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ABSTRACT
Constructing and executing reproducible work�ows is fundamental
to performing research in a variety of scienti�c domains. Many of
the current commercial and open source solutions for work�ow en-
gineering impose constraints—either technical or budgetary—upon
researchers, requiring them to use their limited funding on ex-
pensive cloud platforms or spend valuable time acquiring knowl-
edge of software systems and processes outside of their domain
expertise. Even though many commercial solutions o�er free-tier
services, they often do not meet the resource and architectural
requirements (memory, data storage, compute time, networking,
etc) for researchers to run their work�ows e�ectively at scale. Tapis
Work�ows abstracts away the complexities of work�ow creation
and execution behind a web-based API with a simpli�ed work�ow
model comprised of only pipelines and tasks. This paper will de-
tail how Tapis Work�ows approaches work�ow management by
exploring its domain model, the technologies used, application ar-
chitecture, design patterns, how organizations are leveraging Tapis
Work�ows to solve unique problems in their scienti�c work�ows,
and this projects’s vision for a simple, open source, extensible, and
easily deployable work�ow engine.
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1 INTRODUCTION
Tapis Work�ows is an API, work�ow engine, and set of supporting
services deployed in the Tapis ecosystem [26] designed to enable
the construction and execution of research computing work�ows.
It is capable of building, testing, and persisting container images
for scienti�c applications, running small containerized applications,
executing arbitrary code, and communicating with external entities
via HTTP requests. It is also fully integrated with the suite of
Tapis services, allowing users to run research computing jobs on
HPC infrastructure via the Tapis Jobs API [23], as well as trigger
functions via Abaco [13], a distributed computing, Actor Model-
based functions-as-a-service platform. This paper is organized as
follows: in section 2, we provide an overview of the use-cases that
TapisWork�ows is currently serving, and others that are motivating
the development of new functionality; in section 3, we cover the
tech-stack of Tapis Work�ows and the decisions behind choosing
those technologies; in section 4, we discuss source code structure
and style in addition how CI/CD for the project is managed; Section
5 covers important aspects of the project’s data model; In section
6 we discuss the application architecture of the work�ow engine
and role of each component in work�ow execution; In section 7,
we discuss the methods by which users can trigger work�ows; In
section 8, we discuss future features and features currently in the
development pipeline for extending work�ow functionality to serve
more general use-cases and improve extinsibility; Finally, in section
9 we give a general overview of the development team’s assessment
on TapisWork�ows’ ability to satisfy the current use-cases followed
by a brief overview of the content covered in this paper.

2 USE CASES
This sections introduces some common use cases for which Tapis
Work�ows is currently employed and the details of how organiza-
tions in a wide variety of scienti�c and engineering domains are
leveraging it to build and run their work�ows.

2.1 Continuous Integration/Continuous
Deployment

CI/CD is a common use case served by Tapis Work�ows. Generally,
these work�ows include building images for containerized scienti�c
applications, running any built-in programmatic tests to ensure they
function as expected, and pushing them to remote image registries.
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2.1.1 Tuitus. Tuitus [24], an NSF-funded project at the University
of Texas at Austin, maintains a suite of scienti�c tools for support-
ing research in Natural Hazard Engineering. One of the aims of the
Tuitus project is to develop a set of CI/CD best practices for appli-
cations designed to run on HPC infrastructure. Tapis Work�ows
will be used by Tuitius to build, test, and persist their containerized
scienti�c applications.

2.1.2 HETDEX. The Hobby-Eberly Telescope Dark Energy Exper-
iment (HETDEX) [17] is an international collaboration between
universities including the University of Texas at Austin, Ludwig-
Maximilians-Universität München, Georg-August-Universität Göt-
tinge, and Pennsylvania State University, in which the clustering of
galaxies is measured using McDonald Observatory’s Hobby-Eberly
Telescope in an e�ort to look for potential evolution in dark energy.

The HETDEX group employs Jupyter Notebooks via Jupyter
SCINCO [25] for analysis and visualization of data produced by
this experiment. The underlying image for their Jupyter Notebook
is built using the image building functionality available with Tapis
Work�ows and subsequently persisted to a remote image registry.

