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Abstract

The theory of influences in product measures has profound applications in theoretical computer
science, combinatorics, and discrete probability. This deep theory is intimately connected to
functional inequalities and to the Fourier analysis of discrete groups. Originally, influences
of functions were motivated by the study of social choice theory, wherein a Boolean function
represents a voting scheme, its inputs represent the votes, and its output represents the outcome
of the elections. Thus, product measures represent a scenario in which the votes of the parties are
randomly and independently distributed, which is often far from the truth in real-life scenarios.

We begin to develop the theory of influences for more general measures under mixing
or spectral independence conditions. More specifically, we prove analogues of the KKL and
Talagrand influence theorems for Markov Random Fields on bounded degree graphs when the
Glauber dynamics mix rapidly. We thus resolve a long standing challenge, stated for example
by Kalai and Safra (2005). We show how some of the original applications of the theory of in
terms of voting and coalitions extend to these general dependent measures. Our results thus
shed light both on voting with correlated voters and on the behavior of general functions of
Markov Random Fields (also called “spin-systems”) where the Glauber dynamics mixes rapidly.
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1 Introduction

Starting with the works of Ben-Or and Linial [6] and Kahn, Kalai, and Linial [29], Analysis of
Boolean functions became a major area of research in combinatorics, probability and theoretical
computer science. It has deep and interesting connections to functional and isoperimetric inequalities,
and other important areas in probability and combinatorics. It has deep impact in property testing,
hardness of approximation, the theory of voting and the theory of percolation, see e.g. [44, 21, 41].

At the technical level this theory crucially relies on:

• Hyper-contractive inequalities that hold for product measures that are not too biased, and

• Explicit representations of functions in explicit bases, which correspond to Fourier bases and
their generalizations.

Major recent effort has been devoted to extend the theory to space for which hyper-contractive
inequalities do not hold. Notably it was shown that a notion of global hypercontraction holds for
such spaces and that this in turn implies many interesting applications [34, 32, 33, 24, 2, 31]. In
the other direction, extending the theory to spaces that are not highly symmetric and do not have
explicit bases remained a major challenge.

Our main contribution in this paper is to prove very general versions of two major theorems
of analysis of Boolean functions, the KKL and the Talagrand theorem in the setting of general
Gibbs measures on bounded degree graphs with correlation decay. The study of such measures
is fundamental in statistical physics, graphical models, and in the analysis of Markov chains and
spectral independence, see e.g. [42, 43, 16, 1, 38, 53, 8, 40, 14]. Such measures are known to satisfy the
log-Sobolev inequality (equivalently they are hyper-contractive) but do not posses explicit orthogonal
bases. The study of such measures is fundamental in statistical physics, graphical models, and in the
analysis of Markov chains and spectral independence, see e.g. [42, 43, 16, 1, 38, 53, 8, 40, 14]. Such
measures are known to satisfy the log-Sobolev inequality (equivalently they are hyper-contractive)
but do not posses explicit orthogonal bases.

Our results provide an answers a major challenge that is open for about 20 years. Indeed in
their survey, Kalai and Safra [30] state that: “One of the major research challenges is to extend
the results described in this chapter to models where the probability distribution is not a product
distribution. Important cases are the Ising and the more general Potts and random cluster models,
as well as models based on random walks of various types.” Results of Graham and Grimmett [23]
proved one version of these theorem that is useful to prove phase transitions for such models, in the
special case that they are ferromagnetic/“monotone”. But their version of the KKL theorem uses
“effects” instead of the true “influences”, which means they are not useful for other applications
including the original motivations in theoretical computer science to collective coin-tossing and
voting. Our results are the first to prove a variant of the KKL theorem that is applicable to these
applications — see Section 2.5 for more explanation. In particular, we show how some of the original
applications of the theory of influences extend to the new setup: for general voting functions on
n voters there exist a voter who influence is Ω(log n/n) times the variance. For monotone voting
functions there exist a coalition of O(n/ log n) voters who by flipping their votes can control the
elections with probability arbitrary close to 1. See also the discussion below for comparison between
our results and those of [23].

