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Abstract

The (low soundness) linearity testing problem for the middle slice of the Boolean cube is as follows.
Let ¢ > 0 and f be a function on the middle slice on the Boolean cube, such that when choosing a
uniformly random quadruple (z, y, z, x By ® z) of vectors of 2n bits with exactly n ones, the probability
that f(x @y P® 2) = f(z) ® f(y) ® f(2) is at least 1 /2 + . The linearity testing problem, posed by [5],
asks whether there must be an actual linear function that agrees with f on 1/2+ ¢’ fraction of the inputs,
where ¢’ = £(g) > 0.

We solve this problem, showing that f must indeed be correlated with a linear function. To do so,
we prove a dense model theorem for the middle slice of the Boolean hypercube for Gowers uniformity
norms. Specifically, we show that for every k& € N, the normalized indicator function of the middle slice
of the Boolean hypercube {0, 1}2" is close in Gowers norm to the normalized indicator function of the
union of all slices with weight ¢ = n (mod 2¢~1). Using our techniques we also give a more general
‘low degree test’ and a biased rank theorem for the slice.

1 Introduction

The middle slice of the Boolean hypercube {0, 1}?" is given by Us, = {x € {0,1}*" | |z| = n}. A funda-
mental problem in a subarea of theoretical computer science known as property testing concerns determining
whether properties of functions can be determined efficiently by examining only few of their inputs. One
striking classical result of this kind is the BLR theorem [2] which shows that the question whether a func-
tion f: Fy — [y is linear or far from any linear function can be determined by evaluation f on only three
random inputs of the form (z,y,z @ y). David, Dinur, Goldenberg, Kindler, and Shinkar [5] solved the
corresponding problem for the slice by showing that if (x,y,z @ y) are a uniformly random triple among
such triples with z,y,x @ y € Uay, and f: U, — Fo satisfies Pr[f(z @ y) = f(z) @ f(y)] > 1 — &, then
f agrees with a linear function on 1 — O(¢) fraction of the inputs.

They then posed the corresponding problem in the so called ‘low soundness’ regime, also known as the
1% regime, where one wishes to show that if a function passes the test with probability significantly larger
than 1/2, then f is correlated with a linear function. The main result of this paper is a result along these
lines of a closely related test.

Theorem 1.1. For all ¢ > 0 there exists ng = no(e) € N such that the following holds for n > ny. If a
Sfunction f: Us, — {0, 1} satisfies that

Pr [f(2)® f(y) @ f(2) = fla@y®2) |2,9,2,0 @Yy ® 2 € Us] > %H,
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then there exists S C [2n] and b € {0, 1} such that

f;r [f(x) :b—l-EBxi
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1.1 Method

Intuitively, one may think of the Boolean slice as very similar to the Boolean hypercube, as one only imposes
a constraint on the Hamming weight of the vectors. Indeed, there is some truth to it; as far as low-degree
functions are concerned (more specifically, degree o(y/n) functions), the two domains are almost inter-
changeable; this is formalized in [10, 9] as an invariance principle (see also [3] for a simplification and
extensions). In general however, proving results for the slice is more challenging, even when these results
are concerned with low-degree functions; see for example [8, 7]. For results regarding high degree func-
tions, the situation is even worse as there are high-degree functions that certainly distinguish between the
two domains, and therefore the argument in the slice has to be significantly different from the argument on
the hypercube. The problem of linearity testing over the slice is an example problem which concerns high
degree functions (in the sense of Fourier analytic degree), and as mentioned prior to this paper only partial
results in the 99% regime were known [5].

Our main tool is a variation of the dense model theorem, which was famously used by Green and Tao
[11] to show the primes contain an arbitrary long arithmetic progression. Roughly speaking, the dense
model theorem allows transferring arithmetic properties of dense subsets of an Abelian group G to analogue
properties of dense subsets of arbitrary sets S C G with the property that ‘GES has a small Ug-norm.