2.2 ETL Pipelines
ETL Pipelines (extract, transform, load) are applications in which
data is ingested, transformed, then transferred to a �nal destination.

2.2.1 JPL NEID project. NEID [5] is an astronomical spectrograph
constructed at Penn State for NASA’s Jet Propulsion Laboratory. Its
purpose is to analyze the spectra of nearby stars for perturbations
in order to discover and classify extra solar planets.

As data �les are generated by JPL’s NEID spectrograph, they are
transferred to the local inbox—a Tapis System [12]—via a Globus [3]
transfer, and a manifest containing the �le paths is generated. Once
manifest �les are detected, a request is sent to the Tapis Work�ows
API to run the data transformation. The data transformation consist
of running an HPC job via the Tapis Jobs API [23], archiving the
data, and transferring the newly transformed data back to JPL via
Globus.

3 TECHNOLOGIES
In this section, we discuss the technologies upon which Tapis Work-
�ows is constructed and the decisions behind choosing those tech-
nologies.

3.1 API
The Tapis Work�ows API makes use of Django [22], an open source
Python-based framework for building secure and scalable web ap-
plications. Django was chosen for its ability to integrate with a
variety of database management systems (DBMS) used in other
Tapis projects, its use of object-relational mappers (ORMs) [6] to
facilitate rapid development by enabling access to the data layer
through high-level abstractions in contrast to direct use of the
querying language in code, and built-in security measures for coun-
tering common exploits faced by web-based services (SQL injection,
cross-site request forgery, etc.).

3.1.1 API Performance. The Tapis Work�ows API can perform
under loads approximately �ve times the average expected number
of concurrent users without degradation of service. Load tests were

performed using Locust [18] at a maximum of 500 concurrent users
at a hatch rate 100 users per second for 32,520 requests over 5
minutes. This test resulted in a request failure rate of less than 0.1
percent.

3.2 Message Queue (RabbitMQ)
Tapis Work�ows utilizes RabbitMQ [20] for inter-service commu-
nication — namely, requests between the Tapis Work�ows API and
the Work�ow Engine. The message queue creates a loose coupling
between the Work�ows API and Work�ow Engine, allowing other
APIs and tools to be developed independently around the Work-
�ow Engine. Exchanges on RabbitMQ are also used internally by
the Work�ow Engine for scheduling work�ows and managing the
work�ow execution life cycle.

3.3 Persistence
Due to the relational nature of the Work�ow API’s data model,
Tapis Work�ows employs MySQL for work�ow persistence.

4 PROJECT STRUCTURE, CODE STYLE, AND
CI/CD

In order to promote and simplify open source contribution to Tapis
Work�ows, this project has employed a project structure, design pat-
terns, and architectural paradigms found in common use amongst
large and complex open source projects.

4.1 Monorepo
All source code for the services that comprise Tapis Work�ows
are contained within a single code repository, called a monorepo
[19]. This has multiple advantages compared to the more common
polyrepo [19] pattern. First, code bases that are housed in a single
repository bene�t from the ability to develop and run unit, func-
tional, and integration test suites across services. For example, the
Tapis Work�ows API and the Work�ow Engine share DAG valida-
tion utilities and various API Gateways used for sending requests to
other Tapis Services. Additionally, it simpli�es CI/CD as container
images for each services can be built concurrently as part of a single
deployment.

4.2 Code Style
The Tapis Work�ows API and Work�ow Engine are written in
Python with a clear, modular design to encourage and facilitate
open-source contributions to the project. This project makes ex-
tensive use of advanced object-oriented design commonly used
in applications developed in languages such as Python, Java, and
C#. Such patterns include Strategy, Builder, Observer, Decorator,
Factory, Singleton/Multiton, and Object Pool.

4.3 Github Actions
CI/CD for Tapis Work�ows is managed using GitHub Actions [7]
and con�gured to build both the API and Work�ow Engine images
on push or merge of major branches, run unit and functional tests
for both images, and push them to Dockerhub once all program-
matic tests pass.
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Figure 1: Load test with Locust. 32,520 requests over 5 minutes.