Our results also have interesting interpretation for the theory of Markov Chain. Informally our
results show that functions of low influences are unstable with respect to the natural Markov chains.
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See subsection 2.4 for a more detailed discussion.

Other related work. Many works have studied versions of the KKL theorem in algebraic
settings like Cayley graphs, e.g. [46, 47, 52, 12], and repeatedly posed the challenge of proving
the KKL theorem in other settings with dependent coordinates. The KKL theorem has deep
connections and applications to many different areas of research which continue to be investigated.
See e.g. [27, 13, 19, 50, 28, 10, 39, 51] for some recent works studying connections between the
KKL/Talagrand inequalities and metric geometry, quantum physics, and distributed computing.

2 Definitions and Main Results

We recall the definition of the Glauber dynamics, log-Sobolev constant, etc. See e.g., [3, 40, 54] for
references.

Glauber dynamics. Let ν be a probability distribution on the space Σn where Σ is an arbitrary
finite set of size q = |Σ|. Let Pi be the Markov operator that resamples coordinate i from stationary
distribution ν conditioned on all other coordinates, so that

(Pif)(x) = Eν [f(X) | X∼i = x∼i],

where x∼i is the vector of all coordinates other than i. We will consider the continuous time
Glauber dynamics, where every coordinate (a.k.a. site) is equipped with an independent Poisson
clock. Whenever the clock at coordinate i ticks, the spin at this coordinate is updated according
to Pi. It is well known that this defines a semigroup Ht where Ht is the transition matrix of the
configuration from time 0 to time t. We recall that H being a semigroup means that it satisfies
that Hs+t = HsHt = HtHs for all s and t. Moreover, we can write Ht = etL, where L, called the
generator, is given by L =

∑

i Li and Lif = Pif − f so that L2
i = (Pi − I)2 = −Pi + I = −Li. With

this notation, the Dirichlet form of the Glauber dynamics is defined to be

Eν(f, f) = −EX∼ν [f(X)(Lf)(X)] =
∑

i

Eν(Lif)
2.

Each Li can be thought of as a generalized notion of partial derivative with respect to coordinate i,
so the Dirichlet form can be viewed as a natural measure of the size of the gradient of the function
f (from the perspective of the chosen semigroup).

Log-Sobolev inequality. We say the Glauber dynamics for ν satisfy the log-Sobolev inequality
with constant ρ > 0 if

ρEntν [f ] ≤ 2Eν(
√

f,
√

f)

for all functions f : Σn → R≥0, where Entν [f ] = Eν [f log f ]− Eν [f ] logEν [f ] is the relative entropy
functional. This is equivalent to the hypercontractivity statement that for all functions f , t ≥ 0,
and p ≥ 1 + e−2ρt,

‖Htf‖2 ≤ ‖f‖p

where ‖ · ‖p denotes the Lp(ν) norm ‖f‖p = (Eν |f |
p)1/p.
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The log-Sobolev inequality implies that the Poincaré inequality

λVarν(f) ≤ Eν(f, f)

holds with some constant λ ≥ ρ and for all functions f : Σn → R. This is equivalent to the statement
that Var(Htf) ≤ e−λtVar(f) for all such f .

Markov property. We say ν is a Markov random field with respect to a graph G if it satisfies
the Markov property : for any vertex i with neighbors N (i) in G and for X ∼ ν, Xi is conditionally
independent of X∼i given XN (i). Such a distribution is also referred to as an undirected graphical
model, see [36]. Given a graph G, we let dG(i, j) denote the graph distance between i and j.

Other notation. Given square matrices X,Y we write [X,Y ] = XY − Y X for the usual com-
mutator. We write [X, ·] to denote the adjoint map Y 7→ [X,Y ]. We now come to the important
definition of influences for our setting.

Definition 2.1. Given a function f : Σn → {0, 1}, we define the influence of coordinate i to be

Ii(f) = Pr
X∼ν

[∃x′i, f(X) 6= f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)].

