facts. The force field is applied to the Cheap Artifact, created
by gene ‘!’. This prevents the Cheap Artifact from being col-
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lected by Illinois, which negatively impacts the Collector’s
utility by removing an artifact to find.

h Illinois is wearing a fedora. A fedora is a famous hat
worn by explorers named after US states...

i Sets the position of Enemy1 (also used by gene ‘$’) to all
locations in the base world. This projects the same enemy
into multiple locations at once, which negatively impacts the
Sneaker’s utility. However, the Warrior still only has one en-
emy to vanquish so this gene does not benefit the Warrior.

j Places Enemy1 (added to the Bad Loot Room by gene ‘$’
and other positions by ‘i’) in a cell. This prevents the enemy
from being attacked by the Warrior, while still negatively
impacting the Sneaker’s score.

k Illinois is given a key that must be used to unlock pas-
sageways leading to the Exit. This negatively impacts the
Speedrunner persona by introducing an additional action
that must be performed to move from the Good Loot Room
to the Exit after picking up the Pricey Artifact.

l Rooms are now unlit, like a cave. In order to take an item
in a room, the room must be lit. Only the Entrance begins
lit. Illinois has a lighter object that will light a room when
used. This negatively impacts the Speedrunner persona by
introducing an additional action that must be taken in the
Good Loot Room before the Pricey Artifact can be taken.

m Creates a salesman at the Entrance. This feature can be
combined with other genes to offer Illinois world-specific
items for purchase.

n Illinois is tired. The tired status effect can be removed
by taking the nap action, which has no other effect.

o Creates three enemy phantoms: one each at the Hallway,
Bad Loot Room, and Good Loot Room. The phantoms are
enemies to be avoided by the Sneaker but cannot be attacked
by the Warrior. This negatively impacts the Sneaker (unless
the ‘t’ gene is present) and does not benefit the Warrior.

p Creates a room called the Pit Room. The Pit Room is
connected to the Hallway by a special connection called a
Pit. Illinois is given a Whip which is used to swing across
the Pit to reach the Pit Room. There is an enemy located at
the Pit Room, named Pit Monster. This gives the Warrior an
extra enemy to attack, which raises its utility.

q The Hallway is now filled with Quicksand. If Illinois en-
ters a room with Quicksand, they become trapped. To es-
cape, they must use a Whip in their inventory.

r The Hallway is now a trap. To leave the Hallway, Illi-
nois must use a Rock in their inventory to hit a button in the
Hallway to disable the room’s trap.

s A sandpit is added to the Hallway and Illinois is given a
shovel. If Illinois digs in the sandpit, they will find the Sandy
Artifact. This is another artifact for the Collector to find.

t Creates a secret passage that connects the Entrance to the
Good Loot Room. To access the passage, two levers must
be pulled. The first lever is at the Entrance and opens the
pathway to the Secret Passage room. The second lever is
in the Secret Passage and opens the pathway to the Good
Loot Room. This allows the Sneaker persona to avoid any
enemies located at the Hallway (for example, those added
by ‘e’ and ‘o’). In conjunction with ‘e’, this gene allows the
Warrior to benefit from the extra enemies while allowing the
Sneaker an alternate route around them.

u Adds an artifact to the Hallway and requires artifacts
have the stable status effect to be picked up. All artifacts
begin unstable. In order for any artifacts to be stabilized and
collected, the ‘v’ gene must be present.

v Gives Illinois a gadget that stabilizes an artifact. This
gadget can be used when the ‘u’ gene is present to stabilize
artifacts so they can be collected. However, the gadget only
has a single charge. So even ‘u’ and ‘v’ together will result
in the Collector finding less artifacts.

w Illinois begins with a Walkman: a portable cassette
player, famously used by space explorers from Earth...

x Illinois begins with a xylophone. The xylophone starts
with ‘x’ and is used to play music.

y Illinois has yarn than can be unspooled to mark locations
as they explore the ruins, similar to the Greek myth of The-
seus and the Minotaur.

z A magic charm is given to Illinois that turns all the en-
emies nice. This prevents enemies from being attacked but
they still exist, so this negatively impacts both the Warrior
and the Sneaker’s scores.

AAR Dataset
The tables in this section show the playtrace data used in the
AAR analysis. There are two tables of data: worlds produced
by evolutionary search and worlds selected by our sampling
process. The far-left column of each table contains two char-
acters that correspond to the two personas being compared.
The remaining columns are for each of the worlds in the set,
labeled by their genome. Each entry is an AAR ratio: the nu-
merator is the number of matching actions and the denom-
inator is the total number of actions in the playtrace. The
far-right column is the sum of all ratios in the row.
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