
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE
4204

Toward Smart Scheduling in Tapis

Joe Stubbs
Texas Advanced Computing Center

University of Texas at Austin

Austin, TX, USA

jstubbs@tacc.utexas.edu

Smruti Padhy
Texas Advanced Computing Center

University of Texas at Austin

Austin, TX, USA

spadhy@tacc.utexas.edu

Richard Cardone
Texas Advanced Computing Center

University of Texas at Austin

Austin, TX, USA

racardone@tacc.utexas.edu

Abstract—The Tapis framework and APIs enable a wide range
of research and scientific discovery by automating job execu-
tion on remote resources, including HPC clusters and servers
running in the cloud. While Tapis simplifies interactions with
cyberinfrastructure (CI), users still need to specify all details of
a job they want to run, including the system, queue, node count,
and maximum run time, among other attributes. Moreover,
system and application resources must be defined in Tapis
before a job is submitted. It can be a challenge for scientists
to provide exact configurations and resource requirements for
their jobs, which if incorrectly specified can delay their work.

In this paper, we investigate developing an intelligent job
scheduling capability in Tapis, where job configuration can
be partially automated and computational resources can be
dynamically provisioned by Tapis. We outline an architecture
for such a feature and identify a set of core challenges to be
solved. Then, we focus on one specific challenge: predicting
queue times for a job on different HPC systems and queues,
and we present two sets of results based on machine learning
methods. Our first set casts the problem as a regression, which
can be used to select the best system from a list of existing
options. Our second set frames the problem as a classification,
which allows us to compare the use of an existing system with
a dynamically provisioned resource.

Index Terms—Tapis, HPC Jobs History, Smart Scheduling,
Histogram-based Gradient Boosting Methods

1. Introduction

Tapis [1] is a cloud-hosted API framework for repro-
ducible computational research with thousands of active
users across various research domains. A primary feature
of Tapis is the ability to execute jobs on remote systems on
behalf of users, including batch jobs on HPC clusters and
high-throughput jobs on cloud servers. While an individual
user may have access to several systems – from multiple
HPC clusters at different centers, each with different queues,
to cloud and high-throughput servers running on campus
clusters or public clouds – Tapis currently requires the user
to specify the exact parameters for each job, including the
system to run on, the queue, if applicable, and other aspects,

such as the number of nodes to use, the maximum runtime
for the job, etc. Moreover, the system resource to be used
for the job must be configured in Tapis prior to submitting
the job, precluding solutions where resources are provi-
sioned automatically and “just in time” for a specific user’s
workload. While in some cases users may wish to specify
exact details about where and how their job should run, in
other cases, the user’s primary objective is simply to get
the analysis performed as quickly as possible. Additionally,
they may lack detailed knowledge about the characteristics
of different systems, queues and/or the application, making
it difficult or impossible for them to provide an optimal job
configuration.

In this paper, we present our work to date to develop
a smart scheduling job capability in the Tapis framework.
We define the smart scheduling with dynamic resource

provisioning problem as follows: given a user-supplied job
submission request with partial configuration, automatically
determine the complete job configuration which optimizes
some objective function, considering all systems/queues
available to the user and, if applicable, the possibility of
dynamically provisioning dedicated resources for the job. In
general, the objective function can be thought of as a cost
function to be minimized, where cost could be measured
in different ways, e.g., time, service units, dollars, CO2
emissions, etc. In this work, we focus on the objective
of minimizing time-to-solution, that is, the total time from
when the user submits the job to when the results of the job
are available.

Developing such a feature presents a number of chal-
lenges which we describe in detail in Section 3, includ-
ing automatically determining the following: 1) system at-

tributes, including hardware architecture and software de-
pendencies; 2) job constraints, including required hardware
resources (CPU cores, memory) and total runtime; 3) data

movement cost, that is, the time required to stage input data
into and archive resulting output from the execution host,
and 4) system provisioning and queue time, that is, the total
time to provision a resource or wait for a job (in queue)
to start running. We believe these challenges represent core
problems to be tackled by the research CI community, the
solutions to which would enable improved usability and
utilization of the underlying cyberinfrastructure.

