
TRAIL: Audit Trails for Enhanced Reproducibility
and Observability of Research Computing

1st Jake Rosenberg
Web and Mobile Applications

Texas Advanced Computing Center
Austin, TX

jrosenberg@tacc.utexas.edu

1st Rich Cardone
Cloud and Interactive Computing
Texas Advanced Computing Center

Austin, TX

1st Gilbert Curbelo
Cloud and Interactive Computing
Texas Advanced Computing Center

Austin, TX
gcurbelo@tacc.utexas.edu

1st Vanessa Gonzalez
Web and Mobile Applications

Texas Advanced Computing Center
Austin, TX

vgonzalez@tacc.utexas.edu

1st Steve Black
Cloud and Interactive Computing
Texas Advanced Computing Center

Austin, TX
scblack@tacc.utexas.edu

2nd Sal Tijerina
Web and Mobile Applications

Texas Advanced Computing Center
Austin, TX

stijerina@tacc.utexas.edu

2nd Erik Rivera-Sanchez
Web and Mobile Applications

Texas Advanced Computing Center
Austin, TX

erik.riverasanchez@austin.utexas.edu

3rd Maytal Dahan
Advanced Computing Interfaces

Texas Advanced Computing Center
Austin, TX

maytal@tacc.utexas.edu

4th Dan Stanzione
Director’s Office

Texas Advanced Computing Center
Austin, TX

dan@tacc.utexas.edu

Abstract—As research projects grow more complex and re-

searchers use a mix of tools - command-line scripts, science

gateways, and Jupyter notebooks - it becomes increasingly

difficult to track exactly how a final result was produced. Each

tool often keeps its own logs, making it hard to reconstruct the

full sequence of computational steps. This lack of end-to-end

visibility poses a serious challenge for scientific reproducibility.

Yet advanced computing remains a critical part of nearly every

field of academic research, and researchers continue to rely on

a wide range of interfaces to run their scientific software. To

address this challenge, the Advanced Computing Interfaces group

at the Texas Advanced Computing Center (TACC) created a

system that collates logs from multiple sources - science gateways,

Jupyter notebooks, and the Tapis platform - into one unified

“audit trail.” The TACC Research Audit and Integration of

Logs (TRAIL) system allows researchers and staff to follow the

complete path a dataset or file took: from the moment it was

first uploaded to TACC, through every step of computation, to the

final result. This kind of tracking helps ensure scientific results

can be reproduced and gives advanced computing services better

insight into how data and resources are being used.

Index Terms—High performance computing, Replicability,

Software engineering, Database systems

I. INTRODUCTION

In response to the increasing prevalence of advanced com-
puting in academic research, a number of tools have arisen
to simplify access to computational resources. Jupyter note-
books provide an interactive platform to edit and execute
code and create a record of the computational workflow.
Science gateways enable collaborative data management and
provide a graphical interface for submitting jobs on high-

performance computing systems [3]. At the Texas Advanced
Computing Center (TACC), these utilities connect users with
HPC resources using the Tapis platform. Tapis provides a
unified API through which GUI applications can communicate
with HPC systems by making HTTP requests or invoking a
Python SDK [1].

The breadth of options enabled by Tapis gives researchers
the flexibility to define a computational workflow that suits
the needs of their specific project, but it presents challenges
as well. If multiple interactive tools were involved in the
course of a computational project, or if multiple users collab-
orated asynchronously, it can become difficult to accurately
reconstruct the exact sequence of operations that produced a
given result. Different tools log their activity using different
schemas, and these logs are not guaranteed to persist beyond
the lifetime of the research project. A third party attempting
to reproduce the analysis would therefore rely on the origi-
nal authors having followed best practices and kept detailed
records of their computational workflow [4]. This is far from
guaranteed; a survey of researchers identified non-replicable or
poorly specified data analysis workflows as a key contributing
factor to the reproducibility crisis in science [2]. Moreover,
as providers of advanced computing services, it is in our
interest to deepen our understanding of user behavior in order
to meet the needs of researchers in an evolving computational
landscape.

