Check for
Updates

A Comprehensive Cloud Architecture for Machine
Learning-enabled Research

Joe Stubbs
Texas Advanced Computing Center
Austin, Texas, USA
jstubbs@tacc.utexas.edu

Christian Garcia
Texas Advanced Computing Center
Austin, Texas, USA
cgarcia@tacc.utexas.edu

Gilbert Curbelo

Texas Advanced Computing Center
Austin, Texas, USA
gcurbelo@tacc.utexas.edu

Nathan Freeman
Texas Advanced Computing Center
Austin, Texas, USA
nfreeman@tacc.utexas.edu

Francois Halbach
Texas Advanced Computing Center
Austin, Texas, USA
francois@tacc.utexas.edu

Anagha Jamthe
Texas Advanced Computing Center
Austin, Texas, USA
ajamthe@tacc.utexas.edu

Alex Fields
Texas Advanced Computing Center
Austin, Texas, USA
afields@tacc.utexas.edu

Dhanny Indrakusuma
Texas Advanced Computing Center
Austin, Texas, USA
dhannywi@utexas.edu

Cody Hammock
Texas Advanced Computing Center
Austin, Texas, USA
hammock@tacc.utexas.edu

Mike Packard
Texas Advanced Computing Center
Austin, Texas, USA
mpackard@tacc.utexas.edu

ABSTRACT

The success of machine learning (ML) algorithms, and deep learn-
ing in particular, is having a transformative impact on a wide range
of research disciplines, from astronomy, materials science, and cli-
mate change to bioinformatics, computational health, and animal
ecology. At the same time, these new techniques introduce compu-
tational modalities that create challenges for academic computing
centers and resource providers that have historically focused on
asynchronous, batch-computing paradigms. In particular, there is
an emergent need for computing models that enable efficient use of
specialized hardware such as graphical processing units (GPUs) in
the presence of interactive workloads. In this paper, we present a
comprehensive, cloud-based architecture comprised of open-source
software layers to better meet the needs of modern ML processes
and workloads. This framework, deployed at the Texas Advanced
Computing Center and in use by various research teams, provides
different interfaces at varying levels of abstraction to support and
simplify the tasks of users with different backgrounds and exper-
tise, and to efficiently leverage limited GPU resources for these
tasks. We present techniques and implementation details for over-
coming challenges related to developing and maintaining such an
infrastructure which will be of interest to service providers and
infrastructure developers alike.

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC 24, July 21-25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670525

CCS CONCEPTS

« System and application engineering for GPUs;

KEYWORDS
GPUs, Cloud Computing, Machine Learning

ACM Reference Format:

Joe Stubbs, Nathan Freeman, Dhanny Indrakusuma, Christian Garcia, Frangois
Halbach, Cody Hammock, Gilbert Curbelo, Anagha Jamthe, Mike Packard,
and Alex Fields. 2024. A Comprehensive Cloud Architecture for Machine
Learning-enabled Research. In Practice and Experience in Advanced Research
Computing (PEARC °24), July 21-25, 2024, Providence, RI, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3626203.3670525

1 INTRODUCTION

In the last decade, researchers have applied machine learning (ML)
techniques to numerous domains of science and engineering with
increasing success. For example, a recent Nature paper highlighted
the power of deep-learning algorithms, including AlphaFold2 and
RoseTTAFold, to predict the 3D shape of a protein from its genetic
sequence [27]. As stated in that paper, a headline from the BBC
called it "One of biology’s biggest mysteries "largely solved’ by AI”.
Another Nature paper showed that the use of graph networks can
improve the efficiency of discovery of materials by an order of mag-
nitude [34]. The 2022 paper entitled "Tackling Climate Change with
Machine Learning" describes a number of ways in which ML can
help improve the efficiency of a wide range of systems, including
electricity, transportation, buildings and cities, farms and forests,
etc., thereby reducing greenhouse gas emissions [40]. Indeed, ML
has led to major advances in virtually all fields of science — from As-
tronomy and the discovery of exoplanets [1] to Zoology and tasks


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670525
https://doi.org/10.1145/3626203.3670525
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670525&domain=pdf&date_stamp=2024-07-17

PEARC °24, July 21-25, 2024, Providence, RI, USA

such as species classification [43]. Three primary factors are driv-
ing these innovations: the availability of data at scales previously
not seen, the increase in computing power, and the emergence of
powerful opensource libraries that simplify the development of ML
tools and applications.

At the same time, ML techniques require new computing paradigms
and workload types. For example, most ML projects require ex-
ploratory data analysis where scientists perform data validation,
cleaning, standardization, and other pre-processing techniques nec-
essary to achieving good results with ML models. Interactive com-
puting methods, such as Jupyter notebooks, enable researchers to
incrementally execute code and immediately analyze the results
before deciding how to proceed, a computing model that can sim-
plify exploratory tasks. Moreover, once models have been trained
— and researchers increasingly make use of pre-trained models
— investigators deploy and query models to make predictions or
other inference on new data. Deployed models can require large
amounts of main memory and computing power, depending on
their size. In particular, ML training and inference, particularly with
deep learning, increasingly require specialized hardware, such as
graphical processing units (GPUs), to complete in a timely manner.
An ML inference server, which is a method of working with trained
models that is gaining popularity, provides an HTTP interface to
the inference task(s) provided by the model, allowing multiple users
to interact with the deployed model concurrently over a network.