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-6

24
8-

0/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a6

23
23

.2
02

4.
10

82
60

96

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 05,2025 at 17:46:13 UTC from IEEE Xplore. Restrictions apply.

4205

In the remaining sections of the paper, we focus on
challenge 4) and machine learning (ML) methods for esti-
mating queue time for batch-scheduled HPC systems. Using
historical data from the Stampede2 system at the Texas
Advanced Computing Center (TACC), we develop two sets
of ML models for predicting queue time. In the first case, we
develop regression models that predict the real-valued queue
time for a job based on a set of six attributes. Two attributes
(num nodes and max minutes) are part of the job resource
request while the remaining four (backlog minutes, back-

log num jobs, running num jobs, and running minutes)
capture current queue state at the time of job submission.
These predictions can be used to compare queue time across
a set of existing systems and queues. In the second set of re-
sults, we use the same six attributes to develop classification
models that predict the queue time bin, that is, the range of
minutes that the job’s queue time will likely fall into. The
predicted queue time bins organize jobs according to the
model’s confidence in their candidacy for dynamic provi-
sioning, where jobs classified in the highest bins represent
candidates for which the system has the greatest confidence
that the dynamic provisioning cost will be considered worth
paying.

We utilize a software framework for automatically
searching across a configurable space of model types and hy-
perparameters. Our best classification and regression models
use Histogram-based Gradient Boosting and achieve over
90% accuracy (respectively, over 0.9 R2 score) on held-out
test sets across a six month range of time. These and related
results are presented in Section 6.

2. Background

2.1. Tapis

Tapis [1] is a cloud-based infrastructure for advanced
computing tasks developed by the University of Texas,
Austin. Using Tapis, researchers manage petabytes of dif-
ferent types of data across file servers and object stores,
execute scientific research codes on high-throughput and
high-performance computing clusters, store metadata about
their projects, share results with their colleagues, and publish
their work to the greater research community.

Tapis has been used by thousands of researchers across
more than 30 production tenants and projects funded by
DARPA, NASA JPL, NIH and NSF. Tapis has enabled
research across a wide range of fields – from agriculture
and animal ecology, to civil engineering, climatology, and
epidemiology, to neuroscience and synthetic biology – and
studying some of the most significant challenges facing
society, including combating climate change, fighting global
pandemics and searching for exoplanets. The Tapis API
serves hundreds of millions of requests and moves multiple
petabytes of data each year.

2.2. ML Metrics

We used three standard metrics for all the regression
techniques to evaluate the models: R2 score (r2Score), mean
absolute error (MAE), and root mean square error (RMSE).
R2 1 provides measure of goodness of fit, that is, how
well the independent variables explain the variance in the
dependent variables and predict unseen data samples output.
It is defined as follows:

R2(y, ŷ) = 1�
Pn

i=1(yi � ŷi)2Pn
i=1(yi � ȳi)2

where ȳ = 1
n

Pn
i=1 yi and ŷ is the predicted value. R2 score

ranges from 0.0 to 1.0, the best model score being 1.0 and
the constant model score is 0.0. The value becomes negative
when the model is the worst.

MAE2 measures the mean absolute error which is the
expected value of the absolute error. It is defined as follows:

MAE(y, ŷ) =
1

nsamples

nsamples�1X

i=0

|yi � ŷi|

RMSE3measures the square root of the mean squared
error. It is defined as:

RMSE(y, ŷ) =

vuut 1

nsamples

nsamples�1X

i=0

(yi � ŷi)2 (1)

3. Smart Scheduling and Associated Chal-
lenges

Our goal is to minimize time-to-solution by predict-
ing queue time. Let time-to-solution = initiation time +
data move time + execution time, where initiation time is
either the time spent in queue or the time spent provisioning
infrastructure. This paper examines only the initiation time

component of time-to-solution.
In drilling down into the problem of dynamically

scheduling batch jobs, we focus on Tapis’s design but the
challenges are broadly applicable. Our first task is to select
the set of candidate hosts on which a job can run. Each sys-
tem is characterized by its hardware and software attributes,
and each application is constrained to run only on systems
with the attributes it requires. For example, an application
may be constrained to run only on x86-64 processors,
so hosts with ARM processors are excluded. Applications
and systems must be compatible: Systems advertise their
attributes, and applications are matched to systems that meet
their constraints.

