Check for
Updates

Workflow management for scientific research computing with
Tapis Workflows

Architecture and Design Decisions behind Software for Research Computing Pipelines

Nathan Freeman
Texas Advanced Computing Center
Austin, Texas, USA
nfreeman@tacc.utexas.edu

ABSTRACT

Developing research computing workflows often demands signifi-
cant understanding of DevOps tooling and related software design
patterns, requiring researchers to spend time learning skills that
are often outside of the scope of their domain expertise. In late
2021, we began development of the Tapis Workflows API to address
these issues. Tapis Workflows provides researchers with a tool that
simplifies the creation of their workflows by abstracting away the
complexities of the underlying technologies behind a user-friendly
API that integrates with HPC resources available at any institution
with a Tapis deployment. Tapis Workflows Beta is slated to be re-
leased by the end of April 2022. In this paper, we discuss the high
level system architecture of Tapis Workflows, the project structure,
terminology and concepts employed in the project, use cases, design
and development challenges, and solutions we chose to overcome
them.

CCS CONCEPTS

« Software and its engineering;

KEYWORDS
workflows, containers, API, HPC

ACM Reference Format:

Nathan Freeman, Joe Stubbs, and Richard Cardone. 2022. Workflow manage-
ment for scientific research computing with Tapis Workflows: Architecture
and Design Decisions behind Software for Research Computing Pipelines.
In Practice and Experience in Advanced Research Computing (PEARC °22),
Fuly 10-14, 2022, Boston, MA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3491418.3535142

1 INTRODUCTION

Tapis Workflows is an official Tapis API [17] designed to automate
the execution of research computing tasks in the Tapis ecosys-
tem, coordinate their inputs and outputs, and communicate the
resultant data or product with external resources. Tapis Workflows
offers users the ability to design workflows in which they can build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3535142

Joe Stubbs

Texas Advanced Computing Center
Austin, Texas, USA
jstubbs@tacc.utexas.edu

Richard Cardone
Texas Advanced Computing Center
Austin, Texas, USA
rcardone@tacc.utexas.edu

container images, run scientific computing jobs, and trigger sub-
sequent workflow tasks on independent systems with webhook
notifications.

In this section, we introduce the terminology and important
concepts employed in the project, namely pipelines (workflows),
actions (tasks) and their functions, and other entities related to
resource ownership and pipeline operation.

1.1 Actions

Actions are discrete tasks performed during the execution of a work-
flow. They can be represented as nodes on a directed acyclic graph
(DAG), with the order of their execution determined by their depen-
dencies, and where all actions without dependencies are executed
first.

Tapis Workflows currently supports 3 types of actions—referred
to as action primitives—that perform functions common in research
computing workflows; The image-build action, webhook notifica-
tion action, and tapis-job action.

1.1.1 Image Build. The image-build action allows users to build
container images from configuration files (Dockerfiles) located in
code repositories and push the built image to remote registries.
The image build action uses Kaniko [6], a software for building
container images that is executed inside of a container or as a Job
in a Kubernetes cluster [7].

1.1.2 Webhook Notification. The webhook notification action al-
lows users to make HTTP requests to a specified endpoint with a
payload containing data from computation of previous workflow
actions. This action can be used to mutate external data sources, or
fetch data from another API and make it available to subsequent
actions. Currently, the only supported HTTP methods are those
associated with CRUD operations (GET, POST, PUT, PATCH, and
DELETE).

1.1.3 Tapis Job. The tapis-job action acts as a proxy for the job
submission operation of the Tapis Jobs API, a specialized service
for running containerized applications across large computational
resources [15]. When defining a tapis-job action, users must provide
a job submission schema just as they would if they were submitting
a job directly with the Jobs Service [8]. If the result of the tapis-job
action is important for subsequent actions in the pipeline, users
can specify the ‘poll-until-complete’ behavior, which will block all
dependent actions until the submitted job comes to some terminal
state.

https://doi.org/10.1145/3491418.3535142
https://doi.org/10.1145/3491418.3535142
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491418.3535142&domain=pdf&date_stamp=2022-07-08

PEARC °22, July 10-14, 2022, Boston, MA, USA

1.1.4 Future Actions. After the beta release of Tapis Workflows,
development will be started on two additional action primitives.
The tapis-actor action, container-run action, and the script action.
More information on these actions can be found in sections 5.1, 5.2,
and 5.3 respectively.