We write dH(x, y) = #{i : xi 6= yi} to denote the usual Hamming metric on Σn. Given a vector
x ∈ Σn and i ∈ [n], x∼i ∈ Σn−1 denotes the same vector with coordinate i removed. More generally,
the notation x∼S denotes the vector with the coordinates in set S removed.

2.1 Main Results

Our results hold in a very general setting: they apply to all undirected graphical models with bounded
marginals, bounded degree, and which satisfy the log-Sobolev inequality. These assumptions are
formally laid out below. In Section 4, we illustrate some of the special cases where the log-Sobolev
inequality is known to hold and give references to others.

Assumption 1. Let Σ be a finite alphabet of size q. The probability measure ν on Σn for some
n ≥ 1 satisfies that:

1. There exists a constant b ≥ 1 such that

ν(x)/ν(y) ∈ [1/b, b] (1)

for any x, y ∈ Σn with Hamming distance one. In other words, ν has bounded marginals under
pinning.

2. The Glauber dynamics for ν satisfy the log-Sobolev inequality with constant ρ ∈ (0, 1].

3. The distribution ν is a Markov random field with respect to a graph G, and every vertex of G
has degree at most ∆ ≥ 1.

In our key contribution, we show that these assumptions suffice to prove general versions of
Talagrand’s theorem and the KKL inequality:
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Theorem 2.2 (Theorem 3.7 below). For any n ≥ 1, ν satisfying Assumption 1, and any f : Σn → R,
we have

Varν(f) ≤
Cq4b4∆2

ρ

∑

j

‖Ljf‖
2
2

1 + log(‖Ljf‖2/‖Ljf‖1)
(2)

for some absolute constant C > 0.

Theorem 2.3 (Theorem 3.8 below). There exists αb,ρ,∆,q > 0 such that the following is true. For
any n ≥ 1, ν satisfying Assumption 1, and any f : Σn → {0, 1}, there exists a coordinate k ∈ [n]
such that

Ik(f) ≥ αb,ρ,∆,qVar(f) log(n)/n.

2.2 Proof Ideas

Our main results are derived as consequences of a new comparison inequality between the variance
and derivatives of a function f (Theorem 3.1 below). Our statements in (2) vastly generalize results
of Cordero-Erasquin and Ledoux [11]. In [11] a statement similar to (2) was proven under the strong
assumption that the operators Li and semigroup Ht “ weakly commute” (equation (15) there). This
is valid for product measures and a few other interesting examples in [11] such as the symmetric
group, the sphere etc. However, in our setting it fails very badly — an update at one site affects
all of its neighbors, which affects their neighbors, and so on. As in [11] and following [3] the proof
begins by writing the variance as an “integral over the heat semi-group” (equation (6) below).

Then, in our main contribution we provide a new analysis for this noncommutative setting
which controls the commutators corresponding to all of these interactions. A key observation is that
even though the operators Li and Ht do not commute, we can derive an exact formula for their
commutator in terms of an expansion into (appropriately labeled) connected subgraphs:

Lemma 2.4 (Lemma 3.3 below). For any T ≥ 0 and i ∈ [n] we have LiHT = HTMT,i where

MT,i :=
∞
∑

k=0

T k

k!

∑

(j1,...,jk)∈Sk,i

[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ] · · ·Pjk ]. (3)

Here
Sk,i := {(j1, . . . , jk) : ji ∈ N+({i, j1, . . . , ji−1})} (4)

and N+(U) denotes the union of U and the neighbors of nodes U in the graph.

The reason that only connected subgraphs contribute is the Markov property (which implies
[Pi, Pj ] = 0 unless i neighbors j). The next stage of the argument is to very carefully bound the
terms in this expansion, and relate them to the commutator-free terms ‖Ljf‖p which appear on the
right hand side of the desired inequality. Ultimately, we are able to show that at small times T , the
total contribution of higher-order diagrams is damped exponentially in terms of the size k, which
ultimately lets us show the effect of an update at site i decays exponentially in the graph-theoretic
distance (equation (10) below). The bounded degree assumption is used here to control the number
of diagrams, and rapid mixing of the dynamics (more precisely, the log-Sobolev inequality) lets us
argue that analyzing the behavior at small times T is sufficient to prove the comparison inequality.
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2.3 Applications to voting