4.4 Branching and Image Versioning
This project roughly follows the GitFlow [8] branching model,
maintaining four major branches that correspond to the four envi-
ronments to which Tapis Work�ows will be deployed; dev, staging,
test, and release-*. For all non-release branches, the images built for
a deployment are tagged with that branch name. For production re-
leases, the branch is named after the release target version pre�xed
with “release-”. When a release branch is pushed, the version is
parsed from the branch name and the image is tagged with the num-
ber that follows “release-”; ex. A branch named “release-1.2.5” will
result in images tagged as the following: tapis/work�ows-api:1.2.5
and tapis/work�ows-pipelines:1.2.5.

5 DATA MODEL
This section covers the fundamental entities of the Tapis Work�ows
API and how they relate to each other.

5.1 Tasks
Tasks are the units of work performed in a work�ow. There are six
di�erent types of tasks, each exposing unique functionality that
performs work commonly found in advanced research computing
work�ows. Each of these tasks’ capabilities will be discussed in
section 6.5. Tasks in a pipeline are modeled as nodes in a directed
acyclic graph (DAG) in which their relationships, i.e. their depen-
dencies, determine the order of their execution, and where tasks
without dependencies are the �rst to be executed.

5.2 Pipelines
Pipelines are collections of tasks and a set of rules for governing
the behavior and life cycle of a work�ow. On this object, users can
modify aspects of the execution pro�le. These include the max exe-
cution time or TTL of a pipeline, the task invocation mode which
controls whether tasks are executed concurrently or serially, max

retries which speci�es the number of times a pipeline can be rerun
after failure, and duplicate submission policy which determines
whether the Work�ow Engine should terminate the current dupli-
cate work�ow, cancel the incoming work�ow, or run the duplicate
work�ows concurrently.

5.3 Groups
A Group de�nes a set of Tapis users that own work�ow objects
such as pipelines and tasks. All members of a group are capable of
creating and running work�ows owned by that group. Groups must
have a unique id within the Tapis tenant to which they belong.

5.4 Identities
Identities are mappings of Tapis users to identities which are ex-
ternal to the Tapis framework. These identities can be used as a
replacement for providing raw credentials in work�ow de�nitions
— speci�cally those required by the image build task (discussed in
section 6.5.1) — when building images from source code in private
repositories and pushing the resultant image to private registries.
Additionally, identities are used to validate requests from external
entities that trigger work�ows such as Github Actions or Gitlab
CI/CD.

The Tapis Work�ows API leverages the Tapis Security Kernel
(SK) [11] — backed by HashiCorp Vault [4] — to encrypt and store
the credentials. Once the credentials for an identity are persisted,
they will only ever be shared between the Tapis Work�ows API
and the Work�ow Engine.

5.5 Pipeline Runs & Task Executions
Pipeline Runs and Task Executions are objects that represent the
status of Pipelines and Tasks as they are being processed by the
Work�ow Engine. These objects can only be created by the API
during the runPipeline operation, or the Work�ow Engine as a
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work�ow runs through the various stages of the execution life
cycle.

6 WORKFLOW ENGINE
The Work�ow Engine is composed of seven core components. The
Work�ow Server, Worker Pool, Work�ow Executor, Task Executors,
Event Exchange, Middlewares, and Reactive State. This section cov-
ers the roles of each component in controlling work�ow execution.

6.1 Work�ow Server
The Work�ow Server is the entry point for the Work�ow Engine.
It is responsible for establishing and maintaining connection with
the message queue (RabbitMQ) and its exchanges (The Inbound
Exchange, Retry Exchange, and Dead-letter Exchange), managing
the Work�ow Executors via the Worker Pool, and handling request
idempotency.

6.2 Worker Pool
The Worker Pool is an in-memory collection of Work�ow Executor
instances organized as a double-ended queue (deque; pronounced
“deck”). The number of workers, and thus, number of Work�ow
Executors instantiated are determined by con�gurations speci�ed
in the deployment �les of the Work�ow Engine. The Worker Pool
is elastic, meaning users can specify a minimum and maximum
number of Workers; as requests come in, additional Workers can
be added to the pool at runtime up to the limit speci�ed in order to
accommodate increased request load.

