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Abstract

The (low soundness) linearity testing problem for the middle slice of the Boolean cube is as follows.

Let ε > 0 and f be a function on the middle slice on the Boolean cube, such that when choosing a

uniformly random quadruple (x, y, z, x⊕y⊕z) of vectors of 2n bits with exactly n ones, the probability

that f(x⊕ y⊕ z) = f(x)⊕ f(y)⊕ f(z) is at least 1/2+ ε. The linearity testing problem, posed by [5],

asks whether there must be an actual linear function that agrees with f on 1/2+ ε′ fraction of the inputs,

where ε′ = ε′(ε) > 0.

We solve this problem, showing that f must indeed be correlated with a linear function. To do so,

we prove a dense model theorem for the middle slice of the Boolean hypercube for Gowers uniformity

norms. Specifically, we show that for every k ∈ N, the normalized indicator function of the middle slice

of the Boolean hypercube {0, 1}2n is close in Gowers norm to the normalized indicator function of the

union of all slices with weight t = n (mod 2k−1). Using our techniques we also give a more general

‘low degree test’ and a biased rank theorem for the slice.

1 Introduction

The middle slice of the Boolean hypercube {0, 1}2n is given by U2n =
{
x ∈ {0, 1}2n

∣∣ |x| = n
}

. A funda-

mental problem in a subarea of theoretical computer science known as property testing concerns determining

whether properties of functions can be determined efficiently by examining only few of their inputs. One

striking classical result of this kind is the BLR theorem [2] which shows that the question whether a func-

tion f : Fn
2 → F2 is linear or far from any linear function can be determined by evaluation f on only three

random inputs of the form (x, y, x ⊕ y). David, Dinur, Goldenberg, Kindler, and Shinkar [5] solved the

corresponding problem for the slice by showing that if (x, y, x ⊕ y) are a uniformly random triple among

such triples with x, y, x ⊕ y ∈ U2n and f : U2n → F2 satisfies Pr[f(x ⊕ y) = f(x) ⊕ f(y)] ≥ 1 − ε, then

f agrees with a linear function on 1−O(ε) fraction of the inputs.

They then posed the corresponding problem in the so called ‘low soundness’ regime, also known as the

1% regime, where one wishes to show that if a function passes the test with probability significantly larger

than 1/2, then f is correlated with a linear function. The main result of this paper is a result along these

lines of a closely related test.

Theorem 1.1. For all ε > 0 there exists n0 = n0(ε) ∈ N such that the following holds for n ⩾ n0. If a

function f : U2n → {0, 1} satisfies that

Pr
x,y,z

[f(x)⊕ f(y)⊕ f(z) = f(x⊕ y ⊕ z) |x, y, z, x⊕ y ⊕ z ∈ U2n] ⩾
1

2
+ ε,
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then there exists S ⊆ [2n] and b ∈ {0, 1} such that

Pr
x

[
f(x) = b+

⊕

i∈S
xi

∣∣∣∣∣x ∈ U2n

]
⩾

1

2
+

√
ε

400
.

1.1 Method

Intuitively, one may think of the Boolean slice as very similar to the Boolean hypercube, as one only imposes

a constraint on the Hamming weight of the vectors. Indeed, there is some truth to it; as far as low-degree

functions are concerned (more specifically, degree o(
√
n) functions), the two domains are almost inter-

changeable; this is formalized in [10, 9] as an invariance principle (see also [3] for a simplification and

extensions). In general however, proving results for the slice is more challenging, even when these results

are concerned with low-degree functions; see for example [8, 7]. For results regarding high degree func-

tions, the situation is even worse as there are high-degree functions that certainly distinguish between the

two domains, and therefore the argument in the slice has to be significantly different from the argument on

the hypercube. The problem of linearity testing over the slice is an example problem which concerns high

degree functions (in the sense of Fourier analytic degree), and as mentioned prior to this paper only partial

results in the 99% regime were known [5].

Our main tool is a variation of the dense model theorem, which was famously used by Green and Tao

[11] to show the primes contain an arbitrary long arithmetic progression. Roughly speaking, the dense

model theorem allows transferring arithmetic properties of dense subsets of an Abelian group G to analogue

properties of dense subsets of arbitrary sets S ⊆ G with the property that
|G|1S
|S| has a small Uk-norm.

The dense model provides us with another avenue of comparing the Boolean slice U2n with the Boolean

hypercube and deducing results about the former from the latter. Here and throughout, for an integer s ⩾ 1,

the Gowers uniformity norm Us of a function f : {0, 1}n → C is defined as

∥f∥Us =


 E

x,h1,...,hs∈{0,1}n


 ∏

T⊆[s]

C |T |f

(
x+

∑

i∈T
hi

)




1
2s

,

where C denoted complex conjugation. For k ∈ N thought of as a constant, suppose that n = a (mod 2k−1)
and define

D2n,k =
{
x ∈ {0, 1}2n

∣∣ |x| = a (mod 2k−1)
}
.

Note that D2n,k ⊇ U2n, and while the measure of U2n is vanishing with n (more specifically, it is Θ(1/
√
n)),

the measure of D2n,k is constant (roughly standing at 1
2k−1 + o(1)). The main tool of our paper establishes

that D2n,k is a dense model for U2n for Gowers’ uniformity norms, and more precisely:

Theorem 1.2. For all k ∈ N, ε > 0 there exists n0 > 0, such that if n > n0 we have

∥∥∥∥
1U2n

E[1U2n ]
−

1D2n,k

E[1D2n.k
]

∥∥∥∥
Uk

⩽ ε.

