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Abstract. Users increasingly create, manage and share digital
resources, including sensitive data, via cloud platforms and APIs. Plat-
forms encode the rules governing access to these resources, referred to
as security policies, using different systems and semantics. As the num-
ber of resources and rules grows, the challenge of reasoning about them
collectively increases. Formal methods tools, such as Satisfiability Mod-
ulo Theories (SMT) libraries, can be used to automate the analysis of
security policies, but several challenges, including the highly specialized,
technical nature of the libraries as well as their variable performance,
prevent their broad adoption in cloud systems. In this paper, we present
CloudSec, an extensible framework for reasoning about cloud security
policies using SMT. CloudSec provides a high-level API which can be
used to encode different types of cloud security policies without knowl-
edge of SMT. Further, it is trivial for applications written with CloudSec
to utilize and switch between different SMT libraries. We use CloudSec
to analyze security policies in Tapis, a cloud-based API for distributed
computational research used by tens of thousands of researchers, and we
present a performance case study of using CloudSec with Z3 and cvc5,
two popular SMT solvers.
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1 Introduction

Through the use of cloud-based applications and services, users create valuable
digital assets that must be secured. Each cloud platform makes use of a system
for managing and enforcing the rules regarding which users have access to which
digital assets, and there is little standardization across the vast number of such
systems. For example, each of the major cloud computing providers have their
own, independent systems for access management: Amazon Web Services makes
use of AWS TAM [4], Google Cloud Platform uses Google IAM [14], and Microsoft
Azure provides Azure Role Based Access Control (RBAC) [5]. Kubernetes, the
popular container orchestration system, has its own RBAC policy system [19].
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There are also many popular open source projects providing these capabilities,
including Casbin [10], KeyCloak [17], Open Policy Agent [22], etc.

The Tapis [24] project represents another such platform. Tapis is an NSF-
funded platform providing APIs that enable automated, secure, collabora-
tive research computing to thousands of academic researchers. Using Tapis,
researchers store, manage, and share datasets, executable code, execution out-
puts, project metadata and other resources with individual colleague as well as
entire communities of researchers. Tapis stores authorization data in the form
of policies describing which users have access to which resources. Tapis policies
conform to certain rules governing their format; Table 1 shows an example Tapis
policy granting the jdoe user read, execute and modify access to all files in
her home directory on the Frontera HPC cluster, a world-class supercomputer
hosted at the Texas Advanced Computing Center.

Table 1. An Example Tapis Policy

username=jdoe,
system=frontera.tacc.utexas.edu,
path=/home/jdoe/*,

action=[READ, EXECUTE, MODIFY],
decision=allow

Projects manage thousands of such Tapis policies on behalf of their users, and
as these systems evolve, the policies must be updated accordingly. Over time,
ensuring that policies are correctly written and match what is being enforced
becomes increasingly difficult.

Software based on formal methods such as Satisfiability Modulo Theories
(SMT) [9,18] provide techniques for automatically reasoning about entire collec-
tions of policies, and to prove or find counter-examples to mathematically pre-
cise statements regarding sets of policies. As an example, in the case of Tapis, a
project may want to know that all users have modify access to their home direc-
tory on all systems but only specific administrative users have access to the root
directories. Such statements form the policy specification for an application, and
the goal is to determine if the actual policies are no more permissive than the
policy specification. In general, describing the policy specification is a difficult
problem.

While SMT libraries can be used to prove or disprove such statements, the
broad adoption of SMT in cloud systems faces the following challenges: 1) the use
of these tools requires a sophisticated understanding of the underlying SMT; 2) a
significant effort must be made to encode a particular security policy’s semantics
into an SMT library; and 3) performance on different security policy sets varies
across different SMT libraries and even different versions of the same library.

To address these challenges, we built CloudSec [1], an extensible automated
reasoning framework for cloud security policies that does not require any SMT
knowledge to use or extend to new cloud policy systems. CloudSec provides a
core set of data types for defining the semantics of a security policy language,
and these data types are linked to SMT solvers through CloudSec’s library of
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backends, which implement encodings of the data types as well as proof methods
based on the functionality provided by the solver. The initial release of CloudSec
includes support for the Z3 [3,21] and CVC5 [2,7] libraries as backends. Using
CloudSec’s building blocks, the policy types for a new system can be defined in
just a few lines of Python code without any understanding of SMT. CloudSec’s
connectors abstraction allows policy types to be instantiated with real policies
from source systems.