The dense model provides us with another avenue of comparing the Boolean slice Us,, with the Boolean
hypercube and deducing results about the former from the latter. Here and throughout, for an integer s > 1,
the Gowers uniformity norm U of a function f: {0,1}" — C is defined as

1A llu, = E IT ¢™'f <x+2hi) ,

n
l‘,h1,...,hs€{0,1} Tg[s] icT

where C denoted complex conjugation. For k € N thought of as a constant, suppose that n = a (mod 2¢1)
and define
Do = {x € {0,1}*" |Jz| =a (mod 2k—1)} :

Note that Dy, ; O Ua,,, and while the measure of Uy, is vanishing with n (more specifically, itis ©(1/1/n)),
the measure of Da,, 1 is constant (roughly standing at Qk—l,l + o(1)). The main tool of our paper establishes
that Ds,, 1, is a dense model for Ufa;, for Gowers’ uniformity norms, and more precisely:

Theorem 1.2. Forall k € N, e > 0 there exists ng > 0, such that if n > ng we have

1L{2n 1D2n,k

H E[1U2n] E[]‘DZn.k]

<e.

Uk

A variation of the Green Tao dense model theorem allows us to deduce Theorem 1.1 from Theorem 1.2.
Indeed, we use the dense model theorem of [6]. !

"We remark that for & = 2 one could use the result of Conlon, Fox and Zhao [4], but the linear forms condition becomes difficult
to check for & > 3.



1.2 Other applications
1.2.1 Low Degree Testing

A second application of our method concerns the problem of testing polynomial of higher-degree, also in
the low-soundness regime. For an integer d € N, consider the d-Gowers’ test over the slice:

1. Sample z, hy, ..., hq € {0,1}?" conditioned on = @ @;cr hi € Uay, forall T C [d].

2. Check that Y f (z® @,crhi) =0.
TC(d)

We prove the following result, asserting that if a Boolean function f passes the d-Gowers’ test with proba-
bility 1/2 + ¢, then it must be correlated with a non-classical polynomial of degree at most d — 1.2

Theorem 1.3. Foralle > 0, d € N there are ng € N and § > 0 such that the following holds for n > ny.
Suppose that f: Ua, — {0, 1} passes the d-Gowers’ test with probability at least % + €. Then there exists a
non-classical polynomial p: {0,1}?" — [0, 1) of degree at most d — 1 such that

EIE [(_Uf(l’)e?ﬂip(w)]

> 0.

Theorem 1.3 gives an answer to a question of [5] regarding degree d testing over the slice.

1.2.2 Biased Rank

A third application of our method is concerned with the biased rank problem. In this scenario, we show that
a low-degree polynomial P on the slice which is biased must be of small rank. More precisely,

Theorem 1.4. Let P : {0,1}?" — [0, 1) be a non-classical polynomial of degree d such that |Ezeus,,, [(—1)° @] | >
8, and suppose thatn. = a (mod 2%). Then there is L = L(8, d) such that for some j and someT': [0,1) —
[0,1)
7(lx| —a
p) - 2D _p(@ue).... Qo) (mod 1)
forall x € {0,1}?", where Q; are non-classical polynomials of degree strictly smaller than d. In particular,
for x € Us, we have that

P(z) = D(Qu(x), .. Qu(x)) (mod 1).

1.3 Other related works

We remark that the Gowers’ uniformity norms have been used in theoretical computer science in numer-
ous other contexts, such as PCP [17], communication complexity [20], property testing [1] and more; we
refer the reader to [12] for a survey. There are also a few connections between dense model theorems and
theoretical computer science [16, 14, 19].

2We remark that a random function passes the test with probability 1 /2, and therefore the natural question is what can be said
about a function that passes the test with probability noticeably bigger than 1/2.



2 Preliminaries

In this section we present a few necessary facts from analysis of Boolean functions. We refer the reader
to [15] for a more systematic presentation. We consider the Boolean hypercube {0, 1}" equipped with the
uniform measure, and define an inner product for functions over {0, 1}" as

(,9) = E [F@)g(@)]

forall f,g: {0,1}" — C. For each S C [n] we may define the Fourier character xg: {0,1}" — {—1,1}
by xs(z) = [[(—1)*. Itis a standard fact that {Xs}sc|n) is an orthonormal basis for L2({0,1}"), and
€S
thus any f: {0,1}" — Rcanbe written as f(z) = > f(5)xs(z) where f(S5) = (f, xs)-
SC[n]

Definition 2.1. For an integer 1 < d < n and a function f: {0,1}" — R, we define the level d weight of f
to be )

walfl =3 |75 -

|S]<d

Our proof uses the level d-inequality, which asserts a function f: {0,1}" — {—1,0, 1} that has small
£1-norm must have small level d weight.

