Check for
Updates

A Design Pattern for Recoverable Job Management

Richard Cardone
Steve Black
Christian Garcia
Anagha Jamthe
Mike Packard
Smruti Padhy
Joe Stubbs

Texas Advanced Computing Center, Austin, Texas USA, rcardone, scblack, cgarcia, ajamthe, mpackard, spadhy
jstubbs@taccu.texas.edu

ABSTRACT

Processing scientific workloads involves staging inputs, executing
and monitoring jobs, archiving outputs, and doing all of this in a
secure, repeatable way. Specialized middleware has been developed
to automate this process in HPC, HTC, cloud, Kubernetes and
other environments. This paper describes the Job Management
(JM) design pattern used to enhance workload reliability, scalability
and recovery. We discuss two implementations of JM in the Tapis
Jobs service, both currently in production. We also discuss the
reliability and performance of the system under load, such as when
10,000 jobs are submitted at once.

CCS CONCEPTS

« Software reliability; « Middleware; « Design patterns;

KEYWORDS
HPC, Cloud computing, Job management

ACM Reference Format:

Richard Cardone, Steve Black, Christian Garcia, Anagha Jamthe, Mike
Packard, Smruti Padhy, and Joe Stubbs. 2022. A Design Pattern for Re-
coverable Job Management. In Practice and Experience in Advanced Research
Computing (PEARC °22), July 10-14, 2022, Boston, MA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3491418.3535136

1 INTRODUCTION

Processing scientific workloads involves staging inputs, executing
and monitoring jobs, archiving outputs, and doing all of this in a
secure, repeatable way. The likelihood of transient errors increases
during large data transfers and long running jobs, so a robust work-
load manager needs to recover from temporary blocking conditions,
such as network delays and processing spikes.

Tapis [12],[14],[15] middleware supports scientific workloads on
any SSH accessible system, including HPC, HTC and cloud systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3535136

Tapis is a set of REST-based microservices that applications use to
interact with storage and execution systems. This paper focuses on
the internal design of the Jobs service, which is the Tapis component
responsible for managing and executing jobs, and how its design is
broadly applicable to software that runs asynchronous workloads.
These workloads are often multi-node, MPI jobs that run under
batch schedulers such as Slurm.
The contributions of this paper are:

o The introduction of a generally applicable Job Management
(JM) design pattern [5], its main data structures and its op-
erational semantics.

e Two production implementations (Jobs v2 and v3) of the JM
design pattern.

e Performance results that indicate the effectiveness of the
design.

2 JOB MANAGEMENT (JM) DESIGN PATTERN

2.1 Job Workers

Figure 1 depicts the main components of the Job Management (JM)
design pattern. On the left, a Job Worker receives incoming job
requests on its work queue from the Jobs front end (not shown). A
state machine drives job processing, starting in the ACCEPT state
and terminating in FINISHED, FAILED or CANCELED. Each state
transition triggers an action, which either completes successfully,
fails in an unrecoverable way, or fails in a recoverable way. The Job
Table tracks the state of all jobs, each identified by a unique jobld.

The Work Queue and Job Table are typically backed by persistent
storage. Different implementations can support different levels of
durability and reliability. For example, message delivery can be
done on a best effort, at least once, or exactly once basis. Similarly,
implementations choose the level of concurrency they support. The
number of worker processes, threads per process, work queues and
workers per queue are implementation dependent.

2.2 Recovery Processing

Figure 1 depicts the Job Recovery Process on the right. When a Job
Worker experiences a recoverable error, it writes a recovery mes-
sage to the Recovery Queue and sets the job’s state to BLOCKED.
Recoverable errors are transient conditions that will eventually
clear, though determining if an error is recoverable is implemen-
tation dependent. For example, quota violations, short network
outages and communication timeouts are often recoverable.

https://doi.org/10.1145/3491418.3535136
https://doi.org/10.1145/3491418.3535136
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491418.3535136&domain=pdf&date_stamp=2022-07-08

PEARC °22, July 10-14, 2022, Boston, MA, USA

l Work Queue

Richard Cardone et al.