These new workload types and computing methods present
a challenge to existing academic computing centers and service
providers that have traditionally specialized in batch computing
models. Most HPC clusters utilize a scheduling system, such as
Slurm or PBS, where users submit jobs to a queue, and the sched-
uler starts them some time in the future. The amount of time the
user has to wait for their job to start could be seconds, minutes,
hours or days, depending on demand and the available resources
in the cluster. Moreover, creating a secure network connection
(e.g., HTTPS) to the running application imposes additional chal-
lenges that usually must be solved on a case-by-case basis by each
researcher, as HPC clusters rarely provide facilities for making se-
cure inbound connections to compute nodes. Finally, even if the
researcher manages to overcome these challenges, the interactive
nature of these workloads typically implies that the underlying
hardware resources remain idle for significant periods of time. The
relative scarcity of specialized hardware suggests that high resource
utilization is an imperative. The National Artificial Intelligence Re-
search Resource (NAIRR) pilot, initiated by the National Science
Foundation in response to a US presidential executive order, has
recognized the significant gap between the supply and demand of
computing power for Al and the critical need to address it. [18].

In this paper, we present a comprehensive architecture com-
prised of a suite of opensource software to better meet the demands
of modern ML workloads and, in particular, to simplify and increase
the efficient use of GPUs for research computing. This architec-
ture complements and integrates with traditional batch-scheduled
systems deployed at HPC centers. The high-level architecture, de-
picted in Figure 1, consists of the following primary components: 1)
OpenStack Cloud: for managing virtual servers with attached GPUs,
networking, storage volumes and associated objects (IP addresses,

Stubbs et al.

security groups, etc.); 2) Kubernetes: for container orchestration, in-
cluding jobs, and persistent services, with associated objects (pods,
services, PVCs); 3) Scinco JupyterHub: providing authenticated, per-
user Jupyter notebook servers that can be scheduled onto and
utilize GPUs with a high degree of configurability; 4) Tapis Pods
API: providing an authenticated HT TP service capable of deploying
persistent networked services and automatically managing DNS,
TLS certificates, and related matters; 5) Tapis Jobs API: for submit-
ting and managing long-running training jobs to traditional HPC
clusters; 6) Tapis ML Hub: an HTTP service enabling researchers to
discover, persist and manage existing model artifacts and deploy
model inference servers; and 7) Tapis Workflows: for orchestrating
multi-step applications making use of one or more of the previous
services/layers. Also depicted are traditional HPC workload and
provisioning systems, such as Slurm and the TACC-developed LOSF
[33]. Tapis services mentioned in items 4, 5, 6 and 7 are developed
as a part of the Tapis framework [42], which is a NSF funded, web-
based framework to enable scientific computing in any domain. It
is a collaborative project between TACC and University of Hawaii.

The individual software layers provide APIs at different abstrac-
tion levels to appropriately address the needs of users with different
goals and technical backgrounds. The architecture supports two
broad class of users, including ML and infrastructure developers
as well as domain researchers wishing to make use of ML in their
work.

In the following sections, we discuss the target users and use
cases enabled by each layer in the architecture, as well as a number
of techniques for overcoming some of the challenges associated
with developing, configuring and deploying the associated technol-
ogy. We provide examples of capabilities that are currently being
incorporated into real research projects, and we identify future
work that is needed to further improve the experience of develop-
ing and utilizing ML in research computing environments.

2 OPENSTACK
2.1 Background and Supported Use Cases

Software development efforts to create, enhance and maintain li-
braries and tools that simplify the use of Machine Learning algo-
rithms and techniques constitute an increasingly important set of
tasks that must be supported. Cloud infrastructure provides a com-
puting model that can more readily support this use case through
development environments on virtual machines (VMs) that attach
persistent volumes and GPUs as well as networking (e.g., IP ad-
dresses) for accessibility. VM-based development environments can
be spun up, paused, resumed and shut down, on demand, can easily
run for months on end, and can be arbitrarily sized with resources
(e.g., memory, cores, disk space) to meet the needs of the develop.

TACC operates a general purpose OpenStack cluster which was
chosen to host this effort as it provides flexibility for provisioning
dynamic and experimental workloads. A developer using virtual
machines can deploy and re-deploy an environment changing the
CPU count, memory amount, guest operating system, networking,
storage, or other attributes as needed. This OpenStack cluster has
been used to provide development environments for more than
a dozen undergraduate and graduate students as part of efforts



A Comprehensive Cloud Architecture for Machine Learning-enabled Research

PEARC 24, July 21-25, 2024, Providence, RI, USA

Tapis Workflows

_ Tapis MLHub
Domain : -
. d Inference Server Model Discovery Model Training
Scientists an Deployment and Management Scheduling
Users of ML
Scinco JupyterHub Tapis Pods API Tapis Jobs API
Kubernetes HPC Workload Manager
TR S B B+~ I I
Infrastructure
Developers

Physical Hardware

Figure 1: Layered Architecture for Modern ML Research Computing

including the NSF-funded ICICLE AI Institute [7] as well as the
SGX3 Fellows program [8].