A variation of the Green Tao dense model theorem allows us to deduce Theorem 1.1 from Theorem 1.2.

Indeed, we use the dense model theorem of [6]. 1

1We remark that for k = 2 one could use the result of Conlon, Fox and Zhao [4], but the linear forms condition becomes difficult

to check for k ⩾ 3.
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1.2 Other applications

1.2.1 Low Degree Testing

A second application of our method concerns the problem of testing polynomial of higher-degree, also in

the low-soundness regime. For an integer d ∈ N, consider the d-Gowers’ test over the slice:

1. Sample x, h1, . . . , hd ∈ {0, 1}2n conditioned on x⊕⊕i∈T hi ∈ U2n for all T ⊆ [d].

2. Check that
∑

T⊆[d]

f
(
x⊕⊕i∈T hi

)
= 0.

We prove the following result, asserting that if a Boolean function f passes the d-Gowers’ test with proba-

bility 1/2 + ε, then it must be correlated with a non-classical polynomial of degree at most d− 1.2

Theorem 1.3. For all ε > 0, d ∈ N there are n0 ∈ N and δ > 0 such that the following holds for n ⩾ n0.

Suppose that f : U2n → {0, 1} passes the d-Gowers’ test with probability at least 1
2 + ε. Then there exists a

non-classical polynomial p : {0, 1}2n → [0, 1) of degree at most d− 1 such that

∣∣∣∣ E
x∈U2n

[
(−1)f(x)e2πip(x)

]∣∣∣∣ ⩾ δ.

Theorem 1.3 gives an answer to a question of [5] regarding degree d testing over the slice.

1.2.2 Biased Rank

A third application of our method is concerned with the biased rank problem. In this scenario, we show that

a low-degree polynomial P on the slice which is biased must be of small rank. More precisely,

Theorem 1.4. Let P : {0, 1}2n → [0, 1) be a non-classical polynomial of degree d such that
∣∣Ex∈U2n

[
(−1)P (x)

]∣∣ ⩾
δ, and suppose that n = a (mod 2d). Then there is L = L(δ, d) such that for some j and some Γ: [0, 1)L →
[0, 1)

P (x)− j(|x| − a)

2d
= Γ(Q1(x), . . . QL(x)) (mod 1)

for all x ∈ {0, 1}2n, where Qi are non-classical polynomials of degree strictly smaller than d. In particular,

for x ∈ U2n we have that

P (x) = Γ(Q1(x), . . . QL(x)) (mod 1).

1.3 Other related works

We remark that the Gowers’ uniformity norms have been used in theoretical computer science in numer-

ous other contexts, such as PCP [17], communication complexity [20], property testing [1] and more; we

refer the reader to [12] for a survey. There are also a few connections between dense model theorems and

theoretical computer science [16, 14, 19].

2We remark that a random function passes the test with probability 1/2, and therefore the natural question is what can be said

about a function that passes the test with probability noticeably bigger than 1/2.
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2 Preliminaries

In this section we present a few necessary facts from analysis of Boolean functions. We refer the reader

to [15] for a more systematic presentation. We consider the Boolean hypercube {0, 1}n equipped with the

uniform measure, and define an inner product for functions over {0, 1}n as

⟨f, g⟩ = E
x

[
f(x)g(x)

]

for all f, g : {0, 1}n → C. For each S ⊆ [n] we may define the Fourier character χS : {0, 1}n → {−1, 1}
by χS(x) =

∏
i∈S

(−1)xi . It is a standard fact that {χS}S⊆[n] is an orthonormal basis for L2({0, 1}n), and

thus any f : {0, 1}n → R can be written as f(x) =
∑

S⊆[n]

f̂(S)χS(x) where f̂(S) = ⟨f, χS⟩.

Definition 2.1. For an integer 1 ⩽ d ⩽ n and a function f : {0, 1}n → R, we define the level d weight of f
to be

W⩽d[f ] =
∑

|S|⩽d

∣∣∣f̂(S)
∣∣∣
2
.

Our proof uses the level d-inequality, which asserts a function f : {0, 1}n → {−1, 0, 1} that has small

ℓ1-norm must have small level d weight.

Lemma 2.2. Suppose that f : {0, 1}n → {−1, 0, 1} has α = E[|f |]. Then for all d ⩽ n,

W⩽d[f ] ⩽ α2 logO(d)(1/α).

Lastly, we will use the notion of discrete derivatives defined as follows:

Definition 2.3. For a function f : {0, 1}n → C and a direction h ∈ {0, 1}n, the discrete derivative of f in

direction h is the function ∂hf : {0, 1}n → C defined by

∂hf(x) = f(x⊕ h)f(x).

For directions h1, . . . , hd ∈ {0, 1}n, we define

∂h1,...,hd
f(x) = (∂h1∂h2 · · · ∂hd

)f(x).

Non-classical polynomials: Let T = R/Z be the torus. A function p : {0, 1}n → T is called a degree

d non-classical polynomial if ∂h1,...,hd+1
p = 0 for all directions h1, . . . , hd+1 ∈ {0, 1}n; here ∂hp(x) =

p(x + h) − p(x) is the standard notion of discrete derivative. We will not use this notion of derivative and

hence there will be no confusion regarding which notion of derivative is used.

We note that if p is a degree d non-classical polynomial, then ∂h1,...,hd+1
e2πip ≡ 1 for all all directions

h1, . . . , hd+1 ∈ {0, 1}n; the derivative now is as in Definition 2.3.