There is a long history of using Markov random fields/statistical physics models to model the
correlated preferences of voters in elections, for example to estimate the probability of a Condorcet
paradox (e.g. [49, 9, 20, 22, 35]). Our results have a natural interpretation in the voting context.
If each entry X ∼ ν corresponds to the preference of an individual, and f : Σn → {0, 1} is an
election rule which takes as input these preferences and aggregates them into a choice between
two candidates, then our generalized KKL theorem says that one voter has influence Ω(log(n)/n)
provided both candidates have a non-negligible chance of winning a priori.

What about larger coalitions? Before stating our result, it is natural in the context of elections
to assume that voters preferences are also binary valued (i.e. Σ = {±1}) and that the function f is
monotone, i.e. if x ≤ y then f(x) ≤ f(y). Under these assumptions, the following corollary shows in
particular that a coalition of size ω(n/ log(n)) has influence 1− o(1) on a fair election. It follows by
iteratively applying our generalization of the KKL theorem, and generalizes Corollary 3.5 of [29]
where the case of the uniform measure was considered.

Corollary 2.5 (Corollary 3.10 below). For any n ≥ 1 and ν satisfying Assumption 1, the following
is true. For any ε > 0 and and monotone function f : {±1}n → {0, 1} satisfying Eν [f ] ≥ ε, there
exists a set of coordinates S ⊂ [n] such that

EX∼ν [f(X∼S , XS → 1)] ≥ 1− ε

and

|S| ≤
4(1 + b) log(1/2ε)

αb,ρ,∆
·

n

log(n)

where αb,ρ,∆ > 0 is the constant (independent of n) from Theorem 3.8.

Here the notation EX∼ν [f(X∼S , XS → 1)] refers to the expectation of f(Y ) where X is drawn
from µ and Yi = 1 for i ∈ S while Yi = Xi for i /∈ S.

2.4 Graph Partitioning, Spectral Gap, and Cheeger’s Inequality

Our main results have a natural interpretation in terms of the theory of Markov chains and in terms
of graph partitioning. We briefly explain what these are.

In the context of the theory of Markov chains, it is well known that in the setting of Theorem 2.2
the spectral gap of the continuous time Glauber dynamics and the Cheeger constant are both Θ(1).
By this we mean that the Poincaré inequality

Var(f) .
∑

j

‖Ljf‖
2
2

holds up to a constant independent of the dimension (more precisely, the constant is O(1/ρ)). This
inequality is tight up to constants, even for boolean functions, since it is saturated up to constants
for any dictator function f(x) = xi. It is natural to ask if there are many other partitions (Boolean
functions) for which the ratio of the right hand side to the left hand side (i.e. the Rayleigh quotient
up to constants) is Θ(1).
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Our main result (Theorem 2.2) implies that Boolean functions all of whose influences are small
(say less than δ) have a Rayleigh quotient that is Ω(log(1/δ)), i.e.

Var(f) .
1

log(1/δ)

∑

j

‖Ljf‖
2
2.

The term ‖Ljf‖
2
2 is the same, up to constant factors, as the influence (see Lemma 3.9 below). Thus,

for the Poincaré inequality to be a constant factor close to tight, it is necessary for the function to
have at least one variable with high influence. This also has a dynamical interpretation: while for
dictators, there will be a Θ(1/n) chance of a single step of the Glauber dynamics flipping the value
of f at steady state, for balanced functions with small influences the probability will necessarily
be larger! More precisely, starting from the stationary distribution, a single step of Glauber will
have a chance that is Ω(log(1/δ)/n) of flipping the value of f . Likewise, if we run the dynamics
for a sufficiently long time, the proportion of time steps at which the function value flips will be
Ω(log(1/δ)/n). So functions without influential variables are more sensitive/less stable under the
natural dynamics.

In a different language, if we look for a almost balanced partition of the state space that has
minimal bisection (in the sense that the two parts have proportional measures), then our main
theorem states that such a partition mush have a high influence variable. It is natural to ask if
the statements above can be strengthened to state that any function that is close to an optimal
bisection is close to a junta.