Worker concurrency is implemented via threads. This was cho-
sen over multi-processing due to the convenience of sharedmemory
and constraints imposed by request idempotency (discussed in sec-
tion 6.7.2).

6.3 Work�ow Executor
The Work�ow Executor is the primary workhorse of the Work�ow
Engine. Each Work�ow Executor is capable of processing a single
work�ow submission at a time. It is responsible for Task Executor
dispatching and threading, task dependency management, process-
ing and validating their inputs and outputs, and maintaining the
Event Exchange to which Events can be published and subscribed
to by various middlewares that handle requests to remote backends
and task result archivers.

As tasks are executed by theWork�ow Executor, their results are
stored on an NFS-server and operated upon by subsequent tasks.
Once a work�ow has reached a terminal state, all of the results are
deleted.

6.3.1 Hooks. The life cycle of a work�ow execution
is managed through a series of �ve hooks; on_start,
on_change_ready_task, on_change_state, on_task_terminal_state,
and on_pipeline_terminal_state.

6.3.1.1 _on_start. The on_start hook is called at the beginning
of work�ow execution. This hook is responsible for task DAG
validation, preparing the �le system structure to organize task
results and logs, determining which tasks to execute initially, and
populating the ready_tasks array with those initial tasks.

6.3.1.2 on_change_ready_task This hook runs when new tasks
are appended to the ready_tasks array. For all tasks in the
ready_tasks array, Task Executors are dispatched according to their
type and the Work�ow Executor awaits their terminal state.

6.3.1.3 _on_change_state This intermediate hook is called when
Task Executors mutate state in the Work�ow Executor. It is reg-
istered with a state locking mechanism (Reactive State, covered
in section 6.4) that enables a Task Executor to perform operations
over shared state between the Work�ow Executor and other Task
Executors in a thread-safe manner.

6.3.1.4 _on_task_terminal_state When a task reaches a terminal
state (succeeded, failed, or terminated), the
_on_task_terminal_state hook will clean up the temporary
resources created during the task’s execution and populate
the ready_tasks array with new tasks, thereby triggering the
_on_change_ready_tasks hook and processing the next tasks. This
occurs recursively until all tasks have entered a terminal state or
the work�ow reaches its max exec time.

6.3.1.5 _on_pipeline_terminal_state This is the �nal hook which
is called once all tasks in a work�ow have either completed, or a
task fails causing the work�ow to fail. This hook is responsible for
cleaning up temporary resources created by theWork�ow Executor,
and triggering middleware responsible for archiving and reporting
the status of work�ows and their tasks.

6.4 Reactive State
A single Reactive State object is instantiated per Work�ow Execu-
tor for storing and mutating state subject to potential race condi-
tions–i.e. state accessed by the Work�ow Executor and Task Execu-
tors running inmultiple threads. This object has two responsibilities.
The �rst is to lock access to the state from other threads when values
are set or fetched. The second is to dispatch hooks registered with
the Reactive State when values speci�ed in the hook’s dependency
list are accessed by Task Executors. These hooks allow methods on
the Work�ow Executor to be called during the state lock, ensuring
there are no race conditions for that particular dependency. Once
all hooks for that value are called, the state is then released and
other threads can access it once again.

6.5 Task Executors
Task Executors instances are spawned by the Work�ow Executor to
handle the execution of individual tasks based on their type. There
are six di�erent types of tasks and a corresponding Task Executor
for each. This section covers the unique functionality that they
bring to Tapis Work�ows.

6.5.1 Image build. Containerization is an important paradigm for
packaging and running scienti�c applications in a reproducible
manner. Tapis Work�ows leverages existing image building tech-
nologies such as Singularity [10] and Kaniko [15] to build both
Singularity and Docker images from source code and persisting
those images to container registries or in local work�ow storage.
The Image Build Task also has the capability to convert Docker
images into SIF �les.