Our GPU is an NVIDIA V100, mounted in one of several Dell
PowerEdge R740 servers running Ubuntu 20.04.2. Each of these
servers have two V100 GPUs installed. We chose to make our GPUs
available to virtual machines using PCI pass-through, wherein a
virtual machine (VM) accesses the device directly via its PCI address
on the hardware node hosting the VM. To pass this address to the
VM, we must collect some details about the GPU, which will be used
to configure a allowable list of PCI devices identified by their PCI
bus addresses or by vendor and product identifiers of the device. We
chose to use vendor and product details, as it makes no assumptions
about which PCI-e address assignments may be used by our GPUs.
To obtain the required information we use the 1spci command:
$ Ispci -nn | grep NVIDIA
af:00.0 3D controller [0302]: NVIDIA Corporation GV100GL

[Tesla V100 PCIe 16GB] [10de:1db4] (rev al)
d8:00.0 3D controller [0302]: NVIDIA Corporation GV100GL
[Tesla V100 PCIe 16GB] [10de:1db4] (rev al)

Here we see the two GPUs present including their vendor ID and
product IDs in the bracketed string: [10de: 1db4], where the ven-
dor ID is 10de and the product ID is 1db4. This information was
included into Kolla Ansible by variables to the main configuration
file, globals.yml.

2.2 OpenStack Deployment at TACC

TACC’s OpenStack cluster is managed using Kolla Ansible [13], a
component project of OpenStack used to deploy and configure ser-
vices across the cluster. Kolla Ansible enables an operator to make
configuration changes on a single deployment host and quickly

distribute those changes to the appropriate hosts. Making configura-
tion changes is done using a combination of variable definitions in
the main configuration file [17] and in Jinja2 templates [14] located
in the kolla/config directory.

Inglobals.yml, the variable nova_pci_passthrough_allowlist
adds a configuration that permits matching devices to be passed
through to a VM. A custom variable nova_pci_passthrough_alias
allows us to assign a friendly name to matching devices, which is
parsed into the deployed configuration by the Jinja2 template engine
that is added to nova. conf file (see [19] for an example). It is neces-
sary to configure the OpenStack scheduler to use additional meta-
data regarding GPUs that will be used. The AggregateInstanceExtra
SpecsFilter and PciPassthroughFilter must be added to the
list of enabled schedule filters in kolla/config/nova. conf as well.
When invoked, Kolla Ansible adds the necessary configuration to
the OpenStack configuration on the hypervisors and to the sched-
uling server and restarts the service daemons for the operator.

2.3 Metadata Assignments

When OpenStack launches an VM, a scheduling agent determines
which hypervisor is appropriate to host it. We must provide the
scheduler with data about which hosts have GPUs installed and a
mechanism to use that data when starting a VM. A host aggregate
allows a subset of hypervisors to be assigned additional metadata
that is used by the system to assign appropriate hardware to a VM.
In this case, a host aggregate was added and configured with a
metadata parameter gpu=true.

When launching a VM, a user selects a flavor that defines proper-
ties for the VM, such as the number of CPUs and the amount of RAM
to assign to the VM. A flavor is created that additionally included



PEARC °24, July 21-25, 2024, Providence, RI, USA

parameters gpu=true and pci_passthrough:alias=v100:1. The
gpu=true parameter ensures that instance flavors including that
value are launched on GPU-enabled nodes that have been assigned
to the host aggregate previously mentioned. The pci_passthrough:
alias=v100:1 parameter instructs OpenStack to assign only one
of the 2 available GPUs matching the alias v100 in a node to the VM.
This alias is defined in the nova_pci_passthrough_alias above.
By assigning only one GPU to an instanace, the remaining GPU to
be used by another VM on the same hypervisor, permitting more
users to have access to the available GPUs.

3 KUBERNETES

Building on the OpenStack layer that provides virtual servers, the
next layer in the stack makes use of the open-source Kubernetes
platform [11] to support containerized use cases. Kubernetes is a
container orchestration platform for deploying and managing con-
tainerized applications. Built-in container scheduling, auto-scaling,
resource guarantees, and GPU support makes Kubernetes a power-
ful platform upon which to develop and run highly-available and
decoupled scientific applications.

3.1 Kubernetes deployment

TACC runs several internal and external Kubernetes clusters, all
deployed using Ansible. Our most recent deployments were com-
pleted using Kubespray [16], a tool which uses Ansible to deploy
and configure Kubernetes on clouds or baremetal with minimal
configuration.

3.2 NVIDIA driver and toolkit installation

In order to enroll a GPU VM as a node into Kubernetes, we configure
the node and the containers running in it to be able to communicate
with its GPU. The node should be equipped with NVIDIA drivers
compatible with the underlying GPU. Since the Openstack configu-
ration uses PCI passthrough to enable VMs to communicate directly
with the GPUs, no NVIDIA drivers are required on the hypervisors.
If the hypervisor does not use PCI passthrough but has NVIDIA
drivers installed on it, matching NVIDIA drivers are required on
the VM.

We also install the NVIDIA container toolkit on the GPU node,
which contains a container runtime library, and allows for the de-
ployment of containers which are able to make use of the GPUs. We
specify the use of the NVIDIA container runtime in the containerd
configuration file instead of the standard runc runtime.

3.3 NVIDIA device plugin installation

We then deploy the NVIDIA device plugin daemonset across our
Kubernetes cluster. This daemonset runs a pod on each node of
the cluster, including non-GPU nodes, and reports the number and
status of GPUs on each node.

$ kubectl create -f \
https://raw.githubusercontent.com/NVIDIA/k8s-device-
plugin/v@.14.5/nvidia-device-plugin.yml

The NVIDIA device plugin provided by Nvidia is deployed via
kubectl, but it can also be deployed via Helm, permitting more

Stubbs et al.

feature customization such as allowing for Multi-instance GPU
(when supported by the GPU).