3 Proof of Theorem 1.2

3.1 Auxiliary Tools

We begin by presenting a few tools that we need in the proof of our main result. We begin with the following

fact, asserting that if we know the Hamming weight of x, z and x⊕z modulo 2j , then we know the Hamming

weight of x ∧ z modulo 2j−1.
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Fact 3.1. Suppose that |x⊕ z| = b (mod 2j), |x| = c (mod 2j) and |z| = d (mod 2j). Then c+ d− b is

divisible by 2 and |x ∧ z| = c+d−b
2 (mod 2j−1).

Proof. Note that |x⊕ z| = |x ∨ z|− |x ∧ z| = |x|+ |z|−2 |x ∧ z|, and the result follows form re-arranging

and dividing by 2.

It will be convenient for us to think of a vector x ∈ {0, 1}2n also as a subset of [2n], namely as supp(x).
For vectors x1, . . . , xt ∈ {0, 1}2n, the algebra generated by them B = B[supp(x1), . . . , supp(xt)] con-

sists of vectors that correspond to sets that can be formed by supp(x1), . . . , supp(xt) by taking unions,

intersections and complements (in other words, it is the σ-algebra generated by these sets). Suppose that

x1, . . . , xt ∈ {0, 1}2n are vectors so that in B = B[supp(x1), . . . , supp(xt)], each atom has at least n/2t+1

elements. It is a standard computation that sampling x ∈ {0, 1}2n uniformly we have that x ∈ U2n with

probability Θ(1/
√
n). We would like to say that the events that x ⊕ z ∈ U2n for all z ∈ Span(x1, . . . , xt)

are almost indepednent, and in particular that

Pr
x
[x⊕ z ∈ U2n for all z ∈ Span(x1, . . . , xt)] ⩽ Ot(

√
n
−2t

).

The following lemma shows that this is indeed the case.

Lemma 3.2. In the setting above, for all nz ∈ N

Pr
x
[|x⊕ z| = nz for all z ∈ Span(x1, . . . , xt)] ⩽ Ot(n

−2t−1
).

Proof. Let B ∈ B be an atom, and without loss of generality B = supp(x1) ∩ . . . ∩ supp(xt). We show

that if this event holds, then |x ∧ x1 ∧ . . . ∧ xt| has to be equal to some specific value. Indeed, note that as

in Fact 3.1 for all z ∈ Span(x1, . . . , xt)

|x ∧ z| = 1

2
(|x|+ |z| − |x⊕ z|) ,

hence the Hamming weight of x∧ z has to be a specific value if the event in question holds. Also, we know

that for z ∈ Span(x2, . . . , xt) we have

|x ∧ (x1 ⊕ z)| = |x ∧ (x1 ∪ z)| − |x ∧ x1 ∧ z| = |x ∧ x1|+ |x ∧ z| − 2 |x ∧ x1 ∧ z| ,

and hence the Hamming weight of x ∧ x1 ∧ z is determined. Noting that

|(x ∧ x1)⊕ z| = |x ∧ x1|+ |z| − 2 |x ∧ x1 ∧ z|

we get that the Hamming weight of (x ∧ x1) ⊕ z is determined for all z ∈ Span(x2, . . . , xt). Iterating

the argument with x′ = x ∧ x1 gives that the Hamming weight of (x′ ∧ x2) ⊕ z is determined for all

z ∈ Span(x3, . . . , xt), and repeating this argument shows that the Hamming weight of |x ∧ x1 ∧ . . . ∧ xt|
is determined.

For each b ∈ {−1, 1}t, let xb ∈ {0, 1}2n be the vector
∧t

i=1 vi where vi = xi if bi = 1 and else

vi = 1− xi. From the above argument, it follows that for each b there is a number nb such that if the event

in question holds, then |x ∧ xb| = nb. Thus, the probability in question is at most

Pr
x

[
|x ∧ xb| = nb ∀b ∈ {−1, 1}t

]
=

∏

b∈{−1,1}t
Pr
x
[|x ∧ xb| = nb],
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where the last transition holds because the supports of the vectors xb are disjoint and so the random variables

x ∧ xb are independent. As the support of xb is in the algebra generated by x1, . . . , xt, we have that

|xb| ⩾ n/2t+1 and hence

Pr
x
[|x ∧ xb| = nb] ⩽ O

(√
2t

n

)
,

and plugging this above finishes the proof.

We will also need to consider sub-events of the event in Lemma 3.2 and argue that they are also almost

independent. More precisely:

Lemma 3.3. Let Z ⊆ Span(x1, . . . , xt). Then

Pr
x
[x⊕ z ∈ U2n ∀z ∈ Z] ⩽ n−|Z|/2(log n)Ot(1).

Proof. Consider z′ ∈ Z := Span(x1, . . . , xt) \ Z, and note that by Chernoff’s bound the probability that

|x⊕ z′| is outside the range between n − √
n log n and n +

√
n log n is at most 2−Ω(log2 n). Thus, the

probability in question is at most

Pr
x

[
x⊕ z ∈ U2n ∀z ∈ Z,

∣∣x⊕ z′
∣∣ ∈ [n−√

n log n, n+
√
n log n] ∀z′ ∈ Z

]
+ 2t−Ω(log2 n). (1)

Denote q = Prx
[
x⊕ z ∈ U2n ∀z ∈ Z, |x⊕ z′| ∈ [n−√

n log n, n+
√
n log n] ∀z′ ∈ Z

]
. Trivially,

q =
∑

(nz′ )z′∈Z
∈[n−√

n logn,n+
√
n logn]|Z|

Pr
x

[
x⊕ z ∈ U2n ∀z ∈ Z,

∣∣x⊕ z′
∣∣ = nz′ ∀z′ ∈ Z

]
,

and as by Lemma 3.2 each summand is at most Ot(n
−2t−1

) we get that

q ⩽ (2
√
n log n+ 1)|Z|Ot(n

−2t−1
) ⩽ n−|Z|/2(log n)Ot(1).