Lemma 2.2. Suppose that f: {0,1}" — {—1,0,1} has a = E[|f|]. Then for all d < n,
Wealf] < a®log? D (1/a).
Lastly, we will use the notion of discrete derivatives defined as follows:

Definition 2.3. For a function f: {0,1}" — C and a direction h € {0,1}", the discrete derivative of f in
direction h is the function Oy f : {0,1}"™ — C defined by

Onf(x) = flx @ h)f(x).

For directions hy, ..., hqg € {0,1}", we define

Ohi,ohg () = (Ony Ony -+ Ony) f ().

Non-classical polynomials: Let T = R/Z be the torus. A function p: {0,1}" — T is called a degree
d non-classical polynomial if Oy, . n,.,p = O for all directions hy, ..., hqr1 € {0,1}"; here dpp(z) =
p(z + h) — p(z) is the standard notion of discrete derivative. We will not use this notion of derivative and
hence there will be no confusion regarding which notion of derivative is used.

We note that if p is a degree d non-classical polynomial, then 0y, .
hi,...,hg1 € {0,1}"; the derivative now is as in Definition 2.3.

hy He%ip = 1 for all all directions

3 Proof of Theorem 1.2

3.1 Auxiliary Tools

We begin by presenting a few tools that we need in the proof of our main result. We begin with the following
fact, asserting that if we know the Hamming weight of , z and x® 2 modulo 2/, then we know the Hamming
weight of 2 A z modulo 271,



Fact 3.1. Suppose that |z @ z| = b (mod 27), |z| = ¢ (mod 27) and |z| = d (mod 27). Then c+d — b is
divisible by 2 and |z N\ z| = # (mod 2771).

Proof. Note that |x @ z| = |z V z| — |z A z| = |z|+|2| —2 |z A z], and the result follows form re-arranging
and dividing by 2. 0

It will be convenient for us to think of a vector z € {0, 1}2" also as a subset of [2n], namely as supp(z).
For vectors z1,...,x; € {0,1}2", the algebra generated by them B = B[supp(z1),...,supp(zs)] con-
sists of vectors that correspond to sets that can be formed by supp(z1),...,supp(z:) by taking unions,
intersections and complements (in other words, it is the o-algebra generated by these sets). Suppose that
T1,...,2¢ € {0,1}2" are vectors so that in B = B[supp(z1), . . ., supp(z¢)], each atom has at least n/2¢+!
elements. It is a standard computation that sampling = € {0, 1}?" uniformly we have that 2 € Uy, with
probability ©(1/4/n). We would like to say that the events that x & z € Ua, for all z € Span(x1,...,z;)
are almost indepednent, and in particular that

Prx @ z € Uy, forall z € Span(zy,...,z)] < Ot(\/ﬁﬁt).
X

The following lemma shows that this is indeed the case.

Lemma 3.2. In the setting above, for all n, € N

Pr{lz @ z| = n, forall z € Span(x1,...,x¢)] < Ot(n_Qt—l)‘
T

Proof. Let B € B be an atom, and without loss of generality B = supp(z1) N ... N supp(x;). We show
that if this event holds, then |z A 21 A ... A x| has to be equal to some specific value. Indeed, note that as
in Fact 3.1 for all z € Span(z1, ..., z¢)

1

[z A2l =5 (] + 2] = [z @ 2]),

O |

hence the Hamming weight of = A 2 has to be a specific value if the event in question holds. Also, we know
that for z € Span(xa, ..., x;) we have

lEA (1@ 2)| =]z A (r1U2)|— |z Azi Azl =z Az |z Azl =2z Az Az,
and hence the Hamming weight of z A x1 A z is determined. Noting that
[(xAx1) @z =z Azt + 2] — 2|z Az A 2]

we get that the Hamming weight of (x A z1) @ z is determined for all z € Span(xa,...,z;). Iterating
the argument with ' = x A z; gives that the Hamming weight of (2/ A x2) & 2 is determined for all
z € Span(zs, ..., ), and repeating this argument shows that the Hamming weight of |z A x1 A ... A x|
is determined.