3.4 Avoiding and specifying GPU nodes

Once a GPU node is successfully provisioned, we must prevent
non-GPU pods from being deployed on it, and make it possible for
the node to be specifically selected when needed. Tainting the node
allows us to prevent any workloads from being deployed on it:

$ kubectl taint nodes <node_name> nvidia.com/gpu=
Exists:NoSchedule

Pods with GPU workloads can bypass the taint by including a
matching toleration in the .yml file used to deploy them:

tolerations:

- key: "nvidia.com/gpu"
operator: "Exists"
effect: "NoSchedule"

To be able to specifically select a node, we label it:
$ kubectl label nodes cyclone-cickube-gpudl gpu=v100

Just like with our toleration, we modify our deployment file to
include a node selector matching the created label, in order to select
a node matching it.

nodeSelector:
gpu: "v100"

3.5 GPU sharing

A current limitation of our configuration is the lack of support
for GPU sharing. If a pod is deployed on a node with 1 GPU and
reserves this GPU, no more GPU pods can be deployed on the node,
even if the pod is not making use of the entire GPU, or running
workloads at all times. Multi-Process Service (MPS), an alternative
to the CUDA AP], is a feature of Nvidia GPUs which addresses
this issue, allowing multiple processes to share GPU resources. Its
implementation is in progress and will allow for more efficient use
of our GPU computing resources.

4 JUPYTERHUB AND PODS API

In this section, we describe two solutions that build on top of Ku-
berenetes to provide higher-level functionality for users and use
cases where direct access to the lower-level infrastucture is not
needed.

4.1 JupyterHub

As mentioned previously, Jupyter notebooks provide an interac-
tive computing modality that simplifies some ML tasks, such as
exploratory data analysis and validation. The Scinco project [41]
offers a customized JupyterHub instance hosted by TACC, allow-
ing users to access notebook servers running on remote machines.
Scinco incorporates multitenancy, which allows different project
teams to configure these notebook servers based on their individual
project needs. Tens of thousands of Python notebooks have been
authored by thousands of researchers on Scinco as part of research
efforts in various domains of science and engineering. Machine
learning packages and use cases are an indispensable part of the
Scinco offering.



A Comprehensive Cloud Architecture for Machine Learning-enabled Research

Each user’s notebook server is launched as a pod on a Kubernetes
[11] cluster. To accomplish this, Scinco builds upon the open-source
Kubespawner [3] project with additional features by implementing
two hooks. One hook retrieves data stored on remote hosts and
mounts it in the notebook server for the user, while the second hook
retrieves the user’s configurations from the Tapis [42] Metadata API,
along with other spawner details. Each Scinco project (or "tenant”)
maintains its own configuration within this API, which can be
updated at any time by a tenant administrator.

To add support for GPUs in Scinco notebook servers, the hook
updates the Kubespawner with the extra_pod_config, extra_

resource_guarantees and extra_resource_limits attributes from

the metadata pertaining to the user. An example configuration is
provided in the repository for this paper [21]. For more details
on these configurations, we refer the reader to the Kubespawner
documentation, [15]. Note that Scinco supports creating these con-
figurations on a per-tenant, per-group or per-user basis. Groups
allow tenants to create logical partitions of users that should be
configured differently than other users. This approach enables ten-
ant administrators to ensure that limited GPUs are available to the
teams and individuals that need them most.

4.2 Tapis Pods Service

A number of ML use cases require the deployment of persistent ser-
vices with transport-level encryption, including inference servers
and knowledge graphs. To further simplify the use of Kubernetes
for these use cases we have developed and deployed the Tapis Pods
service. The Tapis Pods service is a hosted API within the Tapis
platform that provides users a feature-rich API to deploy long-
lived Kubernetes containers with manageable storage, shareable
resources and transport-level encryption at the Texas Advanced
Computing Center (TACC). For example, a user can deploy a Neo4j
[12] graph database, a custom Flask [10] server, or any container-
ized workloads using a single API call to the Pods service. The
Pods service is primarily used for secure cloud database access,
application deployments, and multi-container server deployments.

Following the addition of GPU support in Kubernetes, the Pods
service’s AP had an expansion in the form of GPU requisitions. This
feature allows users to run long-lived workloads which make use
of GPU performance gains. Complex simulations or web-accessible
large language models (LLM) are able to be easily deployed resulting
from this new feature. This is made possible by having the Pods
service manage node scheduling, resource requests, and health
of user containers with the Kubernetes API. This functionality is
made available with an easy-to-use interface that allows any level
of researcher to quickly get their development on the internet for
sharing or full-time deployments.

The Pods service is used to host the ML Hub’s Model Hub and
Inference Server with appropriate access to GPU resources (see the
next section). The ML Hub utilizes the Pods service’s storage sharing
to cache models from outside repositories such as Hugging Face
for utilization at deployment time. Once deployed, the Inference
server runs Python code which makes use of the GPU resources
for compute.

The Pods service is isolated from most issues due to making
use of the Kubernetes layer. Apart from Kubernetes configuration,

PEARC ’24, July 21-25, 2024, Providence, RI, USA

the Pods service does need to manage GPU allocations and state.
Going forward, development will be focused on partitioning GPU
resources for more discrete units of compute rather than the current
standard of appointing one full GPU to each pod which requests
one. This development will allow us to scale further. Additionally,
metrics on GPU utilization will be a future point of work. These will
allow us to ensure minimum percentages of compute usage, ensur-
ing efficient compute-use independent of workload and providing
valuable stats to users using the service.