Plugging this into (1) finishes the proof.

3.2 The Main Argument

The proof of Theorem 1.2 is by induction. To be more precise, fix n and k as in the theorem. We prove by

induction on k′ the following result:

Theorem 3.4. For all 1 ⩽ k′ ⩽ k we have that

∥∥∥∥
1U2n

E[1U2n ]
−

1D2n,k

E[1D2n,k
]

∥∥∥∥
2k

′

Uk′

⩽
(log n)Ck′,k

n
,

where Ck′,k is a constant depending only on k′, k.

The base case of Theorem 3.4, namely the case that k′ = 1, is clear as the U1 norm is the absolute value

of the expected value of the function, which in our case is 0. We now move on to the inductive hypothesis

and fix k′ ⩾ 2 and assume the statement holds for k′ − 1. We show that the statement holds for k′ with

Ck′,k ⩽ Ck′−1,k +Ok(1). Throughout this section, we will denote D2n = D2n,k for ease of notations.
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For simplicity of presentation, denote f =
1U2n

E[1U2n
] and g =

1D2n

E[1D2n
] . By definition of Gowers’ uniformity

norms, we have that

∥f − g∥2k
′

Uk′
= E

x1,...,xk′−2

[
∥∂x1,...,xk′−2

(f − g)∥4U2

]
.

Consider the algebra B generated by supp(xi) for i = 1, . . . , k′ − 2, and let E be the event that each

atom there has at least n/2k elements. By Chernoff’s bound we have that Pr
[
Ē
]
⩽ 2−Ω(n), and as

∥f∥∞, ∥g∥∞ ⩽ n we get that

∥f − g∥2k
′

Uk′
⩽ 2−Ω(n)nΘ(2k) + E

x1,...,xk′−2

[
∥∂x1,...,xk−2

(f − g)∥4U2
1E
]

⩽ Ok

(
1

n

)
+ E

x1,...,xk′−2

[
1E ·

∑

S

∣∣∣ ̂∂x1,...,xk′−2
(f − g)(S)

∣∣∣
4
]
. (2)

We focus on the second sum now. Consider the function h(x) = ∂x1,...,xk′−2
(f − g)(x), and define the

subgroup G ⊆ S2n as

G = {π ∈ S2n |π(B) = B ∀B ∈ B} ,
and note that h is symmetric under G. For a subset I ⊆ [2n], define

orbI = {π(I) |π ∈ G} ,

so that we get that ĥ(I) = ĥ(I ′) if I ′ ∈ orbI . In our upper bound of (2) we partition the characters S into

3 types, and upper bound the contribution of each one of them separately. This partition will depend on the

size of the orbit of the character S under G, and towards this end we have the following claim.

Claim 3.5. Let S ⊆ [2n], and let d = minB∈B |S∆B|.

1. If d = 0, then |orbS | = 1.

2. If 1 ⩽ d ⩽ 2100·k, then |orbS | ⩾ n
2101k

.

3. If d > 2100·k, then |orbS | ⩾ Ωk(n
100·2k).

Proof. For the first item, if d = 0 then S ∈ B, and it is clear that orbS = {S}.

For the second item, write S = B∆I where B ∈ B and |I| = d. Thus, π(S) = B∆π(I) for π ∈ G.

Take some i ∈ I and consider the atom of B in which i lies, say B′. For any j ∈ B′ we may find πi,j ∈ G
such that πi,j(i) = j. As |B′| ⩾ n/2k, we conclude that there are at least n

d2k
distinct sets among B∆πi,j(I).

For the third item, write S = B∆I again for B ∈ B and I of size d. Write I = {i1, . . . , id}, and let

B1, . . . , Bd be the atoms of B that i1, . . . , id lie in, respectively. For all distinct j1 ∈ B1, . . . , jd ∈ Bd we

may find πi1,...,id,j1,...,jd ∈ G such that πi1,...,id,j1,...,jd(iℓ) = jℓ for all ℓ = 1, . . . , d. It follows that the orbit

of S has size at least n
2k

·
(

n
2k

− 1
)
· · ·
(

n
2k

− 100 · 2k
)
⩾ Ωk(n

100·2k).

Define

T1 = B, T2 =

{
S ⊆ [2n] | 1 ⩽ min

B∈B
|S∆B| ⩽ 2100·k

}
, T3 =

{
S ⊆ [2n] |min

B∈B
|S∆B| > 2100·k

}
,
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so that by (2) we have that

∥f − g∥2k
′

Uk′
⩽ E

x1,...,xk′−2


1E ·

∑

S∈T1

∣∣∣ĥ(S)
∣∣∣
4


+ E

x1,...,xk′−2


1E ·

∑

S∈T2

∣∣∣ĥ(S)
∣∣∣
4




+ E
x1,...,xk′−2


1E ·

∑

S∈T3

∣∣∣ĥ(S)
∣∣∣
4


+Ok

(
1

n

)
. (3)

We now upper bound each term on the right hand side of (3). We start with the contribution from T2.

