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WEARABLE DATA ASSIMILATION TO ESTIMATE THE
CIRCADIAN PHASE\rightarrow 

DAE WOOK KIM†, MINKI P. LEE†, AND DANIEL B. FORGER‡

Abstract. The circadian clock is an internal timer that coordinates the daily rhythms of behavior
and physiology, including sleep and hormone secretion. Accurately tracking the state of the circadian
clock, or circadian phase, holds immense potential for precision medicine. Wearable devices present
an opportunity to estimate the circadian phase in the real world, as they can noninvasively monitor
various physiological outputs influenced by the circadian clock. However, accurately estimating
circadian phase from wearable data remains challenging, primarily due to the lack of methods that
integrate minute-by-minute wearable data with prior knowledge of the circadian phase. To address
this issue, we propose a framework that integrates multitime scale physiological data and estimates
the circadian phase, along with an e!cient implementation algorithm based on Bayesian inference and
a new state space estimation method called the level set Kalman filter. Our numerical experiments
indicate that our approach outperforms previous methods for circadian phase estimation consistently.
Furthermore, our method enables us to examine the contribution of noise from di""erent sources to
the estimation, which was not feasible with prior methods. We found that internal noise unrelated
to external stimuli is a crucial factor in determining estimation results. Last, we developed a user-
friendly computational package and applied it to real-world data to demonstrate the potential value
of our approach. Our results provide a foundation for systematically understanding the real-world
dynamics of the circadian clock.
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1. Introduction. Circadian rhythms are \rightarrow 24hr oscillations in behavioral and
physiological processes observed in nearly all living organisms [12]. In mammals, in-
cluding humans, the daily rhythms are coordinated with the external light-dark cycles
by an innate timing system, the circadian clock [12]. The failure of synchrony between
cellular clocks can occur, for instance, due to an alteration of the external environ-
ment. Notably, around 80% of the population appears to live a shift work lifestyle
[48]. This increases the risk for various chronic diseases, such as sleep disorders, psy-
chiatric disorders, cancer, and diabetes [58]. Thus, tools to calculate sleep schedules
rapidly restoring desynchronization have recently received attention [24, 53]. Targets
of more than 80% of currently approved drugs have daily rhythmic activity [41, 57].
As a result, the e!cacy and toxicity of diverse drugs, including around 50 anticancer
drugs, largely change upon dosing time [29]. Thus, many clinical trials have been
performed to develop a pharmaceutical intervention that considers the patient’s cir-
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cadian phase, so-called chronotherapy [40, 41]. To realize chronotherapy, we need the
precise measurement of an individual’s circadian phase in real-world settings.

One of the promising tools for this is wearable technology. Wearable devices
already owned by millions of individuals track physiological proxies of clocks, such
as rest-activity rhythms and heart rate (HR) outside the laboratory [29]. However,
because only the downstream signals can be monitored by wearables, suitable follow-
up analysis is required to infer the unobservable state space of the molecular clocks
in tissues. One approach is to estimate the phase using di""erential equation models
of the human circadian clock, coupled with activity or light levels recorded from
wearables [25, 46, 47, 56]. Specifically, a van der Pol limit cycle model that takes
light or activity measurements as the direct input has been proposed to estimate the
circadian phase [16, 25]. Another recent approach is to demask noisy measurements
of the HR rhythm a""ected by various confounding factors, such as activity, stress, and
hormones, using a Bayesian framework with harmonic-regression-plus-autoregressive-
noise models and extract a peripheral circadian rhythm in HR [4, 36]. This shows
the usefulness of the combined approach of wearable technology and mathematical
analysis. However, accurate estimation of the circadian phase from wearable data
remains far from complete because the information available from wearable monitoring
is not fully exploited. For instance, minute-by-minute measurements of rhythmic
outputs (e.g., HR) are not currently utilized when estimating the molecular clock
phase due to the absence of suitable data assimilation techniques [25, 46, 56, 59].
Moreover, the contribution of noise from di""erent systems to the phase uncertainty
remains to be elucidated [25, 46, 56].

To circumvent this, a filtering approach that assimilates the knowledge of the sys-
tem and wearable measurements seems promising [42]. However, conventional data
assimilation frameworks are not directly applicable due to the time-scale di""erence
between system estimates and wearable measurements. Specifically, our goal is to
estimate the circadian phase, which is a specific time of day. However, available in-
formation to update the phase estimate in minute-by-minute wearable measurements
and the clock state is continuously propagated forward every time. Thus, straight-
forward filtering methods for problems where the measurements, the internal system
dynamics, and the estimate of interest are on a similar time scale cannot be used to
estimate the circadian phase from wearable data.

Here, we propose a generalizable approach for estimating the state of intracellular
systems using wearable data. We have applied this approach to assimilate multitime
scale physiological information and estimate the circadian phase, along with its un-
certainty, from wearable data. It first extracts daily physiological parameters from
short time-scale wearable data using a Bayesian approach. In the second step, the
extracted long time-scale information is e!ciently and accurately assimilated to es-
timate the state space of the molecular clocks in tissues using a new state space
estimation method called the level set Kalman filter (LSKF). This can account for
the contribution of noise from di""erent systems to the estimation, which is impossible
with previous methods [25, 46, 47, 56]. Numerical experiments show that our method
has a consistent performance improvement over the previous methods. We also apply
the method to real-world data to further demonstrate its usefulness.

The rest of the paper is structured as follows: In section 2, we review previous
approaches to estimate the circadian phase and describe the novelty of our approach.
In section 3, we define our filtering problem for estimating the circadian phase and
describe our approach to solve the problem. Then, our method is tested on various in
silico data while changing the noise parameter values, and its performance is compared
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with previous approaches in section 4. In section 5, our method is applied to real-
world wearable data, which shows its usefulness in real-world settings. In section 6, we
conclude the paper by describing the broad applicability of the method, its limitations,
and potential future work.

2. Background: Previous approaches and the novelty of our approach.
In this section, we summarize how our approach to estimate the clock phase is di""er-
ent from previous approaches. Early work done by Brown and colleagues estimated
the phase of body temperature circadian rhythms by fitting dynamic (e.g., limit cycle)
or simple harmonic models to body temperature data collected in carefully controlled
laboratory settings using Bayesian methods [6, 7, 8, 9]. These techniques were used to
analyze much of the initial data on human peripheral circadian rhythms. When esti-
mating the central clock phase, many studies perform experiments, such as measuring
the time that melatonin collected in dim light crosses a threshold [29, 55]. However,
such methods can only be available when laboratory data are given. Moreover, the
methods for the central clock phase estimation are not statistical in that they do not
calculate confidence intervals for each measurement.

To circumvent this, frameworks to extract the circadian phase from real-world
wearable data have been recently proposed [4, 25, 47]. The most validated method is
to use the limit-cycle oscillator models of the human circadian pacemaker that take in
inputs of wearable light measurements or their estimates from wearable activity mea-
surements [16, 25, 26, 30, 47]. By simulating the models, the estimate of the circadian
phase (e.g., the time of the circadian signal minimum) can be computed. Despite
this progress, circadian phase estimation in real-life settings remains a challenge. The
existing methods do not assimilate the given wearable data despite the potential of
data assimilation to improve performance. This is due to the absence of frameworks
to combine di""erent sources of physiological information with di""erent time scales
(e.g., the molecular clock state and the minute-by-minute HR measurements).

To address this, we first proposed a two-step filtering approach for the assimilation
of multitimescale physiological information. It extracts the long timescale information
(i.e., circadian parameters) from short timescale wearable data. Then, the extracted
information is exploited to update the estimate of the unobservable molecular clock
state that is continuously propagated. We then developed a numerical algorithm
for accurate and e!cient implementation of the two-step framework by integrating
the LSKF with the Bayesian inference method. The algorithm is easy-to-use and
user-friendly so that a broad range of scientists, including physicians, can exploit it
for their research. We also provide publicly available user-friendly computer codes to
easily implement our method. Last, by solving the two-step filtering problem with the
proposed algorithm, we analyzed the contribution of the biological noise from di""erent
systems to the phase estimation. This analysis is impossible with previous methods
[25, 46, 47, 56], which demonstrates another benefit of our method in addition to
performance improvement.