For each b € {—1,1}%, let 2, € {0,1}>" be the vector A\'_, v; where v; = x; if b; = 1 and else
v; = 1 — x;. From the above argument, it follows that for each b there is a number ny such that if the event
in question holds, then |z A x| = n;p. Thus, the probability in question is at most

Pr[|z Axp =ny Vb € {-1,1}] = H Pr|lz A xp| = mp),
v be{—-1,1}¢ ¥



where the last transition holds because the supports of the vectors x; are disjoint and so the random variables

x N xp are independent. As the support of z; is in the algebra generated by xi,...,x;, we have that
|zp| = n /281 and hence
ot
Prlz Axzp| =np] <O (\/) ,
x n
and plugging this above finishes the proof. O

We will also need to consider sub-events of the event in Lemma 3.2 and argue that they are also almost
independent. More precisely:

Lemma 3.3. Let Z C Span(x1,...,x¢). Then
Priz® z € Usy Yz € Z] < n 1212 (1og n) O,
xX
Proof. Consider 2’ € Z := Span(x1,...,7;) \ Z, and note that by Chernoff’s bound the probability that

|x & 2’| is outside the range between n — y/nlogn and n + y/nlogn is at most 2-(og?n) - Thys, the
probability in question is at most

Pr [m@z €Uy V2 € Z, {x@z" € [n—vnlogn,n+ /nlogn] V2 € m 1 9t=log?n) (D

T

Denote ¢ = Pry [z ® 2 € Usy V2 € Z, |z @ 2| € [n — \/nlogn,n + y/nlogn] V2’ € Z]. Trivially,

q= Z Pzr[xEBZGZ/IQnVZGZ,

(1) 1 ez €ln—+/nlogn,n++/nlogn| 1Z|

x@z" :nZ/Vz'ET,

and as by Lemma 3.2 each summand is at most Ot(n*Qt_l) we get that
g < (2v/nlogn + 1D)IZ0,n=2"") < n712/2(10g )0 @),

Plugging this into (1) finishes the proof. O

3.2 The Main Argument

The proof of Theorem 1.2 is by induction. To be more precise, fix n and k as in the theorem. We prove by
induction on %’ the following result:

Theorem 3.4. For all 1 < k' < k we have that

_ (logn) '+

)
n

11/12” 1D2n,k

H E[]‘L{Z'n] E[]‘D2n,k]

Upr
where Cyy 1 is a constant depending only on k', k.

The base case of Theorem 3.4, namely the case that &’ = 1, is clear as the U; norm is the absolute value
of the expected value of the function, which in our case is 0. We now move on to the inductive hypothesis
and fix ¥/ > 2 and assume the statement holds for &’ — 1. We show that the statement holds for k' with
Ci 1 < Cp—1 + Og(1). Throughout this section, we will denote Dy,, = Dsy, ), for ease of notations.

6



For simplicity of presentation, denote f = EH’;" ] and g = %. By definition of Gowers’ uniformity
2n 2n
norms, we have that
ok’ 4
1F =gl = E [0 (f —9)lit].

T1yeesTpl _o

Consider the algebra B generated by supp(x;) for i = 1,...,k" — 2, and let E be the event that each
atom there has at least n/ 2k elements. By Chernoff’s bound we have that Pr [E] < 2—9("), and as
[ flloos lglloc < m we get that

K _Q(n k
If = gllz, <279n®C) + B[00y, ay o (f — 9l 1]

Ty Tht _g

1
< — .
\Ok(n)erl E . !15 §

S

Or ity o (f = g)(S)f] . @)

We focus on the second sum now. Consider the function h(z) = 0Oy, 2, ,(f — g)(z), and define the
subgroup G C Sa,, as
G={me Sy |n(B)=DBVBecB},

and note that h is symmetric under G. For a subset I C [2n], define
orb; = {xn(I) |7 € G},

so that we get that /H(I ) = E(I "Yif I’ € orbs. In our upper bound of (2) we partition the characters S into
3 types, and upper bound the contribution of each one of them separately. This partition will depend on the
size of the orbit of the character .S under GG, and towards this end we have the following claim.

