
1

Tapis: An API Platform for Reproducible,
Distributed Computational Research

Joe Stubbs∗, Richard Cardone∗, Mike Packard∗, Anagha Jamthe∗, Smruti Padhy∗, Steve Terry∗,
Julia Looney∗, Joseph Meiring∗, Steve Black∗, Maytal Dahan∗,

Sean Cleveland†, Gwen Jacobs†
∗Texas Advanced Computing Center, Austin, TX, USA

jstubbs, rcardone, mpackard, ajamthe, spadhy, sterry1, jlooney, jmeiring, scblack, maytal@tacc.utexas.edu †University of
Hawaii, Manoa, HI, USA

seanbc, gwenj@hawaii.edu

F

Abstract—Modern computational research increasingly spans multi-
ple, geographically distributed data centers and leverages instruments,
experimental facilities and a network of national and regional cyber-
infrastructure (CI). In this paper we introduce Tapis, an open-source
API platform funded in 2019 by the National Science Foundation for
distributed computational experiments. We describe the motivation and
core features of the Tapis platform, including data management and
code execution, with support for streaming data and real-time as well
as batch workflows. A fine-grained permissions system underlies all
Tapis objects enabling data to be stored privately, shared with individuals
or “published” to a community, and provenance endpoints expose the
detailed history logs Tapis collects on analyses, enabling workflows to
be repeated and results reproduced. We describe how Tapis builds upon
prior NSF investments in CI, discuss some of the early use cases driving
its design, and conclude with the roadmap for future work.

1 INTRODUCTION

Modern computational experiments are becoming increas-
ingly distributed, particularly those designed by interdisci-
plinary teams. These efforts span geographically distributed
data centers and leverage instruments, experimental facil-
ities, and national and regional cyberinfrastructure to ad-
dress fundamental problems in science and engineering. For
example, investigators might first apply machine learning
techniques to raw data from remote sensors, or they might
perform genetics analysis against sequencing data produced
in a robotics wet lab. Next, they might pass those results to
a simulation that runs on a traditional HPC supercomputer.
The simulation results in turn help to calibrate the remote
instruments and processes for the next iteration, and the
cycle repeats. Programming the execution of such experi-
ments, much less in a scalable, reproducible way, presents
a formidable challenge to investigators and prevents many
such experiments from ever being run. Furthermore, the
operation of the advanced cyberinfrastructure to accom-
modate such experiments requires specialized knowledge
and experience, creating another obstacle for many regional
academic providers.

Tapis is an open source, NSF funded Application Pro-
gram Interface (API) platform for distributed computation

that will provide production-grade capabilities to enable
researchers to 1) securely execute workflows that span
geographically distributed providers, 2) store and retrieve
streaming/sensor data for real-time and batch job process-
ing, with support for temporal and spatial indexes and
queries, 3) leverage containerized codes to enable porta-
bility, and reduce the overall time-to-solution by utilizing
data locality and other smart scheduling techniques, 4)
improve repeatability and reproducibility of computations
with history and provenance tracking built into the API, and
5) manage access to data and results through a fine-grained
permissions model, so that digital assets can be securely
shared with colleagues or the community at large.

Tapis is itself distributed: a hosted RESTful API plat-
form, deployed at various institutions including the Texas
Advanced Computing Center (TACC) at the University of
Texas at Austin, the University of Hawaii (UH), Manoa,
and others. End users and applications interact with Tapis
by making authenticated HTTP requests to Tapis’s public
endpoints. In response to requests, Tapis’s network of mi-
croservices interact with a vast array of physical resources
on behalf of users: high performance and high throughput
computing clusters, file servers and other storage systems,
databases, bare metal and virtual servers, etc. The goal of
Tapis is to provide a unified, simple to use API enabling
teams to accomplish computational and data intensive com-
puting in a secure, scalable, and reproducible way so that
domain experts can focus on their research instead of the
technology needed to accomplish it. Working alongside
researchers from various fields to drive real-world use cases,
Tapis aims to be the underlying cyberinfrastructure for a
diverse set of research projects: from large scale science
gateways built to serve entire communities, to smaller
projects and individual labs wanting to automate one or
more components of their process.

Tapis is motivated by lessons learned from developing
and operating the Agave API platform [1] for over six
years, and draws on NSF investments in the Abaco (Actor
Based Containers) [2] functions-as-a-service project as well
as CHORDS (Cloud-Hosted Real-time Data Services for the

2

Geosciences) [3] platform. Tapis is made up of a set of API
services that together form the Tapis platform. The primary
APIs include the Files API for managing data on remote
storage, the Systems, Apps and Jobs APIs for registering and
executing software and research codes, the Actors API for
registering small executables that run with very low latency
in response to messages sent over HTTP, the Meta API, a
high performance document store for scaling research data
collections to billions of documents serialized using formats
such as JSON or XML, and the Streams API for storing and
retrieving sensor data. Underlying all of these services is a
set of authorization APIs which comprise the Tapis Security
Kernel. The Tapis security kernel is a unique, decentralized
solution to authorization and security management with
APIs that enable trust federation across physical and insti-
tutional boundaries.

A recurring technique leveraged throughout the plat-
form is the use of container technology to enhance porta-
bility and reproducibility, not just for the end user’s re-
search computations, but for all Tapis execution. Each Tapis
microservice is packaged into a Docker image, and the
official Tapis deployment tooling targets the Kubernetes
platform. This approach simplifies operations across data-
centers while simultaneously increasing the uniformity of
deployed Tapis components, whether they run at academic
institutions, nationally funded cloud providers or the com-
mercial cloud.

The rest of the paper is organized as follows: in section 2
we discuss in detail the background, motivation and related
work; in 3 we describe the primary capabilities Tapis will
provide; in 4 we highlight some projects that have agreed
to be early adopters of the platform, and describe their
use cases and requirements; in 5 we provide a high-level
overview of the Tapis architecture; finally, in 6 we conclude
with a road map for the five funded project years.