To address the issue of reproducibility and observability of
computational workflows, we introduce the TACC Research
Audit and Integration of Logs (TRAIL) facility. TRAIL is



a methodology for generating audit trails, defined here as
chronological sequences of the actions taken by users and
tools in the course of a computational project. The system
is intended to be granular at the level of individual files, and
is meant to answer questions of the form:

• Given the output of a computational job, what were its
inputs and which other computations were those inputs
involved in?

• How did a given file move through the data center after
being uploaded, and which users interacted with it using
which tools?

• Which files and computational resources did an individual
user interact with during a given session in a science
gateway?

TRAIL is currently implemented at TACC and collates logs
across 10 science gateways and 2 deployed instances of
Jupyterhub, all of which invoke the Tapis platform to connect
users with TACC systems. It consists of an ETL pipeline
for ingesting logs from compliant applications, enforcing a
consistent schema, and storing the transformed records in
a persistent database for subsequent analysis. The ultimate
goal of this work is to trace the outputs of computational
research back through the workflows that created them, and
to communicate these workflows to users so that they can
better understand and replicate the processes involved. In this
paper we describe the TRAIL architecture, the ETL pipeline
and database schemas involved, and some considerations to
address the challenges of keeping audit trails complete and
valid through workflows that involve multiple entry points to
computational resources.

II. ARCHITECTURE AND IMPLEMENTATION

The main components of the TRAIL auditing facility are:
• Log Writers - The I/O subsystems in TRAIL-enabled

applications that write text records to their logs, which
are then extracted by the Extractor and inserted into the
Audit DB.

• Extractor - A program that extracts audit-relevant
records from the logs of each TRAIL-enabled application.

• Audit Database - A SQL database into which all audit
records are inserted and available for analysis.

Log writers are not part of the dedicated TRAIL infras-
tructure; rather, they are implemented on a per-application
basis. Applications that use the Tapis platform to manage
data and submit jobs are considered TRAIL-compliant if their
logs contain enough information to populate the schema in
Table 1. The information collected by TRAIL-compliant log
writers enables both file provenance tracking and user session
tracing. Administrators and users can reconstruct the life cycle
of files — including creation, modification, movement, and
deletion — and view actions taken within the portal, such as
uploads, downloads, and job submissions. Each audit record
includes a tracking ID for cross-system correlation and a
guid for deduplication, ensuring reliable and comprehensive

traceability. Operations which copy or transfer files record a
source and target so that file provenance can be traced back
through the full history of operations on those files. These
audit trails support security auditing, operational monitoring,
user accountability, and research reproducibility by making it
possible to verify the origin and history of user activities and
data.

The Extractor is a dockerized Python script which runs
periodically to process logs from compliant applications. Each
application supported by TRAIL has an associated module
within the Extractor which takes the entries from each Log
Writer and processes them to conform to the schema of the
audit database. The TRAIL methodology is not prescriptive
about the structure or formatting of the logs produced by each
enabled application. Rather, as long as the logs produced by
the Log Writer comprise a superset of the required fields in the
audit database, the application authors can provide a special-
ized Extractor module for processing that applications’s logs.
This enables audit logging to be extended to any application
that uses Tapis to interact with TACC’s computing resources.
Each Extractor module implemented so far at TACC pulls its
records from the Splunk monitoring platform, which ingests
syslog records from every host deployed at the center.

After logs are processed by the Extractor, they are inserted
into the Audit Database. This is a PostgreSQL database
hosted on Rodeo, TACC’s internal VMware installation. Based
on initial capacity testing, we estimated that supporting our
current suite of science gateways and JupyterHub instances
would involve ingesting about 50,000 logs per day, or 60 MB.
At current usage levels we expect the database to grow by
approximately 25 GB/year. For the initial rollout, we provided
100GB of dedicated disk space for the Audit DB, which can
be upgraded or scaled through table partitioning as our needs
evolve. We note that the Audit DB is intended as a permanent
store of user activity and file system events. A dedicated
database is required because such persistence guarantees are
not provided by our Splunk cluster, which ingests gigabytes of
system logs per day and must occasionally purge old records.