Claim 3.5. Let S C [2n), and let d = minpep |SAB).
1. Ifd =0, then |orbg| = 1.

2. If1 < d < 2", then |orbs| > 5.

3. Ifd > 2199 then |orbg| > €, (n1002"),

Proof. For the first item, if d = 0 then S € B, and it is clear that orbg = {S}.

For the second item, write S = BAI where B € B and |I| = d. Thus, 7(S) = BAn(I) form € G.
Take some ¢ € I and consider the atom of BB in which i lies, say B’. For any j € B’ we may find 7; ; € G
such that 7; (i) = j. As|B’| > n/2*, we conclude that there are at least oor distinct sets among BAT; ;(I).

For the third item, write S = BAI again for B € B and I of size d. Write I = {i1,...,i4}, and let

By, ..., By be the atoms of B that i1, ..., 44 lie in, respectively. For all distinct j; € By,...,jq € Bg we

may find 7;, i, 5.5, € Gsuchthatm; ;.5 s (i) = jeforall £ =1,...,d. It follows that the orbit

of S has size at least g - (2% -1)--- (2% —100 - 2%) > Qk(nmo‘?k). O
Define

Ty = B, TQZ{SQ[Qn] 1<min|5AB|<2loo'k’}, T3={SQ[Qn]|min|SAB|>2100'k},
BeB BeB



so that by (2) we have that

o ~ 4 ~ 4
IF =g, < B |t X [0S |+ E |1 Y[R
XlyeesTpl _o SETl XT1yeesTpt _o SETQ
~ |4 1
+ E 1E'Z‘h(5)‘ +Ok<>. 3)
TlyeensTpl _o n

SeTs

We now upper bound each term on the right hand side of (3). We start with the contribution from 75.

~ 4
Claim3.6. E;, ., , [1g- > h(S)‘ < w.
S€eTs
Proof. Clearly we have that
~ |4 .
E | Y| |= B [ Y |us)

T1yesTp/ _g Ty Tpt _g

S€eTy BeB 1<|SAB|L2100°k

~ 2
Denote Wp = h(S )‘ . As by Claim 3.5 the orbit of each S has size at least n/2'9'%, we get

1<|SAB|<2100-k

that

<

E

‘4 2101k
N x1,..,2_o

E 1g - Z ’ﬁ(S)

T1yeesTpl _o Ser
2

1g - ZW,%]. 4)

BeB

Fix x1, ...,z _o satisfying F and B € B, and inspect Wp. Opening up the definition of h, by the triangle

h(S)) is upper bounded by a sum of 22"~ terms of the form |Ee [Fi(a) - Fyw—a(z)xs(w)]]
where writing Span(z1, ..., Tp—2) = {21,..., 22}, each F; is either f(z + 2;) or g(x + ;). Thus, by
Cauchy-Schwarz

inequality

2k’*2

WB g 2 Z nglOO-k[Fl cee FQM—ZXB]'

F17-~~7F2k’_2

Fix a choice of F7, ..., Fyr—2. Namely, fix a subset Z C Span(zy, ..., x;_2), and say that

P Fps(a) = [[ fwaz) [ glwe ).

z€Z 2€Z

Write P(z) = [[ lewzetts, [ lz@zeDs, - Then

2€Z 267
W0k [Fi - Fyr 5] ! W00 [P 5]
100-k | L77 = -+ '—2XB| = — 100-k | L©XB
=2 e M(Uzn)2|Z|u(Dzn)2|Z| <?
1
< E[P]* log? M (B[ P]).

T (Uon )27 (D) ]



where the last transition is by Lemma 2.2. By Lemma 3.3 we have E[P] < n~14!/2(logn)% (1), and by
inspection 11(Day) > Qi(1), p(Us,) > Q(n~'/2). Thus, using the monotonicity of the function z —
2210g®(M(1/2) in the interval [0, ¢] where ¢ = ¢(k) > 0 is an absolute constant, we get that

W<2100-k [Fl s FQk_QXB] < (log n)ok(l)‘

It follows that
Wg < (log n)ok(l), 5)

and plugging (5) into (4) gives that

E 1g - Z ‘/}\1(5)‘4 < M_

L1y Tpl _o n

SeT»
as required. 0
Next, we bound the contribution from 75.
. 7 4 1
Claim 3.7. Euy,..0p,, |1E- D h(S)‘ < Oy, (E)
SeTs