1. https://scikit-learn.org/stable/modules/model evaluation.html#
r2-score

2. https://scikit-learn.org/stable/modules/model evaluation.html#
mean-absolute-error

3. https://scikit-learn.org/stable/modules/model evaluation.html#
mean-squared-error

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 05,2025 at 17:46:13 UTC from IEEE Xplore. Restrictions apply.

4206

3.1. System Attributes and Job Constraints

Standards such as Redfish [2] and SNMP [3] provide
extensive vocabularies of system traits. These vocabularies
fully characterize a host’s installed hardware, firmware and
software. However, they also introduce a level of complexity
and precision not necessary at the application level.

In 2021, SGCI published a resource description spec-
ification [4], [5] to improve interoperability between data
centers and, specifically, to allow applications to select hosts
on-the-fly based on compatibility and available capacity.
Integration with several frameworks including Tapis was
prototyped, but promoting a new standard proved to be
resource intensive.

Tapis’s current design direction is to use dynamic sets
of system attributes that do not have to be predefined.
System definitions can be annotated with key/value pairs
to advertise their capabilities. Applications specify boolean
expressions that reference system attributes and are evalu-
ated at runtime. When an expression returns true, the system
meets the application’s constraints and becomes a candidate
for execution. This dynamic approach is flexible, easy to
implement and requires only local agreement on vocabulary
among applications and the systems they use.

3.2. System provision and queue time

While high-throughput systems such as cloud servers
typically start user workloads immediately, most HPC sys-
tems utilize a batch scheduler where submitted jobs wait
in queue to execute. The wait times vary and depend on
factors such as the current state of the queue as well as
characteristics of the job. The queue time can represent a
significant portion of the overall time to solution; some jobs
at TACC can wait in queue for more than 24 hours before
starting. Thus, estimating the queue time for a specific job
and resource represents an important aspect of computing
the time-to-solution objective function.

Dynamically provisioning a resource for a specific job
broadly involves instantiating virtual servers with the stor-
age, networking and software required for the application
to run correctly using an API such as AWS EC2 or Jet-
Stream2’s OpenStack API. Various methods exist for min-
imizing the total time required for resource provisioning.
In this paper, we assume a fixed (i.e., constant) provision-
ing time to dynamically deploy a job-specific resource. Of
course, dynamically provisioning a resource still consumes
physical resources from some system and has the potential
for other impacts, such as incurring a real cost (in dollars)
when using resources on a public cloud. In practice, the
consideration to use a dynamically provisioned resource for
a job could be a complex decision depending on various
factors, such as time-sensitivity of the computation and
the availability of other resources. We formalize this trade-
off by introducing a tolerance factor, a positive real value
quantifying the extent to which using existing systems is
preferred over dynamically provisioning. To be precise, let
q denote the time a job waits in queue on an existing system,

Figure 1. Architecture for Tapis Smart Scheduling

let p denote the time to dynamically provision a resource
for a job, and let t be the tolerance factor. Then dynamically
provisioning a job is desirable whenever q > p ⇤ t, while
q  p⇤t implies that waiting in queue on the existing system
is desirable.

In the rest of the paper, we focus on predicting queue
times for jobs on existing clusters with the goal of com-
paring candidate systems to each other as well as to a
dynamically provisioned resource. For comparing existing
systems to each other, we frame the problem as a regression
where the system with the smallest predicted queue time
would be selected. For comparing existing systems to a
dynamically provisioned resource, we analyse it as a classi-
fication problem, where the goal is to predict the queue time
bin of a job on a system. Queue time bins are continuous
ranges of minutes, and we study the classification problem
for different numbers of bins of size p ⇤ t. In this setting,
jobs predicted to be in bin two or higher are candidates for
dynamic provisioning, with jobs in the highest bin being the
candidates predicted to benefit the most.

4. Architecture

Smart scheduling in Tapis will integrate a number of
new modules into existing Tapis components. The high-level
architecture is depicted in Figure 1. Metadata about available
compute resources is maintained in a new Tapis knowl-
edgebase and updated on regular intervals (e.g., every few
hours). This information includes “static” metadata about
hardware architecture, resources (e.g., memory, CPU cores,
disk, number of nodes), as well as “dynamic” information,
such as number of jobs in queue (batch clusters) or battery
life (IoT devices).