2.5 Comparison to the Results on Phase Transitions for Monotone Measures

We next compare our results to work by Graham and Grimmett [23] who proved a version of the
KKL theorem and sharp thresholds for “monotonic” measures. Consider a monotone function
f : {0, 1}n → {0, 1} and a measure µ on {0, 1}n. Recall the definition of influence, Definition 2.1.
We now define the effect ei(f, µ) of a variable i on f under µ as Covµ[f, xi] = Eµ[fxi]−Eµ[f ]Eµ[xi]
(note that this is p(1− p) times the effect as defined in [25]). We note that

1. If µ is the uniform measure and f is monotone then the effect and the influence are the same
up to a constant factor. If µ is a monotone measure in the sense of [23] and f is monotone, the
size of the effect can be lower bounded by the influence using the FKG inequality (see [23]).

2. The paper [23] proves sharp phase transitions based on the effects. In [23], they do so by
proving a version of KKL Theorem based on a reduction to the KKL theorem in the standard
case of the uniform measure. We also mention the work of [15] who prove sharp thresholds
by generalizing the results of [45] using effects. Interestingly, these results do not require any
correlation decay of the measure, so unlike our results they do not require the log-Sobolev
inequality. They also require monotonicity of the measure which our results do not.

There are very important differences between the interpretations of effects and influences. (The
importance of this difference was also discussed by Graham and Grimmett [23] where they called
effects and influences the “conditional influences” and “absolute influences” respectively.)

To compare influences and effects in a concrete setting, we consider the finite-volume Ising model
with parameter β on the square lattice in dimension d ≥ 2. In this (classical) setting, the vertices of
our graph correspond to the integer elements of [−L/2, L/2]d where L ≥ 1 is the sidelength of the
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box, and the edges E of the graph connect vertices which are neighbors in the square lattice, i.e.
which are Euclidean distance 1 from each other. Note that there are n = (L+ 1)d many vertices in
total. Given this graph, the ferromagnetic Ising model is the distribution on {±1}n of the form:

ν(x) ∝ exp



β
∑

(i,j)∈E

xixj



 .

Let βc(d) be the critical inverse temperature of the lattice Ising model in dimension d (see
e.g. [18, 48]). Below βc is the high-temperature/subcritical regime and above βc is the low-
temperature/supercritical regime of the model. Informally speaking, in the low temperature phase,
the model exhibit symmetry breaking, a typical sample from the model lies either in a mostly +
phase or in a mostly − phase, and because of this the Glauber dynamics mix torpidly.

Let f be a monotone function from {±1}n → {0, 1} with variance Ω(1). The results of [23]
imply that for all β ≥ 0:

1. There exists a variable whose effect is at least Ω(log n/n).

2. There exists a set S consisting of O(n / log n) many variables such that E[f |XS = +] = 1−o(1).

As we will now illustrate, the analogous results with influences replaces by effects will fail badly due
to the aforementioned phase transition in the Ising model.

The log-Sobolev inequality for this measure, see e.g. [37] allows us to apply our results to deduce
that for β < βc, i.e. in the subcritical regime of the model, we have that:

• There exists a variable whose influence is at least Ω(log n/n).

• There exists a set S consisting of O(n / log n) many variables such that E[f(X−S , XS → 1)] =
1− o(1).

On the other hand, when β > βc, i.e. in the supercritical regime, it immediately follows from
rigorous results on the large deviations of the magnetization in the Ising model [48, 7] that when f
is the majority function:

• For every i, the effect of Xi is Θ(1).

• For every i, the influence of Xi is exp(−Θ(Ld−1)).

• For a uniformly random set S with |S| = ω(1) it holds that E[f |XS = +] = 1− o(1).

• For every set S with |S| = o(n) it holds that E[f(X−S , XS → 1)] = 0.5 + exp(−Θ(Ld−1)).