3. Data assimilation framework to estimate the circadian phase and
its uncertainty. Here, we propose a framework to estimate the circadian phase and
its uncertainty based on the LSKF [54] and the Bayesian inference method [4]. This
section is organized as follows: In section 3.1, we explain the mathematical models
used to define the process equation and the measurement equation of our filtering
framework. In section 3.2, the process equation and the measurement equation of
our LSKF framework are explained. In sections 3.3 and 3.4, its time-update and
measurement-update steps are described, respectively. In section 3.5, we describe
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WEARABLE DATA ASSIMILATION S455

how the circadian clock state estimated on the variable domain can be transformed
into that on the time domain. In section 3.6, we summarize our method and show an
example of its application to clearly explain how it works.

3.1. Mathematical models of the human circadian pacemaker.

3.1.1. Limit-cycle oscillator model of the human circadian pacemaker.
In this study, we describe our framework with one of the most validated limit-cycle
oscillator models of the human circadian clock constructed by Forger, Jewett, and
Kronauer [16, 25]. The Forger–Jewett–Kronauer (FJK) model can be thought of as
a representation of the molecular dynamics of the circadian system. For example,
biochemical models of the molecular timekeeping of individual cells can be reduced
to the FJK model by averaging on approximate manifolds [17]. Moreover, a recent
ansatz yields the model from large networks of coupled oscillators [22, 23]. This also
explains process noise which has a molecular origin [19] and noise in the inputs to the
model [18] as well as the measurement noise considered by Brown and Czeisler [7].
Note that other circadian oscillator models taking light or activity measurements as
an input can also be used to implement our filtering framework described below.

The human circadian pacemaker a""ected by light can be described by a van der
Pol type oscillator model [16],

dx

dt
=

\omega 

12
(xc +B(x,xc, n)),(3.1)

dxc

dt
=

\omega 

12

\Biggr) 
µ

\Biggl[ 
xc \uparrow 

4

3
x
3
c

\Biggr] 
\uparrow x

\Biggl\lfloor \Biggl[ 24

0.99669\varepsilon x

\Biggr] 2
+ kB(x,xc, n)

\Biggr\rfloor \Biggl\lceil 
,(3.2)

where µ= 0.23, \varepsilon x = 24.2, and k= 0.55. The solution trajectory of (3.1) and (3.2) is a
limit-cycle oscillation representing the endogenous rhythm of the circadian pacemaker.
This oscillator is denoted by Process P. B(x,xc, n) in (3.1) and (3.2), representing the
e""ect of the photic drive on the circadian pacemaker, and the conversion of light to the
photic drive, denoted by Process L, are modeled as described below. Light activates
photoreceptor activator elements in a “ready” state (fraction 1\uparrow n) and converts them
to a “used” state (fraction n) at a rate of \vargamma , which depends on light intensity I (3.3),

\vargamma (I) = \vargamma 0

\Biggl[ 
I

I0

\Biggr] p

,(3.3)

where \vargamma 0 = 0.16, p= 0.6, and I0 = 9500. The used elements are recycled back into the
ready state at a rate of \varpi = 0.013. This is given by

dn

dt
= 60

\Biggl[ 
\vargamma (I)(1\uparrow n)\uparrow \varpi n

\Biggr] 
.(3.4)

As the elements are activated, it generates a drive onto the circadian pacemaker
B̂, which is proportional to element flux rate \vargamma (I)(1\uparrow n) (3.5),

B̂(n) =G\vargamma (I)(1\uparrow n),(3.5)

where G = 19.875. The sensitivity of the circadian pacemaker to the drive is modu-
lated in a circadian manner with the state variables x and xc (3.6):

B(x,xc, n) = B̂(n)(1\uparrow 0.4x)(1\uparrow 0.4xc).(3.6)

The model diagram of the circadian clock and example solution trajectories of x and
xc are shown in Figures 3.1(a) and 3.1(c), respectively.
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Fig. 3.1. Mathematical models simulating the human circadian timekeeping system. (a), (b)
Schematic diagram describing the model of the human molecular clocks (3.1)–(3.6) (a) and the
model of the circadian rhythm in the heart (3.7)–(3.8) (b). (c, d) The exemplary trajectories of x
and xc (c), and HRt (d). In (c), the light intensity I(t) = 10000 lux for t \uparrow (0,12) and I(t) = 0 lux
for t\uparrow (12,24). In (d), the parameter values were adopted from [4].

3.1.2. Harmonic-regression-plus-correlated-noise model of the HR
circadian rhythm. The circadian rhythm in HR can be described by a harmonic-
regression-plus-first-order-autoregressive model with a linear coe!cient that corre-
sponds to how much HR increases per activity (step counts) [4, 36]. Specifically, HR
oscillates with an approximately 24 hour period [35], and it increases from this base-
line proportionate to activity, matching existing data [43]. Moreover, many external
factors, such as cortisol and other hormones [3], stress [10], and ca""eine intake [34],
a""ect HR on the hour timescale. This yields a final model for HR at time t, measured
in hours:

HRt = µ\uparrow a cos
\Biggl[ 2\omega 
\varepsilon 
(t\uparrow \varrho 

HR)
\Biggr] 
+ d ·Activityt + vt,(3.7)

where

vt = \vargamma · vt\rightarrow !t + \varsigma t,(3.8)

µ is the basal HR in beats per minute, a denotes the circadian amplitude, \varrho 
HR,

representing the time of the circadian HR minimum, denotes the circadian phase as
done in [4], the circadian period \varepsilon = 24 in hours, d is the increase in HR per unit
activity, |\vargamma |< 1, and the \varsigma t values are Gaussian random variables with mean zero and
variance \varphi 2

\omega 
. Note that the noise vt follows the first-order autoregressive noise process

(3.8): The noise at time t carries over a fraction \vargamma of the noise at time t\uparrow \#t. This
describes the ongoing e""ects of extrinsic factors on HR. The independent Gaussian
noise \varsigma t represents new extrinsic e""ects and measurement error. The model diagram
of the HR rhythm and an example trajectory of HRt are shown in Figures 3.1(b)
and 3.1(d), respectively.

3.2. Problem formulation. We consider a continuous-discrete nonlinear filter-
ing model of the circadian timekeeping system whose process equation is formulated
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with (3.1)–(3.6):

dxt = v(xt)dt+
\downarrow 
KdWt,(3.9)

where

xt =

\Biggr\rceil 

\Biggl\{ 
x(t)
xc(t)
n(t)

\Biggr\} 

\Biggl\langle ,v(xt) =

\Biggr\rceil 

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggl\{ 

\varepsilon 

12 (xc(t) +B(x,xc, n))

\varepsilon 

12

\Biggr) 
µ

\Biggl[ 
xc(t)\uparrow 4

3x
3
c
(t)

\Biggr] 
\uparrow x(t)

\Biggl\lfloor \Biggl[ 
24

0.99669\vargamma x

\Biggr] 2
+kB(x,xc, n)

\Biggr\rfloor \Biggl\lceil 

60
\Biggl[ 
\vargamma (I)(1\uparrow n(t))\uparrow \varpi n(t)

\Biggr] 

\Biggr\} 

\Bigg/ \Bigg/ \Bigg/ \Biggl\langle 
,

Wt is a standard 3-dimensional Brownian motion, and K \updownarrow R3\uparrow 3 is a positive semi-

definite continuous process noise matrix, with its decomposition K=
\downarrow 
K
\downarrow 
K