The Image Build task is de�ned in two steps. First is the “con-
text”, i.e. the source of the image to be built. This can be a public
or private repository on a source control platform, or a registry
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Figure 2: Work�ow Engine Architectural Overview

on Dockerhub. For private repositories, the user must provide the
credentials necessary to access it when de�ning the context. The
credentials (username and access token) can be furnished directly
on the context de�nition itself or by providing the UUID of a Work-
�ow Identity (mentioned in section 5.4).

The second step is de�ning the “destination”, i.e. where the re-
sultant image is to be persisted. Like the context, credentials or
a Work�ow Identity will be required to push images to a private
registry. Users can also specify a local destination. This useful if
users desire to test their images before pushing them to a �nal
remote repository.

6.5.2 Request. Requests enable users to make HTTP requests to
applications external to the Work�ow Engine. Outputs from com-
pleted tasks can be sent from the Work�ow Engine to trigger ad-
ditional work�ows that run on external resources. Alternatively,
a Request task can fetch data from an external resource to be pro-
cessed as a part of a work�ow execution.

6.5.3 Container run. Container Run task o�ers a way for users to
run small containerized applications (less than 4CPUs and 16GB
of memory) run as a Job [14] on the Tapis Kubernetes [16] cluster.
This task is intended for applications that do not need to make use
of high performance computing infrastructure. This task can be

executed in one of two modes which is speci�ed by a boolean value
in the “poll” property of a work�ow de�nition.

When set to “true”, the task executor queries the Kubernetes API
for the job status until some terminal state (Failed or Completed)
is reached. If the container exits with a “Completed” status, the
stdout of the container is validated to ensure that it conforms to the
output speci�ed in the work�ow de�nition (if de�ned). If an output
produced by the container fails validation, the task execution is
marked as failed. If the job concludes with status “Failed”, the task
execution will also be marked as failed and all tasks that are depen-
dent on it will not be executed. When set to “false” the container
will run in the background and the Kubernetes Job’s status will be
ignored.

6.5.4 Function. Function tasks o�er a way for users to run arbi-
trary code in the language and runtime environment of their choice.
These environments are furnished with the work�ow context—a
pre-loaded object that contains the current state of the Work�ow
Executor—which includes the outputs of previous tasks and can be
accessed via the “ctx” constant inside the user-de�ned code. The
user-de�ned code is provided via the "code" property of the task
de�nition and is expected to be a base64-encoded string.

Functions are a specialized set of the container run type with
restrictions. The pods spawned by these tasks are network isolated
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as well as restricted from accessing the Kubernetes API via Cluster
Roles (CR) and Cluster Role Bindings (CRBs). Additionally, the
Kubernetes service token mounted into pods by default is deleted
to ensure access to the Kubernetes API is impossible. The runtimes
available for use are node19, python3.9, and python2.7. Support for
more runtimes will be developed on an as-needed basis.

6.5.5 Tapis-actor. The Tapis Actors API, also known as Abaco [13],
is a distributed function-as-a-service platform deployed as a part
of Tapis. The Work�ow Engine’s integration with Abaco allows
users to extend their existing actor pipelines with additional tasks
in Tapis Work�ows.

Like the Function task, actors can be polled until they reach a
terminal state, or triggered and run in the background. Since actors
can be linked, the work�ow engine will poll each actor recursively
until all linked actors have �nished running. If a single actor ends
in a failed terminal state, the task will also fail.

6.5.6 Tapis-job. The Tapis Jobs API is a service with which users
can run containerized scienti�c applications on high performance
computing systems. Job submissions are de�ned as JSON objects on
the tapis_job_def property of the task object and submitted directly
to the Jobs API during work�ow execution. Like other tasks, the
submitted Tapis Job can be polled until it reaches a terminal state.

6.6 Middleware
EachWork�ow Executor is furnished with a set of middlewares that
respond to events generated throughout the life cycle of a work�ow.
These middlewares come in two types: Backends and Archivers.
Backends are used to send data to remote entities regarding status
of work�ow and task executions and Archivers are used to persist
the results generated by the tasks to external entities such as a
Tapis System or an S3 bucket.