5 MODEL TRAINING AND THE MACHINE
LEARNING HUB API

Unlike other aspects of ML workflows that are naturally interactive,
model training can often efficiently make use of traditional HPC
systems that utilize batch scheduling because of the long, uninter-
rupted executions involved. The Tapis Jobs service provides a gen-
eral facility for executing user-defined workloads asynchronously
on remote systems, including traditional HPC clusters. Using the
Tapis Jobs service to execute ML model training jobs on batch sys-
tems is one approach to integrating with existing HPC resources.

The Machine Learning Hub (ML Hub) [31] is a set of REST
APIs developed as part of the Tapis Framework specifically for
ML workflows. It is designed to simplify the researcher’s machine
learning workflows by abstracting the complexities of fetching and
running inference on open-source, pre-trained models hosted on
Hugging Face [2]. By leveraging over 500,000 models available on
Hugging Face, ML Hub users can experiment with state-of-the-art
Al applications suitable for a specific task, without the technical
complexities of building models from scratch.

The ML hub consists of three main services - the Models and
Datasets Hub, the Inference Server, and the Training Engine. We
have containerized the Model and Datasets Hub and Inference
Server using Docker [35] and deployed it to the Pods Service [25].
We are collaborating with Computational Learning in the Environ-
ment (ICICLE) Al Institute to develop a federated model repository
that will list the models created by researchers on the ML Commons
platform in the ML Hub platform.

The Training Engine and ML Hub’s integration with Tapis Ul
[32] is under active development. Projects such as ClaimBuster
[30] are actively collaborating with the Machine Learning Hub for
model hosting and ongoing research efforts. For the training engine,
we are designing it to submit the model training requests to the
HPC cluster using the Tapis Jobs API, which in turn, is submitted
to the slurm HPC workload manager. Finally, an infrastructure is
provisioned by the TACC LOSF to run the training jobs and update
the user when the job is done.

5.1 Model and Datasets Hub

The Models and Datasets Hub (Hub) provides a central access point
for users to discover pre-trained ML models and Datasets. The API
utilizes Flask, a lightweight web framework developed in Python.
Flask is used as it seamlessly integrates with Hugging Face Hub’s
Python Library [6] to fetch information and serve download links to
the user. The Hub consists of the public endpoints for authenticated
Tapis users as shown in table 1 below, and the endpoints starts with
/v3/ml-hub.



PEARC °24, July 21-25, 2024, Providence, RI, USA

Stubbs et al.

Table 1: Model Hub endpoints

Route Method | Usage
/models GET Provides an overview of the top 100 models
/models/<path:model_id> GET Returns detailed information on the requested model id
/models/<path:model_id>/inference GET Allows user to check availability of inference server for
the specified model id
/models/authors/<author_id> GET Filters available models by author
/models/search/<path:query> GET Filters available models by user query
/models/tasks/<task_type> GET Filters available models by task type
/models/trained_datasets/<path:dataset> GET Filters available models by dataset(s) it was trained on
/models/libraries/<library_name> GET Filters available models by the foundational libraries the
models were originally trained from
/models/languages/<language_name> GET Filters available models by language
/download_model/<path:model_id> GET Retrieves download links for requested model id
/model_card/<path:model_id> GET Fetch model’s card data
/datasets GET Provides an overview of the top 100 datasets
/datasets/<path:dataset_id> GET Returns detailed information on the requested dataset id
/datasets/authors/<author_id> GET Filters available datasets by author
/datasets/search/<path:query> GET Filters available datasets by user query
/datasets/tasks/<task_type> GET Filters available datasets by task type
/datasets/languages/<language_name> GET Filters available datasets by language
/datasets/size_categories/<category> GET Filters available datasets by its size category
/download_dataset/<path:dataset_id> GET Retrieves download links for requested dataset id
/dataset_card/<path:dataset_id> GET Fetch dataset’s card data

Table 2: Inference Server endpoints

Route Method | Usage
/inference GET Returns available models for inference
/inference/<path:model_id> POST Returns inference results from a model as a JSON Response

5.2 Inference Server

We developed the Inference server to allow users to experiment with

e Grammarly’s CoEdIT-Large: A fine-tuned FLAN-T5 large
model that edits texts based on user’s instructions [39].

various pre-trained machine learning and deep learning models.

By sending requests to a specific model’s server and evaluating the
results, users could discover the right models for a specific task in
their domain expertise.

5.3 Training Engine
The Training Engine, currently under active development, will pro-
vide first-class support for executing training and fine-tuning jobs

The server is implemented using FastAPL an open-source, high- on HPC and cloud resources via HT TP requests. The Model Hub

performance Python web framework [5]. FastAPI is used as it has

built-in data validation for incoming requests and most of the pop-

ular deep learning libraries such as Transformers [4] and PyTorch
[36] are developed in Python. Two endpoints are available for the
Inference Server as shown in table 2, and the inference endpoints
starts with /v3/ml-hub.

For our initial development of the inference server, we focused
on the text-to-text generation task. It currently supports inference
for three fine-tuned models based on the Text-To-Text Transfer
Transformer (T5) encoder-decoder architecture [38]:

Training Engine wraps the lower level Tapis Jobs service and adds
additional capabilities for ML models, including: 1) a simplified
fine-tuning process for existing models available via the Hub; 2)
automatic checkpointing and job re-submission, to allow for train-
ing runs that exceed the maximum allowable run time of an HPC
cluster; and 3) automatic persistence of learned model weights and
integration with the inference server. s

6 CONFIGURABLE MACHINE LEARNING
WORKFLOWS WITH TAPIS WORKFLOWS

In this section, we present an inference pipeline developed in Tapis

e Voicelab’s vIT5-base-keywords: A fine-tuned T5-base model Workflows [28] which enables users to choose which type of accel-

that generates keywords from short texts [37].
e Google’s FLAN-T5 large: An improved T5 model that has
been pre-trained on various NLP tasks [26].

erator that their inference server will use. This pipeline is a reusable
template and can be found in the Tapis Workflows Task Template
Github repository [22].