2 BACKGROUND AND RELATED WORK

2.1 API Platforms
Microservice architectures, JSON and OAuth2 have greatly
reduced barriers to distributed application development
and have enabled new usage patterns across industry and
academia. Microservices typically are HTTP-based APIs
built on open standards such as REST. All leading cloud
providers including Amazon AWS, Google Cloud Platform
and Microsoft Azure provide such services. At the Texas Ad-
vanced Computing Center, the Agave science-as-a-service
API enabled 14 different official projects to manage data, run
jobs on HPC and HTC systems, and track provenance and
metadata about computational experiments. The more re-
cently funded Abaco API supports functional programming
models and event driven architectures on cloud infrastruc-
ture. Abaco’s novel use of containers and the Actor Model
of concurrent computation support several projects after
less than two years in production. Official collaborations in-
clude projects across a wide range of scientific/engineering
domains and NSF directorates, including CyVerse [4] (for-
merly, the iPlant Collaborative) [5] [6], DesignSafe [7], Ike
Wai [8], 3DEM Hub [9], the Science Gateways Commu-
nity Institute [10], and VDJServer [11]. Non-NSF projects
include the iReceptor portal for immune genetics research;

the CNAP Center of Biomedical Research Excellence at
Kansas State University; and Planet Texas 2050, funded
by Texas and the University of Texas, Austin. An analysis
of usage data suggests that many more projects leverage
these platforms in an unofficial capacity, with approximately
20,000 OAuth client applications having been registered.

2.2 Containers and Distributed Computations

The number of scientific workflows making use of dis-
tributed computational experiments is increasing. Ad-
vances in technologies related to small devices, instruments,
robotics and other forms of experimental facilities have led
to an explosion in large, real-time data sources. Examples
include genomic sequencing facilities, survey telescopes,
climate sensors, shake tables, wind tunnels, and laser light
sources. Computations often leverage a mix of AI/Machine
Learning techniques in combination with model simulations
to derive new insights. As a result, these experiments re-
quire a mix of computational resources, data access methods
and management techniques.

Researchers analyze sensor data using batch and real-
time processing. With batch processing, investigators write
programs to analyze a static set of data defined at the
start of the analysis. These programs may utilize traditional
HPC machines scheduled via a batch scheduler such as
SLURM, or high-throughput and/or cloud resources, and
they may be written in a variety of languages and frame-
works. Such frameworks include traditional model simula-
tions that leverage MPI, AI/ML code that depend on CUDA
or higher-level libraries such as TensorFlow, or other data-
intensive frameworks like Hadoop and Spark. With real-
time processing, codes analyze new streaming data points as
they arrive. In the simplest cases, these analyses check basic
conditions to determine if interesting or unusual criteria are
met; in the general case, real-time processing can involve
many of the same kinds of analysis as batch processing.

Finding a mechanism to enable computational porta-
bility can be a great simplification if not an out right
requirement for successfully orchestrating such workflows.
Steps in the workflow that analyze streaming data often
have a real-time, low-latency requirement that can only
be achieved by running code near the data. Traditional
simulation steps often require running codes across large
clusters that may only be available in world-class HPC
centers. For other steps with less resource requirements,
minimizing time-to-solution may involve leveraging high
throughput systems and machines with shorter queue times
than highly-demanded supercomputers. If the workflow
application (or individual step components) can be easily
moved to different computing resources, different steps can
leverage the most appropriate resource available at the time
of execution.

Over the last five years or so, software teams have
started adopting Linux container technologies, chiefly the
Docker platform, to improve application portability. Con-
tainer best practices encourage practitioners to bundle all
application assets, including software libraries and other de-
pendencies, into the container image to produce an indepen-
dent package to minimize dependencies on the execution
environment. The goal is to enable containers to be executed

3

from the image on any machine where the container runtime
is available.

While container technology significantly improves the
portability and reproducibility of general applications,
adoption within the scientific computing community has
lagged behind industry. The primary reason is that contain-
ers cannot easily encapsulate all dependencies of scientific
code running in customized, heterogeneous environments.
Scientific computations rely on specialized hardware and
custom software installed across a computing infrastruc-
ture, including MPI, networking, mathematical and GPU
libraries, and specialized workflow managers, that cannot
be captured within a container. Additionally, the container
runtime itself becomes a dependency of containerized appli-
cations, which may rely on specific versions, configurations,
plugins or optional features of that runtime.

Our strategy with Tapis therefore is to augment con-
tainer technology with metadata captured by the platform
that describes requirements of applications as well as capa-
bilities of different execution environments. These abstrac-
tions, described in more detail in 3.1, are based on our
experience running containerized workloads in a variety
of contexts. The Singularity [12] runtime is available on
all major HPC systems at TACC, where over 4,400 unique
containerized applications are available for use. In its first
two years of operation, nearly 25,000 Docker images rep-
resenting actor functions were registered with the Abaco
platform. TACC manages many other containerized appli-
cations across its various cloud offerings such as its custom
JuptyerHub clusters.

A growing body of evidence suggests that time-to-
solution can be reduced using these techniques. For in-
stance, a 2018 paper entitled Virtualizing the Stampede2
SuperComputer with Applications to HPC in the Cloud
[13] describes methods for building a virtual HPC resource
in the JetStream cloud that shares many properties of the
Stampede2 supercomputer. The performance of a number
of popular scientific applications was measured on both
the virtual and real Stampede2 clusters. The paper presents
a profile for scientific applications where performance in
the virtual cluster is similar to that on the real Stampede2
cluster, suggesting that such applications are amenable to
cloud bursting, i.e., scheduling on alternative resources to
bypass potentially long queues on HPC systems.

2.3 Distributed Security

Distributed applications are often constrained by rigid
authentication, authorization and secrets management re-
quirements. Some applications, for instance, build in their
authentication mechanisms, making integration into enter-
prises with existing security infrastructures and policies dif-
ficult. The practice of inventing ad-hoc access control is even
more pervasive, where the introduction of administrative
users, permissions, groups and roles occurs incrementally
as user requirements evolve. Distributed applications al-
most always have to manage passwords, keys and other
secrets; these secrets often get embedded in configuration
files, databases, build scripts, deployment scripts, container
definition files, etc. All of these practices make application
integration and management more difficult and less secure.

