
Tapis Pods Service Exploration and Initial
Performance Analysis

Christian Garcia, Joe Stubbs, Richard Cardone, Nathan Freeman
Texas Advanced Computing Center

The University of Texas at Austin

Austin, TX
(cgarcia, jstubbs, rcardone, nfreeman)@tacc.utexas.edu

Abstract—The Tapis Pods service is a novel open-source
API within the Tapis platform which enables researchers to
seamlessly manage Kubernetes containers, volumes, networking,
and security at the Texas Advanced Computing Center (TACC).
This paper explores the underlying operations, technologies, and
workflows of the Tapis Pods service, showcasing its current im-
plementation and effectiveness. Additionally, we discuss current
and potential use cases, highlighting the service’s unique features:
such as management capabilities, persistent storage, sharing,
and automatically encrypted networking. Initial performance
measurements against local Docker containers and alternative
cloud solutions demonstrate the Tapis Pods service’s competitive
performance, emphasizing its value as a general interface for
deploying user-defined containers.

Index Terms—containers-as-a-service, cloud-infrastructure,
open-source, API, Kubernetes

I. INTRODUCTION

The Tapis Pods service is a hosted API within the Tapis
[1] platform that manages Kubernetes [2] containers, volumes,
networking, and security at the Texas Advanced Computing
Center (TACC). Tapis’s comprehensive suite of APIs equips
researchers with the necessary tools to develop intricate and
specialized workflows. These workflows include HPC system
management, file handling, app integration, job scheduling,
actor control, stream processing, and more. Tapis Pods extends
the platform’s capabilities by providing users with a robust
interface to deploy and manage their long-lived containers,
with automatically encrypted networking and flexible per-
sistent storage options. For example, a user can instantiate
a Neo4j [3] graph database, a custom Flask [4] server, or
many user-defined applications. Users are able to configure
accessible ports and their encrypted subdomain location using
a single API call to the Pods service. This paper overviews the
Pods service, its technologies, workflows, and performance.

Section 2 provides examples of use cases for the service.
Section 3 offers an overview of the Pods service along with
current usage. Section 4 details our design for testing perfor-
mance against a local Docker [5] container and an alternative
cloud solution. Section 5 presents initial performance findings.
Section 6 discusses related work in the field. Section 7 outlines
potential future work. Finally, Section 8 concludes the paper,
summarizing the service and its role in research.

II. USE CASES

This will be an overview of the Tapis Pods service’s use
cases, along with examples of the benefits a user might expect
when using the Pods service.

A. Encrypted Online Cloud Databases

The Pods service was initially designed to facilitate database
creation and proxying. Many research groups have no simple
method to deploy secure and collaborative database envi-
ronments for multiple users outside of paid cloud services.
The Pods service aims to alleviate deployment frustrations
by providing a generic interface to deploy multiple templated
environments. Currently the Pods service is capable of proxy-
ing connections for Neo4j, GraphDB [6], and PostgreSQL [7],
three popular open-source databases, with a single line of code.
The service is generic enough that users can easily deploy
alternative databases and applications as well. Once deployed,
the Pods service optionally routes user traffic directly to and
from a deployed pod via encrypted TCP or HTTPS. As a
result, users can continue to employ the interfaces they are
accustomed to, such as regular database clients like psycopg2
for PostgreSQL, the Postgres’s pgAdmin GUI, and Neo4j
visualizers, which function as usual. This capability allows
teams to collaborate on databases remotely and enables users
to manage databases so that other pods can utilize them.

B. Software Stack Deployments

Software stack deployments are a strong suit of the Pods
service. The current trend of containerization for software
applications makes deploying a wide range of software stack
architectures with the Pods service possible. Users can create
pods using any Docker image they prefer, making it easy to
deploy different types of applications, such as simple web
apps, complex multi-pod services, or production APIs.

Additionally, the Pods service offers robust pod manage-
ment endpoints that allow users to easily shutdown, start, or a
restart a pod. This feature provides a valuable mechanism for
users to update their pod definitions and have their changes
reflected with a quick restart. It’s also worthwhile to note that
the Pods service allows pinning of Docker container hashes
or user-readable Docker tags. This allows users to easily
update and upgrade the underlying Docker images behind their
software stacks conveniently using the Pods service.