To establish the extensibility of CloudSec, we created basic implementations
of policy types for multiple systems, including Tapis and a generic REST API ser-
vice. For the Tapis platform, we also implement connectors, yielding a tool capa-
ble of retrieving and analyzing policies from Tapis’s multi-tenant permissions sys-
tem, which includes hierarchical roles and permission “types” with schemas for
many individual services. We automatically establish or find counter-examples
to policy requirements across entire sets of Tapis permissions. Finally, we study
the scalability of our tool and establish that it performs well when analyzing
Tapis policy sets consisting of thousands of policies.

In summary, the main contributions of this paper are:

1. Design and implementation of CloudSec, an extensible Python framework for
leveraging SMT for security policy analysis with a user-friendly interface.

2. Description of CloudSec usage in Tapis, a real-world cloud platform used by
thousands of researchers.

3. Performance study showing CloudSec scales to thousands of policies.

The rest of the paper is organized as follows: In Sect. 2, we provide back-
ground material on Tapis and SMT; in Sect. 3, we describe the CloudSec design,
its use in Tapis, and give examples of policy types and encodings; in Sect. 4, we
describe our performance study and Sect. 5 compares related work; we conclude
in Sect. 6 and outline some areas for future work.

2 Background

In this section, we provide background information on topics used throughout
the rest of this paper.

2.1 Tapis

Tapis [24] is a web-friendly, application programming interface (API) for research
computing, allowing users to automate their interactions with advanced storage
and computing resources in cloud and HPC datacenters. Primary Tapis features
include a full-featured data management service, with synchronous endpoints for
data ingest and retrieval as well as a reliable asynchronous data transfer facil-
ity; workload scheduling and code execution; a highly-scalable document store
and metadata API; and support for streaming IoT /sensor data. Tapis supports
reproducibility by recording a detailed data provenance and computation history
of actions taken in the platform. Additionally, Tapis enables collaboration via a
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fine-grained permissions model, allowing data, metadata and computations to be
kept private, shared with specific individuals or disseminated to entire research
communities. Tapis has been used by thousands of researchers across projects
funded by a number of government agencies, including CDC, DARPA, NASA,
NIH, and NSF.

2.2 Tapis Security Policies

Tapis is organized as a set of 14 independent HTTP web services (sometimes
called microservices) that coordinate together to accomplish larger tasks. The
Tapis Security Kernel (SK) manages all authorization data — information spec-
ifying which users have access to which Tapis objects and at what access level.
SK stores this authorization data as permission objects and provides HTTP
endpoints for creating, retrieving, and modifying permissions.

2.3 SMT Solver

CloudSec encodes security access policies into logical formulas represented using
Satisfiability Modulo Theories (SMT). Then the satisfiability problem is solved
using an SMT solver. An SMT solver is a software that uses decision procedures
to report whether a formula is satisfiable in some finite amount of computation
and find some counter-example [9,18]. We use two efficient SMT solvers in our
backends- Z3 [3] and CVC5 [7].

3 Related Work

There have been several works on cloud-access control policies analysis using
SMT [6,11,20,23]. Our work is closely related to the approach used in Zelkova
[6], [23]. Zelkova is an AWS policy analysis tool that verifies AWS policies by
reasoning if a policy is less or equally permissive than the other. It encodes AWS
policies to SMT formulas and uses SMT solvers, Z3, CVC, and Z3AUTOMATA,
to verify and prove the properties. Zelkova is not open-source and cannot be
extended to other policy languages. CloudSec’s approach is similar to Zelkova
and other prior works in defining a policy language and translating policies
to SMT formulas for reasoning using SMT solvers. The main differences are
that 1) CloudSec is an open-source, extensible automated reasoning framework
where users or developers can define their policy types not restricted to cloud
policies depending on their application, and 2) developers can plug different
SMT solvers into CloudSec’s extensible backend. Additionally, by defining a
policy converter, CloudSec can be easily integrated into existing cloud-hosted
services, as demonstrated in Sect. 4.5. In another related work [13], the authors
built pySMT, a SMT solver agnostic open-source python library that allows
defining, manipulating, and solving SMT formulae. However, to use the pySMT
API, one still needs the knowledge of SMT. We envision to support pySMT as
one of the backends to Cloudsec.
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Eiers et al. [11] proposed a framework to quantify the permissiveness of
access policies using model counting constraint solvers and relative permissive-
ness between the policies. They also built an open-source tool, QUACKY, that
analyzes AWS and Azure policies. The CloudSec framework focuses on easy
extensibility, defining different policy types, and making the reasoning tool more
accessible to users. We envision that QUACKY could potentially be a component
in the CloudSec framework to compute relative permissiveness.