A set of new “Intelligent Scheduling Modules” profile
the applications to be scheduled and provide cost estimates
for different aspects of the scheduling lifecycle. The App
Profiler module determines hardware requirements, such
as compatible architectures, and extrapolates runtime re-
quirements, such as memory, CPU cores, and runtime, for
an application based on sampling of inputs. By combin-
ing metadata about available computing resources with an
application’s profile information, the Tapis Systems and

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 05,2025 at 17:46:13 UTC from IEEE Xplore. Restrictions apply.

4207

Apps services produce an initial list of potential execution
targets will be produced. Each of these execution targets will
then be evaluated to determine which optimizes the overall
scheduling objective function.

The Data Movement Predictor, Resource Predictor, and
Queue Time Predictor modules estimate the objective func-
tion for the corresponding tasks. Note that these are job-
specific, as details about the job, including the file inputs and
parameters, will impact the estimates. The Data Movement
Predictor will be invoked by the Tapis Files service, since
it is aware of details regarding possible optimizations that
can be performed when transferring between systems (e.g.,
compression). The other predictors will be invoked by the
Jobs service which will aggregate all of the predictions and
ultimately make a scheduling decision.

5. Methods

5.1. Data Sources and Preprocessing

The Texas Advanced Computing Center (TACC) uses
tacc stats [6] and Slurm to record information about every
job submitted to any of its HPC systems, which gives us
queue time in minutes for each job. We focused our attention
on 6 months of cleaned, historical data for Stampede2.
Specifically, we worked with 2022 data (Feb 1 to Jul 31)
for two production queues, skx-normal and normal, which
schedule jobs on SKX and KNL nodes, respectively.

5.2. Exploring different techniques

5.2.1. General approach. We performed standard ex-
ploratory data analysis, visualization, and feature selection
using the Python pandas ([7], [8]) and matplotlib
[9] packages. We removed features such as jobid, user,
start time and end time from the training, test, and vali-
dation sets because they were either non-predictive in early
results or required future knowledge. We selected the fea-
tures num nodes and max minutes. We then engineered
features that reconstruct system state at the time each job

was submitted. Specifically, we derived for each job back-

log num jobs and backlog minutes to record the number of
jobs in queue and their total requested minutes, respectively.
Similarly, running num jobs and running minutes represent
the number of running jobs and their total requested minutes.
We applied standard techniques such as data shuffling and
handled outliers. Any job whose waiting time was greater
than two days was considered an outlier, given the maximum
duration for a job request in Stampede2 is two days. This
resulted in the removal of 5831 jobs (2.26%) from the skx-

normal queue dataset (169114 jobs) and 1821 jobs (1.07%)
from the normal queue dataset (257053 jobs).

We developed a model search and evaluation framework
in Python [10] that utilizes a configuration file to explore
various model types and associated hyperparameter spaces,
as well as other configurations such as the dataset to use.
For a given input dataset, we developed a configurable

sliding window method to split sub-intervals of the data
into a current and future set. The current dataset was further
divided into training and test sets using an 80/20 split. For
example, given an initial data set with six months of jobs
data, we could create six one-month windows and split each
window into a current and future set. We experimented
with window splitting based on time as well as job counts.
Models would then be trained on the training subset of the
current set and evaluated on the test subset of current as
well as the future set. All of these settings can be assigned
in the configuration file, allowing the program to run for
days uninterrupted.

5.2.2. Regression techniques. Queue time prediction can
be modeled as a regression problem. Several regression
techniques have been used in the literature based on different
use cases and data([11]–[14]). We modeled the problem
both as a time-series and non-time-series regression. For
non-time-series models, we selected the six features listed
in Section 5.2.1 and applied the following machine learning
techniques: Linear Regression, K-Nearest Neighbor (kNN),
and Histogram-based Gradient Boosting (HGB). For time-
series models, we added extra features commonly used in
time-series data preparation. We then applied Linear Re-
gression, Lasso, Feed-forward Neural Network, and Long
Short-Term Memory by partitioning the data and sliding the
window to train and test the data. In the end, we observed
that the results were worse than in the non-time series cases.