Proof. Fix x1,...,xp_o satisfying E and fix S’ € T3. Note that

W[ = 3 )| < nig

Seorbgr

\orb5/|

where we used Parseval’s equality. Note that ||f — gllcc < 7, and so |[R]2 < ||f — g|% " < n2""

Concluding, we get via Claim 3.5 that

9 n2k71

E S’ <— K 9] —99.2k )
’ (5) lorbgr| k(n )
It follows that
~ 4 009k > 2 ook
E |1g- Y. ]h(S)\ <o) E |} )h(S)( <Oy B [Ih)3],
L1,y Tyl _o SeTs T1yeesTp! _o Sty Ty o
which is at most Oy (n~982") < Oy, (1) using the upper bound ||2[|3 < n®"". m

We end by upper bounding the contribution from 77:

n

Claim 3.8. Eml,.“,xk/72 llE : Z

~ 4 Chr_1 O (D)
h(S)‘ < (logm) .
SeTy

Proof. Fix x1, ...,y _o satisfying . We observe that for all S € Tj it holds that )E(S)‘ = ‘/ﬁ(@)‘ To see

that, it suffices to show that x s(x) is constant on all  such that h(x) # 0. It suffices to prove this assertion
on any atom S of B, and for the sake of simplicity of notation we take S = supp(z1) N ... N supp(z—_2).



By definition of h, if h(x) # 0, then we must have that x @ z € Dy, for all z € Span(z1,...,zp—2).
Thus, we get that for any such z it holds that |z @ z| = a (mod 2¥), i.e. the Hamming weight of x & z is
constant modulo 2*. Applying Fact 3.1 on @ 2, 2 and 2, we conclude that the Hamming weight of x A z
modulo 2¥~1 depends only on |z|. In particular, for z € Span(xa, ..., z1_s) the Hamming weight of z A 2y
and x A (71 @ 2) is constant modulo 28!, and as

[t A (z1 @ 2) =]z A(r1U2)|— |z Az Azl =]z Azl + |z Azl =2z Az Az

we get that the Hamming weight of |z A 21 A z| modulo 2¥~2 depends only on |z|. Continuing in this
fashion, we conclude that the Hamming weight of |z A x1 A ... A xx_2| modulo 2 is constant, and hence
Xs(x) is constant.
Thus, we get that
~ |4
E (1Y [hs)

Ty Tpl _g SeTy

<22 g UE(@)H.

L1,y Xyl _o
Observe now that using the notations of Claim 3.6 we have that
~ 2
[R(@)] < Wy < (logm)+)

where we used (5). Thus,

E e Y[R

TLyeorh! -2 Ser

~ 2 -
<ogn®® & {[EO)]] = Gogr) 0l - gl

T1yeesTpt _o

(log n)cqu k
n

Upper bounding || f — gHQUl:,__l1 by " via the induction hypothesis finishes the proof. O

Plugging Claims 3.8, 3.6, 3.7 into (3) finishes the proof of the inductive step, and thereby the proof of
Theorem 3.4.
4 Applications

In this section we use Theorem 1.2 to prove a few applications in property testing. Towards this end, we
use [6, Corollary 4.4], which we specialize below for the group ({0,1}", ®).

Theorem 4.1. For all k € N and € > 0 there exists § > 0 such that the following holds. Suppose that
v: {0,1}" — [0,00) is a function such that ||v — 1|y, < 0. Then for all f: {0,1}" — R such that
|f(x)| < v(z) pointwise, there exists f: {0,1}" — [—1,1] such that

I1f = fllo, <e.

4.1 Proof of Theorem 1.1

In this section we prove Theorem 1.1, and for that we first need the following claim which is a version of
that theorem for bounded functions on {0, 1}".