Several works have studied the verification of network access control, connec-
tivity, and configuration policies. Jayaraman et al. [15,16] proposed and built a
tool called SECGURU that automatically validates network connectivity policies
using SMT bit vector theory and the Z3 solver. SECGURU is a closed source
tool used in Azure. Fogel et al. [12] proposed and developed an open-source
tool, Batfish, that analyzes network configuration and detects errors. Campion
[25] is another open-source tool for debugging router configuration and has been
implemented as an extension to Batfish. It localizes crucial errors to relevant
configuration lines. Beckett et al. [8] proposed a general approach for network
configuration that translates both control and data plane behaviors into a logical
formula and use SMT solver, Z3, to verify the properties. They have implemented
this approach in the tool called Minesweeper. CloudSec could be extended to
support network access policies such as Firewall and router policies.

4 Approach

As mentioned in the Introduction, CloudSec provides a toolkit in the form of a
Python library for utilizing SMT solvers to analyze security policies in real-world
systems such as Tapis. The primary goal of CloudSec is to reduce the expertise
needed to apply SMT technology to the study of security policies (Fig. 1).
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Fig. 1. CloudSec Overview and Usage Model
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4.1 CloudSec - Extensible Framework Design

The primary components of the CloudSec framework include (i) the core mod-
ule, with basic data types that can be used to build encodings of real-world secu-
rity policy systems; (ii) the backends library, which provides implementations
of encodings of the types provided in the core module as well as proof methods
for analyzing sets of policies via various solvers, such as Z3 and cvceb; (iii) the
cloud module, which utilizes the types provided in core to define ready-to-use
policy types for real systems; and (iv) the connectors library, which provides
functions for converting security rules in source systems to CloudSec policies.

Central to the design of CloudSec are the concepts of Component,
PolicyType, and Policy, provided by the core module. Each Component type
contains a data type, such as a String, Enumeration, IP Address or Tuple, the
set of allowable values for the data type, and a matching strategy, which defines
a “match” relation on two values from the set of allowable values for the data
type. Examples of currently supported matching strategies include exact match-
ing and wildcard matching. PolicyTypes build on the notion of Components,
with each PolicyType defining a list of Components that it is comprised of.
Finally, a Policy object represents a specific value for a given PolicyType.

Using these primary notions, one can create PolicyTypes comprised of
Components for real-world systems in just a few lines of Python without
requiring any knowledge of SMT. The cloud module provides examples of
PolicyType objects, including a tapis_files_policy_type, used to represent
policies related to file objects in Tapis, and an http_api_policy_type, which
can be used to model policies in an arbitrary HTTP API. Moreover, by decou-
pling the definitions of Components and PolicyTypes from their implementa-
tions in different backend solvers, CloudSec provides a highly-extensible system
in which support for additional solvers can be added independently of defining
policy types for new systems.

4.2 An Example Policy Type and Policy Definition

As a first example, we describe the http_api_policy_type, available in the
CloudSec toolkit. We created this policy type to illustrate what can be achieved
with CloudSec. The policy type represents policies governing access to resources
defined in a multi-tenant, microservice API platform. The policy type is com-
prised of three components: principal, resource, and action. A principal is a Tuple
component type with two fields, tenant and username, representing a unique
user identity in the platform to whom access to some resource is being allowed or
denied by the policy. A tenant is a StringEnum component with enumerated val-
ues representing all possible tenants. We chose a StringEnum to model the tenant
under the assumption that the number of tenants would be relatively small. On
the other hand, the username field is modeled with a String component type
defined over an alphanumeric set and maximum length.