The security subsystem is among the most basic and
critical of all modules in a distributed application, one on
which almost all other subsystems depend, and one that
does not depend on other subsystems. Many distributed
applications face the same security design issues as Tapis,
yet there is not an off-the-shelf package that delivers a
robust, lightweight, flexible, high performance solution.

The goal is for the Tapis Security Kernel to provide a
complete security API for distributed applications with the
following characteristics:

• Easy integration with any authentication/identity
manager.

• Fast, fine-grained authorization checking that scales
to millions of objects.

• A secure, highly available, multi-tenant secrets store.
• Management of all secrets through the store.
• Support for on-premises or remote installation.

Our approach incorporates hardened open-source pack-
ages into a portable system unified by a simple, high-level
API. A key simplification is that we use signed tokens
created outside of our system as proof of identity. Any
authentication system that can create and properly sign a
token with a trusted key can be integrated into Tapis - no
further specification required. The community version of
HashiCorp’s Vault [14] product provides a mature, robust
secrets store with numerous management features. Apache
Shiro [15] provides the basis for a simple, powerful autho-
rization mechanism that we extend (a) with hierarchical
roles for improved user management and (b) with a per-
missions model that allows file path names to be succinctly
represented for scalability.

2.4 Software Comparison
We briefly survey the landscape of software systems avail-
able for computational research.

2.4.1 Gateway Frameworks
Gateway frameworks provide components for building
web-based computational science portals with intuitive user
interfaces to advanced cyberinfrastructure. Apache Airavata
[16], Agave [1], Galaxy [17], Globus [18], HubZero [19]
and WS-PGRADE/gUSE [20] are among the most widely
used, domain agnostic projects, and while all have enjoyed
undeniable success, none currently attempt to address the
aforementioned challenges of distributed experiments. For
example, none of these frameworks provide APIs for sensor
data. With the exception of Galaxy, which provides support
for tools packaged as Docker images, none provide first-
class support for containerized application workloads. With
Dockerized Galaxy tools, the abstractions do not include
notions of capabilities such as specialized hardware and
system libraries, required to achieve portability of high-
performance codes. Additionally, among these major gate-
way frameworks, only Globus Auth attempts to provide a
decentralized security system; however, Globus Auth does
not provide a secrets store for securing arbitrary data such
as keys, certificates, database passwords, etc. Moreover, it is
neither open source nor free to use, and the charge model
isn’t publicly available. This is a very different model from
that implemented for Tapis.

4

2.4.2 Gateway Tools
Gateway tools comprise another class of comparable soft-
ware including workflow managers such as Pegasus [21]
and Taverna [22], real-time data mediation services like
Brown Dog [23] and SciServer [24], and infrastructures for
streaming data such as CHORDs and Data Turbine [25]. We
assessed each project for features that would be of potential
benefit for distributed workflows and discovered that most
would require a heavy development investment to utilize.
A detailed discussion of the assessment is beyond the scope
of this manuscript.

2.4.3 Commercial Platforms
Tapis draws comparison to a number of commercial cloud
offerings. Amazon Web Services (AWS) provides a suite of
offerings for storing and processing streaming data includ-
ing IoT, Kinesis, SQS, Lambda, etc. as well as IAM and
secrets management offerings. Google Cloud Platform and
Microsoft Azure provide similar if less mature offerings;
However, in each case, usage is restricted to the specific
commercial platform where costs can be prohibitive for
researchers. Moreover, these services lack any significant
integration into the national cyberinfrastructure provider
fabric, and the closed, proprietary nature of these platforms
makes the prospect of future integrations unlikely.

2.4.4 Application Security Software
Distributed applications implement security using different
underlying technologies, each offering its own mix of fea-
tures, compliance, performance, availability, cost, deploy-
ment options, etc. Technologies such as OAuth2, Kerberos,
PERMIS and Amazon Key Management Service focus on
one aspect of security, where others such as Apache Fortress
and Microsoft Active Directory incorporate several aspects
[Sec1-6]. As a group these implementations assume sole
control of the security fabric, which makes integration and
management in existing environments difficult.

In contrast, Tapis decouples application code from au-
thentication method, using robust open source authoriza-
tion and secrets management tools, and packaging those
tools as an easily deployable system accessible through
a unified API available to any application that wishes to
incorporate it. This enables distributed implementation and
management while offering fine grained controls for admin-
istrators and flexibility for developers and researchers.

3 PRIMARY CAPABILITIES

In this section we detail the primary capabilities of the Tapis
framework. While Tapis is a new framework under active
development and targeting an initial public release during
the summer of 2020, it draws upon architecture, ideas,
lessons learned, and, in some cases, actual code, developed
under a number of other projects.

3.1 Data Management and Code Execution

Fundamental to all computational research is the ability to
manage data and execute codes or apps to analyze such data.
The Tapis Files API enables users to manage data on remote

storage including SFTP and iRODS storage servers and S3-
compatible object stores. Synchronous endpoints exist for
listing, uploading, downloading and renaming data, and
an asynchronous endpoint provides a managed transfer
capability between two storage resources. Entire storage
resources as well as individual files and directories can be
registered as private to a single API user or shared with one
or more users.

The Tapis Apps API provides a catalog of executable
software which, like the resources within the Files API,
can be private to a specific user or shared. The Tapis Jobs
API is then used to execute an instance of an app on a
remote execution resource. These execution resources can
themselves be scheduled using a traditional HPC scheduler
such as SLURM, in which case Tapis can inject the necessary
scheduler directives based on metadata provided in the
job request and in the app definition; otherwise, the Jobs
service can start the app by directly forking a process on the
underlying operating system.

The app model centers around containers to improve
portability and reproducibility, and to enable flexible
scheduling of computational workloads across geograph-
ically distributed providers. We achieve this flexibility by
introducing execution system capabilities and application re-
quirements. Based on our experience running both native and
containerized applications, we have identified an initial list
of capabilities required for determining whether a specific
execution system can support a given application. The initial
list of capabilities can be grouped into the following types:

• Container runtime capabilities. These capabilities in-
clude type and version of the runtime as well as op-
tional features of the runtime (e.g., Singularity bind
mounts) that may be enabled or disabled through
configuration by the system administrator.