6.6.1 Event Exchange. The Event Exchange is the mechanism by
which a Work�ow Executor publishes updates about its current
stage of execution. These include pipeline statuses (ACTIVE, COM-
PLETED, FAILED, TERMINATED, etc), and task statuses (ACTIVE,
COMPLETED, FAILED, TERMINATED, SKIPPED, etc). When pub-
lished, each event contains the state of theWork�ow Executor at the
moment it was published. This enables independent components,
such as the aforementioned middlewares, to perform operations
over that state and communicate that data with external entities.

6.7 Work�ow termination
There are a number of challenges to managing state in applications
that share memory between a variable number of dynamically-
generated nested threads. The Work�ow Executor components in
the Work�ow Engine employ a combination thread locking and
method interception (aka action �lters) via decorators to ensure
that state accessed in the various stages of work�ow execution
remains consistent in order to avoid race conditions.

6.7.1 Termination decorator. The termination decorator [1] is a
function that is called before and after life-cycle methods in a Work-
�ow Executor. This is implemented as a decorator factory that can
be passed an optional clean-up function. When a life-cycle method
is called, the Work�ow Executor is checked for a termination status.

If it is "terminated" or "terminating", that life-cycle method will be
skipped and the optional clean-up function will be invoked to roll-
back the state of the executor in preparation for the next work�ow
execution.

6.7.2 Request Idempotency. In order to track and handle duplicate
requests to the Work�ow Engine, an idempotency key is created
and assigned to each work�ow submission. This idempotency can
either be directly supplied by the user in a work�ow request via
the "idempotency_key" property, or constructed according to the
unique constraints speci�ed by a property of the same name. These
instructions are an ordered list of properties and selectors that,
when combined, form the idempotency key.

When a duplicate request is detected, the newly submitted work-
�ow will be governed in accordance with the current running work-
�ow’s duplicate submission policy. There are three policies avail-
able for handling duplicate requests. "ALLOW" permits the new
work�ow to run in parallel with the current work�ow, "TERMI-
NATE" terminates the current work�ow, and "DENY" discards the
new work�ow submission. Support will also be added for a "DE-
FERRED" policy which the new request will be placed in a special
queue in which it will wait for the current work�ow to reach a
terminal state before running.

7 TRIGGERINGWORKFLOWS
In this section, we will discuss the di�erent methods available
for triggering work�ows and how to modify work�ow execution
behavior through the use of directives.

7.1 Tapis Work�ows API
The most direct way to trigger a work�ow is directly through the
Tapis Work�ows API. This is done via POST request to the “run-
Pipeline” operation. In the request body, users can specify directives
which enable users to override the default behaviors of the work-
�ow. These directives will be discussed in a later section.

7.2 TapisUI
A recent addition to the Tapis framework, a front end web interface
called TapisUI [21], enables users to make requests to core Tapis
services–in addition to the Work�ows API–in the browser.

7.3 Tapipy
Tapipy is the Python SDK used by both developers and users for
making API calls to the full suite of Tapis services, including the
Tapis Work�ows API. It utilizes each service’s OpenAPI speci�ca-
tion [9] to dynamically generate methods on a Tapis client object
that correspond to all possible operations exposed by each of the ser-
vices APIs. With this tool, users can develop applications or scripts
that integrate with the Tapis Work�ows API and other services to
programmatically submit and run work�ows.

7.4 Source control platforms
Users may also trigger their work�ows with webhook noti�cations
from source control platforms such as Github Actions and Gitlab
CI/CD [2]. Using the template provided in the Tapis Work�ows
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documentation, users can set up webhook noti�cations on push or
merge.

7.5 Overriding work�ow execution behavior
In some scenarios, some properties of work�ows or tasks will need
one-o� modi�cations in order to accommodate a special circum-
stance or requirement under which they will be executed. For ex-
ample, in an image build task, a user may need to tag an image with
a di�erent tag than the one de�ned in the work�ow. This is made
possible through the use of directives. Directives are commands
sent along with a work�ow submission that instruct the work�ow
engine to modify certain properties of a work�ow de�nition before
or during its execution. In the use-case mentioned previously, the
user would specify a "custom_tag" directive in addition to the new
value they would like to use; ex. "v1.2.3" instead of "latest".