A Comprehensive Cloud Architecture for Machine Learning-enabled Research

6.1 Overview of Tapis Workflows

Tapis Workflows is an API and Workflow Engine in a Tapis deploy-
ment that are designed to facilitate the construction and execution
of complex, distributed, and reproducible workflows. Tapis Work-
flows powers CI/CD pipelines for ML-enhanced HPC codes for the
Tuitus project [9] as well as the up-coming ETL (Extract, Transform,
Load) pipelines for processing satellite image data in the NASA JPL
SPHEREX project [20].

Tapis Workflows comprises two main services. The first is the
API which is responsible for validating, persisting, and submitting
pipelines (workflows). The second is the Workflow Engine which
is responsible for coordinating the execution of individual tasks
which comprise a workflow, as well as preparing the infrastructural
components upon which that work will be performed. In the section
below, we will briefly cover the terminology employed in Tapis
Workflows followed by a description of the pipeline.

e Tasks: Instruction-sets that describe a discrete unit of work
to be performed in a workflow, as well as the dependencies
on and relationships to other units of work

o Pipelines: Collections of tasks modeled as a Directed Acyclic
Graph (DAG). In a addition to tasks, a pipeline describes an
execution profile to control how and if a pipeline will run
at submission time, an environment which serves as a static
data source for tasks, and a parameter set that - in addition
to being a variable source of data for tasks - describes the
interface that needs to be satisfied in order for a pipeline to
run

6.2 Inference Pipeline Composition
This pipeline is made up of three sequential tasks:

(1) The first is the data ingestion task. This task takes a URL
provided to the pipeline via an argument in the pipeline
submission request and performs an HTTP request to fetch
the HTML contents of the web page. The text in the HTML
is then parsed out and returned as the output of the task.

(2) The second task takes the text from the first task and pro-
cesses it so that keyword analysis can be run on it. This
processed text is then returned as output to be used by the
inference task.

(3) The inference task takes the processed text and submits it to
the Tapis ML Hub Inference API for keyword analysis. Users
can provide a flag via pipeline arguments to indicate to this
task which accelerators to use for inference. Once inference
is performed, the results of that inference are returned as
output and made available to the user.

This pipeline must be submitted to the Tapis Workflows API with
two arguments (provided in the request body). The first is "URL",
which is the web URL that contains the text upon which the user
wants to run keyword analysis. The second is "ACCELERATOR".
This argument controls whether inference will be run on GPUs or
CPUs.

7 SCALABILITY

Scaling the described architecture as implemented is currently lim-
ited primarily by the resources available, as GPU accelerators are

PEARC ’24, July 21-25, 2024, Providence, RI, USA

relatively scarce. Generally speaking, the technologies in use have
demonstrated the ability to scale well. At TACC the Jetstream and
Chameleon clusters operate OpenStack installations of several hun-
dred nodes in a combination of virtualized infrastructure and bare
metal as a service since 2015. Furthermore, CERN is well-known
for operating OpenStack at the scale of over 9000 servers, pro-
viding more than 300,000 cores [24]. Several of the Tapis services
mentioned have also undergone rigorous scalability studies. For
example, the Tapis Jobs service was shown to scale to 10,00 con-
current jobs [23], while the Tapis functions service was shown to
correctly scale to 100 JetStream m1 medium instances [29].

8 CONCLUSION

In this paper we presented a cloud-based architecture and inte-
grated, open-source software stack, that provides capabilities that
simplify the use of modern machine learning in research computing
and increases the utilization of GPU hardware currently in high-
demand. This software suite is deployed at the Texas Advanced
Computing Center and utilized by a number of research teams. We
provide techniques for overcoming challenges related to developing,
configuring and administering the associated technologies.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation Office of Advanced CyberInfrastructure, the Tapis
Framework:[1931439 and 1931575], the Tuitus project [2229702],
the ICICLE Al Insitute [2112606], and SGX3 [2231406].

REFERENCES

[1] 2017. Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling
Distant Star. https://www.jpl.nasa.gov/news/artificial-intelligence-nasa-data-
used-to-discover-eighth-planet-circling-distant-star Last access: 2024-02-06.

[2] 2017. Hugging Face. https://huggingface.co Last access: 2024-03-08.

[3] 2017. kubespawner. https://github.com/jupyterhub/kubespawner Last access:
2024-02-06.

[4] 2017. Transformers. https://github.com/huggingface/transformers Last access:
2024-03-07.

[5] 2018. FastAPL https://fastapi.tiangolo.com Last access: 2024-03-08.

[6] 2020. Hugging Face Hub. https://github.com/huggingface/huggingface hub Last
access: 2024-03-08.

[7] 2021. ICICLE AI InstituteL Intelligent CI with Computational Learning in the
Environment. https://icicle.osu.edu/ Last access: 2024-03-07.

[8] 2021. SGX3 Fellows Journey: From Research to Software Engineer-
ing the AI-Driven HPC Resource Prediction and PEARC23 Experiences.
https://sciencegateways.org/networking-community/blogs/b/s/sgx3-
fellowship-journey-swathi-vallabhajosyula Last access: 2024-03-07.

[9] 2022. Tuitus: Award Abstract. https://www.nsf.gov/awardsearch/showAward?