• MPI capabilities. The capabilities include the MPI ver-
sion as well as the associated networking technology
(e.g., Mellanox Infiniband, Intel Omni-Path, etc.)

• GPU capabilities. These capabilities include the
GPU API type and version available (e.g., CUDA,
OpenGL, etc).

Additionally, the Jobs service will use these enhanced
app definitions to execute jobs in a distributed manner to
take advantage of data locality and, optionally, to schedule
jobs on underutilized systems. An instance of the Tapis Jobs
service running at a given institution can be configured
to utilize a local security kernel for system credentials,
enabling a datacenter to keep all sensitive credentials on
premise; see 3.2 for more details.

3.2 Identity, Authorization, Security and Tenancy

Tapis provides a modular authentication subsystem with the
goal of achieving sufficient flexibility to enable institutions
to integrate their existing identity providers and related sys-
tems. Fundamental to the platform is the notion of tenancy; a
tenant in the Tapis framework represents a logical separation
of Tapis entities (i.e., apps, jobs, actors, etc.) as well as
a high-level authentication and security configuration. A
key simplification in our approach is to leverage signed
JSON Web Tokens (JWT, [26]) as the single, sole mechanism

5

for proving identity to any Tapis API. As each tenant is
configured with its own public key for token signatures, the
entire authentication system can be customized on a per-
tenant basis.

The Tapis authentication subsystem is comprised of the
following components:

• Tokens API. A stateless microservice and reference
implementation for generating a properly formatted,
signed JWT.

• Authentication Server. An OAuth2 and OIDC compli-
ant web server capable of integrating with LDAP
servers for authenticating end users and generating
signed JWTs using a token API.

• Tenants API. Administrative API for managing the
registry of tenants globally in a distributed Tapis
installation.

• API Router. A load balancer and ”edge router” capa-
ble of routing requests to back-end services, poten-
tially across sites.

Tapis administrators manage the registry of tenants via
the Tenants API, and it provides public (even anonymous)
endpoints for discovering fundamental properties of a ten-
ant, such as the public key used to sign JWTs for the tenant
and the location of the tenant’s security kernel. The rest of
the components can be viewed as optional, but are used, for
example, to provide an OAuth2-compliant authentication
system against the primary TACC LDAP server.

The Tapis Security Kernel is a distributed subsystem
comprised of open-source software components tied to-
gether by a unifying API. Figure 1 shows the main compo-
nents of the subsystem. The security kernel starts with its in-
clusion of a secrets store, Vault [Vault], and an authorization
service, Shiro [Shiro] and, significantly, its exclusion of an
authentication component. The security kernel provides an
API that the platform’s other microservices use to securely
interact with users’ storage and execution resources and
with each other. Vault manages all secrets in the system,
including all passwords and keys, using a fault-tolerant,
scalable, highly available cluster of VMs.

The Tapis Security Kernel builds upon Shiro’s security
framework to create a scalable, fine-grained authorization
facility by extending its permissions model with representa-
tions of file path names. This extension, along with proper
caching, provides a scalable solution to the problem of fine-
grained authorization checking across a virtually unlimited,
distributed namespace.

The security kernel’s API presents a unified interface
to secrets and permissions management. Secrets are only
accessible to a microservice if the user on behalf of whom the
microservice is acting is authorized via Shiro. The API op-
erates on users in multiple tenants, all of which have previ-
ously authenticated to the microservice. Multiple instances
of the security kernel can exist in the system. Each tenant is
assigned a kernel, which may be shared with other tenants
or be exclusive to itself. In addition, a kernel instance can
reside in a tenant’s data center and be locally administered
while the rest of the system runs and is administered in a
central location. By configuring a local kernel, organizations
have the option to keep and administer their secrets in-
house.

Fig. 1. Tapis Security Kernel

3.3 Support for Streaming Data

The Tapis Streams API provides a production-quality ser-
vice that builds on top of the CHORDS project for real-
time data services and extends the primary data models
including site, instrument and variable, with additional meta-
data including adding spatial indexing and permissions.
The Streams API also integrates Tapis event-driven func-
tions (see 3.4) and data management and code execution
capabilities (see 3.1) to provide an analysis capability on
streaming data sources. Support for streaming data includes
the following capabilities:

• Storing and retrieving streaming data for batch job
processing, with support for temporal and spatial
indexes and queries.

• Automated, event-driven data stream processing
workflows with integration into Tapis functions as
well as other streaming frameworks.

• Automated data management and scheduled archiv-
ing based on programmable policies.

Batch job processing is supported by allowing a Tapis
stream, specified as a query, to be the input to a job. In such
a case, the Jobs service will schedule the stream data to be
transferred to the execution system, manifested as a JSON,
CSV or similarly formatted file, prior to launching the app.

Real-time, event-driven workflows can also be sup-
ported by the Streams API. Tapis provides this capability
through integration with its functions-as-a-service, jobs ser-
vice and other systems or services that support web-hooks.
For these use cases, analysis of incoming data in real time
is critical to the success of the experiment. The Streams API
will provide the following capabilities to support various
levels of analysis based on their computational needs:

• Alerts as Events Third-party processing engines will
receive real-time notifications when measurement
data hits predefined criteria. Subscribers will receive
an HTTP POST request containing JSON data detail-
ing the event that triggered the alert.

• Processing Events with Tapis Functions - Developers
will be able to register an Abaco function with an

6

Fig. 2. Tapis Streaming APIs

alert to perform scalable processing with no infras-
tructure to maintain.

• Scheduled Relays to Third-Party Systems - Analogous
to the transfers support for batch applications, the
streaming data API will be capable of supporting
scheduled relays for fixed time intervals to remote
services, such as, message brokers and streaming
frameworks capable of handling large quantities of
data.

In order to support science use cases involving vast
amounts of generated data (e.g., many GB/sec), the stream-
ing data API will also provide endpoints for robust data
management and archiving policies. For each stream, the
data management APIs will support an archiving threshold
and a policy. Thresholds will include time-to-live and max
sizes (in bytes), and policies will include compressed trans-
fer to a remote storage system and physical delete.