Directives leveraged in two ways. The �rst is by specifying a
"directives" property in a work�ow submission request. This prop-
erty is an array comprised of strings that conform to the required
syntax. Using the example above in which a user wants to tag the
image with the new value "v1.2.3", the string value of that directive
would be "custom_tag:v1.2.3". The second way to specify directives
is by adding a special string to the end of a commit message on a
commit that will trigger a work�ow. These directives must follow
the same syntax as before with additional constraints. All directives
must be inside of a single set of square brackets and separated by a
pipe character.

8 FUTUREWORK
This project plans to expand in scope to satisfy the functional
requirements of a broader spectrum of use cases in order to be
more generally useful to the scienti�c and research computing
communities. This section further elaborates on the vision of this
project and how it plans realize that vision through a more �exible,
extensible architecture and robust feature set.

8.1 Plugin architecture & Extensibility
One of the visions for this project is to provide a work�ow engine
that is implementation agnostic, extensible, and generally useful
across many di�erent domains and computing workloads. This can
be accomplished through a plugin-based architecture against which
software engineers can develop their speci�c implementations for
task execution, archiving, and backend noti�cation systems.

As explained previously, work�ow and task executors operate
on a publish-subscribe model in which events are published by
core components of the work�ow engine. These events are sub-
scribed to, and consumed by, various middlewares such as back-
ends and archivers. Currently, the work�ow engine and certain
middlewares–speci�cally, the Tapis backend and Tapis System
archiver–are tightly coupled, forcing an implementation that will
not be used in deployments that do not make use of the Tapis
framework.

We plan to extract these middlewares and convert them into
separate Python packages. These packages can then be enumerated
in the work�ow engine’s deployment con�gurations and installed
at runtime as part of the engine’s start up procedure. The interface

we design will serve as an example to other developers who need to
develop their own implementations of core work�ow components.

8.2 Imperative work�ows
Thus far, this project has focused solely on supporting simple,
declarative work�ows, as conditionality of task execution is gener-
ally more appropriately handled in the application logic of a task.
However, to say that taskB fails because taskA erroneously pro-
duced a result with a value that falls outside of expected range or
taskB may not semantically accurate and complicates debugging
failed work�ows. Additionally, there are many use cases in which
it would be useful for tasks to be dynamic, such as when a task per-
forming work on a variable amounts of data produced by previous
tasks. For such cases, we plan to support conditional expressions in
task de�nitions as well as work�ow-modifying functionality to be
used inside of those expressions in addition to exposing the same
functionality within the application logic of "function" type tasks.

8.2.1 Conditional Tasks. In some cases, a task may become ren-
dered redundant or ine�ectual by a previous task’s output but not
necessary for the continued successful execution of a work�ow. In
such cases it may be desirable to skip such a task. This use case will
be supported by implementing an "if" property in conjunction with
a set the special functions and operators (covered in section 8.2.2).
If the conditional expression de�ned in this property evaluates to a
boolean "true" or can be coerced into such, the task will run. If it
evaluates to a false-y value, the task will be skipped. For cases in
which a task is skipped and one or more tasks are dependent on it,
the work�ow will fail.

8.2.2 Special functions. Task de�nitions will be further extended
to include the use of macros and comparison operators inside of the
conditional expressions mentioned above. These functions would
enable sub-string checking, type validation, and environment vari-
able inclusion.

9 CONCLUSION
Tapis Work�ows has demonstrated that it is a viable work�ow
management platform that can support a wide variety of use cases
for advanced research computing pipelines in the Tapis ecosystem.
Development will continue on both software features and orga-
nizational processes in an e�ort make the platform more general
purpose and open-source friendly. In this paper, we covered the
real-world scienti�c implementations of Tapis Work�ows, the API
data model, tech stack, and Work�ow Engine architecture.
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