T

. The
state of the molecular clocks is indirectly measured from the phase of the peripheral
HR clock (i.e., \varrho HR in (3.7)),

\varrho 
HR

i
= \varrho i + \varrho ref + \varsigma 

\varpi 

i
,(3.10)

where \varrho HR

i
denotes the HR phase on day i, \varrho i is the phase of the circadian pacemaker

on day i, \varrho ref = \uparrow 1 denotes the average di""erence between the two phases reported
in the previous studies [4, 16, 55], and \varsigma 

\varpi 

i
is the zero-mean Gaussian measurement

noise on day i. For a given day i, we define \varrho i to be

\varrho i = {ti (mod 24) :E[x(ti)]\nearrow E[x(t)] \searrow t\updownarrow [24(i\uparrow 1),24i]}.(3.11)

Note that E[x(t)] denotes the expectation of x(t) with respect to the probability dis-
tribution of x(t) = [x(t), xc(t), n(t)] \downarrow in (3.9). The mean dynamics computed using
the averaged velocity level set time-update method (see section 3.3.1 below) has a
limit cycle of period 24 hr, and there is only one minimum point of x(t) for each cy-
cle (supplementary materials (121432 2 supp 528116 rvlszc sc.pdf [local/web 521KB])
and [13]).

The measurement equation of our filtering framework is represented by the rela-
tionship between the two clock states (3.10)–(3.11). The method used to obtain the
HR phase estimate from wearable data [4] is described in section 3.4.

3.3. Time-update step. Here, we use the time-update method of the LSKF to
propagate the clock state estimate forward in time because it better fits our problem
settings, compared to other flavors of Kalman filter, such as the continuous-discrete
cubature Kalman filter (CD-CKF). Specifically, although the time-update of the CD-
CKF (with Ito–Taylor expansion of order 1.5) and that of the LSKF converge to the
same limit, the LSKF method can achieve a higher order of convergence [54]. More-
over, the LSKF can outperform the CD-CKF with su!cient time-step subdivisions,
which is the choice for challenging filtering problems [2, 31], when the measurement
interval is large. Thus, the LSKF is suitable for our data assimilation problem with a
significantly large measurement interval: There is only one measurement (i.e., \varrho HR

i
)

on each day. Another possible time-update method is to use particle filters [37].
However, their computational costs are prohibitive in many real-world applications
because they typically require the simulation of individual stochastic trajectories. Un-
like this, the LSKF computes the propagation of the estimate in time e!ciently by
solving coupled ordinary di""erential equations for the Gaussian level set.

Another reason to select the LSKF time-update method is that it is user-friendly
and easy-to-use. For example, while the CD-CKF requires the spatial partial deriva-
tives of the drift function and user-defined time-step subdivisions explicitly, the LSKF
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only requires knowledge of the drift function [54]. Moreover, the LSKF time-update
step can be easily performed using any adaptive ODE solver without an appropriate
time discretization.

In section 3.3.1, we review the time-update method of the LSKF. In section 3.3.2,
we describe how the best possible estimate of x in (3.9) can be propagated using the
time-update step of the LSKF.

3.3.1. Review of the time-update method of the LSKF. The probability
density u(x, t) of x in (3.9) satisfies the Fokker–Plank equation in Ito’s calculus [5]:

\leftharpoonup u(x, t)

\leftharpoonup t
=

1

2
\simeq ·K\simeq u(x, t)\uparrow \simeq · (v(x)u(x, t)).(3.12)

Without loss of generality (WLOG), we may assume the drift function at x = 0 is
zero (i.e., v(0) = 0). Then we approximate (3.12) by taking a linear approximation of
v (i.e., v(x)\Leftarrow Jx, where J is the Jacobian matrix):

\leftharpoonup u(x, t)

\leftharpoonup t
=

1

2
\simeq ·K\simeq u(x, t)\uparrow \simeq · (Jxu(x, t)).(3.13)

The auxiliary function F (x, t) := u(x, t)/u(0, t) is introduced to define a level set of a
Gaussian distribution as

L(F (x, t), c) := {x : F (x, t) = c},(3.14)

where c\updownarrow (0,1) is some fixed scalar constant. Note that L(F (x, t), c) is an ellipsoid if
u(x,0) is given by a Gaussian function

u(x,0) =
1\Bigg\backslash 

(2\omega )d det\$
exp

\Biggl[ \uparrow xT\$\rightarrow 1x

2

\Biggr] 
,(3.15)

where d is a dimension of x, \$ is the covariance matrix, and it is assumed WLOG that
x is centered at 0 at time 0. Since F varies over time, L(t) propagates in space. To
describe its propagation, we consider a velocity of level set vL defined by a velocity
field satisfying the level-set equation [45]:

\leftharpoonup F

\leftharpoonup t
+ vL ·\simeq F = 0.(3.16)

A velocity of the level set for L(0) defined in (3.14) can be explicitly calculated if
u(x,0) is given by a Gaussian function in (3.15) [54] as follows:

vL = Jx+
1

2
K\$\rightarrow 1x.(3.17)

Using (3.17), we can show that the solution of a Fokker–Plank equation with linear
drift function is a Gaussian distribution if an initial condition u(x,0) is given by a
Gaussian distribution as follows.

Corollary 3.1. A Fokker–Plank equation preserves a Gaussian distribution with
a linear drift function (3.13).

Proof. (3.17) is a linear transformation (i.e., a linear velocity field) that instan-
taneously propagates every level set, independently of the scaling constant c. Since
a linear transformation maps Gaussian to Gaussian, the initial Gaussian distribution
is mapped to a Gaussian under (3.17). Hence, u(x, t), the propagated distribution at
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WEARABLE DATA ASSIMILATION S459

time t, is also a Gaussian distribution, and the velocity field vL is always well-defined
for all t.

Note that the proof of Corollary 3.1 is adopted from [54] and Corollary 3.1 can
be considered as a corollary of (29) in [27].

We now describe the numerical algorithm for the time-update step. Inspired
from Corollary 3.1, we can consider that propagation of a solution of the Fokker–
Plank equation with linear drift function for time t (3.13) is equivalent to tracking
its ellipsoid level sets. Hence, we track the movement of the column vectors of M,

where \$ = MMT
, since they represent the unique level set for the time update [1].

Specifically, let \$(0) = M(0)M(0)T be the covariance matrix of an initial condition
u(x,0), and M(0) =

\Big/ 
x1(0) · · · xd(0)

\Big\backslash 
, where xi(0) is the ith column vector xi of

M(0). Then, we can interpret xi(0) as a representative point of one of level sets at time
t= 0 [54]. It travels at the speed defined by a velocity of level set in (3.17). Let the
position of the propagated points at time t be denoted by M(t) =

\Big/ 
x1(t) · · · xd(t)

\Big\backslash 
.

Then, \$(t) =M(t)M(t)T is the covariance matrix for the Gaussian that is a solution
of (3.13) at time t because the velocity field defined in (3.17) is linear and a Gaussian is
preserved by a linear transformation. By substituting each column vector of M(t) for
x in (3.17) and approximating the Jacobian J with the central di""erence in velocity,
we obtain

dxi(t)

dt
= v(x̄+ xi)\uparrow 

1

2d

d\left( 

i=1

(v(x̄+ xi) + v(x̄\uparrow xi)) +
1

2
K(M(t)T )\rightarrow 1

ei,(3.18)

where x̄ is the mean of the Gaussian and ei is the ith unit vector with all entries 0
except for the ith entry. The matrix form of (3.18) is

dM

dt
= v(x̄+M)\uparrow 1

2d

d\left( 

i=1

(v(x̄+ xi) + v(x̄\uparrow xi)) +
1

2
K(MT )\rightarrow 1

.(3.19)

With the averaged velocity (i.e., the second term of (3.18)), we can also set the velocity
of x̄ as follows:

dx̄

dt
=

1

2d

d\left( 

i=1

(v(x̄+ xi) + v(x̄\uparrow xi)).(3.20)

We concatenate x̄ and M as a variable (x̄|M) of d\Rightarrow (d+ 1) dimension and obtain a
nonlinear ODE system. By solving it with any standard ODE solver, we can complete
the time-update step between the measurements.