3.4 Functions-as-a-service and Events-Driven Work-
loads

Tapis will adopt and evolve the NSF funded Abaco (Actor
Based Containers) project to provide functions-as-a-service
to support event-driven workloads. Abaco is based on the
Actor Model of concurrent computation and Docker; users
define computational primitives called actors with a Docker
image, and Abaco assigns each actor a unique URL over
which it can receive messages. Users send the actor a
message by making an HTTP POST request to the URL. In
response to an actor receiving a message, Abaco launches
a container from the associated image, injecting the mes-
sage into the container. Typically, the container execution
is asynchronous from the message request, though Abaco
does provide an endpoint for sending a message to an
actor and blocking until the execution completes, providing
synchronous execution semantics. Abaco maintains a queue
of messages for each actor, and is capable of launching
containers in parallel for a given actor when the actor is
registered as stateless.

A primary use case is to allow users to develop and
register actors to process events in Tapis. Examples of
events include new files arriving on a storage system, a
job completing on an execution system, either normally

or abnormally, or alerts from the streaming data service
indicating measurements have hit predefined thresholds, as
described in 3.3.

3.5 Container Registries and Advanced Job Schedul-
ing
One of the chief accomplishments of the Docker platform
has been to build a catalog of millions of containerized
applications freely available for download from its Docker
Hub. Other community efforts such as BioContainers and
Singularity Hub have followed in Docker’s footsteps to
provide registries of containerized software for research
computing. The Tapis Apps and Jobs services will capitalize
on these efforts so that applications stored in these third-
party registries will be available for use through the plat-
form.

Leveraging the computational portability features of
containers and the system capabilities and application re-
quirements described in 3.1 , the Jobs service provide an
optional smart scheduling capability to users interested in
minimizing time to solution for a given workload. The
smart scheduling option, when enabled for a specific job,
will examine the execution systems available to the user
whose capabilities meet the requirements of the application.
Additionally, the user can provide a whitelist or blacklist
of systems to consider or ignore, respectively. For systems
meeting the requirements, the Jobs service will initially
consider two factors as part of its scheduling decision: the
queue time for the execution system and the time to transfer
any input data. A mix of real-time data (current queue
lengths) and historical data (average transfer rates to the
execution system from the storage systems) will be used
to estimate the job start time on each system, and the job
will be scheduled on the system with the earliest start time.
We will consider evolving the scheduling algorithm to use
additional information over time.

3.6 Highly Scalable Document Store and Metadata API
A growing number of research projects curate and analyze
large collections of highly structured data, with performance
requirements regarding time to access, search and move
the data. The Tapis Meta API provides a scalable storage
solution for structured documents serialized with formats
such as JSON or XML. The service aims to support a wide
variety of data collections and usage patterns by providing
users with a high degree of customization of the backend
data store structure. Within a tenant, collections can be reg-
istered that define their own schema and indexes. Support
for geospatial and hashed indexes is included.

In addition to basic create, read, update and delete
functionality for documents, the Meta API integrates with
the Tapis Security Kernel (see 3.2) to provide a permissions
system over the documents themselves. Like other Tapis
objects, Meta documents can be private to a single API
user or shared with one or more users. Backing the Meta
API is a managed MongoDB cluster running on dedicated
hardware with high-speed attached storage. The service
scales to support large collections - a research group at
UT Southwester Medical School is planning to scale an
adaptive immune repertoire sequencing data repository to

7

10B records as part of the iReceptor Plus project [27], a
consortium of institutions funded by EU and the Canadian
Institutes of Health (see 4.2 for more details).

3.7 DevOps Tooling for Automated Platform Manage-
ment
Tapis is providing automated deployment and system man-
agement to simplify the administration of components at
a given site. Based on experience developing the TACC
Deployer project [28], [29], the Tapis DevOps tools will:

• Deploy and configure the security kernel.
• Deploy and configure individual Tapis services.
• Provide detailed, actionable logging information.
• Monitor the status of system components.
• Provide an audit trail for security-sensitive opera-

tions.

Each Tapis service is packaged into a Docker image, and
the official deployment tooling targets the open source
Kubernetes container orchestration system. Kubernetes pro-
vides a number of important features, including: service
deployment scheduling onto one or more compute nodes,
networking and discovery between services in the same
Kubernetes namespace, service configuration management
via Kubernetes Configmaps, persistent storage via Kuber-
netes Persistent Volume Claims (PVCs), and basic service
health monitoring and restart policies. Moreover, Kuber-
netes serves as a common denominator across different
datacenters and deployment environments, and is emerging
as the dominant container orchestration technology. As an
open source project, Kubernetes is easy to install in an aca-
demic datacenter, but at the same time, all major commercial
cloud platforms, including AWS, Azure and Google Cloud
Platform, provide a “Kubernetes-as-a-service” solution. The
Tapis project is planning to utilize a small cluster in the
Azure cloud for testing our provisioning tools in a sandbox
environment.

4 EARLY SCIENCE ADOPTERS

4.1 Real Time Climate Data for the Hawaiian Islands.
Climate observations in Hawaii are critically important to
understand past, current, and future climate of the nation
and the globe. Despite Hawaii’s importance, national cli-
mate data compilations and analyses include only sparse
and inadequate coverage of the Hawaiian Islands. As the
only US state within the tropics, Hawai’i also provides a
model system for studying the functional responses of trop-
ical terrestrial ecosystems, including tropical rain forests,
dryland forests, and agriculture, to changes in atmospheric
CO2 and climate. Up to date, high quality, reliable climate
information in Hawaii is of great value to the nation.

Tom Giambelluca’s research group at the University of
Hawaii is working on automated workflows to provide
ready access to a spatially comprehensive, high quality,
reliable climate data set and data analysis products covering
the Hawaiian Islands. The climate researchers will use Tapis
to: (1) gather and centralize climate data from all known
sources and new monitoring stations using Tapis data
streams; (2) update the data archive to maintain near-real-
time status with Tapis triggered events for Tapis functions

and containerized process workflows; (3) automate basic
data screening, homogeneity testing, and gap filling using
Tapis functions; (4) automatically update statistical analysis
of available data by site and produce daily near-real-time,
high-resolution, gridded digital map products and reports
of climate variables (e.g., precipitation, temperature, humid-
ity, wind speed, solar radiation) using Tapis containerized
workflows scheduled on HPC or cloud resources; (5) share
data and products with the wider community through Tapis
data management and sharing services.