Similarly, a resource is modeled using a Tuple component type with three
fields, tenant, service, and path, that collectively distinguish a specific HTTP
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endpoint (i.e., HT'TP resource) within a service to which access is being allowed
or denied in some tenant. A service is a StringEnum component with enumerated
values representing the names of the APIs in the platform. The path is a String
component defined over a path character set with a maximum length. The path
represents the URL path corresponding to the resource. Finally, the action is a
StringEnum that denotes the HT'TP method being authorized or not authorized,
such as {“GET”/POST”PUT”“DELETE”}. An example policy definition of
http_api_policy_type is shown below (Table2):

Table 2. An Example HTTP Policy

p = Policy(policy_type=http_api_policy_type,
principal=("a2cps","jdoe"),
resource=("a2cps","files","/1s6/home/jdoe"),
action="GET",
decision="allow")

Note that all policy types have a special decision field which is a StringEnum
with values “allow” and “deny”.

4.3 Tapis Policy Types

The CloudSec toolkit includes policy types representing permissions objects
in the Tapis API platform. For example, we provide the tapis_files
_policy_type for dealing with Tapis permissions related to file objects. The
tapis_file_perm component is a Tuple type representing the Tapis files “perm
spec” (see [26]) and includes fields for the tenant, system id, permission level,
and file path. Because of the simple and flexible CloudSec core API, the entirety
of the Tapis policy type implementations constitutes less than 20 lines of Python
code.

4.4 Translating a Policy Set to SMT Formula

A policy set is defined as a set of policies, i.e., PS = {Py, Po, -+, P;,-+, Pn_1, Py}
where 1 < ¢ < n. Each policy, P; = (¢1,¢2,- -+, ¢j, -+, Gm—1, Cm, Decision) where
1 < j < m. ¢; denotes the value for Component C; of Policy P;. Note that a
policy type determines the number and type of Components in a policy. Decision
is a value from the set {“allow”, “deny”} to denote if a policy allows or denies
access. A policy is translated to an SMT formula as:

\/ Cj:C

1 \cec;(P)

~-

P:

J

C;(P) denotes set of values defined for Component C; in a policy P. If C;(P)
is a Tuple component type with k components , let say, (¢1,t2,..,tx), then it is

further encoded as /\f;l (tx = v) where component tj, takes one of the component
allowed values, v.
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A policy set can be SMT encoded as:

P8:< \/ P)/\ﬂ \V P

AllowSet DenySet

where AllowSet = {VP € PS : P.Decision = “allow”} and DenySet = {VP €
PS : P.Decision = “deny” }.

4.5 Connectors and Converting SK Policies to Cloudsec

Using CloudSec to analyze security rules from a real-world system requires
one to generate CloudSec policy objects (of the appropriate type) from autho-
rization data residing in the external system. A CloudSec connector can be
written for the external system to simplify this effort. The CloudSec toolkit
currently includes a connector for Tapis files permissions, allowing CloudSec
tapis_files_policy_type policies to be generated from Tapis permissions data
with a single function call.

Using CloudSec, we developed a program that generates Tapis files policy
objects from all Tapis files permissions in the SK for a configurable set of users.
The program then uses CloudSec solver backends to prove that the source poli-
cies conform to certain rules or find counter examples. For instance, using our
program, we analyzed policies for users within a certain project built with Tapis,
generating over 3,000 CloudSec policies. We then were able to prove that for this
project, no users except for the users in the admin-scientist role had read/write
access to files in a protected data directory on a specific Tapis system. Similarly,
we prove that public access to generated result files is restricted to files with a
.png extension.

Establishing these kinds of results harnesses the full power of CloudSec —
while the Tapis SK is highly efficient at answering the question, “does a given
user have access to a specific resource?", it cannot reason about an entire set of
permissions at once. Furthermore, our program must use both Z3 and cvcb to
find proofs like the ones above, as some proofs could not be found by one solver
or the other.

5 Performance

We did a performance evaluation of the CloudSec toolkit 1) to establish that
the CloudSec software was a viable approach (i.e., can be done on commodity
hardware in a reasonable amount of time) to analyze policies of the sizes that
show up in real systems such as Tapis (i.e., on the order of a few thousand
policies) (Sect.4.5); and 2) to show that CloudSec could be used as a frame-
work for comparing different SMT backends for specific analyses [1]. We also
observed that there are scenarios for which either Z3 or CVC5 or both, along
with their different versions exhibit performance cliffs. We provide the details of
the performance evaluation in subsequent subsections.
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We measured the performance to check trivial implications for two policy
sets as the number of policies grows. We defined different components (String
and StringEnum) and policy types using those components to create policy sets.
Each policy set consists of policies of the same policy type. We repeated the test
for both Z3 and cveh backends. We ran the tests on a machine with the following
configuration: 32 CPUs, Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20 GHz, 128 GB
RAM.