1.2 Groups, Users, and Identities

Groups are collections of users that own workflow resources. For
all tasks that require secure access to remote resources—such as the
image-build and webhook notification actions—user’s can create
mappings to external identities along with the credentials required
to access those resources.

1.3 Pipelines and Directives

A Pipeline is a unique collection of actions (tasks) that define a
workflow. Operations on pipelines and associated resources are
only available to users that belong to the group that owns them.

Pipelines can be triggered in two ways; Direct API calls and web-
hook notifications from source control platforms. Users can provide
special commands (Directives) in the request body of API calls—or
in the case of webhook notification, the commit message—that pro-
vide users with a way to invoke optional or custom behavior of
pipeline and action executions. Directives enables users to perform
mock-runs of their pipelines to ensure their actions run in the cor-
rect order, tag their images with custom values during image builds,
and enable caching to improve subsequent image build-times.

2 ARCHITECTURE

Tapis Workflows employs a microservices architecture, providing
scalability, loose coupling between services, and ease of develop-
ment. The project consists of 4 main components; an API, pipeline
service, message broker, and database. What follows is an explana-
tion of the project’s source code structure and the technologies and
relationship between the major components that make up Tapis
Workflows.

2.1 Project Structure

The source code for each component is contained in a single repos-
itory, following the monorepo pattern [11]. Monorepos are a useful
project structure for software that uses a microservice architecture
and organizations that maintain codebases for many interconnected
applications.

This pattern was chosen over the polyrepo pattern for three
primary reasons. First, the Pipelines Service and API share com-
mon utilities responsible for DAG and request validation. Second,
because each service is located in the same repository, it allows
us to take a holistic approach to testing to ensure functionality is
maintained between services. Third, it simplifies the development
process as code changes to multiple services can be encapsulated
in a single commit.

The downsides to using monorepo—namely the issues associated
with scaling and lack of granular access control on individual ser-
vices—are not projected to complicate future development efforts.

Freeman et al.

2.2 Components

The 4 previously mentioned components will be deployed in Kuber-
netes for the development, staging, and production environments,
and docker-compose [14] for local development environments.

2.2.1 API. Tapis Workflows exposes a Python/Django REST API
that allows users to create pipelines, actions, and related resources
to facilitate research computing workflows. The Django framework
was chosen because it comes furnished with a collection of tools
that make API development fast and secure, and works well with
most major databases [5].

One of the primary reasons for using Django is its built-in object-
relational mapping (ORM). It significantly reduces the amount of
code necessary to query and mutate data sources, albeit at a cost to
performance. Taking into consideration the current and projected
use cases, the fact that the API is neither read nor write heavy, and
the vast majority of the processing workload will be handled by
Pipeline Service, the trade-off of API performance for speed and
ease of development was deemed acceptable.

The Tapis Workflows API—like other Tapis APIs—provides an
OpenAPI (v3)-compliant specification. This means that it is com-
patible with the existing Python (tapipy) [9] and Java SDKs for
interacting with the service.

2.2.2 Pipelines Service. The Pipeline Service is a containerized
component written in Python that is responsible for managing the
life-cycle of pipelines, their actions, and validating their inputs and
outputs. As previously stated, the order of execution is determined
by the dependencies specified on the action object when it is cre-
ated. The Pipeline Service is capable of executing actions within a
single pipeline both serially and concurrently. For all short-running
executions such as with webhook notifications, and Tapis job and
actor actions—when poll-until-complete behavior is not specified,
the processing occurs directly on the Pipeline Service container. For
all CPU and I/O bound executions, the action is run in a separate
container (i.e. Job in Kubernetes).