4.2 iReceptor Plus: Human Immunological Data Stor-
age, Integration and Controlled Sharing
Increasingly, scientists depend on next generation sequenc-
ing (NGS) data to understand the immune response in
autoimmune and infectious disease as well for developing
vaccines. The iReceptor Plus platform provides a science
gateway linking to federated, geo-distributed repositories of
NGS data conforming to adaptive immune receptor reper-
toire (AIRR) community standards. Co-funded by the Euro-
pean Union and the Canadian Institutes of Health Research,
iReceptor Plus constitutes an international consortium of
institutions providing AIRR datasets as well as an API for
access.

The Cowell Lab at the University of Texas Southwestern
Medical Center is leveraging the Tapis Meta service for
storage and management of their AIRR dataset. An initial
prototype effort in which 350 million records were created
in the Tapis Meta service has yielded promising results.
The Cowell group plan to grow the collection to ten billion
records during the four year iReceptor Plus project. They are
also considering using Tapis for high-throughput analysis
jobs at TACC and Compute Canada.

4.3 Planet Texas 2050
The Planet Texas 2050 group wants to leverage spa-
tially dense and ever-increasing Geoscience temporal
datasets generated by Arduino-based microcontrollers as
ground-truth inputs for integrated models of water-land-
atmosphere-urban systems [30]. Deployments collect hy-
drological and atmospheric measurements to feed models
describing various processes related to flooding and aquifer
recharge.

Work is already underway to leverage the Tapis Streams
service for real-time data from the Adruino-based micro-
cotrollers using the microcontroller API associated with Par-
ticle Argon and Xenon mesh series devices. Future work in-
volves hardening this preliminary effort into a production-
grade service and scaling up the size of the sensor deploy-
ment. Additionally, a workflow will be built to automate
the process of converting raw stream data to dataframes for
integrated modelling analysis.

4.4 Ocean Wave Fingerprinting and Automatic Wave
Forecasting
Oceanic and atmospheric processes leave their imprint,
much like a fingerprint, on the ocean surface. These finger-
prints can be used to understand air-sea interaction, ocean
wave propagation, wave-ice interaction, and small-scale

8

atmospheric weather phenomena. Justin Stopa, UH Ocean
Engineering uses high resolution, synthetic aperture radar
(SAR) from the Sentinal-1 satellites to study sea surface
roughness at very fine spatial resolution (>10 m). SAR
provides high-resolution data regardless of environmental
conditions and provides information at a global scale cap-
turing approximately 200-400 Gb per platform/day. Manual
classification is impractical for the S1 database (120,000
images per month) and machine learning techniques and
efficient data workflows are required to make best use of this
data. The Stopa team is also developing a real-time wave
forecasting system for mitigation of damaging events such
as tropical cyclones or large swells, trans-oceanic commerce,
and recreation activities. This system requires information
from satellites, in-situ sensors, and models.

In-situ sensors include buoy observations that measure
wind speeds, wave spectra (energy as a function of fre-
quency and direction), or air-sea temperature difference.
Model information includes wave forecast sea state parame-
ters which are usually gridded in time and space. Tapis will
be used to support both the classification of satellite images
via containerized ML workflows and the automatic wave
forecasting workflow. The forecast model is launched when
new data is posted by the major weather forecast offices
that run global atmospheric and oceanic simulations. Wind
speeds, ice concentrations, air-sea temperature differences,
and sometimes ocean currents are required forcing fields
that drive a spectral wave model such as WAVEWATCH3
(WW3). Regional (e.g. state of Hawaii) and local (e.g. Oahu,
island-scale) information, is needed to resolve the wave
transformations around the intricate bathymetry of Hawaii
(e.g. [31], [32]). WW3 (> V5.0) is extremely efficient at link-
ing and nesting multiple wave grids internally (e.g. global
and regional models). The Simulating Waves Nearshore
(SWAN) spectral wave model is more efficient in coastal en-
vironments (island scales 1-100 km) when the spatial scales
become small due to its implicit numerical scheme to solve
the governing equation. The spectral wave information and
forcing fields must be passed from WW3 to SWAN. Since
the wave model data could miss details of the wave field,
the observations provide complementary information. Tapis
functions can be triggered to pull auxiliary datasets from
models, other satellite observations or sensors as additional
inputs to the appropriate algorithm based on the earlier
classification. The results of these calculations can become
secondary Tapis data streams that provide geophysical
parameters ([33]) that will be used to build automated
algorithms using Tapis containers and HPC jobs to move
the data from the storage systems to the compute system
to generate new products such as swell fields by back-
propagating swell components (direction and wavenumber)
and the forward associated swell components with a storm
source (e.g. [34]; [35]).

5 SYSTEM ARCHITECTURE

Tapis capabilities are organized into a set of microservices,
where each service provides an independent API over
HTTP, designed in a RESTful style. API contracts are cod-
ified using OpenAPI v3 definitions, and these definitions
are used to generate live docs and initial client libraries

in Python and Java. Most services also communicate with
one or more databases and/or message queues using direct
connections, and with other Tapis services over HTTP. All
service requests - both external requests and requests from
other Tapis services - are authenticated using a JSON Web
Token (JWT). As part of initialization, a Tapis service re-
trieves a JWT representing itself from the Tapis Tokens API.

Tapis supports deployment of its components to mul-
tiple sites or physical locations. The components at these
sites “work together” to comprise a single distributed Tapis
installation. Each distributed installation will have a single
primary site and zero or more associate sites. The primary site
has the following roles and responsibilities:

• The primary site runs one or more instances of every
(primary) Tapis service.

• The primary site runs a copy of each database needed
by the primary Tapis services. The Tapis services
running in the primary site communicate with these
databases and not any other databases running at
external associate sites.