3.3.2. Forward propagation of the estimate of the clock state. Here, we
apply the LSKF time-update method to our process equation (3.9) to propagate the
estimate of x forward until the subsequent measurement is available. To track the
propagation of the level set by solving (3.19) and (3.20), the light intensity I needs
to be defined for each time. However, ubiquitous consumer-grade wearable devices
typically do not record light levels. To address this problem, Huang et al. showed that
light levels are correlated to activity levels in real-life settings and thus light levels can
be estimated from activity levels using a carefully constructed steps-to-light function
[25]. Thus, the ODE model (3.1)–(3.6), taking in inputs of light levels estimated
from activity levels using the function, showed reasonable accuracy in estimating the
circadian phase in multiple clinical datasets [25]. Importantly, activity is better at
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𝑔𝑖 ∘ 𝜃 x𝑖|𝑖

Fig. 3.2. Key steps of our filtering framework. (a) Graphical illustration of the time-update
step and the measurement-update step. By the time-update method, the ellipsoid level set of x

represented as a circle is propagated forward (black), and the circadian clock state is predicted
(blue). The predicted state is updated by the measurement-update method (red). (b) Transformation
of the clock state from the variable domain to the time domain.

estimating the phase than light in a shift-worker cohort. We adopted this validated
steps-to-light piecewise function denoted by L (3.21) in this study: The step count
measured by wearables at time t denoted by a(t) is converted to the light input I with
L (3.21),

L(a(t)) =

\right) 
\left[ \left[ \left[ \left[ \left[ \left[ \right] 

\left[ \left[ \left[ \left[ \left[ \left[  

0 lux if a(t)\nearrow 0,

100 lux if a(t)\updownarrow (0,0.1m),

200 lux if a(t)\updownarrow [0.1m,0.25m),

500 lux if a(t)\updownarrow [0.25m,0.4m),

2000 lux otherwise,

(3.21)

where m =
maxs1\rightarrow t\rightarrow s2(a(t))

2 , s1 and s2 denote the starting time and ending time of
data collection, respectively. By substituting L(a(t)) for I(t) in (3.9) and solving
(3.19) and (3.20), we can compute the propagation of x until a new measurement is
available, which is shown as black circles in Figure 3.2(a). This allows the prediction
of the circadian clock state on day i+1 when measurements until day i are given (i.e.,
xi+1|i \rightarrow N(x̄i+1|i,\$i+1|i)), which is shown as a blue circle in Figure 3.2)(a).

3.4. Measurement-update step. In section 3.4.1, we review the measurement-
update method used in the LSKF. In section 3.4.2, we describe how the estimate of
x in (3.9) is updated using the method where the subsequent measurement is given.

3.4.1. Review of the measurement-update of the LSKF. For the
measurement-update, the method from the square root CD-CKF [2, 54] is used. The
method was adopted because it can accommodate a positive semidefinite matrix M
calculated in the LSKF time-update step, which is required for the reliability of the
method [2, 54]. Because our notations are di""erent from those used in [2, 54], we
restate the measurement-update algorithm in Algorithm 3.1.

3.4.2. Update of the estimate of the circadian clock state with wear-
able measurements. Here, we describe how the predicted estimate of xi+1|i in sec-
tion 3.3.2 is updated with wearable data. Because wearable HR data are minute-by-
minute measurements, they cannot be directly assimilated into the predicted circadian
phase. Thus, we first extract the HR phase on each day i (i.e., \varrho HR

i
in (3.10)) from

wearable HR and activity data. Specifically, we fit (3.7) to the HR and activity data
using the recently developed Bayesian inference framework [4] that is based on Good-
man and Weare’s a!ne-invariant Markov chain Monte Carlo (MCMC) algorithm,
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WEARABLE DATA ASSIMILATION S461

Algorithm 3.1 Measurement-update step

Require: Predicted mean after the time-update step x̄, a factorization of the
predicted covariance matrix after the time-update step M such that \$=MMT ,
measurement z, a factorization of measurement noise matrix

\downarrow 
R, and a

measurement function h
1: Find the concatenated matrix of the cubature points

N= x̄+
\downarrow 
2d(M|\uparrow M),(3.22)

by applying a vector-matrix addition to x̄ and each column of the concatenated
matrix (M|\uparrow M). Note that N is a d\Rightarrow 2d matrix if x̄ is a d\Rightarrow 1 matrix.

2: Evaluate the measurement function h on each column of N to compute the
propagated cubature points as follows:

Z= h(N).(3.23)

Note that Z is a 1\Rightarrow 2d matrix if h is a scalar-valued function.
3: Estimate the predicted measurement from the propagated cubature points,

z̄=
1

2d

2d\left( 

i=1

Zi,(3.24)

where Zi is the ith column of Z.
4: Perform the QR-factorization to obtain matrix T11 and T21,

 
T11 O
T21 T22

 
=qr

 
Z

\downarrow 
R

N O

 
,(3.25)

where O is a zero matrix of appropriate size, such that the QR factorization can
be performed.

5: Use a backward stable solver to compute the cubature gain W such that

T21 =WT11.(3.26)

6: Use the computed cubature gain W to estimate the corrected mean

x̂= x̄+W(z\uparrow z̄).(3.27)

7: Estimate a factorization of the corrected covariance matrix

M̂=T22.(3.28)

8: return The corrected mean x̂ and a factorization of the corrected covariance
matrix M̂.

which prevents potential bias from large gaps in wearable data [21]. This returns the
mean and variance of the HR phase estimate computed from its posterior distribution
on day i+1. We use them as the measurement \varrho HR

i+1 in (3.10) (i.e., z in Algorithm 3.1)
and the measurement noise \varsigma \varpi 

i+1 in (3.10) (i.e., R in Algorithm 3.1). This allows imple-
mentation of the measurement-update method with the measurement equation (3.10)
denoted by h in Algorithm 3.1. This updates xi+1|i predicted by the time-update
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S462 DAE WOOK KIM, MINKI P. LEE, AND DANIEL B. FORGER

method and returns the corrected estimate xi+1|i+1 \rightarrow N(x̄i+1|i+1,\$i+1|i+1), which
is shown as a red circle in Figure 3.2(a). This can be transformed into the estimate
\varrho i+1|i+1 on the time domain (see section 3.5 below for details).

3.5. Transformation of the circadian clock state estimate from the vari-
able domain to the time domain. Our method estimates the circadian clock state
xi|i \rightarrow N(x̄i|i,\$i|i). Here, we describe how the estimated distribution can be trans-
formed from the variable domain to the time domain. We first define a function \leftharpoondown (x)
to establish a relationship between the state vector x and the angle formed by the
projection of x on the (x,xc)-plane with the origin as follows:

\leftharpoondown (x) =

\right) 
\left[ \right] 

\left[  

\uparrow arctan(xc
x
) if x\Uparrow 0, xc \nearrow 0,

\omega \uparrow arctan(xc
x
) if x< 0,

2\omega \uparrow arctan(xc
x
) if x\Uparrow 0, xc > 0.

(3.29)

Then, we construct an interpolation function gi : [0,2\omega ]\Downarrow [ti, ti+1] that relates \leftharpoondown (xt)
to time t, where ti and ti+1 is the midnight (00:00 am) of day i and day i + 1,
respectively, using the trajectory of x on day i obtained by propagating it with the
level-set method. Finally, the composition (gi\leftrightarrow \leftharpoondown )(xt) allows us to relate xt to t during
day i. As a result, we can obtain the circadian clock state on the time domain (3.30)
as shown in Figure 3.2(b),

\varrho i|i = (gi \leftrightarrow \leftharpoondown )(xi|i),(3.30)

where xi|i \rightarrow N(x̄i|i,\$i|i). To sample from the nonlinearly transformed random vari-
able \varrho i|i, we used a Monte Carlo approach: we took a large number of N random
samples from xi|i \rightarrow N(x̄i|i,\$i|i), and computed their transformed values that are N

samples of \varrho i|i.