III. DISCUSSION AND LOGISTICAL CONSIDERATIONS

A. Constructing Audit Trails for Individual Files:
Files and user activities are tracked using a Tracking ID

attached to every action. Each user session within a TRAIL-
enabled science gateway is assigned a tracking ID, most
commonly by hashing the session ID generated by the Django
web framework. Tracking IDs associate a client (or sender)
with an operation carried out by a server (or receiver). In
the science gateways/Tapis context, senders include tracking
IDs in the headers of HTTP requests they send to receiving
services. Receivers include these tracking IDs in any audit
records they generate while servicing the requests. Receivers
may also save tracking IDs in their own databases. Tracking
IDs allow manual and automated procedures to trace all
tracked operations that originate from a single sender instance,
whether that instance is a portal session or a job. These traces
start at a root sender and form trees of arbitrary depth of



TABLE I
FIELDS FOR FILE OPERATIONS IN THE TRAIL DATABASE SCHEMA

Database Field Description Notes

id DB Sequence Id Automatically generated by postgres.

uuid Unique Id Generated by Extractor

guid Globally Unique Id Generated by Log Writer and used for dedupli-
cation

timestamp Log timestamp

jwtTenant Tapis requester tenant

jwtUser Tapis requester username

oboTenant Tapis on-behalf-of tenant

oboUser Tapis on-behalf-of username

action Action requested
copy, move, transfer, upload, mkdir, delete,
chmod, chown, chgrp, setfacl

Only copy, move and transfer involve a source
and target.
Other operations only have a target.

targetSystemId The Tapis system ID of the affected file.

targetSystemType The type of the target system (POSIX, S3,
Globus, IRODS, etc).

targetHost The target host, which currently may be a DNS
name, IP address, or Globus ID.

targetPath Absolute paths only.

sourceSystemId The Tapis system ID of the original file, if one
exists.

Used only on actions with both source and
target files: copy, move and transfer

sourceSystemType The type of the source system (POSIX, S3,
Globus, IRODS, etc),

sourceHost The source host, which currently may be a DNS
name, IP address, or Globus ID.

sourcePath Absolute paths only.

data Metadata in the form of a JSON object. Optional additional information associated with
the event.

trackingId Used to identify all records associated with
something to track: A portal session, job or file
transfer.

Job uuid for a job, Session id for a portal
session, or Transfer id for a file transfer.

parentTrackingId Used to indicate trackingId is part of something
else that is being tracked: A portal session or a
job.

Session id if job is part of a portal session, or
Job uuid if file transfer is part of a job.

senders connected to receivers. To avoid cycles, each sender
creates a unique tracking ID for each sending context (i.e.,
each gateway session, batch job, etc.) from which it makes
requests.

As a concrete example, suppose user1 starts a portal
session which is assigned tracking ID portal.123. When
user1 runs their first job, the Tapis Jobs service receives ID
portal.123 and saves that in its job record. The job then
creates its own unique tracking ID, job.456. Every call the
job makes to the Files API includes job.456 in the request
header and in the audit record it writes to its audit log. When
the Files API receives the request, it records ID job.456 in
its audit log and in its database (for asynchronous transfers
only). If user1 runs a second job, that job will be assigned a
new tracking ID, job.789, which will again be propagated
through subsequent file operations. The tree of all file oper-
ations associated with portal session portal.123 can be

constructed by querying the Audit Database’s file provenance
table for all records with tracking ID portal.123. This
query returns job.456 and jjob.789. A second query can
then be issued to find all file operations with tracking IDs
job.456 and job.789. By following these tracking IDs to
the point at which input files were initially uploaded, the full
sequence of file operations and computational steps can be
reconstructed.

B. Determining Canonical Hosts and Paths for Files
In order to track provenance for a file path, there must

be a way to uniquely identify the file. This is challenging,
because the information available in an audit record does not
uniquely identify a file. Knowing the host and absolute path
to the file is not enough. The host may be an IP address
or a DNS name that routes to the same physical or virtual
location. Also, if the file is on a shared file system or if
there are symbolic links, the absolute path may differ by



host, depending on the mount points for the hosts and the
symbolic links. This problem is addressed by maintaining two
sets of auxiliary information. One set contains a mapping of
host names and IP addresses to a canonical host. A second
set contains mapping information allowing us to determine a
unique canonical host/path combination given a canonical host
and absolute path.