5.2.3. Classification techniques. We also modeled queue
time as a classification problem, where the goal is to predict
the correct queue time bin for each job. We define queue
time bins as continuous ranges of minutes of a fixed size,
except for the last bin, which has no upper bound. We
explored different sizes and number of bins. For example, in
the case of 4 bins of size 60 minutes, the goal is to predict
whether the job’s queue time will be: 0-60 minutes, 60-120
minutes, 120-180 minutes or greater than 180 minutes. As in
the case of regression, we explored various models and as-
sociated hyper-parameter spaces, including Histogram-based
Gradient Boosting (HGB), K-Nearest Neighbor (kNN), Lo-
gistic Regression, Random Forrest (RF), and Support Vector
Machines. We also used the sliding window technique for
training and testing, using accuracy against known queue
times as our validation metric.

6. Evaluation and Results

We settled on a 90/10 current/future split in each of
six 1 month windows as described in the Section 5.2.1,
and further partitioned current into an 80/20 training/test

split. We modeled using both regression and classification
with the features described in Section 5.2.1. We tried the
seven regression and five classification techniques listed in
Sections 5.2.2 and 5.2.3, respectively. The repository [10]
contains the raw data, the processed data, the python model
search framework and the results.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 05,2025 at 17:46:13 UTC from IEEE Xplore. Restrictions apply.

4208

Table 1 shows the kNN and HGB outcomes, which
produced our best results. We highlight only HBG results
here because of its computational advantage. We used three
metrics for all regression techniques to evaluate the models:
R2 score (r2Score), mean absolute error (MAE), and root
mean square error (RMSE), the latter two in minutes. We
ran a model search framework with different configurations
for different model types. For the HGB regressor model
from scikit-learn [15], we ran the search with learning rates
ranging [0.01, 0.1, 1.0], maximum trees ranging [10, 100,
400, 500, 600] and maximum depth ranging [3, 5, 9]. The
parameters maximum trees = 500, maximum tree depth
= 9, and learning rate = 0.1 for skx-normal, it yielded a
high accuracy of r2 score=0.9 and low MAE=57.85 and
RMSE=147.72. These predictions help choose a system and
queue to run a job dynamically.

We ran HGB Classifier to predict the bin into which a
job’s queue time will fall. For normal, the accuracy score
was a high 0.95 with a last bin rescheduling accuracy of
0.92. Using 60 minutes bins, the last bin contains jobs with
a predicted queue time greater than 4 hours, which makes
them the best candidates for dynamic provisioning.

In conclusion, the HGB models developed in the study
obtained a sufficiently high R2 score (0.9, regression) and
accuracy (0.92, classification) to be suitable for use in a
smart scheduling application.

7. Related Work

Several works have used machine learning approaches
to predict queue waiting time and job runtime using HPC
job historical data ([11]–[14], [16], [17]). In [12], the au-
thors used machine learning approaches to predict job start
time quickly and accurately to help place urgent workloads
across HPC machines. They proposed a stochastic method
to generate random queue states that capture the machine
usage patterns and use that as input for the model. They used
a combination of boosted trees classification and regression
models from the XGBoost library with the proposed stochas-
tic method, which improved the accuracy significantly. They
can accurately predict the job’s start time 85% of the time
within 60 minutes, 90% of the time within 2 hrs, and 95% of
the time within 6 hrs on all three HPC machines’ standard
queues considered in the paper. Their results are comparable
with ours, where the last bin rescheduling accuracy, i.e., jobs
with 4 hrs or more queue time, is 91%. In [11], the authors
surveyed the runtime prediction studies and recommended
a systematic approach to developing a machine learning
runtime prediction model. They evaluated their approach on
the NREL Eagle HPC dataset. They found that the XGBoost
model performs well with a training window of 100 days and
a testing window of one day, indicating that the job runtime
prediction model needs to be retrained daily. In our study,
we found Histogram-based Gradient Boosting regressor and
classifier models training on 22 days, testing on 5 days, and
validating on future 3 days data give sufficient accuracy
for the smart-scheduling use case. The same authors in
[14] did another survey of queue time prediction literature

complementing their work on the runtime prediction. They
investigated how queue time prediction can be improved
using job run-time prediction information.