3.6. Summary of the filtering algorithm and an example of its appli-
cation. Our filtering framework can be illustrated in Figure 3.3(a). We predict the
estimate on day i + 1, xi+1|i, from prior knowledge xi|i as described in section 3.3.
Then, it is updated with \varrho 

HR

i+1 extracted by applying the Bayesian method [4] to wear-
able data on day i+1 as described in section 3.4. This returns the estimate xi+1|i+1

that is transformed into the estimate on the time domain \varrho i+1|i+1, as described in
section 3.5. By iterating this procedure, we can estimate the phase on each day in a
consecutive manner. This can be summarized as Algorithm 3.2.

To clearly illustrate how our algorithm works, we applied it to in silico data
and showed its estimation results. Specifically, we first created a virtual scenario
mimicking a typical human lifestyle: A virtual subject sleeps from 23 hr to 7 hr and
regularly acts during the waking time, as described in Figure 3.3(b). The simulated
HR rhythm becomes minimum at the midpoint of sleep (i.e., the true HR phase = 3
hr) following the previous work [4], and the true internal phase of the pacemaker
on day i \varrho 

true

i
= 4 hr. From these activity and HR data, the evolution of posterior

distributions of the internal circadian phase \varrho i|i can be generated by our method, as
shown in Figure 3.3(c). In Figure 3.3(c), a guess of the initial mean state x̄t0

was
completely wrong. Moreover, a guess of the initial covariance matrix of x \$(t0) was
set to be large so that initial priors were not highly informative, resulting in the broad
distribution on day 1. Despite this circumstance, our method can accurately estimate
the internal circadian phase after a few days, as shown in Figures 3.3(c) and 3.3(d).
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Measurement-update step
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23734
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Activity level

Fig. 3.3. Kalman filtering for the circadian phase estimation. (a) Diagram describing the
Kalman filter to estimate the evolution of the posterior distributions of the internal circadian phase
\omega i|i. (b) A simulated scenario that captures a typical lifestyle. Sleep o!set and onset times were set
as 7 hr and 23 hr, respectively. The wake and sleep times are represented as the white and black
boxes. Activity level a(t) in (3.21) is denoted by the yellow line. The HR phase and the internal
phase were set as 3 hr and 4 hr, respectively. Please see Scenario 1 described in section 4.1 and
Table 1 for more details. (c) The evolution of the posterior distributions of \omega i|i over days. Here,
a guess of x̄t0

was set as [x(t0), xc(t0), n(t0)] = [1,0,0.5] that is completely di!erent from the true
values [\downarrow 0.61,\downarrow 0.76,0.34]. A guess of \#(t0) was set as 0.1 · I and K = 10\uparrow 2 · I, where I is the
identity matrix of order 3. (d) The posterior distribution on the last day (i.e., \omega 20|20). The triangle

and dashed line represent the true internal phase \omega 
true

i
= 4 hr.

4. Numerical study. Here, we perform a series of numerical experiments to
study the usefulness of our method. This section is structured as follows: In sec-
tion 4.1, we investigate the relationship between the process noise K in the circadian
clock and the phase estimate, which is impossible with previous methods [25, 46, 56].
In section 4.2, we show that our method has an overall performance improvement
over previous methods [25, 4].

4.1. Relationship between the process noise and the phase estimate.
The circadian clock state x is influenced by noise from various sources [50]. For
instance, stochastic biochemical reactions occurring in the circadian clock and many
biological systems interacting with the circadian clock, such as a metabolic system,
cause the randomness of the clock state. This can be described with the process noise
matrix K (3.9) of the form

K=

\Biggr\rceil 

\Biggl\{ 
\varphi 
2
P

0 0
0 \varphi 

2
P

0
0 0 \varphi 

2
L

\Biggr\} 

\Biggl\langle ,(4.1)

where \varphi P represents the magnitude of the noise directly a""ecting the clock (Process
P in Figure 3.1(a)) and \varphi L represents the magnitude of the noise in the biological
process (Process L in Figure 3.1(a)) that transmits the external light signal from the
retina to the clock via the retinohypothalamic tract.
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Algorithm 3.2 Data assimilation for the circadian phase estimation

Require: A guess of initial mean state x̄t0
at time t0, a factorization of a guess of

covariance matrix M(t0), the HR phase estimates \varrho HR

1 , · · · ,\varrho HR

n
, and its

estimate errors \varsigma \varpi 1 , . . . , \varsigma 
\varpi 

n
, on day 1, . . . , n

1: for day i from day 1 to day n do
2: Time-update: solve (3.19) and (3.20) with initial conditions x̄i\rightarrow 1|i\rightarrow 1 and

Mi\rightarrow 1|i\rightarrow 1 such that \$i\rightarrow 1|i\rightarrow 1 =Mi\rightarrow 1|i\rightarrow 1M
T

i\rightarrow 1|i\rightarrow 1 from t= \varrho i\rightarrow 1|i\rightarrow 1 to

t= \varrho i|i\rightarrow 1 using a numerical ODE solver to obtain xi|i\rightarrow 1 \rightarrow N(x̄i|i\rightarrow 1,\$i|i\rightarrow 1).
3: Measurement-update: perform Algorithm 3.1 with x̄i|i\rightarrow 1, Mi|i\rightarrow 1, \varrho 

HR

i
, and 

\varsigma 
\varpi 

i
, and the measurement function (3.10) to compute xi|i \rightarrow N(x̄i|i,\$i|i).

4: Transformation into the time domain: \varrho i|i = (gi \leftrightarrow \leftharpoondown )(xi|i), where
xi|i \rightarrow N(x̄i|i,\$i|i)

5: return \varrho i|i
6: end for

Table 1
Summary of the simulated scenarios. In Scenario 1, the randomness of activity level in wake

time is only considered. In Scenario 2, the randomness of the sleep onset and o!set times is also
considered. In Scenario 3, the small randomness of activity level in sleep time, due to tossing and
turning or measurement noise of wearables, for example, is additionally considered. Moreover, the
HR uncertainty is increased to account for the potentially large measurement errors in wearable HR
data in real-world settings.

Summary of scenarios

Parameters Scenario 1 Scenario 2 Scenario 3

Activity level
morning and evening µl 5 steps/min 5 steps/min 5 steps/min
afternoon µh 25 steps/min 25 steps/min 25 steps/min
sleep 0 steps/min 0 steps/min 0 steps/min

Activity uncertainty
\varepsilon l 7.5 steps/min 7.5 steps/min 7.5 steps/min
\varepsilon h 30 steps/min 30 steps/min 30 steps/min
\varepsilon s 0 steps/min 0 steps/min 2 steps/min
\varepsilon t 0 hrs 1.5 hrs 1.5 hrs
HR phase 3 hr 3 hr 3 hr
Internal phase 4 hr 4 hr 4 hr

HR signal
µ 70 bpm 70 bpm 70 bpm
a 4 bpm 4 bpm 4 bpm
\omega 
HR 3 hr 3 hr 3 hr

d 0.3 0.3 0.3

HR uncertainty
\varepsilon \omega 3 bpm 3 pm 7 bpm
\vargamma 0.9 0.9 0.95

Here, we studied the relationship between the process noise in the circadian clock
and the phase estimate using our filtering algorithm. We first generated in silico data
mimicking the typical human lifestyle illustrated in Figure 3.3(b). We set the sleep
o""set time t

o""
i

and onset time t
on
i

of day i as 7 am and 11 pm, respectively, so that
activity level on day i ai(t) = 0 if t \updownarrow 