The concept of a canonical host is important in or-
der to uniquely identify a host when the host at-
tribute from a Tapis system can be an IP address or
one of many host names that resolve to the same
physical host via DNS. As a concrete example, the
records “login1.frontera.tacc.utexas.edu” and
“29.114.63.98” both resolve to login nodes on the
Frontera supercomputer. Within the TRAIL extractor, these
records are therefore both assigned a canonical host of
“frontera.tacc.utexas.edu”.

A second issue is how to uniquely identify a file path given
the canonical host name and absolute path on the host. If two
hosts have shared storage mounted at different paths or hosts
have symbolic links, then the absolute path to the same file
may differ by host.To address this, we maintain a mapping of
shared paths to canonical hosts and the corresponding paths
on the hosts. For a given shared path, only one of the entries
must be marked as the reference entry. A reference entry is
used to determine which host is the unique canonical host to
use for the final unique host+path identifying the file path.

For instance, suppose that the host/path combination
“data.tacc.utexas.edu:/data” is listed as the ref-
erence entry for a data directory. If the NFS mount
“frontera.tacc.utexas.edu:/mounted-data” is
recorded as a mount point for this directory within the Ex-
tractor, then its canonical host/path will be overwritten to
“data.tacc.utexas.edu:/data” when recording file
operations in the database. This allows us to uniquely identify
files even when they are interacted with at different mount
points, reducing the likelihood that the file provenance trail
will be broken in the course of a user’s computational work-
flow.

IV. SUMMARY AND FUTURE WORK

The TACC Research Audit and Integration of Logs (TRAIL)
system is an audit trail scheme implemented at TACC, with
the goal of enhancing the reproducibility of computational
workflows. It was developed in response to the increasing
diversity of tools used by researchers to access computational
resources. In a multi-modal workflow, reconstructing the exact
sequence of operations poses a challenge because a given
workflow might involve multiple utilities with different log-
ging behavior. TRAIL addresses this challenge by providing a
compliance standard for applications to meet, at which point
their logs can be processed and collated with other utilities
in the computational ecosystem. For applications built on the
Tapis platform, the movement of data can be traced through
the file system, from initial upload to final result. The next
step for this project will be to build upon the TRAIL database

Fig. 1. TRAL user interface showing the timeline for a representative file,
with sequential upload, rename, and move operations represented

to provide tangible value for researchers. The ultimate goal
is for users to be able to select a file in a science gateway
UI and retrieve its complete provenance trail. This trail could
be provided as part of a published work, in order to facilitate
replication of the computational results. A prototype TRAIL
UI is currently in development, and a representative audit
trial is given in Figure 1. Additionally, in the context of a
computing facility, audit trails can provide value by enabling
analysis of user behavior, helping identify opportunities to
expand services or streamline operations.

REFERENCES

[1] Tapis: An API Platform for Reproducible, Distributed Computational
Research. In Advances in Intelligent Systems and Computing, pages 878–
900. Springer International Publishing, Cham, 2021. ISSN: 2194-5357,
2194-5365.

[2] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature,
533(7604):452–454, May 2016. Publisher: Springer Science and Business
Media LLC.

[3] Sandra Gesing, Steven Brandt, Shannon Bradley, Mark Potkewitz, Kerk
Kee, Noreen Whysel, Mark Perri, Sean Cleveland, Annelie Rugg, and
Jack Smith. A Vision for Science Gateways: Bridging the Gap and
Broadening the Outreach. In Practice and Experience in Advanced
Research Computing, pages 1–8, Boston MA USA, July 2021. ACM.

[4] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig.
Ten Simple Rules for Reproducible Computational Research. PLoS
Computational Biology, 9(10):e1003285, October 2013. Publisher: Public
Library of Science (PLoS).