• The primary site runs the Tenants API (see descrip-
tion of multi-tenancy below); no other site in the
installation runs the Tenants API.

In addition to one or more Tapis services, each site runs
a Tapis API Router (or “edge router”) component. The Tapis
API Router is responsible for forwarding requests to specific
Tapis microservices.

Tapis also supports multi-tenancy: a tenant is a logical
separation of Tapis objects for a specific project or group.
Tapis objects (e.g. systems, apps, jobs, streams, etc.) in one
tenant cannot be accessed from another tenant. Tenants have
the following properties:

1) A universe of user accounts, ultimately linked to an
LDAP query or some other identity store.

2) A base URL for all (public) API requests (e.g.,
https://api.sd2e.org).

3) A base URL for the location of any services running
at the primary site (e.g., https://sd2e.api.tapis.io).

Tenants and associate sites are related through a hub and
spoke model (see Figure 3) based on which site is hosting
the tenant’s base URL. There are two cases: If the primary
site hosts the tenant’s base URL, then all Tapis services for
that tenant are hosted at the primary site. Alternatively, an
associate site can host the tenant’s base URL. In this case, the
associate site’s API Router is responsible for routing service
requests either to a service running locally at the associate
site or to a service running at the primary site. To route to
the primary site, the associate site configures its API Router
to route requests to the tenant’s primary site base URL,
defined in 3) above. Thus, all services for a given tenant are
hosted either exclusively at the primary site, or between the
primary site and one associate site. No cross-service requests
or forwarding between associate sites occurs.

6 TAPIS ROAD MAP

Tapis is funded by a five year Cyberinfrastructure for Sus-
tained Scientific Innovation (CSSI) Framework grant from
the National Science Foundation, which began September 1,

9

Fig. 3. Multi-Site Tapis Deployment.
Each site represents a physical datacenter. (1) A user’s request is first resolved to a site based on the base URL. Based on
configuration, the site’s API Router routes the request to the Primary Site (2) which processes the request and puts work
on a shared Task Queue (3). An agent at the Associate Site takes the work unit (4) and consults its own Security Kernel
while processing the task (5).

2019. The project team has defined specific milestones to be
delivered across the five project years, summarized in the
following table:

Year Real-Time
Capabili-
ties

Batch Ca-
pabilities

Security
and Authz

Year 1 Production
release of
streaming
API

System,
Applica-
tion and
Job ab-
stractions

Security
Kernel
initial
release.

Year 2 Data
manage-
ment and
archiving
features

Support
for third-
party
registries

Automated
devops
tools for
security
kernel

Year 3 Support
for Alerts
as Events

Gateway
in a Box
release

Local
caching
solution
for
security
kernel

Year 4 Support
for Abaco
functions

Smart Jobs
schedul-
ing, initial
release

Automated
devops
tools for
hybrid
and HA
deploy-
ment

Year 5 Support
for
scheduled
relay
streams

Expanding
support
and
features
for
existing
services

Devops
for moni-
toring and
log aggre-
gation

10

Additionally, an Early Adopters workshop is planned
for the end of the first project year, targeting the July, 2020
time frame. During the workshop, Tapis core teammembers
will present talks on the system capabilities developed, and
early adopters will be invited to present their use cases, data
sets, and adoption of the platform to date.

7 ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation Office of Advanced CyberInfrastruc-
ture, award numbers 1931439 and 1931575.

REFERENCES

[1] R. Dooley et al., “Software-as-a-service: The iplant foundation api,”
IEEE. 5th IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS), 2012.

[2] J. Stubbs et al., “Rapid development of scalable, distributed com-
putation with abaco,” Science Gateways Community Institute.
10th International Workshop on Science Gateways, 2018.

[3] B. Kerkez et al., “Cloud hosted real-time data services for the
geosciences (chords).” Geoscience Data Journal, 2016, pp. 2–4.

[4] N. Merchant et al., “The iplant collaborative: Cyberinfrastructure
for enabling data to discovery for the life sciences,” PLOS Biology,
2016.

[5] N. Merchant, E. Lyons, S. Goff, M. Vaughn, D. Ware, D. Micklos,
and P. Antin, “The iplant collaborative: cyberinfrastructure for
enabling data to discovery for the life sciences,” PLoS biology,
vol. 14, no. 1, p. e1002342, 2016.

[6] S. A. Goff, M. Vaughn, S. McKay, E. Lyons, A. E. Stapleton,
D. Gessler, N. Matasci, L. Wang, M. Hanlon, A. Lenards et al.,
“The iplant collaborative: cyberinfrastructure for plant biology,”
Frontiers in plant science, vol. 2, p. 34, 2011.

[7] E. M. Rathje, C. Dawson, J. E. Padgett, J.-P. Pinelli, D. Stanzione,
A. Adair, P. Arduino, S. J. Brandenberg, T. Cockerill, C. Dey
et al., “Designsafe: new cyberinfrastructure for natural hazards
engineering,” Natural Hazards Review, vol. 18, no. 3, p. 06017001,
2017.

[8] S. B. Cleveland et al., “The ‘ike wai gateway- a science gateway
for the water future of hawai‘i”,” Science Gateways Community
Institute. Proceedings of Science Gateways 2018, Austin TX, USA
September 2018, 2018.

[9] E. Litvina, A. Adams, A. Barth, M. Bruchez, J. Carson, J. Chung,
K. Dupre, L. Frank, K. Gates, K. Harris, and H. Joo, “Brain
initiative: Cutting-edge tools and resources for the community.”
Journal of Neuroscience, vol. 39, no. 42, pp. 8275–84, 2019.

[10] N. Wilkins-Diehr, M. Zentner, M. Pierce, M. Dahan, K. Lawrence,
L. Hayden, and N. Mullinix, “The science gateways community
institute at two years,” in Proceedings of the Practice and Experience
on Advanced Research Computing. ACM, 2018, p. 53.

[11] (2019) Vdjserver. Last access: 2019-10-30. [Online]. Available:
http://vdjserver.org

[12] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5, p.
e0177459, 2017.