Recovery Queue

State Machine

B
i

Job Table
jobld
state
blockedCount

Job Worker

Y

Recovery Table Blocked Jobs

Table
recoveryld
condition 1n recoveryld
testerType jobld
testerParms successState
testerHash
policyType
policyParms
nextAttempt

Recovery Process

Figure 1: Job Management Design Pattern

The Recovery Process reads its Recovery Queue and writes each
blocked job to its tables. The number of queues and recovery pro-
cesses, as well as the durability of queues and tables, are implemen-
tation dependent. There is a one-to-many relationship between the
Recovery Table and the Blocked Job Table: each recovery record is
linked to one or more blocked job records. All jobs blocked on the
same condition are linked to the same recovery record.

2.3 Exceptions, Policies, Testers and Throttles

Job processing can be interrupted for many reasons, such as a sys-
tem going offline, a DNS timeout, a user suspending the job, or
the application becoming disabled. When such conditions are en-
countered, workers perform an analysis to determine if the error
is recoverable. If so, the worker constructs a recoverable exception
that includes contextual information. The exception is thrown and
routines higher on the call stack can add more contextual informa-
tion.

Eventually, the exception bubbles up to the worker’s recovery
handler, which creates a recovery message. Associated with each
exception type is a policy and a tester. Testers implement the code
that detects when a blocking condition clears; policies determine
when and for how long tests run. The exception’s contextual in-
formation is added to the message’s testerParms and policyParms
fields and the condition field reflects the exception type. As noted,

the worker then sets the job’s state to BLOCKED and posts the
message to the Recovery Queue.

The Recovery Process searches its Recovery Table for a record
with the same testerHash as the message it receives. The testerHash
is a hash of the condition, testerType and testerParms that groups
together jobs waiting for the same condition to clear. If the tester-
Hash is not found, a new Recovery Table record is inserted, a new
Blocked Table record is linked to it, and the nextAttempt time is
calculated using policyType and policyParms. If the testerHash is
found, a new Job Blocked Table record is linked to the existing
recovery record.

Though not required by the design pattern, Jobs uses a mul-
tithreaded Recovery Process that has a main thread to read the
Recovery Queue and a test thread to detect when tests should run.
The main thread reads messages from the queue and updates the
tables. The test thread monitors nextAttempt times and runs tests
as scheduled.

When a test detects a cleared blocking condition, it removes one
or more jobs from the Blocked Jobs Table, resets their states to suc-
cessState, and requeues them on the Work Queue. The successState
is the restart state that the worker designated when it blocked. To
avoid thrashing, a throttle limits the number of jobs requeued at
one time. Recovery Table entries with no blocked jobs are deleted.

A Design Pattern for Recoverable Job Management

3 TAPIS V2 IMPLEMENTATION OF JM

The Tapis v2 [13] Jobs service is the first JM implementation. It
went into production in June 2019 as a drop-in replacement for the
prior Agave [4] Jobs service. As a multi-tenant application, Jobs
v2 assigns each tenant its own Work Queue and dedicated set of
workers. Workers are separate Java programs configured with 30-
100 threads, each thread processing a job independently. Jobs can
scale up by adding worker threads and/or adding new workers. A
separate Java recovery program is also run for each tenant, each
with its own Recovery Queue. We'll see that Jobs v3 takes a different
approach to multi-tenancy.

All queues and tables are backed by persistent storage in Rab-
bitMQ and MySQL, respectively. Jobs in the Work Queue are not re-
moved until the job reaches a terminal state. Upon job arrival, work-
ers check the database to distinguish between new and restarted
jobs.

There are cases where atomicity spanning RabbitMQ and MySQL
operations is required for correctness, such as when a worker sets a
job’s state to BLOCKED and then puts the job on the recovery queue.
Jobs coordinates RabbitMQ and MySQL by using a combination of
consistency checking, rollbacks and repair actions. In practice, this
approach works well on our relatively stable computing infrastruc-
ture and avoids the complexity of federated transactions.

Jobs v2 implements two recovery policies, constant backoff and
stepwise backoff. The former specifies testing at fixed intervals for
a fixed amount of time; the latter specifies testing at fixed intervals
and durations for each step, but any number of steps can be config-
ured. Constant backoff is appropriate for lightweight testing, such
as polling another Tapis service. Stepwise backoff is appropriate
when testing should decrease in frequency over time, such as when
retrying SSH connections that previously timed out. Stepwise back-
off is similar to exponential backoff policies, but it provides simple,
direct control of the backoff algorithm.