AWD_ID=2229702&Historical Awards=false Last access: 2023-02-13.

0] 2023. Flask. flask.palletsprojects.com/en/2.3.x/ Last access: 2023-4-19.

1] 2023. Kubernetes. kubernetes.io Last access: 2023-4-19.

2] 2023. Neo4j. neo4j.com/ Last access: 2023-4-19.

3] 2024. Kolla Ansible’s Documentation. https://docs.openstack.org/kolla-ansible/

latest/ Last access: 2024-03-07.

[14] 2024. Kolla Jinja Template Example. https://palletsprojects.com/p/jinja/ Last
access: 2024-03-07.

[15] 2024. Kubespawner documentation. https://jupyterhub-kubespawner.readthedocs.
io/en/latest/spawner.html Last access: 2024-03-07.

[16] 2024. Kubespray: deploy a production-ready Kubernetes cluster. https://github.
com/kubernetes-sigs/kubespray Last access: 2024-03-07.

[17] 2024. Main Kolla Ansible Configuration File Example. https://github.com/tapis-
project/tapis-gpu-paper/blob/main/openstack/globals.yml Last access: 2024-03-
07.

[18] 2024. National Artificial Intelligence Research Resource Pilot: NSF. https://new.nsf.
gov/focus-areas/artificial-intelligence/nairr Last access: 2024-02-06.

[19] 2024. nova.conf Configuration File Example. https://github.com/tapis-project/
tapis-gpu-paper/blob/main/openstack/nova.conf Last access: 2024-03-07.


https://www.jpl.nasa.gov/news/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://www.jpl.nasa.gov/news/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star
https://huggingface.co
https://github.com/jupyterhub/kubespawner
https://github.com/huggingface/transformers
https://fastapi.tiangolo.com
https://github.com/huggingface/huggingface_hub
https://icicle.osu.edu/
https://sciencegateways.org/networking-community/blogs/b/s/sgx3-fellowship-journey-swathi-vallabhajosyula
https://sciencegateways.org/networking-community/blogs/b/s/sgx3-fellowship-journey-swathi-vallabhajosyula
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2229702&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2229702&HistoricalAwards=false
flask.palletsprojects.com/en/2.3.x/
kubernetes.io
neo4j.com/
https://docs.openstack.org/kolla-ansible/latest/
https://docs.openstack.org/kolla-ansible/latest/
https://palletsprojects.com/p/jinja/
https://jupyterhub-kubespawner.readthedocs.io/en/latest/spawner.html
https://jupyterhub-kubespawner.readthedocs.io/en/latest/spawner.html
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/tapis-project/tapis-gpu-paper/blob/main/openstack/globals.yml
https://github.com/tapis-project/tapis-gpu-paper/blob/main/openstack/globals.yml
https://new.nsf.gov/focus-areas/artificial-intelligence/nairr
https://new.nsf.gov/focus-areas/artificial-intelligence/nairr
https://github.com/tapis-project/tapis-gpu-paper/blob/main/openstack/nova.conf
https://github.com/tapis-project/tapis-gpu-paper/blob/main/openstack/nova.conf

PEARC 24, July 21-25, 2024, Providence, RI, USA

[20

[21]

[22

[23]

[24]

[25

[26]

[27

[28]

[29

[30

[31]

[32

[33

[34]

[35]

[36]

[37]

[38

[39

[40]

2024. SPHEREx. https://www.jpl.nasa.gov/missions/spherex Last access: 2024-3-
07.

2024. tapis-gpu-paper/jupyterhub. https://github.com/tapis-project/tapis-gpu-
paper/blob/main/jupyterhub/configs.json Last access: 2024-03-07.

2024. Tapis Workflows Task Templates. https://github.com/tapis-project/tapis-
workflows-task-templates Last access: 2024-3-07.

Richard Cardone, Joe Stubbs, Steve Black, Christian Garcia, Anagha Jamthe,
Mike Packard, and Smruti Padhy. 2022. A Design Pattern for Recoverable Job
Management. In Practice and Experience in Advanced Research Computing (PEARC
’22). Association for Computing Machinery, New York, NY, USA, Article 29,
4 pages. https://doi.org/10.1145/3491418.3535136

Castro Leon, José. 2019. Advanced features of the CERN OpenStack Cloud. EPJ
Web Conf. 214 (2019), 07026. https://doi.org/10.1051/epjconf/201921407026
Richard Cardone Christian Garcia, Joe Stubbs and Nathan Freeman. 2023. Tapis
Pods Service Exploration and Initial Performance Analysis. In Science Gateways
2023 Annual Conference. Zenodo. https://doi.org/10.5281/zenodo.10034631
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha
Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping
Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022. Scaling Instruction-
Finetuned Language Models. https://doi.org/10.48550/ARXIV.2210.11416
Michael Eisenstein. 2021. Artificial intelligence powers protein-folding predic-
tions. Nature 599 (2021), 706-708. https://doi.org/10.1038/d41586-021-03499-y
Freeman et al. 2023. Detailed Functional Overview of an API and Workflow Engine
for Scientific Researach Computing. https://dl.acm.org/doi/fullHtml/10.1145/
3569951.3593609 Last access: 2023-07-20.

Christian Garcia et al. 2020. The Abaco Platform: A Performance and Scalability
Study on the Jetstream Cloud. In The 16th International Conference on Grid, Cloud,
and Cluster Computing (GCC’20). Springer Nature.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and Mark Tremayne. 2017. To-
ward Automated Fact-Checking: Detecting Check-worthy Factual Claims by
ClaimBuster. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). 1803-1812.