This service is triggered by messages containing pipeline spec-
ifications sent from the API via RabbitMQ. It then dispatches the
initial action(s) and queues up the remaining actions. Once an ac-
tion finishes executing and the expected output of that action is
verified and validated, all queued actions that depend on the com-
pleted action are dispatched—provided they are not dependent on
an action that is currently running.

2.2.3 Database. The data model for Tapis Workflows contains a
mixture of both structured and unstructured data, with a strong
bias towards the former. For this reason, a decision was made to
use MySQL as the primary database.

3 USE CASES

The following section discusses the early adopter use cases for the
Workflows APL

3.1 SCINCO’s JupyterHub

Tapis Workflows was initially designed to serve as the CI (con-
tinuous integration) system for the TACC’s SCINCO JupyterHub
platform [16]. When users of this platform publish changes to their

Workflow management for scientific research computing with Tapis Workflows

Jupyter Notebook Dockerfiles, the CI system receives a webhook
notification from the source control platform, pulls the code con-
taining the updated configuration file to build a new image, pushes
that image to a destination registry(Dockerhub), and sends a web-
hook notification to an endpoint on the Kubernetes cluster hosting
the JupyterHub, pulling in the new image and restarting the service.

3.1.1 HETDEX. HETDEX (The Hobby-Eberly Telescope Dark En-
ergy Experiment) is a collaborative effort by The University of Texas
at Austin, the Pennsylvania State University, Ludwig-Maximilians-
Universitdt Miinchen, and Georg-August-Universitat Gottingen,
aimed at measuring the cosmological state of the early universe
to look for potential evolution in dark energy by measuring the
clustering of over 1 million distant galaxies using the Hobby-Eberly
Telescope at the McDonald Observatory [10]. The HETDEX group
maintains a Jupyter Notebook image used for interactive data anal-
ysis and visualization. They will employ Tapis Workflows to build
the container image and push it to an image registry.

3.2 DARPA SHADE

SHADE(Stabilizing Hostilities through Arbitration and Diplomatic
Engagement) is a DARPA Al Exploration initiative that seeks to
explore technologies that assist in multi-party decision-making,
collaboration, and negotiation [12]. The DARPA SHADE program
will leverage Tapis Workflows to rapidly build, test, and iteratively
improve Al agents designed to compete in the game of Diplomacy

[1].

4 CHALLENGES AND SOLUTIONS

4.1 Existing Technologies vs. Custom Solution

There are existing technologies that offer the same functionality as
Tapis Workflows and solve many of the same problems. For the CI
Pipeline use case, both Github and Gitlab offer their own solutions;
Github Actions and Gitlab CI, respectively. However, they come
with limitations.

For academic institutions, access to premium features can be
prohibitively expensive. Additionally, the memory and storage al-
lotments for even the most robust plans do not satisfy the require-
ments for some research computing use cases. For example, TACC’s
Jupyterhub platform routinely requires image builds that use in
excess of 16GB of memory and take 15 to 25 minutes to build. TACC
has its own self-hosted instance of Gitlab, but does not meet the
minimum memory requirements necessary to run a single image
build for any of the previously mentioned use cases. Therefore, a
custom solution that runs on dedicated hardware appeared to be
the clear option.

4.2 Scalability and Action Scheduling

In its current state, Tapis Workflows adopts a first-in-first-out ap-
proach to pipeline and action execution. This is sufficient to satisfy
the requirements for the initial use cases, but will inevitably be-
come an issue when users submit multiple pipelines with actions
that run over long periods of time or consume large amounts of
computational resources(Memory, CPU, etc).

PEARC °22, July 10-14, 2022, Boston, MA, USA

The proposed solution is to develop a mechanism that enables
the pipeline service to run actions from multiple pipelines concur-
rently and prioritize actions based on their estimated resource con-
sumption, execution time, and order in which they are submitted.
Additionally, users will be required to specify a TTL(time-to-live)
on their action definition that sets a limit on the amount of time it is
permitted to run. Actions that exceed their TTL will be terminated.