10



Claim 4.2. Suppose that a function f: {0,1}" — [—1, 1] satisfies that

f@) ffa)feoyez))>e

z,y,2€{0,1}"
Then there exists S C [n| such that ’f(S )‘ > /e

Proof. Plugging in the Fourier expansion of f, we get that

< E @) faoyo:) Zf <max f(S)° Y7 F(S)

x,y,ZG{Ovl}” C SC[TL]

— mgxf(S)QHnga

which is at most maxg f(S)2 as || f[|2 < 1. O
We also need the Cauchy-Schwarz-Gowers inequality (see for example [13, Lemma 4.2])

Lemma 4.3. Suppose that { fs}sc|y] are complex valued functions. Then

E HCk_lSIfS<IE+ZZ/i> < IT Wsslo

TyY1y-5Yr Sg[’l"] ies SC[T‘
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix k = 2, ¢ > 0 and take 6 from Theorem 4.1 for £/10°. Take a function f: Uy, —

{0,1} and define f’: {0,1}?>" = Rby f'(z) = (=1)7® 1, W Note that
2n

P Y.z n y Yy <y @ @ EZ/[TL
B/ W) () 6y =) = Ellp,,,, 'zl b 2l D 0 C
z,Y,z 2n

-(2Pr F@) + 1) + f(2) = fz @y o 2) \m,y,z,x@y@zeugn]—l).

I7yvz

By the premise the second term is at least 2¢, and a direct calculation shows that

Pr T,Y,2, TP YDz €Uy 2 E[L 4,
x,ye{O,l}Q"[ y y on] 2 E[loy,]

and hence Ea,y.- [f'(2) /' (y) f'(2) f'(x ® y @ 2)] = 2E[1p,, ,,Je. As E[lp,, ,,] = 15 we get that

E [f@)fWf () @eye2)] > 57 ©)
x7y7Z

Take 1 |
EllD,,

y— 2y 1y

E[].Z,{Qn] Uy DQn,Qk

and note that v is non-negative and that | f’(x)| < v(z) pointwise. By Theorem 1.2 we have
E[1D,, ] 1 1Dy, 01
I =l = | S, = 10n| < gy — g = ot
o E[1u2n] ? a2k U2k E[1u2n] : E[1D27L,2k] U2k

11



and hence for sufficiently large no, if n > no we have that [|[v— 1 Uy, < 6. Applying Theorem 4.1 we get that
there is a function f: {0, 1}" — [~1,1] with || ' — f]lv,, < 155- Deﬁne the function A(z) = f'(x) — f(x);
by the triangle inequality we may bound

E [f@fWf o) @eys) - B [f(w)f(y)f(Z)f(x@yGBZ)”

.Y,z Y,z
= |.E. (7 +2)@)(F +2) W) (] + A)()(f + Aoy e z) - E. F@fwiefeeye:) ‘

< E. [4A(m)f(y)f(z)f(m Byd2)+6A@)AW)F(2)fx®y®2) +4A@)AWA() flz ®y D z)}
+.E, [A(2)A(y)A(z) Az &y & 2)]. 7

We use Lemma 4.3 to bound each expectation by ||A[|r7,, and we take the first expression for example. Note
that the distributions of (z,y,z,z @ y @ z) is the same as of (x,z D y,x ® z,x ® y D z) and that A, f are
real valued, so by Lemma 4.3 the expectation of the first term is at most

1A 111, < 1A,

where we used the fact that f is 1-bounded. Therefore, combining (6) (7) we get that

s s s 2e
E [f@iwiafceye )] >

3

— 15[|Ally, > ot

By Claim 4.2 we conclude that there exists S C [2n] such that ) f (S )‘ P V£ and so

100°
Ve
200°

~

Ps)| = fs)| =18 = Fl = [FS)] - 1Al >

Define Ls = €, g =i, and suppose without loss of generality that ]?’(S) is positive (otherwise we multiply
f by —1). Note that

3o < P9 =Blo, ] B [-04@H] ~glip, ] (2 21 1) = Ls@] - 1).

200 e€Uan w€Uan

Rearranging and using E[1p,, ,, ] < 1 finishes the proof. O

4.2 Proof of Theorem 1.3
We first need the following elementary conclusion of Theorem 1.2.
Fact 4.4.

2@ @ hi € Usy VT C [d]| > Bl )"

1€T

Pr
z,hi,...,hg€{0,1}2"

Proof. Define f(z) = E?ffgj:n] , and note that the left hand side is equal to

Ellw,, ) E Hf(xGB@h) = B[l 2117, = Bl ) 117 = Ell,, >,

R s [d] i€T

where we used the fact that || f||;7, > || ||y, and that || f||y, = 1. O

12



Towards the proof of Theorem 1.3 we shall need the inverse Gowers theorem over fields with small
characteristics due to [18].