Claim 3.6. Ex1,...,xk−2

[
1E · ∑

S∈T2

∣∣∣ĥ(S)
∣∣∣
4
]
⩽

(logn)Ok(1)

n .

Proof. Clearly we have that

E
x1,...,xk′−2


1E ·

∑

S∈T2

∣∣∣ĥ(S)
∣∣∣
4


 = E

x1,...,xk′−2


1E ·

∑

B∈B

∑

1⩽|S∆B|⩽2100·k

∣∣∣ĥ(S)
∣∣∣
4


.

Denote WB =
∑

1⩽|S∆B|⩽2100·k

∣∣∣ĥ(S)
∣∣∣
2
. As by Claim 3.5 the orbit of each S has size at least n/2101k, we get

that

E
x1,...,xk′−2


1E ·

∑

S∈T2

∣∣∣ĥ(S)
∣∣∣
4


 ⩽

2101k

n
E

x1,...,xk′−2

[
1E ·

∑

B∈B
W 2

B

]
. (4)

Fix x1, . . . , xk′−2 satisfying E and B ∈ B, and inspect WB . Opening up the definition of h, by the triangle

inequality

∣∣∣ĥ(S)
∣∣∣ is upper bounded by a sum of 22

k′−2
terms of the form

∣∣Ex

[
F1(x) · · ·F2k

′−2(x)χS(x)
]∣∣

where writing Span(x1, . . . , xk′−2) = {z1, . . . , z2k′−2}, each Fi is either f(x + zi) or g(x + zi). Thus, by

Cauchy-Schwarz

WB ⩽ 22
k′−2

∑

F1,...,F2k
′−2

W⩽2100·k [F1 · · ·F2k′−2χB].

Fix a choice of F1, . . . , F2k−2 . Namely, fix a subset Z ⊆ Span(x1, . . . , xk−2), and say that

F1 · · ·F2k−2(x) =
∏

z∈Z
f(x⊕ z)

∏

z′∈Z
g(x⊕ z).

Write P (x) =
∏
z∈Z

1x⊕z∈U2n

∏
z∈Z

1x⊕z∈D2n . Then

W⩽2100·k [F1 · · ·F2k′−2χB] =
1

µ(U2n)2|Z|µ(D2n)
2|Z|W⩽2100·k [PχB]

⩽
1

µ(U2n)2|Z|µ(D2n)
2|Z| E[P ]2 logOk(1)(E[P ]).
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where the last transition is by Lemma 2.2. By Lemma 3.3 we have E[P ] ⩽ n−|Z|/2(log n)Ok(1), and by

inspection µ(D2n) ⩾ Ωk(1), µ(U2n) ⩾ Ω(n−1/2). Thus, using the monotonicity of the function z →
z2 logOk(1)(1/z) in the interval [0, c] where c = c(k) > 0 is an absolute constant, we get that

W⩽2100·k [F1 · · ·F2k−2χB] ⩽ (log n)Ok(1).

It follows that

WB ⩽ (log n)Ok(1), (5)

and plugging (5) into (4) gives that

E
x1,...,xk′−2


1E ·

∑

S∈T2

∣∣∣ĥ(S)
∣∣∣
4


 ⩽

(log n)Ok(1)

n
.

as required.

Next, we bound the contribution from T3.

Claim 3.7. Ex1,...,xk′−2

[
1E · ∑

S∈T3

∣∣∣ĥ(S)
∣∣∣
4
]
⩽ Ok

(
1
n

)
.

Proof. Fix x1, . . . , xk′−2 satisfying E and fix S′ ∈ T3. Note that

|orbS′ |
∣∣∣ĥ(S′)

∣∣∣
2
=

∑

S∈orbS′

∣∣∣ĥ(S)
∣∣∣
2
⩽ ∥h∥22,

where we used Parseval’s equality. Note that ∥f − g∥∞ ⩽ n, and so ∥h∥22 ⩽ ∥f − g∥2k−1

∞ ⩽ n2k−1
.

Concluding, we get via Claim 3.5 that

∣∣∣ĥ(S′)
∣∣∣
2
⩽

n2k−1

|orbS′ | ⩽ Ok(n
−99·2k).

It follows that

E
x1,...,xk′−2


1E ·

∑

S∈T3

∣∣∣ĥ(S)
∣∣∣
4


 ⩽ Ok(n

−99·2k) E
x1,...,xk′−2


∑

S∈T3

∣∣∣ĥ(S)
∣∣∣
2


 ⩽ Ok(n

−99·2k) E
x1,...,xk′−2

[
∥h∥22

]
,

which is at most Ok(n
−98·2k) ⩽ Ok

(
1
n

)
using the upper bound ∥h∥22 ⩽ n2k−1

.

We end by upper bounding the contribution from T1:

Claim 3.8. Ex1,...,xk′−2

[
1E · ∑

S∈T1

∣∣∣ĥ(S)
∣∣∣
4
]
⩽

(logn)
C
k′−1,k+Ok(1)

n .

Proof. Fix x1, . . . , xk′−2 satisfying E. We observe that for all S ∈ T1 it holds that

∣∣∣ĥ(S)
∣∣∣ =

∣∣∣ĥ(∅)
∣∣∣. To see

that, it suffices to show that χS(x) is constant on all x such that h(x) ̸= 0. It suffices to prove this assertion

on any atom S of B, and for the sake of simplicity of notation we take S = supp(x1) ∩ . . . ∩ supp(xk′−2).