Dhanny Indrakusuma, Nathan Freeman, and Joe Stubbs. 2023. Machine Learning
Hub for Tapis Poster Presentation. In Science Gateways 2023 Annual Conference.
Zenodo. https://doi.org/10.5281/zenodo.10055681

Keith Strmiska Joe Stubbs Sean Cleaveland Joon Yee Chuah, Jake Rosenberg and
Jared McLean. 2023. Tapis UI - A Rapid Deployment Serverless Science Gateway
Built on the Tapis APIL Zenodo, Science Gateways 2021. https://doi.org/10.5281/
zenodo.5570569

Robert McLay, Karl W. Schulz, William L. Barth, and Tommy Minyard. 2011. Best
practices for the deployment and management of production HPC clusters. In SC
’11: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-11. https://doi.org/10.1145/2063348.2063360
A. Merchant, S. Batzner, and S.S. Schoenholz. 2023. Scaling deep learning for
materials discovery. Nature 624 (2023), 80-85. https://doi.org/10.1038/s41586-
023-06735-9

Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 2014, 239 (2014), 2.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

Adam Wawrzynski Filip Zarnecki Barttomiej Nitori Piotr Pezik, Agnieszka Mikota-
jezyk and Maciej Ogrodniczuk. 2022. Transferable Keyword Extraction and Gen-
eration with Text-to-Text Language Models. In Lecture Notes in Computer Science,
vol 14074, Bob Johnson (Ed.). Computational Science — ICCS 2023. ICCS 2023,
Springer, Cham, Los Angeles, CA, 398-405. https://doi.org/10.1007/978-3-031-
36021-3_42 This is a sample entry for a paper in conference proceedings.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1-67. http://jmlr.org/papers/v21/20-074.html
Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop Kang. 2023. CoEdIT: Text
Editing by Task-Specific Instruction Tuning. (2023). arXiv:cs.CL/2305.09857
David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste,
Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques,
Anna Waldman-Brown, Alexandra Sasha Luccioni, Tegan Maharaj, Evan D. Sher-
win, S. Karthik Mukkavilli, Konrad P. Kording, Carla P. Gomes, Andrew Y. Ng,
Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer Chayes, and Yoshua Bengio.
2022. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 55,

[41

[42

[43

Stubbs et al.

2, Article 42 (feb 2022), 96 pages. https://doi.org/10.1145/3485128

Joe Stubbs et al. 2020. Integrating Jupyter into Research Computing Ecosystems.
Proceedings of the Practice and Experience on Advanced Research Computing,
PEARC 2020.

Joe Stubbs, Richard Cardone, Mike Packard, Anagha Jamthe, Smruti Padhy, Steve
Terry, Julia Looney, Joseph Meiring, Steve Black, Maytal Dahan, Sean Cleveland,
and Gwen Jacobs. 2021. Tapis: An API Platform for Reproducible, Distributed
Computational Research. In Advances in Information and Communication, Kohei
Arai (Ed.). Springer International Publishing, Cham, 878-900.

Cheng-Hong Yang, Kuo-Chuan Wu, Li-Yeh Chuang, and Hsueh-Wei Chang. 2022.
DeepBarcoding: Deep Learning for Species Classification Using DNA Barcoding.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 19, 4 (2022),
2158-2165. https://doi.org/10.1109/TCBB.2021.3056570


https://www.jpl.nasa.gov/missions/spherex
https://github.com/tapis-project/tapis-gpu-paper/blob/main/jupyterhub/configs.json
https://github.com/tapis-project/tapis-gpu-paper/blob/main/jupyterhub/configs.json
https://github.com/tapis-project/tapis-workflows-task-templates
https://github.com/tapis-project/tapis-workflows-task-templates
https://doi.org/10.1145/3491418.3535136
https://doi.org/10.1051/epjconf/201921407026
https://doi.org/10.5281/zenodo.10034631
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.1038/d41586-021-03499-y
https://dl.acm.org/doi/fullHtml/10.1145/3569951.3593609
https://dl.acm.org/doi/fullHtml/10.1145/3569951.3593609
https://doi.org/10.5281/zenodo.10055681
https://doi.org/10.5281/zenodo.5570569
https://doi.org/10.5281/zenodo.5570569
https://doi.org/10.1145/2063348.2063360
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1038/s41586-023-06735-9
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-031-36021-3_42
https://doi.org/10.1007/978-3-031-36021-3_42
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/cs.CL/2305.09857
https://doi.org/10.1145/3485128
https://doi.org/10.1109/TCBB.2021.3056570

	Abstract
	1 Introduction
	2 OpenStack
	2.1 Background and Supported Use Cases
	2.2 OpenStack Deployment at TACC
	2.3 Metadata Assignments

	3 Kubernetes
	3.1 Kubernetes deployment
	3.2 NVIDIA driver and toolkit installation
	3.3 NVIDIA device plugin installation
	3.4 Avoiding and specifying GPU nodes
	3.5 GPU sharing

	4 JupyterHub and Pods API
	4.1 JupyterHub
	4.2 Tapis Pods Service

	5 Model Training and the Machine Learning Hub API
	5.1 Model and Datasets Hub
	5.2 Inference Server
	5.3 Training Engine

	6 Configurable Machine Learning Workflows with Tapis Workflows
	6.1 Overview of Tapis Workflows
	6.2 Inference Pipeline Composition

	7 Scalability
	8 Conclusion
	Acknowledgments
	References