4.3 Securing Sensitive Data

The safe handling of sensitive data is one of the foremost concerns
of Tapis Workflows. For some actions—the image-build action, for
example—users are required to provide credentials that permit
access to restricted external resources such as code repositories
and image registries. In order to reduce the workload inherent in
manual authentication for every run of a pipeline, a design decision
was made to persist those credentials. A robust solution was needed
to ensure their safe storage. For this, the project makes use of Tapis
Security Kernel(SK) [3] an authorization and secrets management
service backed by HashiCorp Vault [2].

4.4 Action Inputs, Outputs, and Terminal State

One of the biggest challenges we face in the development of Tapis
workflows is how to manage the input and output between ac-
tion dependencies, and how to qualify an action as having exe-
cuted successfully, particularly those of containerized actions (i.e.
container-run).

There are two criteria that can be used when qualifying the
terminal state of containerized actions. The container’s exit code,
and whether the data or products produced by an action match
the parameters specified by an actions output definition. Tapis
Workflows currently only uses the first criterion. For all actions
that do not specify any outputs, a non-zero exit code of the container
executing the action is sufficient for qualifying success. For actions
that specify output, that output must meet the quantity and type
constraints enumerated in the action’s output definition.

5 FUTURE WORK

Along with the tapis-job action mentioned above, there are plans
to integrate with additional services in the Tapis ecosystem.

5.1 Tapis Actor Action

This action will leverage the Abaco API [4], a container-based
function-as-a-service platform. This will enable users to execute
function primitives and utilize the results with other actions, includ-
ing other tapis-actor actions. Abaco writes the results of a function
to the stdout of the container in which it ran. If the result reported
by Abaco does not conform to the data type specified in the output
definition of the action, the action will fail.

5.2 Container Run Action

The container-run action will allow users to run containers using
their own images stored in remote repositories. Once the container
has finished running, its files and data written to stdout will be val-
idated against the action’s output definition to determine whether
the action executed successfully.

PEARC °22, July 10-14, 2022, Boston, MA, USA

5.3 Script Action

The script-action will enable users to write arbitrary code in the
“command” property of an action definition following the Open-
WDL syntax [13]. Users will choose from a selection of program-
ming languages and runtimes in which to execute that code. This
provides them with the ability to transform the output data of one
action into a structure that conforms to the input definition of an-
other, increasing the re-usability of existing actions. For security
reasons, this action will be wholly restricted from access to external
networks.

6 CONCLUSION

A solution to managing research computing pipelines in HPC
ecosystems has long been sought after, and Tapis Workflows seeks
to lay the groundwork for that solution to be realized. We will
continue to work closely with various teams at TACC and other
institutions to understand their workflows, and develop function-
ality to meet their use cases. In this paper, we have covered how
Tapis Workflows approaches the problem of workflow management,
the concepts and technologies that drive its development, and the
solutions to challenges we expect to face as this project progresses.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation Office of Advanced CyberInfrastructure, the Tapis
Framework:[1931439 and 1931575]

Freeman et al.

REFERENCES

[1] 2009. The Invention of Diplomacy. https://web.archive.org/web/20090910012615/
http://www.diplom.org/~diparch/resources/calhamer/invention.htm Last access:
2022-04-04.

[2] 2019. HashiCorp Vault. https://www.vaultproject.io/ Last access: 2022-4-4.

[3] 2019. Tapis Security Kernel. https://tapis.readthedocs.io/en/latest/technical/
security.html Last access: 2022-4-1.

[4] 2020. Actors. https://tapis.readthedocs.io/en/latest/technical/actors.html Last
access: 2022-3-31.

[5] 2020. Django: Supported Databases. https://docs.djangoproject.com/en/4.0/ref/
databases/ Last access: 2022-03-31.