9



By definition of h, if h(x) ̸= 0, then we must have that x ⊕ z ∈ D2n for all z ∈ Span(x1, . . . , xk′−2).
Thus, we get that for any such x it holds that |x⊕ z| = a (mod 2k), i.e. the Hamming weight of x ⊕ z is

constant modulo 2k. Applying Fact 3.1 on x ⊕ z, x and z, we conclude that the Hamming weight of x ∧ z
modulo 2k−1 depends only on |z|. In particular, for z ∈ Span(x2, . . . , xk′−2) the Hamming weight of x∧x1
and x ∧ (x1 ⊕ z) is constant modulo 2k−1, and as

|x ∧ (x1 ⊕ z)| = |x ∧ (x1 ∪ z)| − |x ∧ x1 ∧ z| = |x ∧ z|+ |x ∧ z| − 2 |x ∧ x1 ∧ z|

we get that the Hamming weight of |x ∧ x1 ∧ z| modulo 2k−2 depends only on |z|. Continuing in this

fashion, we conclude that the Hamming weight of |x ∧ x1 ∧ . . . ∧ xk−2| modulo 2 is constant, and hence

χS(x) is constant.

Thus, we get that

E
x1,...,xk′−2


1E ·

∑

S∈T1

∣∣∣ĥ(S)
∣∣∣
4


 ⩽ 22

k−2

E
x1,...,xk′−2

[∣∣∣ĥ(∅)
∣∣∣
4
]
.

Observe now that using the notations of Claim 3.6 we have that

∣∣∣ĥ(∅)
∣∣∣
2
⩽ W∅ ⩽ (log n)Ok(1)

where we used (5). Thus,

E
x1,...,xk′−2


1E ·

∑

S∈T1

∣∣∣ĥ(S)
∣∣∣
4


 ⩽ (log n)Ok(1) E

x1,...,xk′−2

[∣∣∣ĥ(∅)
∣∣∣
2
]
= (log n)Ok(1)∥f − g∥2k

′−1

Uk′−1
.

Upper bounding ∥f − g∥2k
′−1

Uk′−1
by

(logn)
C
k′−1,k

n via the induction hypothesis finishes the proof.

Plugging Claims 3.8, 3.6, 3.7 into (3) finishes the proof of the inductive step, and thereby the proof of

Theorem 3.4.

4 Applications

In this section we use Theorem 1.2 to prove a few applications in property testing. Towards this end, we

use [6, Corollary 4.4], which we specialize below for the group ({0, 1}n,⊕).

Theorem 4.1. For all k ∈ N and ε > 0 there exists δ > 0 such that the following holds. Suppose that

ν : {0, 1}n → [0,∞) is a function such that ∥ν − 1∥U2k
⩽ δ. Then for all f : {0, 1}n → R such that

|f(x)| ⩽ ν(x) pointwise, there exists f̃ : {0, 1}n → [−1, 1] such that

∥f − f̃∥Uk
⩽ ε.

4.1 Proof of Theorem 1.1

In this section we prove Theorem 1.1, and for that we first need the following claim which is a version of

that theorem for bounded functions on {0, 1}n.

10



Claim 4.2. Suppose that a function f : {0, 1}n → [−1, 1] satisfies that

E
x,y,z∈{0,1}n

[f(x)f(y)f(z)f(x⊕ y ⊕ z)] ⩾ ε.

Then there exists S ⊆ [n] such that

∣∣∣f̂(S)
∣∣∣ ⩾

√
ε.

Proof. Plugging in the Fourier expansion of f , we get that

ε ⩽ E
x,y,z∈{0,1}n

[f(x)f(y)f(z)f(x⊕ y ⊕ z)] =
∑

S⊆[n]

f̂(S)4 ⩽ max
S

f̂(S)2
∑

S⊆[n]

f̂(S)2

= max
S

f̂(S)2∥f∥22,

which is at most maxS f̂(S)2 as ∥f∥2 ⩽ 1.

We also need the Cauchy-Schwarz-Gowers inequality (see for example [13, Lemma 4.2])

Lemma 4.3. Suppose that {fS}S⊆[r] are complex valued functions. Then

∣∣∣∣∣∣
E

x,y1,...,yr


 ∏

S⊆[r]

Ck−|S|fS

(
x+

∑

i∈S
yi

)

∣∣∣∣∣∣
⩽
∏

S⊆[r]

∥fS∥Ur .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix k = 2, ε > 0 and take δ from Theorem 4.1 for ε/106. Take a function f : U2n →
{0, 1} and define f ′ : {0, 1}2n → R by f ′(x) = (−1)f(x)1x∈U2n

E[1D2n,2k
]

E[1U2n
] . Note that

E
x,y,z

[
f ′(x)f ′(y)f ′(z)f ′(x⊕ y ⊕ z)

]
= E[1D2n,2k

]4
Prx,y,z∈{0,1}2n [x, y, z, x⊕ y ⊕ z ∈ U2n]

E[1U2n ]
4

·
(
2 Pr
x,y,z

[f(x) + f(y) + f(z) = f(x⊕ y ⊕ z) |x, y, z, x⊕ y ⊕ z ∈ U2n]− 1

)
.