[13] W. C. Proctor, M. Packard, A. Jamthe, R. Cardone, and J. Stubbs,
“Virtualizing the stampede2 supercomputer with applications to
hpc in the cloud,” in Proceedings of the Practice and Experience on
Advanced Research Computing, 2018.

[14] (2019) Hashicorp vault. Last access: 2019-10-30. [Online].
Available: https://www.vaultproject.io/

[19] (2019) hubzero. Last access: 2019-10-30. [Online]. Available:
https://hubzero.org/

[15] (2019) Apache shiro. Last access: 2019-10-30. [Online]. Available:
http://shiro.apache.org/

[16] (2019) Apache airavata. Last access: 2019-10-30. [Online].
Available: https://airavata.apache.org/index.html

[17] (2019) Galaxy community hub. Last access: 2019-10-30. [Online].
Available: https://galaxyproject.org/

[18] (2019) Globus. Last access: 2019-10-30. [Online]. Available:
https://www.globus.org/

[20] T. Gottdank, Introduction to the WS-PGRADE/gUSE Science
Gateway Framework. Cham: Springer International Publishing,
2014, pp. 19–32. [Online]. Available: https://doi.org/10.1007/
978-3-319-11268-8 2

[21] E. Deelman et al., “Pegasus: a workflow management system
for science automation,” Future Generation Computer Systems,
vol. 46, pp. 17–35, 2015. [Online]. Available: http://pegasus.isi.
edu/publications/2014/2014-fgcs-deelman.pdf

[22] K. Wolstencroft et al., “The taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the
cloud,” Nucleic Acids Research, vol. 41, Jul 2013.

[23] S. Padhy, G. Jansen, J. Alameda, E. Black, L. Diesendruck, M. Di-
etze, P. Kumar, R. Kooper, J. Lee, R. Liu et al., “Brown dog: Lever-
aging everything towards autocuration,” in 2015 IEEE International
Conference on Big Data (Big Data). IEEE, 2015, pp. 493–500.

[24] (2019) Sciserver. Last access: 2019-10-30. [Online]. Available:
http://www.sciserver.org/

[25] (2019) Dataturbine. Last access: 2019-10-30. [Online]. Available:
http://dataturbine.org/

[26] (2018) Linux pam. Last access: 2018-03-17. [Online]. Available:
https://github.com/linux-pam/linux-pam

[27] (2019) ireceptor plus. Last access: 2019-10-30. [Online]. Available:
https://www.ireceptor-plus.com/

[28] J. Stubbs et al., “Tacc’s cloud deployer: Automating the
management of distributed software systems.” The 2nd
Industry/University Joint International Workshop on Data Center
Automation, Analytics, and Control (DAAC). Supercomputing.,
2018. [Online]. Available: https://drive.google.com/file/d/
1oORwQdQEWTHLpARVJPzQqR 0OY5SOrfg/view

[29] S. B. Cleveland et al., “Building science gateway infrastructure
in the middle of the pacific and beyond: Experiences using the
agave deployer and agave platform to build science gateways.”
Proceedings of the Practice and Experience on Advanced Research
Computing, PEARC 2018, 2018.

[30] J. Powell, J. Stubbs, S. Cleveland, S. Pierce, and M. Daniels,
“Streamed data via cloud-hosted real-time data services for the
geosciences as an ingestion interface into the planet texas science
gateway and integrated modeling platform.” Science Gateways
Community Institute. Proceedings of Science Gateways 2019,
San Diego, CA, USA September 2019, 2019.

[31] J. Stopa, K. F. Cheung, and Y.-L. Chen, “Assessment of wave
energy resources in hawaii.” Renewable Energy, vol. 36, no. 2, pp.
554–567, 2011.

[32] N. Li, K. Cheung, J. Stopa, F. Hsiao, Y.-L. Chen, L. Vega, and
P. Cross, “Thirty-four years of hawaii wave hindcast from down-
scaling of climate forecast system reanalysis.” Ocean Modelling, no.
100, pp. 78–95, 2016.

[33] J. E. Stopa and A. Mouche, “Significant wave heights from sen-
tinel1 sar: Validation and applications,” J. Geophys. Res. Oceans,
vol. 122, pp. 1827–1848, 2017.

[34] F. Collard, F. Ardhuin, and B. Chapron, “Monitoring and analysis
of ocean swell fields from space: New methods for routine obser-
vations.” JGR-Oceans, vol. 114, no. C7, 2009.

[35] J. Stopa, F. Ardhuin, R. Husson, H. Jiang, C. B., and F. Collard,
“Swell dissipation from 10 years of envisat asar in wave mode.”
GRL, 2016.

http://vdjserver.org
https://www.vaultproject.io/
https://hubzero.org/
http://shiro.apache.org/
https://airavata.apache.org/index.html
https://galaxyproject.org/
https://www.globus.org/
https://doi.org/10.1007/978-3-319-11268-8_2
https://doi.org/10.1007/978-3-319-11268-8_2
http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf
http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf
http://www.sciserver.org/
http://dataturbine.org/
https://github.com/linux-pam/linux-pam
https://www.ireceptor-plus.com/
https://drive.google.com/file/d/1oORwQdQEWTHLpARVJPzQqR_0OY5SOrfg/view
https://drive.google.com/file/d/1oORwQdQEWTHLpARVJPzQqR_0OY5SOrfg/view

	Introduction
	Background and Related Work
	API Platforms
	Containers and Distributed Computations
	Distributed Security
	Software Comparison
	Gateway Frameworks
	Gateway Tools
	Commercial Platforms
	Application Security Software

	Primary Capabilities
	Data Management and Code Execution
	Identity, Authorization, Security and Tenancy
	Support for Streaming Data
	Functions-as-a-service and Events-Driven Workloads
	Container Registries and Advanced Job Scheduling
	Highly Scalable Document Store and Metadata API
	DevOps Tooling for Automated Platform Management

	Early Science Adopters
	Real Time Climate Data for the Hawaiian Islands.
	iReceptor Plus: Human Immunological Data Storage, Integration and Controlled Sharing
	Planet Texas 2050
	Ocean Wave Fingerprinting and Automatic Wave Forecasting

	System Architecture
	Tapis Road Map
	Acknowledgments
	References