\Big/ 
0, t

o""
i

\left\{ 
\nwarrow [ton

i
, 24]. We next defined ai(t) in
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wake time
\Big/ 
t
o""
i
, t

on
i

\left\{ 
as was done in previous work [14, 37]. Specifically, we subdivided

the wake time into three stages: morning
\Big/ 
t
o""
i
, t

o""
i

+ 5
\left\{ 
, afternoon

\Big/ 
t
o""
i

+ 5, t
o""
i

+ 10
\left\{ 
,

and evening
\Big/ 
t
o""
i

+ 10, t
on
i

\left\{ 
. Then, under the assumption that the level of external

signals (e.g., light or activity) is low in the morning, high in the afternoon, and again
low in the evening like the change of light intensity during the course of a day, ai(t)
was set as

ai(t) =

\right) 
\left[ \left[ \left[ \right] 

\left[ \left[ \left[  

max(µl +N(0,\varphi 2
l
),0) if to""

i
\nearrow t < t

o""
i

+ 5,

max(µh +N(0,\varphi 2
h
),0) if to""

i
+ 5\nearrow t < t

o""
i

+ 10,

max(µl +N(0,\varphi 2
l
),0) if to""

i
+ 10\nearrow t < t

on
i
,

0 otherwise,

(4.2)

where µl and \varphi l denote the mean and the standard deviation of the low activity level,
respectively, and µh and \varphi h denote the mean and the standard deviation of the high
activity level, respectively. We took ai(t) as the maximum between a sample from
µ+N(0,\varphi 2) and 0 to prevent it from being negative. Note that we set µl and µh as 5
steps/min and 25 steps/min, respectively, with which the activity signal is converted
on average to a typical ordinary (500 Lx)–bright (2000 Lx)–ordinary (500 Lx) light
exposure by (3.21). Under this activity setting, we simulated the HR rhythm with
a nadir at the midpoint of sleep 3 am using the model (3.7) based on the previous
study [4]. Then, we finally defined the internal phase \varrho 

true

i
to be 4 am based on its

relationship with the HR phase (3.10). More details of the simulated setting named
Scenario 1 are given in Table 1.

We applied our method to Scenario 1 and analyzed the estimates with the two
quantities, root mean square error (RMSE) and noncoverage rate (NCR).

The RMSE is the standard deviation of the di""erence between the mean phase
estimate \varrho i|i and the true phase \varrho 

true

i
, which is defined to be

RMSE =

\right\}    1

N

N\left( 

i=1

e
2
i
,(4.3)

where ei =
  E[\varrho i|i]\uparrow \varrho 

true

i

  and N is the total number of days that the phase was
estimated. The NCR is the rate of days that the true phase is not included in the
95% credible interval, which is defined to be

NCR= 1\uparrow 1

N

N\left( 

i=1

1i

CI(\varrho 
true

i
),(4.4)

where 1i

CI denotes the indicator function that maps inputs to one if they are included
in the 95% credible interval on day i. Note that our credible estimates are based
on a Bayesian procedure, and hence we do not focus on the agreement between the
nominal and empirical coverages. Instead, we just focus on whether the true phase
on each day lies within the corresponding credible interval estimate. The graphical
illustration of the RMSE and the NCR is shown in Figure 4.1(a). The small values
of both the RMSE and the NCR mean that both the mean and the uncertainty of
the phase estimate are accurately identified. This interpretation of the relationship
between the two quantities and the phase estimate is shown in Figure 4.1(b).

Using these two measures, we analyzed the phase estimates obtained by applying
our method to Scenario 1. Specifically, we first let \varphi L = 0 and took K of the form
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Fig. 4.1. The association of the circadian phase estimate with the noise in the circadian system.
(a) The schematic illustration of the definition of the RMSE and the NCR. (b) The relationship of
the phase estimate with the RMSE and the NCR. (c)–(h) The change of the RMSE and the NCR
upon the noise magnitude in Scenario 1 (c)–(e) and in Scenario 2 (f)–(h). In (c) and (f), only the
noise in Process P (i.e., \varepsilon P ) was considered. In (d) and (g), only the noise in Process L (i.e., \varepsilon L)
was considered. In (e) and (h), the two noises were considered together.

(4.5) to focus on exploring the relationship between the phase estimate and the noise
directly a""ecting the pacemaker (i.e., the noise in Process P). Then, we varied

K=

\Biggr\rceil 

\Biggl\{ 
\varphi 
2
P

0 0
0 \varphi 

2
P

0
0 0 0

\Biggr\} 

\Biggl\langle (4.5)

(i.e., \varphi P of (4.5)), and calculated the RMSE and the NCR as shown in Figure 4.1(c).
In Figure 4.1(c), a small \varphi P results in a small RMSE but a large NCR. This indicates
that ruling out the noise in the pacemaker might cause problems related to estimating
the phase uncertainty. On the other hand, when \varphi P is set to be large, the NCR is
small, but the RMSE is large, showing that overrating \varphi P can lead to an inaccurate
estimation of the mean phase. Accordingly, a \varphi P of appropriate magnitude is required
for accurate estimation of both the mean and the uncertainty of the phase. We
similarly analyzed the relationship between the phase estimate and the noise in the
light processor (i.e., the noise in Process L) with K of the form

K=

\Biggr\rceil 

\Biggl\{ 
0 0 0
0 0 0
0 0 \varphi 

2
L

\Biggr\} 

\Biggl\langle .(4.6)
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Although \varphi L changes, the RMSE and the NCR remain small and large, respectively,
as shown in Figure 4.1(d), again indicating that the noise in Process P needs to be
considered for accurate phase estimation. Moreover, the weak dependence of the
RMSE and the NCR on \varphi L suggests that the noise in Process L a""ects the state of
the molecular clocks more weakly than that in Process P. This is supported by the
fact that the noise in Process L originated from the light signal transduction pathway
(not the molecular clocks), so it indirectly a""ects the clock state. To study this, we
explored the association of the phase estimate with the total noise in Process P and
Process L by taking K of the form

K= \varphi 
2
K · I3,(4.7)

where \varphi K denotes the magnitude of the total noise, and I3 is the identity matrix
of order 3. As expected, the relationship between the phase estimate and the total
process noise shown in 4.1(e) is mainly determined by the influence of the noise in
Process P shown in Figure 4.1(c). These results obtained using our method provide
an understanding of the relationship between the molecular clock state and noise,
which is experimentally unobservable. Importantly, based on this knowledge, we can
infer the magnitude of the process noise that accurately describes the mean and the
uncertainty of the circadian phase, leading to both the small RMSE and NCR. For
example, from Figure 4.1(e), we can figure out that \varphi K, yielding both the small RMSE
(0.164 hr) and NCR (0.047), is 10\rightarrow 3 in Scenario 1.

We next applied our method to more realistic in silico data named Scenario 2.
In Scenario 2, the settings of Scenario 1 are replicated except that uncertainty is
introduced into sleep o""set time t

o""
i

and onset time t
on
i

as follows,

t
o""
i

\rightarrow 7 +N(0,\varphi 2
t
), t

on
i

\rightarrow 23 +N(0,\varphi 2
t
),(4.8)

where \varphi t = 1.5 hr represents the uncertainty of the sleep onset and o""set times (see
Table 1 for more details). Figures 4.1(f), 4.1(g), and 4.1(h) describe the association of
the phase estimate with the noise in Process P, the noise in Process L, and the total
noise, respectively, in Scenario 2, like Figures 4.1(c), 4.1(d), and 4.1(e). In Scenario
2, the relationship between phase estimate and noise is mainly governed by noise in
Process P, as in Scenario 1. However, unlike Scenario 1, the change of the RMSE upon
the addition of \varphi P is not large, indicating the discrepancy of the circadian dynamics
in di""erent sleep/wake patterns.