Currently, Job tester routines attempt recovery from connec-
tion, authentication and transmission errors, as well as internal
conditions such as “soft” quota violations, disabled systems and
disabled applications. Soft quotas delay jobs but do not abort them.
For example, when a Tapis system limits the number of jobs a user
can concurrently run, excess jobs are held until the quota is no
longer exceeded. Schedulers such as Slurm usually reject jobs in
such situations. Tapis does, however, treat some quotas violations
as unrecoverable, such as disk quota full.

4 TAPIS V3 IMPLEMENTATION OF JM

The Tapis v3 Jobs service went into production February 2022 and
represents a complete rewrite and a new implementation of the
JM design pattern. Jobs v3 addresses new requirements, such as
containerized apps and multi-site support, and is not backward
compatible with v2.

Jobs v3 uses one Work Queue, Recovery Queue, Job Worker and
Recovery Process for all tenants at a site, making it more cloud
friendly than v2. PostgreSQL replaces MySQL. Recovery exceptions,
policies and testers largely carry over from v2. In both v2 and v3, the
number of unblocked jobs simultaneously resubmitted to the Work
Queue is limited to 10. This simple throttling avoids jobs quickly
reblocking due to the original threshold being crossed again.

PEARC °22, July 10-14, 2022, Boston, MA, USA

New to v3 is a throttle that establishes a 2 second sliding win-
dow in which at most 10 jobs can begin processing. If the limit is
exceeded, a job’s processing will be randomly delayed for between
1 and 3 seconds. Under high load, this short delay provides enough
time for concurrent data structures to stabilize and for database
updates to propagate.

Also new to v3 is a throttle that establishes a 2 second sliding
window in which at most 8 jobs can be launched on the same host.
When the threshold is exceeded, the launch is delayed for a random
number of seconds between 3 and 63. This reduces the likelihood
that an execution system will be temporarily overloaded by many
network connections and program invocations.

5 PERFORMANCE

After nearly three years in production, Jobs v2 processed over
155,000 jobs. Of the 44,905 jobs that went into recovery at least
once, 30,964 completed successfully; 5,209 were canceled by a user;
8,697 failed; and 35 were still processing when the snapshot was
taken. It’s clear that recovery processing is an ordinary and essential
part of job execution.

In Tapis v3, we submitted 10,000 jobs at once to observe the
new system under load.! The jobs ran for about 10 hours on a VM,
though all they did was sleep for a random number of seconds
between 15 and 90 (average ~52) and then terminate. One job failed,
the rest succeeded. The execution system ran up to 50 jobs at once.
The theoretical optimal scheduling would run 200 batches of 50
jobs, one after the other, all jobs starting and ending at the same
time in each batch. Assuming no overhead and perfect scheduling,
the ideal total runtime would be about 173 minutes. Actual runtime
was about 600 minutes, or .29 of the ideal.

The difference between ideal and actual runtimes is due to non-
uniform job durations; computational, database, queuing and net-
work overhead; throttling when under heavy load to avoid over-
whelming the execution system; monitoring that detects job com-
pletion after the fact via polling; and the unblocking of jobs in
batches of no more than 10 to avoid queue thrashing. The main
takeaway, however, is that JM delivers steady, controlled progress
even under heavy load.

6 RELATED WORK

JM is a design pattern for scalable applications where reliability is
a first class concern. It incorporates work queues, message passing
and a tunable, recovery mechanism to achieve high concurrency
and reliable throughput in the presence of transient errors. Other
scalability design patterns, such as actors [6], reactors [11] and
schedulers, provide concurrency but no notion of recoverable er-
rors. Actors incorporate message passing, reactors run callback
routines from an event queue, and schedulers control executions
using time-slicing and other techniques, but recovery using policies
and testers are not standard components of these patterns. It is
feasible, however, to add a JM style recovery mechanism to these
other concurrency designs, especially to actors and reactors which
already use message passing.

Jobs v2 also passed the 10,000 job test, though details of those runs are no longer
available.