By the premise the second term is at least 2ε, and a direct calculation shows that

Pr
x,y∈{0,1}2n

[x, y, z, x⊕ y ⊕ z ∈ U2n] ⩾ E[1U2n ]
4,

and hence Ex,y,z [f
′(x)f ′(y)f ′(z)f ′(x⊕ y ⊕ z)] ⩾ 2E[1D2n,2k

]ε. As E[1D2n,2k
] ⩾ 1

10 we get that

E
x,y,z

[
f ′(x)f ′(y)f ′(z)f ′(x⊕ y ⊕ z)

]
⩾

2ε

104
. (6)

Take

ν =
E[1D2n,2k

]

E[1U2n ]
1U2n + 1− 1D2n,2k

,

and note that ν is non-negative and that |f ′(x)| ⩽ ν(x) pointwise. By Theorem 1.2 we have

∥ν − 1∥U2k
=

∥∥∥∥
E[1D2n,2k

]

E[1U2n ]
1U2n − 1D2n,2k

∥∥∥∥
U2k

⩽

∥∥∥∥
1

E[1U2n ]
1U2n −

1D2n,2k

E[1D2n,2k
]

∥∥∥∥
U2k

= o(1),
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and hence for sufficiently large n0, if n ⩾ n0 we have that ∥ν−1∥U2k
⩽ δ. Applying Theorem 4.1 we get that

there is a function f̃ : {0, 1}n → [−1, 1] with ∥f ′− f̃∥Uk
⩽

ε
106

. Define the function ∆(x) = f ′(x)− f̃(x);
by the triangle inequality we may bound
∣∣∣∣ E
x,y,z

[
f ′(x)f ′(y)f ′(z)f ′(x⊕ y ⊕ z)

]
− E

x,y,z

[
f̃(x)f̃(y)f̃(z)f̃(x⊕ y ⊕ z)

]∣∣∣∣

=

∣∣∣∣ E
x,y,z

[
(f̃ +∆)(x)(f̃ +∆)(y)(f̃ +∆)(z)(f̃ +∆)(x⊕ y ⊕ z)

]
− E

x,y,z

[
f̃(x)f̃(y)f̃(z)f̃(x⊕ y ⊕ z)

]∣∣∣∣

⩽ E
x,y,z

[
4∆(x)f̃(y)f̃(z)f̃(x⊕ y ⊕ z) + 6∆(x)∆(y)f̃(z)f̃(x⊕ y ⊕ z) + 4∆(x)∆(y)∆(z)f̃(x⊕ y ⊕ z)

]

+ E
x,y,z

[∆(x)∆(y)∆(z)∆(x⊕ y ⊕ z)]. (7)

We use Lemma 4.3 to bound each expectation by ∥∆∥U2 , and we take the first expression for example. Note

that the distributions of (x, y, z, x⊕ y ⊕ z) is the same as of (x, x⊕ y, x⊕ z, x⊕ y ⊕ z) and that ∆, f̃ are

real valued, so by Lemma 4.3 the expectation of the first term is at most

∥∆∥U2∥f̃∥3U2
⩽ ∥∆∥U2 ,

where we used the fact that f̃ is 1-bounded. Therefore, combining (6) (7) we get that

E
x,y,z

[
f̃(x)f̃(y)f̃(z)f̃(x⊕ y ⊕ z)

]
⩾

2ε

104
− 15∥∆∥U2 ⩾

ε

104
.

By Claim 4.2 we conclude that there exists S ⊆ [2n] such that

∣∣∣̂̃f(S)
∣∣∣ ⩾

√
ε

100 , and so

∣∣∣f̂ ′(S)
∣∣∣ ⩾

∣∣∣̂̃f(S)
∣∣∣− ∥f ′ − f̃∥1 ⩾

∣∣∣̂̃f(S)
∣∣∣− ∥∆∥U2 ⩾

√
ε

200
.

Define LS =
⊕

i∈S xi, and suppose without loss of generality that f̂ ′(S) is positive (otherwise we multiply

f̃ by −1). Note that
√
ε

200
⩽ f̂ ′(S) = E[1D2n,2k

] E
x∈U2n

[
(−1)LS(x)+f(x)

]
= E[1D2n,2k

]

(
2 Pr
x∈U2n

[f(x) = LS(x)]− 1

)
.

Rearranging and using E[1D2n,2k
] ⩽ 1 finishes the proof.

4.2 Proof of Theorem 1.3

We first need the following elementary conclusion of Theorem 1.2.

Fact 4.4.

Pr
x,h1,...,hd∈{0,1}2n

[
x⊕

⊕

i∈T
hi ∈ U2n ∀T ⊆ [d]

]
⩾ E[1U2n ]

2d .

Proof. Define f(x) =
1x∈U2n

E[1x∈U2n
] , and note that the left hand side is equal to

E[1U2n ]
2d

E
x,h1,...,hd


 ∏

T⊆[d]

f

(
x⊕

⊕

i∈T
hi

)
 = E[1U2n ]

2d∥f∥2dUd
⩾ E[1U2n ]

2d∥f∥2dU1
= E[1U2n ]

2d ,

where we used the fact that ∥f∥Ud
⩾ ∥f∥U1 and that ∥f∥U1 = 1.
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Towards the proof of Theorem 1.3 we shall need the inverse Gowers theorem over fields with small

characteristics due to [18].

Theorem 4.5. For all ε > 0 there is δ > 0 such that if f : {0, 1}n → [−1, 1] satisfies that ∥f∥Ud
⩾ ε. Then

there exists a non classical polynomial p : {0, 1}n → T of degree at most d− 1 such that

∣∣∣
〈
f, e2πip

〉∣∣∣ ⩾ δ.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We take parameters

0 < ξ ≪ η ≪ δ ≪ ε ≪ d−1 = k−1
⩽ 1.

Take a function f : U2n → {0, 1} and define f ′ : {0, 1}2n → R by

f ′(x) = (−1)f(x)1x∈U2n

E[1D2n,2d
]

E[1U2n ]
.