We finally analyzed the most challenging but realistic in silico data named Sce-
nario 3. In Scenario 3, the settings of Scenario 2 are repeated except that the random-
ness of activity level in sleep time, which originated from small unconscious movements
during sleep and measurement noise of wearables, is introduced as follows,

ai(t) =max(N(0,\varphi 2
s
),0) if 0\nearrow t < t

o""
i

or t
on
i

\nearrow t\nearrow 24,(4.9)

where \varphi s = 2 steps/min represents the magnitude of the small randomness of activity
level in sleep time. Moreover, we increased the uncertainty of HR measurements to
account for the potentially large measurement noise in HR data collected in real-world
settings reported in [4]. See Table 1 for more details. Figures 4.2(a), 4.2(b), and 4.2(c)
present the association of the phase estimate with the noise in Process P, the noise
in Process L, and the total noise, respectively, in Scenario 3, like Figure 4.1. As in
Scenarios 1 and 2, the relationship is mainly determined by the noise in Process P.
However, unlike the other scenarios, the RMSE and the NCR are very large even if
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Fig. 4.2. The association of the circadian phase estimate with the noise in the circadian system
in Scenario 3. (a)–(c) The change of the RMSE and the NCR upon the noise magnitude in Scenario
3. In (a), only the noise in Process P was considered. In (b), only the noise in Process L was
considered. In (c), the two noises were considered together.

\varphi P is small, as shown in Figure 4.2(a). Moreover, unlike Scenario 1, the RMSE is
large when only the noise in Process L is considered as shown in Figure 4.2(b). This
indicates that the noise in Process P needs to be necessarily considered in realistic
settings to estimate both the mean and uncertainty of the phase accurately. Impor-
tantly, even in this challenging scenario, our method can estimate the phase within
1 hr (i.e., RMSE< 1 hr) with a carefully chosen \varphi K = 6 · 10\rightarrow 3 as highlighted by the
arrow in Figure 4.2(c), which is impossible with the previous methods [4, 25] (see
section 4.2 below for more details).

4.2. Performance comparison. Here, we compared the performance of our
LSKF method with the recently developed methods that do not use data assimilation
to demonstrate its capabilities for tracking the circadian phase from wearable data.
Specifically, two previous methods were adopted for the comparison. The first previous
method proposed in [25] estimates the clock state based solely on the mathematical
model of the human circadian clock (3.9) that takes activity wearable data as an input
as described in section 3.3.2. The second one first estimates the HR phase \varrho 

HR

i
by

fitting (3.7) to wearable data using Goodman and Weare’s a!ne-invariant MCMC
method and then compute the clock state by subtracting \varrho ref = \uparrow 1 from \varrho 

HR

i
[4].

These two methods were chosen for the comparison study for the following reasons: (i)
they are recently developed and thus sophisticated; (ii) our LSKF method integrates
the prediction from the model used in [25] with the physiological parameter (i.e., the
HR phase) obtained using the method in [4]. We applied the methods to the in silico
data of Scenario 3, which is the most realistic but challenging setting and calculated
the absolute error (i.e., ei in (4.3)) and the standard deviation (i.e., the uncertainty)
of the estimate on each day. Then, we compared the estimates of the two previous
methods [4, 25] with those computed with our LSKF method. Figures 4.3(a), 4.3(b),
and 4.3(c) show the evolution of the posterior distributions of the phase over days
estimated using our LSKF method, only using the mathematical model (3.9) [25], and
only using the HR phase estimate [4], respectively. They show that the distributions
estimated using our method are narrower than those estimated using the previous
methods. Moreover, the filtering algorithm is more accurate than the previous meth-
ods, as shown in Figure 4.3(d). Indeed, the absolute error and the uncertainty of our
method are smaller than those of the others, as shown in Figures 4.3(e) and 4.3(f).
Our method can estimate the phase within 1 hr (RMSE= 0.942 hr) while the others
cannot (model estimate [25]: RMSE = 1.996 hr and HR estimate [4]: RMSE = 1.527
hr). Notably, the improvement is preserved although another widely used mathe-
matical model of the human circadian clock [26] is adopted instead of the FJK model
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Fig. 4.3. Our data assimilation approach can improve the accuracy of the circadian phase esti-
mation from wearable measurements. (a)–(c) The evolution of the posterior distributions of the phase
that are obtained using our LSKF method (a); using only the mathematical model (3.9) [25] (b); and
using only the HR phase estimate [4] (c). Here, the three methods were applied to Scenario 3 and \varepsilon K

of K= \varepsilon 
2
K ·I3 was set as 6 ·10\uparrow 3 because it allows for accurately capturing the circadian dynamics in

Scenario 3 as shown in Figure 4.2(c). (d) The posterior distributions estimated by the three methods
on the last day. (e) The absolute di!erence between the true phase and the mean phase estimate
over days. Here, five independent in silico data of Scenario 3 were analyzed, and the five computed
absolute di!erences were averaged. Error bars denote the standard error of the mean (SEM). (f)
The phase uncertainty (i.e., the standard deviation of the phase estimate) over days. The mean and
SEM of the phase uncertainties on each day were calculated as in (e). (g) The RMSE and the NCR
of the three methods are computed with various \varepsilon K

\downarrow 
s. Note that the estimation result of the method

that computes the clock phase by subtracting \omega ref from the HR phase estimate [4] is independent
of \varepsilon K. Thus, the RMSE and the NCR of the method are represented as the vertical and horizontal
lines, respectively.

[16], as described in the supplementary materials (121432 2 supp 528116 rvlszc sc.pdf
[local/web 521KB]). This demonstrates the value of our data assimilation technique.

We next investigated whether the outperformance of our method is preserved
even if the magnitude of the process noise \varphi K changes. Specifically, in Figures 4.3(e)
and 4.3(f), \varphi K = 6 ·10\rightarrow 3 was used because it allows our method to accurately capture
the dynamics of the circadian systems, resulting in the phase estimation with the small
RMSE and NCR in Scenario 3 as shown in Figure 4.2(c). Importantly, even if this \varphi K

varies, and thus the performance of our method becomes worse, its RMSE is overall
smaller than the RMSE of the previous methods, as presented in Figure 4.3(g). In
particular, the RMSE of our method is always smaller than that of the method based
solely on the model prediction. Moreover, the NCR of our method is comparable with
that of the previous methods with a carefully selected \varphi K . These results demonstrate
the benefits of the filtering approach on the circadian phase estimation from wearable
data.

Last, using our method, we analyzed scenarios in which individuals experience
misalignment between activity-rest rhythms and external light-dark cycles (supple-
mentary materials (121432 2 supp 528116 rvlszc sc.pdf [local/web 521KB])). Indeed,
the estimation results do not change significantly depending on the model input (ac-
tivity versus light), as shown in the supplementary materials (121432 2 supp 528116
rvlszc sc.pdf [local/web 521KB]), supporting the use of activity measurements when
light information is not available.