C. Backups, Versioning, and Data Democratization

The Pods service also contains the notion of volumes
and snapshots. Volumes allow users to write pod data to
persistent block storage with read and write permissions while
snapshots allow users to save a copy of volume data with read
permissions. With this, users can persist data and additionally
share live data between pods. This allows users to backup
data, version data, publish data, and create complex multi-pod
software stacks with data easily flowing between components.
These objects are also easily shared between Tapis users and
are able to made public to entire Tapis namespaces.

III. SERVICE DESIGN AND IMPLEMENTATION

The Tapis Pods service is a Python API using FastAPI [8],
the Kubernetes Python client, and Tapis OAuth to provide
an interface to manage pods, volumes, and snapshots. Users
can interact with the service through HTTPS web requests or
Tapis’s Tapipy [9] python library, an auto-generating ”live”
API library with type checking and helpful hints.

A. Explanation of Service Objects

Pods, equivalent to Kubernetes pods, can be defined via
an API call or with one line of Python executed anywhere:
“tapipy.Tapis().pods.create pod(template=‘neo4j’)”. Users can
specify the following: the Docker image to run, the command
to run in the pod, ports to expose securely with TLS using
TCP or HTTP protocols, volume mounting, expiration time,
and requested hardware resources. In addition to pods, users
can create and manage volumes and snapshots. Volumes are
persistent block storage that can be mounted to pods, providing
persistence and live data sharing between pods. Users can
upload, list, and delete files attached to these volumes, offer-
ing flexible workflows. Snapshots are non-editable, persistent
block storage that can be created and mounted, providing a
snapshot of a volume at a specific point in time. Snapshots can
be used for backups or sharing data from a volume or database
backend, offering another powerful workflow function.

The service takes advantage of Kubernetes for deploy-
ment and object management. The Pods service simplifies
the process and narrows the scope of Kubernetes. Whereas
Kubernetes requires complex configuration, admin access, and
understanding of the interface, Pods grants authenticated users
the ability to simply define and deploy their applications in any
Kubernetes environment the service is hosted in. For instance
the Pods service can be easily deployed with a single command
in a minikube [10] instance deployed locally on something
as small as a Raspberry Pi [11]. Encrypted routing is also
bundled with the Pods service, taking full advantage of Traefik
proxy [12] with custom configurations required for database
connection types such as Neo4j’s Bolt and Postgres’s StartTLS
protocol.

B. Service Architecture Overview

In this section, we’ll explore and gain a better understanding
of the Pods service architecture as depicted in Figure 1,
starting at the top-left and moving clockwise.

Fig. 1. An architecture diagram of the Tapis Pods service

Admins can create, share, and manage Pods through the
Pods API. These changes are reflected in the PostgreSQL
backend database, which contains object and administration
tables. A RabbitMQ [13] message is submitted to request a
new user-defined pod when a pod is created. The spawner con-
tainer manages the RabbitMQ and creates requested objects.
Kubernetes then takes over and creates the pod according to
the user’s provided definitions.

The Pods service uses a “health” container to regularly poll
Kubernetes for pod status and state updates, which are then re-
flected in the PostgreSQL backend. The health container plays
a crucial role in maintaining a clean working environment by
managing the pruning of pods, volumes, and snapshots that
do not have associations in the database. The process also
flags objects in the database not present in Kubernetes. This
functionality is critical to ensure optimal performance and a
seamless user experience.

A critical task that the health process has is in the con-
figuration of the Pod service’s Traefik proxy. This proxy
enables users to access their pods directly via the internet.
While ensuring a healthy environment, the health process
dynamically creates a proxy configuration file and updates the
proxy when changes have been made. This means that if a
user’s pod, “mypod”, went to “RUNNING” in the Kubernetes
environment, health would grab the correct service IP address
and update the proxy. This allows for a relatively short latency
between deployment and access.

The final part of the diagram details that users can access a
pod directly through the Traefik proxy provided by the Pods
service. The Pods service can route a request to the correct
pod by matching subdomain patterns and sniffing incoming
requests’ Server Name Identification (SNI). For example, a
user can connect to “https://myvol.pods.tapis.io” to access
an example “mypod” container on port 5000 using “HTTP”,
“TCP”, “Bolt”, or “StartTLS” protocols. The service uses an
encrypted “HTTPS” connection without user input rather than
“HTTP”. This is made possible with the Traefik proxy dynam-
ically allocating TLS certificates at runtime to ensure security
for all proxy locations. This subdomain routing method allows



Fig. 2. Initial Neo4j performance results

users to deploy their image and use custom routes, such
as “https://myvol.pods.tapis.io/mycustomroute”, with minimal
additional overhead while maintaining full encryption.