Note that

∥f ′∥2dUd
= E[1D2n,2d

]2
d Prx,h1,...,hd∈{0,1}2n

[
x⊕⊕i∈T hi ∈ U2n ∀T ⊆ [d]

]

E[1U2n ]
2d

·
(
2 Pr
x,h1,...,hd∈{0,1}2n

[
∑

T

f(x⊕
⊕

i∈T
hi) = 0

∣∣∣∣∣x⊕
⊕

i∈T
hi ∈ U2n ∀T ⊆ [d]

]
− 1

)
.

The first term is at least Ωd(1), the second term is at least 1 by Fact 4.4 and the third term is at least 2ε by

the premise. Thus, ∥f ′∥2dUd
⩾ Ωd(ε). Take

ν =
E[1D2n,2d

]

E[1U2n ]
1U2n + 1− 1D2n,2k

,

and note that ν is non-negative and that |f ′(x)| ⩽ ν(x) pointwise. By Theorem 1.2 we have

∥ν − 1∥U2d
=

∥∥∥∥
E[1D2n,2d

]

E[1U2n ]
1U2n − 1D2n,2d

∥∥∥∥
U2d

⩽

∥∥∥∥
1

E[1U2n ]
1U2n −

1D2n,2d

E[1D2n,2d
]

∥∥∥∥
U2d

= o(1),

and hence for sufficiently large n0, if n ⩾ n0 we have that ∥ν − 1∥U2d
⩽ ξ. Applying Theorem 4.1 we get

that there is a function f̃ : {0, 1}n → [−1, 1] with ∥f ′ − f̃∥Ud
⩽ η. It follows from the triangle inequality

that

∥f̃∥Ud
⩾ ∥f ′∥Ud

− ∥f ′ − f̃∥Ud
⩾ Ωd(ε

2−d

)− η ⩾ Ωd(ε
2−d

).

By Theorem 4.5 we conclude that there exists a non-classical polynomial p : {0, 1}n → T of degree at most

d− 1 such that ∣∣∣
〈
f̃ , e2πip

〉∣∣∣ ⩾ δ.

Thus, by the triangle inequality

∣∣∣
〈
f ′, e2πip

〉∣∣∣ ⩾
∣∣∣
〈
f̃ , e2πip

〉∣∣∣−
∣∣∣
〈
f ′ − f̃ , e2πip

〉∣∣∣ ⩾ δ −
∣∣∣
〈
f ′ − f̃ , e2πip

〉∣∣∣ .
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Note that
∣∣∣
〈
f ′ − f̃ , e2πip

〉∣∣∣ = ∥(f ′ − f̃)e−2πip∥U1 ⩽ ∥(f ′ − f̃)e−2πip∥Ud
= ∥f ′ − f̃∥Ud

,

where in the last transition we used the fact that p is a non-classical polynomial of degree at most d− 1 and

hence its order d derivatives vanish. As ∥f ′ − f̃∥Ud
⩽ η we conclude that

∣∣〈f ′, e2πip
〉∣∣ ⩾ δ

2 , and so

∣∣∣∣ E
x∈U2n

[
(−1)f(x)e−2πip(x)

]∣∣∣∣ ⩾
δ

2
.

4.3 Proof of Theorem 1.4

The proof requires [18, Theorem 1.20], stated below for convenience.

Theorem 4.6. Let δ > 0, and suppose that p : {0, 1}2n → T is a non-classical polynomial of degree d such

that ∥e2πip∥Ud
⩾ δ. Then there exists L = L(δ, d), non-classical polynomials Q1, . . . , QL of degree at most

d− 1 and F : [0, 1)L → T such that for all x ∈ {0, 1}2n we have P (x) = F (Q1(x), . . . , QL(x)).

We are now ready to prove Theorem 1.4, and we assume for convenience of notations that n = 0
(mod 2d). Note that

∣∣∣∣Ex

[
e2πiP (x)

(
1U2n(x)

E[1U2n ]
−

1D2n,d+1
(x)

E[1D2n,d+1
]

)]∣∣∣∣ =
∥∥∥∥e

2πiP

(
1U2n

E[1U2n ]
−

1D2n,d+1

E[1D2n,d+1
]

)∥∥∥∥
U1

⩽

∥∥∥∥e
2πiP

(
1U2n

E[1U2n ]
−

1D2n,d+1

E[1D2n,d+1
]

)∥∥∥∥
Ud+1

=

∥∥∥∥
1U2n

E[1U2n ]
−

1D2n,d+1

E[1D2n,d+1
]

∥∥∥∥
Ud+1

= o(1),

where we used Theorem 1.2. Thus, as the assumption of the theorem implies that

∣∣∣Ex

[
e2πiP (x)

E[1U2n
] 1U2n(x)

]∣∣∣ ⩾
δ, we conclude that ∣∣∣∣∣Ex

[
e2πiP (x)

E[1D2n,d+1
]
1D2n,d+1(x)

]∣∣∣∣∣ ⩾ δ − o(1) ⩾
δ

2
.

By definition,

1D2n,d+1
(x) = 1|x|=0 (mod 2d) =

1

2d

2d−1∑

j=0

e
2πi

j|x|

2d ,

and plugging this above implies that there exists j such that

∣∣∣Ex

[
e2πi(P (x)+j|x|/2d)

]∣∣∣ ⩾ δ
2 . Note that the

polynomial P (x) + j |x| /2d is a non-classical polynomial of degree d. The conclusion is now immediate

from Theorem 4.6.
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