5.1 StringEnum Scalability

We defined a policy type containing a StringEnum with a variable number,
N, allowable values and with wildcard matching. For example, with N = 5,
the policy type’s StringEnum will have allowable values { ‘07, ‘1°,2’,3’‘4’}. We
created two policy sets, P and @. P contained a policy P; for every allowable
value, i.e., P = Uili_ol (P;, “allow”)} where P; = i. @ contained a single wildcard
policy, @ = {(x, “allow”)}. We varied the number of unique elements, N, in the
range 10 < N < 4000. We measured the time to perform: 1) data load, 2) SMT
encoding, 3) P = @ and 4) Q = P for Z3 as well as for cvch. In Fig. 2 a,
we observed that when using the Z3 backend, the SMT encoding, P — @ and
@ = P took similar amounts of time, while the data load took significantly
less time. When we used cveh, SMT encoding took the most of the computation
time while the data load time was more than the implication prove time. For
this performance test, cveh was roughly 90% faster than Z3 in total time.
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Fig. 2. Dynamic StringEnum Policy type Scalability

5.2 String with Wildcard Scalability

We defined a policy type with a single String component with wildcard match-
ing. The string component was defined over a character set that included
alphanumeric characters, ‘/’, and the wildcard character ‘*’. The maximum
length of the string was 100. We created two policy sets, P and @, for each 10 <
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N < 1000. The policy set P = UN ' {(P;, “allow”)} where each P; was defined
to be the static string “a1b2c3d4e5/i”. The policy set Q = UN 1 {(Qi, “allow”)}
where each Q; is defined as the string “alb2c3d4e5/i *” ending in the wildcard
character. For example, if N = 2, P = {“alb2c3d4e5/1”, “alb2c¢3d4e5/2” } and
Q = {“alb2c3dde5/1 x 7, “alb2c3d4e5/2 x 7 }. In this case, there are 2 policies in
P and two policies in Q.

We varied N and measured the data load, SMT encoding, and P — @
times for Z3 as well as for cvcb. Note Q = P is not valid. In Fig. 3, we
observe that Z3 was faster than cvch in total time and, in particular, in proving
P = @, 73 was often an order of magnitude or more faster. Both backends
follow the same pattern where data load and SMT encoding times are less than
implication prove time. Z3 shows good performance even for N = 1000, which
is 1000 policies in P and in Q.
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5.3 Performance Cliffs for SMT Solvers

We observed some performance cliffs while using Z3 and cvch. First, consider
two simple policy sets in which the policy type has just one component, path,
of string type. Let P = (“/sysl x”, “allow”) and Q = (“/ x”, “allow”). While
trying to prove P is less permissive than @), the Z3 backend hangs but cvc) is
able to prove it.
Second, consider the policy sets:

P = {(“jstubbs”, “s2/home/jstubbs/ ", “x” “allow”),

(“jstubbsﬂ’ “82/ * ”’ (&PUT”, “denyﬂ)’

(“jstubbs”, “82/ " aa’ “POST”, “deny”)}

and

Q = {(“jstubbs”, “s2/home/ jstubbs/a.out”, “GET”,

“allow”),

(“jstubbs”, “s2/home/jstubbs/b.out”, “GET”, “allow”)}
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73 was able to to prove Q = P but cvcb hangs.

6 Conclusion and Future Work

In this paper, we presented a description of the CloudSec library, which simplifies
the use of SMT in analyzing security policies in real-world systems. We applied
CloudSec to the Tapis API platform to analyze thousands of permissions records
at once. In the future, we plan to incorporate CloudSec into a public API within
Tapis, allowing any user to easily submit security analysis jobs using HTTP
requests. Further, we will explore adding support for additional backends to the
project and applying CloudSec to additional real-world systems, such as AWS,
and Kubernetes.

Acknowledgement. This material is based upon work supported by the NSF OAC
Award #1931439.
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