[6] 2020. Kaniko. https://github.com/GoogleContainerTools/kaniko Last access:
2022-03-31.

[7] 2020. Kubernetes. https://kubernetes.io/ Last access: 2022-3-31.

[8] 2020. Submitting a Tapis Job. https://tapis.readthedocs.io/en/latest/technical/
jobs.html#the-job-submission-request Last access: 2022-03-31.

[9] 2020. Tapipy. https://github.com/tapis-project/tapipy Last access: 2022-03-31.
[10] 2021. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Survey
Design, Reductions, and Detections. https://ui.adsabs.harvard.edu/abs/2021Ap]...
923..217G/abstract Last access: 2022-04-05.

2021. Monorepo vs. Polyrepo. https://github.com/joelparkerhenderson/monorepo-

vs-polyrepo Last access: 2022-03-31.

2021. SHADE: Federal Contract Opportunity. https://govtribe.com/opportunity/

federal-contract-opportunity/shade-darpapa210403 Last access: 2022-03-31.

[13] 2022. OpenWDL: Defining Commands. https://github.com/openwdl/wdl/blob/
main/versions/1.0/SPEC.md#command-section Last access: 2022-3-31.

[14] 2022. An Overview of Docker Compose. https://docs.docker.com/compose/ Last

access: 2022-03-31.

2022. Tapis Jobs APL https://tapis.readthedocs.io/en/latest/technical/jobs.html

Last access: 2022-03-31.

Joe Stubbs et al. 2020. Integrating Jupyter into Research Computing Ecosystems.

Proceedings of the Practice and Experience on Advanced Research Computing,

PEARC 2020.

Joe Stubbs, Richard Cardone, Mike Packard, Anagha Jamthe, Smruti Padhy, Steve

Terry, Julia Looney, Joseph Meiring, Steve Black, Maytal Dahan, Sean Cleveland,

and Gwen Jacobs. 2020. Tapis: An API Platform for Reproducible, Distributed

Computational Research. (2020). submitted.

[11

[12

[15

(16

[17

https://web.archive.org/web/20090910012615/http://www.diplom.org/~diparch/resources/calhamer/invention.htm
https://web.archive.org/web/20090910012615/http://www.diplom.org/~diparch/resources/calhamer/invention.htm
https://www.vaultproject.io/
https://tapis.readthedocs.io/en/latest/technical/security.html
https://tapis.readthedocs.io/en/latest/technical/security.html
https://tapis.readthedocs.io/en/latest/technical/actors.html
https://docs.djangoproject.com/en/4.0/ref/databases/
https://docs.djangoproject.com/en/4.0/ref/databases/
https://github.com/GoogleContainerTools/kaniko
https://kubernetes.io/
https://tapis.readthedocs.io/en/latest/technical/jobs.html#the-job-submission-request
https://tapis.readthedocs.io/en/latest/technical/jobs.html#the-job-submission-request
https://github.com/tapis-project/tapipy
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..217G/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..217G/abstract
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo
https://govtribe.com/opportunity/federal-contract-opportunity/shade-darpapa210403
https://govtribe.com/opportunity/federal-contract-opportunity/shade-darpapa210403
https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#command-section
https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#command-section
https://docs.docker.com/compose/
https://tapis.readthedocs.io/en/latest/technical/jobs.html

	Abstract
	1 Introduction
	1.1 Actions
	1.2 Groups, Users, and Identities
	1.3 Pipelines and Directives

	2 Architecture
	2.1 Project Structure
	2.2 Components

	3 Use Cases
	3.1 SCINCO’s JupyterHub
	3.2 DARPA SHADE

	4 Challenges and Solutions
	4.1 Existing Technologies vs. Custom Solution
	4.2 Scalability and Action Scheduling
	4.3 Securing Sensitive Data
	4.4 Action Inputs, Outputs, and Terminal State

	5 Future Work
	5.1 Tapis Actor Action
	5.2 Container Run Action
	5.3 Script Action

	6 Conclusion
	Acknowledgments
	References