PEARC °22, July 10-14, 2022, Boston, MA, USA

Like Tapis, Apache Airavata [1], HubZero [7],[8] and Open On-
Demand [9] manage scientific computations. These facilities often
support workflows, projects, experiments, application authoring,
collaboration environments, and GUIs. Tapis provides APIs upon
which such abstractions can be built, but does not itself implement
them. DesignSafe [3] and Cyverse [2], for example, are Web-based
collaborative environments built on top of Tapis’s computational
capabilities. Another distinguishing trait of Tapis is its ability to run
jobs on any host accessible via SSH—including user laptops—with
no installation required.

7 CONCLUSION

The JM design pattern provides a flexible, reliable way to manage
asynchronous jobs and recover from transient errors that would oth-
erwise cause failures. The pattern is applicable to any long running
service that can restart computations interrupted by temporary
blocking conditions. The two Tapis implementations of JM provide
years of experience with real workloads and load tests that validate
the design’s resiliency when stressed.

In the future, we’d like to provide stronger atomicity guarantees
when coordinating queue and database updates. For instance, the
PostgreSQL pg_amgp plugin [10] allows database triggers to issue
RabbitMQ commands inside transactions. Alternatively, Jobs could
commit a database transaction only if the subsequent queue opera-
tion succeeds. Another future work item is to collect more test data
using different throttle settings to further optimize and bulletproof
Jobs.

Richard Cardone et al.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation grants
1931439 and 1931575.

REFERENCES
[
[2

3
[4

Apache Airavata (2022). https://airavata.apache.org/index.html. Accessed 25 Mar

2022.

Cyverse (2022). https://cyverse.org/. Accessed 25 Mar 2022.

DesignSafe (2022). https://www.designsafe-ci.org/. Accessed 25 Mar 2022.

Dooley, R., et al.: Software-as-a-Service: the iPlant foundation APL In: 5th IEEE

Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS).

IEEE (2012)

[5] Gamma, E., Helm, R, Johnson, R. E., & Vlissides, J. (1995). Design patterns:
Elements of reusable object-oriented software (1995). Reading, Mass: Addison-
Wesley.

[6] Hewitt, Carl; Bishop, Peter; Steiger, Richard (1973). "A Universal Modular Actor
Formalism for Artificial Intelligence". JJCAL

[7] HubZero (2022). https://hubzero.org/. Accessed 25 Mar 2022.

[8] McLennan, M., and Kennell, R. (2010). "HUBzero: a platform for dissemination and
collaboration in computational science and engineering." Computing in Science
& Engineering 12.2 (2010): 48-53.

[9] Open OnDemand. https://openondemand.org/. Accessed 25 Mar 2022.

[10] Roy, G.: RabbitMQ in Depth (2017). Chapter 10. Shelter Island, NY: Manning.

[11] Schmidt, Douglas et al. Pattern-Oriented Software Architecture Volume 2: Pat-
terns for Concurrent and Networked Objects. Volume 2. Wiley, 2000.

[12] Stubbs]. et al. (2021) Tapis: An API Platform for Reproducible, Distributed Compu-
tational Research. In: Arai K. (eds) Advances in Information and Communication.
FICC 2021. Advances in Intelligent Systems and Computing, vol 1363. Springer,
Cham. https://doi.org/10.1007/978-3-030-73100-7_61

[13] Tapis v2 documentation. https://tacc-cloud.readthedocs.io/projects/agave. Ac-

cessed 25 Mar 2022.

Tapiis v3 documentation. https://tapis.readthedocs.io. Accessed 25 Mar 2022.

Tapis v3 APIs. https://tapis-project.github.io/live-docs. Accessed 25 Mar 2022.

jperuny
)

https://airavata.apache.org/index.html
https://cyverse.org/
https://www.designsafe-ci.org/
https://hubzero.org/
https://openondemand.org/
https://doi.org/10.1007/978-3-030-73100-7_61
https://tacc-cloud.readthedocs.io/projects/agave
https://tapis.readthedocs.io
https://tapis-project.github.io/live-docs

	Abstract
	1 INTRODUCTION
	2 JOB MANAGEMENT (JM) DESIGN PATTERN
	2.1 Job Workers
	2.2 Recovery Processing
	2.3 Exceptions, Policies, Testers and Throttles

	3 TAPIS V2 IMPLEMENTATION OF JM
	4 TAPIS V3 IMPLEMENTATION OF JM
	5 PERFORMANCE
	6 RELATED WORK
	7 CONCLUSION
	Acknowledgments
	References