5. Application to a real data set. We developed a publicly available compu-
tational package (https://github.com/phillee62/LSKF˙circadian) to facilitate the use
of our algorithm. Using this computational package, we analyzed the previously col-
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lected real-world wearable HR and activity data [4] to further demonstrate the value
of our algorithm in Figure 5.1. Specifically, we estimated the circadian phase using
our method with the value of \varphi K = 6 · 10\rightarrow 3 that accurately captures the circadian
dynamics in the most challenging but realistic simulation scenario, Scenario 3, as
shown in Figure 4.2(c). Then, the estimated phases were compared with the phases
that were estimated based solely on the mathematical model taking in inputs of ac-
tivity measurements as the previous studies did [25]. We also compared our estimates
with those calculated by subtracting \varrho ref =\uparrow 1 from the HR phase estimate (\varrho HR

i
in

(3.10)), which was obtained by fitting (3.7) to wearable HR and activity data using
Goodman and Weare’s a!ne-invariant MCMC method [4]. Figures 5.1(a), 5.1(b),
and 5.1(c) show the phases estimated by our method, the predicted phases by the
mathematical model, and the phases directly calculated from the HR phases, respec-
tively. In their left panels, the evolution of the posterior distributions of the phase is
presented. The distributions on the last day are presented in Figure 5.1(d). In the
right panels of Figures 5.1(a), 5.1(b), and 5.1(c), the mean and the standard deviation
of the distributions are shown with double-plotted actograms. The standard devia-
tion representing the uncertainty of the phase estimate is quantified in Figure 5.1(e).
These figures show that the posterior distributions computed using our LSKF method
are narrower than the others. Figure 5.1(f) shows that this pattern is preserved even
if the magnitude of the process noise \varphi K is varied so that the noise magnitude leading
to the best performance of our method is not exploited in the estimation. This indi-
cates that the uncertainty of the phase estimate can be reduced when combining the
model prediction and the measurements from wearables, which is consistent with our
results in the numerical experiments. Moreover, the phase estimated by our method
di""ers from the others, for example, as shown in Figure 5.1(d). Considering this with
the outperformance of our method in the numerical study, filtering approaches like
our algorithm might be needed for accurate circadian phase estimation.

6. Conclusions. We developed a Kalman filter framework for estimating the
state space of the molecular clocks in tissues. As well as estimating the state space,
our method can quantify its uncertainty systematically, which is impossible with the
previous methods based on ODE models [25, 46, 56]. Numerical experiments in Fig-
ure 4.3 showed how much the uncertainty could be reduced when utilizing the indirect
observation of the molecular clock state. Moreover, our method overall outperforms
the previous methods, [4, 25, 36] as presented in Figure 4.3. These results suggest
new avenues for exploiting noninvasive wearable data for chronotherapy in free-living
conditions.

In addition to its accuracy, our framework can successfully minimize the influence
of initial conditions on the phase estimation. Our method continuously updates the
phase estimate by the measurement-update step described in section 3.4.2. This
results in the rapid identification of the true phase even if arbitrary initial conditions
are given, as shown in Figure 3.3(c). Specifically, when a large initial covariance matrix
to account for arbitrary initial conditions is given, cubature gain, denoted as W in
Algorithm 3.1, becomes large. This leads to an adjustment of the phase estimate
toward the measurement (i.e., the HR phase), which is independent of the initial
conditions of the clock state. This algorithmic procedure rapidly negates the undesired
influence of initial conditions, which is not available in the previous methods solely
relying on the convergence nature of a van der Pol limit cycle [25, 52]. Importantly,
in the analysis of real data, our method more rapidly negated the influence of initial
conditions (< 10 days) than the method based solely on the model prediction, as
shown in Figures 5.1(a), 5.1(b), and 5.1(e). This indicates the applicability of our
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Fig. 5.1. Estimation of the circadian phase from real-world wearable-device data. (a)–(c) The
phase estimates obtained using our filtering method (a); based solely on model prediction (b); or by
direct calculation from the HR phase (c). In the left panel, the evolution of the posterior distributions
of the phase is presented. In the right panel, their mean and standard deviation are plotted together
with actograms. Here, \varepsilon K of K= \varepsilon K · I3 was set as 6 · 10\uparrow 3 that allows the accurate identification
of the circadian dynamics in Scenario 3 (Figure 4.3(c)). (d) The posterior distributions estimated
by the three methods on the last day. (e) The phase uncertainty over days. (f) The average of the
phase uncertainties over days that is computed with various \varepsilon K. Note that the estimation result of
the method that directly calculates the molecular clock state only from the HR phase is independent
of \varepsilon K. Thus, the uncertainty computed using the method is constant over \varepsilon K.

method in real-life settings, where minimizing the e""ect of the initial conditions is
desired.

In this study, a recently developed new state space estimation method called the
LSKF [54] was used to integrate the model prediction with the physiological proxies
extracted from wearable data. To the best of our knowledge, our work is the first
attempt to use a Kalman filter to estimate the state space of the molecular clocks in
tissues in real-life settings from wearable data. It has been previously used to reduce
the computational cost of performing the maximum likelihood estimation of physio-
logical parameters of core body temperature rhythms [9]. Specifically, the standard
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discrete-time Kalman filter was exploited to e!ciently compute the Cholesky factor
of the inverse of the covariance matrix of maximum likelihood estimates. Considering
this, our study first suggests the potential of data assimilation approaches based on
the Kalman filter for accurate circadian phase estimation from wearable data. An
interesting avenue for future research is to identify suitable filtering methods for the
phase estimation like the LSKF. Another important future work is to test the ability
of di""erent types of steps-to-light function, such as a continuous conversion function,
to estimate the circadian phase.

Our filtering problem was tackled by using the recently proposed LSKF [54].
It tracks a Gaussian level set over time to solve the local linear approximation of
the Fokker–Planck equation instead of calculating the moments of distribution as
shown in Figure 3.2(a). This novel approach to filtering problems can be applied
to solve the chemical Langevin equation, a di""usion approximation of the chemical
master equation describing stochastic dynamics of chemical systems [44]. It would be
interesting in future work to compare its performance with existing methods such as
the system size expansion [51] and moment closure approximations [20].

Our LSKF-based filtering approach also has broad applicability in biological stud-
ies. Specifically, it can estimate the experimentally unobservable (i.e., hidden) bio-
chemical parameters [15, 28, 49]. For instance, the estimation problem of unobservable
time-varying protein production rate m1

t
and degradation rate m2

t
can be formulated

as a filtering problem with the model of the form

dmt = v(mt, t)dt+
\downarrow 
KdWt,

ṗk =m1
tk
\uparrow m2

tk
pk + \varsigma k,

(6.1)

where mt =
\Big/ 
m1

t
m2

t

\Big\backslash T
whose dynamics is described with a nonlinear drift function

v, pk and ṗk denote the protein abundance and its derivative, respectively, that can
be measured with experimental techniques such as bioluminescence [39]. Note that v
is chosen depending on the protein of interest.

Our method can estimate the circadian phase with low uncertainty from wear-
ables compared with the others as shown in Figures 4.3(f) and 5.1(e). This benefit is
preserved for a range of the parameter \varphi K of the process noise matrix, as shown in
Figure 5.1(f). This demonstrates the capabilities of our method for tracking the cir-
cadian phase. In the analysis of the real-world data (Figure 5.1), we used the process
noise matrix K = \varphi K · I3 with which our algorithm can accurately estimate the cir-
cadian phase from the most challenging but realistic in silico data (Figure 4.2(c)).
This approach based on in silico tests has limitations because there is accumulating
evidence for a large inter-and intra-individual variability in circadian variables [29].
Thus, future work is needed to develop a more systematic and rigorous approach that
tailors K and the other model parameters to individual circadian physiology. One
promising approach is to use methods, such as the output correlation approach, based
on relations between the noise parameters and the covariance function of observable
measurements [11].

Accurate estimation of circadian phase and its uncertainty enables personalized
and real-time monitoring of progression of various diseases, including viral, bacte-
rial, and neurodegenerative diseases [32, 33, 36, 38]. For instance, it has been re-
cently shown that COVID-19 symptom onset correlates with an increased circadian
phase uncertainty in [36]. Thus, the phase and its uncertainty accurately estimated
by our method can be exploited for early disease diagnosis in real-world settings.
Furthermore, accurate circadian phase estimation benefits sleep scoring based on
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wearable data. Specifically, it has been shown that the phase extracted only using the
mathematical model can increase the accuracy of the sleep scoring machine-learning
algorithm in [52]. Thus, more abundant and accurate information about the circa-
dian phase is expected to enhance the accuracy of the existing wearable-based sleep
scoring algorithms. This promising clinical applicability demonstrates that our fil-
tering approach may provide an important advance in precision medicine in real-life
conditions.
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