Theorem 4.5. For all € > 0 there is 6 > 0 such that if f: {0,1}" — [—1, 1] satisfies that || f ||, > €. Then
there exists a non classical polynomial p: {0,1}"™ — T of degree at most d — 1 such that

(1)

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We take parameters

I<égngdi<e<gd=k1<1
Take a function f: Us, — {0, 1} and define f: {0,1}*" — R by
E[1D,, 54
") = (—1 f(x)lx 2n,2d )
Note that
2n,2d E[IUQH]Qd
|2 & h;) <) hi €Uy, VT Cd]| — 1.
( o B |10 @ =0 o @ittt <] 1)

The first term is at least €24(1), the second term is at least 1 by Fact 4.4 and the third term is at least 2¢ by
|7 > Qa(e). Take

E[1D2 2d]
= —""""1 +1-1 ,
E[1u2n] Uon Don 2k

and note that v is non-negative and that | f'(z)| < v(z) pointwise. By Theorem 1.2 we have

E[1D2n,2d]

1 1D2 2d
lu n 1p " ™
E[lu%] 2 2n,2d

Ly, = ————|  =o(l),
: E[1D2n,2d]

Usq

AN

U2d H E[]‘MZW,]

v =1llu,, = H

and hence for sufficiently large no, if n > no we have that [|v — 1|y, < §. Applying Theorem 4.1 we get
that there is a function f: {0,1}" — [—1,1] with || f' — f|lu, < n. It follows from the triangle inequality
that

_ ~ —d —d
1 Fllog = 1 Nww = 11 = Fllog = Qae® ") = n = Qa(e® ).

By Theorem 4.5 we conclude that there exists a non-classical polynomial p: {0,1}"™ — T of degree at most

d — 1 such that .
R

Thus, by the triangle inequality

e e R ]
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Note that
(7 = F. ) = 1 = e oy < I = Pe > lgy = 1 = Fllua

where in the last transition we used the fact that p is a non-classical polynomial of degree at most d — 1 and
hence its order d derivatives vanish. As || f' — f||u, < n we conclude that |{f’,e>™)| > $, and so

> 2 m

E [(_1)f(w)ef2wip(x)] :

rEU2p

4.3 Proof of Theorem 1.4
The proof requires [18, Theorem 1.20], stated below for convenience.

Theorem 4.6. Let § > 0, and suppose that p: {0,1}?™ — T is a non-classical polynomial of degree d such
that ||€2™P||i;, > 0. Then there exists L = L(6, d), non-classical polynomials Q1, . .., Qr, of degree at most
d—1and F: [0,1)Y — T such that for all z € {0,1}*" we have P(z) = F(Q1(z),...,Qr(x)).

We are now ready to prove Theorem 1.4, and we assume for convenience of notations that n = 0
(mod 2¢). Note that

B [e2niP(:v) <1U2n (z) _ 1D2n,d+1(x)>} ‘ _ ||p2niP ( L, 1Dy 441 )

T E[lz/{Qn} E[1D2n,d+1] E[luzn] E[lDQn,d+1]

BQWiP( Ly, 1Dy 41 )
E[luzn] E[1D2n,d+1]

11/{2n 1D2n,d+1

E[ll/bn] E[1D2n,d+1]
=o(1),

U1

N

Udgt1

Ud+1

where we used Theorem 1.2. Thus, as the assumption of the theorem implies that |E,. [%{Zj 14y, (3:)] ) >

6, we conclude that

E =>0—o(1) >

o2miP(z) ]

E[1D2n,d+1] an,d+1(7)

By definition,

1320 e

2mi

1D2n,d+1 (1") = 1|z|:0 (mod 24) = od E e 2y
Jj=0

and plugging this above implies that there exists j such that

E, [627ri(P(x)+j\x|/2d)” > g Note that the

polynomial P(z) + j|z| /2% is a non-classical polynomial of degree d. The conclusion is now immediate
from Theorem 4.6.
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