In [13], the authors applied both unsupervised and su-
pervised machine learning techniques for queue time predic-
tions on job historical data collected from real supercom-
puter. They observed that supervised models performance
was dependent on the way the dataset was split. They also
proposed an uncertainty quantification approach to compute
the reliability of the predictions and find error’s distribution.

In [16], the authors proposed to predict job waiting time
using Hidden Markov Model. They removed the outliers and
then estimated the hidden state parameters via Baum-Welch
algorithm. The prediction accuracy was up to 60%

In a recent unpublished work [17], the authors applied
supervised learning algorithms - eXtreme Gradient Boost-
ing (XGBoost), Random Forest (RF) and Multi-Layer Per-
ceptron (MLP) on the HPC jobs history data from Theta
Cray XC40 and Polaris machines at Argonne National
Laboratory to predict job wait times. It uses outlier detec-
tion and Principal Component Analysis for efficient data
pre-processing and improving the prediction accuracy. It
explores relationships between the job characteristics and
the job waiting times. For regression analysis, they used
the metrics RMSE, MAPE, and R2 while for classifica-
tion algorithms, they computed the classification accuracy,
learning time and prediction time. They found that tree-
based models, specifically XGBoost, outperforms MLP and
even RF. The key difference with our approach is that we
provide a python framework that does a model grid search
with different hyperparameters for several machine learning
algorithms. Also, we analyzed the different window sizes
for training/testing/future split. We provide a holistic view
how such smart scheduling module can be incorporated in
a platform like Tapis and can enhance the user experience
and their capability to do research more efficiently.

In another work [18] that did not use ML model, the
authors proposed a methodology called Binomial Method
Batch Predictor (BMBP) that predicts job waiting times in
a queue within certain confidence interval. It tries to detect
various change points in the history data to make each
prediction for those relevant history.

Given the extensive literature concerning queue time
prediction for HPC history data, a common pattern emerges
that XGBoost or Historgram-based Gradient Boosting model
perform better than other models and even outperform
deep learning models. In [19], the authors did extensive
benchmarks and comparison of tree-based models such as
XGBoost and Random Forest, and deep neural networks
across 45 generic tabular datasets in multiple settings. They
found that tree-based models outperforms deep learning
models on medium-sized tabular data (10K). In different
experiments, they observed three reasons that could explain
the performance gaps between tree-based models and deep
learning models - 1) tree-based models are better at learning
irregular patterns of the target functions, 2) deep learning
models are rotation invariant while tabular data are rotation
non-invariant, and 3) deep learning models are sensitive to

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 05,2025 at 17:46:13 UTC from IEEE Xplore. Restrictions apply.

4209

Table 1. EVALUATION RESULTS

Queue # Jobs
(Feb-Jul’22) #Days/W #Jobs/W Regression Classification

Alg. r2Score MAE RMSE Alg. Acc. LastbinAcc

skx-normal 169114 30 33822 HGB 0.9 57.85 147.72 HGB 0.92 0.91
kNN 0.88 44.46 152.21 kNN 0.95 0.93

normal 257053 30 51410 HGB 0.83 30.7 87.86 HGB 0.95 0.92
kNN 0.83 16.66 83.166 kNN 0.95 0.9355

uninformative features used for training and testing pur-
poses. Our work supports the observation that tree-based
models perform better than deep-learning models.

8. Conclusion and Future Work

We presented the challenge of insulating researchers
from the intricacies of using cyberinfrastructure by devel-
oping smart job scheduling in frameworks like Tapis. We
formulated the problem to minimize the time-to-solution by
predicting the job queue wait time. We applied machine
learning techniques for the prediction and observed that
histogram-based gradient boosting methods gave us high
accuracy on TACC’s Stampede2 data, making it a good
candidate to leverage in Tapis’s smart scheduling design.
In the future, we would like to fine tune our models using
different HPC machines’ data. Given recent advancements
in using large language models (LLMs) on tabular data, we
would also like to explore their applicability to our data.

Acknowledgment

Supported by NSF awards #1931439 and #2112606.
Special thanks to Constantinos Skevofilax for data curation.