C. Current Examples

1) ICICLE - Components Catalog [14]: The Components
Catalog is a part of the ICICLE institute; a group that develops
collaborative research tools. This groups makes use of the
Pods service to deploy a Python Flask server pod and a Neo4j
database pod that displays information from the Neo4j pod
on the Flask server dashboard pod. With the Pods service’s
pod restart mechanism and Github action CI/CD, updating
and redeploying the software stack is simplified. Whenever
there are code updates, Github actions automatically build
associated Docker images, push said Docker images, and
restart the Flask server pod with the newly minted images.
This streamlined process makes the Pods service an attractive
option for deployment, especially for projects that require
frequent updates and maintenance.

2) ICICLE - Smart Foodsheds Visualization Dashboard

[15]: The Smart Foodsheds Project is an ICICLE institute
initiative focused on creating a user-friendly graphical user
interface (GUI) for retrieving and editing knowledge graphs
stored as graph structures in Neo4j databases. The project
utilizes a Vue.js frontend pod, Flask backend pod, and 3
Neo4j database pods, each of which is remotely managed
by different members of the institute simultaneously. By
leveraging the Pods service, the backend pod can connect to
the three Neo4j database pods, while the frontend pod can
connect to the backend pod. This multi-pod deployment allows
for flexibility, encrypted networking, and scalability, while
reducing the need for additional infrastructure management.
Like the Components Catalog, the Smart Foodsheds Project
uses Github actions for quick and efficient redeployments,
enabling rapid development deployment cycles.

IV. PERFORMANCE TESTING OVERVIEW

The Pods service provides a direct connection to user
pods, however additional encryption and proxy layers may
result in additional latency. To measure this latency, we will
measure the round-trip request time when returning 10K,
200K, and 500K nodes from a Neo4j database instance. You
can think of this as returning database rows in a traditional
SQL database. This testing is intended to inform us only of
initial service aptitude and is not an intensive breakdown of
performance. A future paper will center around further detailed
experimentation.

To evaluate the initial performance of the Tapis Pods
service, we measured round-trip request time from a host
machine to the Pods service and from a host machine to a local
Docker container. We also collected metrics for round-trip
request times from AuraDB [16] to a host machine for further
comparison. AuraDB is a Neo4j-owned cloud service that
enables remote access to Neo4j databases. The Pods service
can be thought of as an open-source alternative to database
cloud services and this will give us initial comparison points.

A. Testing Setup

A detailed and documented repository to completely repli-
cate our testing environment and procedure is located on
Github at tapis-project/pods_service_papers.
Our experiment architecture involves creating a Pods service
Neo4j database, deploying a local Docker Neo4j database, and
deploying a Neo4j database with Neo4j’s AuraDB service.
With our testing repository, we can quickly run and visualize
the experiments, with each experiment being run 60 times to
gather a complete picture of performance.

V. FINDINGS

The results of our initial testing can be found in Fig. 2. The
figure features an x-axis detailing the experiment backend, a
y-axis that denotes the round-trip request time in seconds, and



plot titles describing the experiment type. For each experiment,
we employ both a box plot for analytics and a strip plot to
facilitate an analysis of all data points. In all the experiments
depicted in these figures, we report the median request time,
accompanied by the Median Absolute Deviation (MAD) as
a measure of dispersion. MAD provides a robust metric to
describe data variability as opposed to standard deviation.

Fig. 2 shows the results of our differently scaled experiments
in the three plots. Here we can see the difference in request
timing depending on the three experiment backends. Note that
the local container test proves helpful as a point of reference
but not as a point of comparison. Inspecting the 10,000 node
experiment, we see that the Pods service incurs a 0.226
second penalty compared to the offerings provided by AuraDB
and a 1.299 second penalty compared to a locally deployed
container. Inspecting the 200,000 node experiment, we can
see that Pods service incurs a 0.292 second penalty compared
to the offerings provided by AuraDB and a 20.417 second
penalty compared to a locally deployed container. Finally, in
the 500,000 node experiment, the Pods service incurs a 56.099
second penalty compared to a locally deployed container; note
that AuraDB restricts node count to 200,000.

This initial testing reveals that the difference in median
response time between AuraDB and the Pods service is sub-
second even at such a preliminary stage with no additional
optimization.

VI. RELATED WORK

The Pods service can be compared to several existing soft-
ware systems. Prominent commercial examples of containers-
as-a-service are Amazon’s Elastic Container Service (ECS)
[17] and Google’s Kubernetes Engine [18]. Both solutions
enable the use of custom container images, supported by
defined storage, similar to the Pods service. However, the
Pods service stands out as a more lightweight, open-source
alternative that can be self-hosted.