References

[1] J. Stubbs, R. Cardone, M. Packard, A. Jamthe, S. Padhy, S. Terry,
J. Looney, J. Meiring, S. Black, M. Dahan, S. Cleveland, and G. Ja-
cobs, “Tapis: An API Platform for Reproducible, Distributed Compu-
tational Research,” in Advances in Information and Communication

FICC 2021. Springer International Publishing, 2021, pp. 878–900.

[2] DMTF. (2024, Apr.) All Published Versions of DSP0266. [Online].
Available: https://www.dmtf.org/dsp/DSP0266

[3] Internet Engineering Task Force (IETF). (2024, Apr.) An Architecture
for Describing Simple Network Management Protocol (SNMP)
Management Frameworks. [Online]. Available: https://datatracker.
ietf.org/doc/html/rfc3411

[4] J. Stubbs, S. Marru, D. Mejia, J.-P. Navarro, E. Franz, S. Black,
D. Wannipurage, S. Pamidighantam, C. Stirm, M. Dahan, M. Pierce,
and M. Zentner, “Common resource descriptions for interoperable
gateway cyberinfrastructure,” in Practice and Experience in Advanced

Research Computing, ser. PEARC ’21. ACM, 2021.

[5] Science Gateways Community Institute (SGCI). (2024,
Apr.) SGCI Resource Inventory. [Online]. Available: https:
//sgci-resource-inventory.readthedocs.io/en/latest/

[6] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani,
S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive resource
use monitoring for hpc systems with tacc stats,” in 2014 First Inter-

national Workshop on HPC User Support Tools, 2014, pp. 13–21.

[7] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3509134

[8] Wes McKinney, “Data Structures for Statistical Computing in
Python,” in Proceedings of the 9th Python in Science Conference,
Stéfan van der Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61.

[9] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing

in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[10] J. Stubbs, S. Padhy, and R. Cardone. (2024) ml-smart-
scheduling. [Online]. Available: https://github.com/tapis-project/
ml-smart-scheduling/

[11] K. Menear, A. Nag, J. Perr-Sauer, M. Lunacek, K. Potter, and
D. Duplyakin, “Mastering hpc runtime prediction: From observing
patterns to a methodological approach,” in Practice and Experience

in Advanced Research Computing, ser. PEARC ’23. ACM, 2023, p.
75–85.

[12] N. Brown, G. Gibb, E. Belikov, and R. Nash, “Predicting batch queue
job wait times for informed scheduling of urgent hpc workloads,” in
Proceedings of the Cray User Group, Jun. 2022, cray User Group,
CUG ; Conference date: 01-05-2022 Through 05-05-2022. [Online].
Available: https://cug.org/cug-2022/

[13] C. Vercellino, A. Scionti, G. Varavallo, P. Viviani, G. Vitali, and
O. Terzo, “A machine learning approach for an hpc use case:
the jobs queuing time prediction,” Future Generation Computer

Systems, vol. 143, pp. 215–230, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X23000274

[14] K. Menear, K. Konate, K. Potter, and D. Duplyakin, “Tandem
predictions for hpc jobs,” in Practice and Experience in Advanced

Research Computing 2024: Human Powered Computing, ser. PEARC
’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3626203.3670547

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[16] J.-W. Park, M.-W. Kwon, and T. Hong, “Queue congestion
prediction for large-scale high performance computing systems
using a hidden markov model,” J. Supercomput., vol. 78,
no. 10, p. 12202–12223, Jul. 2022. [Online]. Available: https:
//doi.org/10.1007/s11227-022-04356-z

[17] N. Okafor, B. Lusch, and V. Vishwanath, “Queue wait time prediction
in high performancecomputing (hpc) systems (under submission),”
2024.

[18] J. Brevik, D. Nurmi, and R. Wolski, “Predicting bounds on queuing
delay for batch-scheduled parallel machines,” in Proceedings of the

Eleventh ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, ser. PPoPP ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 110–118. [Online].
Available: https://doi.org/10.1145/1122971.1122989

[19] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in
Proceedings of the 36th International Conference on Neural Infor-

mation Processing Systems, ser. NIPS ’22.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 05,2025 at 17:46:13 UTC from IEEE Xplore. Restrictions apply.