Due to its versatility as a general deployment platform,
Tapis Pods also directly competes with specialized cloud
database solutions, such as Google’s Cloud SQL [19] and
Neo4j’s AuraDB, which hosts Postgres and Neo4j databases,
respectively. Our performance experiments reveal that the
difference in median response time between AuraDB and
the Pods service is sub-second, showcasing its competitive
performance as a lighter-weight and simpler to use product.

VII. FUTURE WORK

Future improvements for the Pods service will focus on
optimizing performance and user experience. Response times
can be significantly reduced by streamlining proxy layering,
which currently involves two proxies and then Traefik. Ad-
ditionally, focusing on quality-of-life improvements, such as
simplified data backup processes and integration with Tapis’s
UI component, will facilitate developer onboarding and offer
users an intuitive GUI for even further simplification.

VIII. CONCLUSION

In conclusion, this paper delves into the underlying archi-
tecture of the Tapis Pods service, detailing its key features and
use cases. We performed a performance evaluation, facilitating
an initial examination of system variance and a performance
comparison with an established competitor in the cloud ser-
vice domain, AuraDB. The comparison underscores the Tapis
Pods service’s capability to compete with enterprise-level paid
offering with lower overhead and simpler controls.

Furthermore, we discussed related works and outlined future
research and development avenues. This paper ultimately
demonstrates the practicality and value of the open-source,
user-friendly, and self-hostable Tapis Pods service, positioning
the service as an appealing choice for a diverse array of
applications within the research community.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation Office of Advanced Cyberinfrastructure,
the Tapis Framework [1931439 and 1931575], and ICICLE
[2112606].

REFERENCES

[1] J. Stubbs, R. Cardone, M. Packard, A. Jamthe, S. Padhy, S. Terry,
J. Looney, J. Meiring, S. Black, M. Dahan, S. Cleveland, and G. Jacobs,
“Tapis: An api platform for reproducible, distributed computational
research,” in Advances in Information and Communication, K. Arai,
Ed. Cham: Springer International Publishing, 2021, pp. 878–900.

[2] (2023) Kubernetes. Last access: 2023-4-19. [Online]. Available:
kubernetes.io

[3] (2023) Neo4j. Last access: 2023-4-19. [Online]. Available: neo4j.com/
[4] (2023) Flask. Last access: 2023-4-19. [Online]. Available:

flask.palletsprojects.com/en/2.3.x/
[5] (2023) Docker. Last access: 2023-4-19. [Online]. Available:

docs.docker.com/
[6] (2023) Graphdb. Last access: 2023-4-19. [Online]. Available:

ontotext.com/products/graphdb/
[7] (2023) Postgresql. Last access: 2023-4-19. [Online]. Available:

postgresql.org/docs
[8] (2023) Fastapi. Last access: 2023-4-19. [Online]. Available:

fastapi.tiangolo.com
[9] (2023) Tapipy. Last access: 2023-4-19. [Online]. Available:

github.com/tapis-project/tapipy
[10] (2023) Minikube. Last access: 2023-4-19. [Online]. Available:

minikube.sigs.k8s.io/docs
[11] (2023) Raspberry pi. Last access: 2023-4-19. [Online]. Available:

raspberrypi.com/
[12] (2023) Traefik. Last access: 2023-4-19. [Online]. Available:

doc.traefik.io/traefik
[13] (2023) Rabbitmq. Last access: 2023-4-19. [Online]. Available:

rabbitmq.com/documentation.html
[14] (2023) Components catalog. Last access: 2023-4-19. [Online]. Available:

https://components.pods.icicle.tapis.io/data
[15] Y. Tu, X. Wang, R. Qiu, and H.-W. Shen, “An interactive knowledge

and learning environment in smart foodsheds,” IEEE Comput. Graph.

Appl., vol. PP, Apr. 2023.
[16] (2023) Neo4j auradb. Last access: 2023-4-19. [Online]. Available:

neo4j.com/docs/aura
[17] (2023) Amazon elastic container service. Last access: 2023-4-19.

[Online]. Available: aws.amazon.com/ecs/
[18] (2023) Google kubernetes engine. Last access: 2023-4-19. [Online].

Available: cloud.google.com/kubernetes-engine
[19] (2023) Google cloud sql. Last access: 2023-4-19. [Online]. Available:

cloud.google.com/sql/docs/postgres