This shows that our results cannot be proven without assuming rapid mixing of the dynamics.
Intuitively, for non-product measures there is a dramatic difference between fixing a variable

and conditioning on a variable, as conditioning on a variable changes the measure and therefore
changes all other variables. This shows that our results and the results of GC and DCRT and
incomparable. In the setting where both our results and theirs apply (monotone measures which
satisfy Assumption 1), our versions of Talagrand and KKL are stronger since the influences lower
bound the effects.
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3 Proof of Main Results

In this section, we prove all of our results. It was observed by Cordero-Erasquin and Ledoux [11]
that Talagrand’s inequality (and then KKL) can be deduced from an estimate of the form (5) below.
The most important contribution of our work is to prove this estimate (Theorem 3.1) in our very
general setting, which we do in Section 3.1 below. Given this estimate, we derive the generalized
Talagrand’s inequality and KKL in Section 3.2, and then show how to obtain the consequences for
coalitions in Section 3.3.

3.1 Main functional inequality

The following is the main technical claim which implies Talagrand’s inequality and KKL.

Theorem 3.1. There exists absolute constants c, c′ > 0 such that the following is true. For any ν
satisfying Assumption 1, f : Σn → R, and for any positive T ≤ c/b2q2∆2,

Varν(f) ≤
c′q2b2

1− e−ρT

∫ T

0

n
∑

j=1

‖Ljf‖
2
1+e−2ρt dt. (5)

Proof. Since the log-Sobolev inequality implies the Poincare inequality, we have that for any T ≥ 0

Var(f) = Var(f)−Var(HT f) + Var(HT f) ≤ Var(f)−Var(HT f) + e−ρTVar(F )

and so

Var(f) ≤
1

1− e−ρT
[Var(f)−Var(HT f)].

To upper bound Var(f), it thereby suffices to upper bound for some T > 0 the quantity

Var(f)−Var(HT f) = 2

∫ T

0
E(Htf,Htf)dt =

∑

i

∫ T

0
E(LiHtf)

2dt. (6)

The first equality in the equation above holds for any Markov semigroup as proven in [11].
We recall the following fact, sometimes called the Hadamard or Baker-Hausdorff Lemma:

Lemma 3.2 (Proposition 3.35 of [26]). For square matrices X,Y , we have eXY e−X = e[X,·]Y .

The following lemma computes the effect of commuting Li and HT .

Lemma 3.3. For any T ≥ 0 and i ∈ [n] we have LiHT = HTMT,i where

MT,i :=

∞
∑

k=0

T k

k!

∑

(j1,...,jk)∈Sk,i

[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ] · · ·Pjk ]. (7)

Here
Sk,i := {(j1, . . . , jk) : ji ∈ N+({i, j1, . . . , ji−1})} (8)

and N+(U) denotes the union of U and the neighbors of nodes U in the graph.
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Proof. Note that by applying Lemma 3.2 to a negated matrix X, we have the identity for square
matrices X,Y

e−XY eX = e[·,X]Y.

Since Ht = etL, we therefore get

H−1
T LiHT =

∞
∑

k=0

T k

k!
[Li, L]

(k)

where [Li, L]
(k) denotes the iterated commutator of the following form: [Li, L]

(0) = Li and [Li, L]
(k) =

[[Li, L]
(k−1), L].

To compute the commutator, first observe

[Li, L] =
∑

j:i∼j

[Li, Pj ]

since Lj = Pj − I and Pi commutes with Pj when i 6∼ j. For the same reason, we have more
generally that

[Li, L]
(k) =

∑

(j1,...,jk)∈Sk,i

[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · ·Pjk ]

which proves the result.

Lemma 3.4. With the notation of (8), |Sk,i| ≤ (∆ + 1)kkk for any i, k.

Proof. Observe that we can encode jk as an element of [k] × [∆ + 1] by choosing one of its
predecessors i, . . . , jk−1 and specifying whether jk is equal to that node or one of that node’s ∆
neighbors. Performing this encoding recursively proves the result.

Therefore recalling the definition of Mt,i in (7) to get the first equality and applying hypercon-
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tractivity to get the following inequality we have
∫ T

0
‖LiHtf‖

2
2dt

=

∫ T

0
‖HtMt,if‖

2
2dt

≤

∫ T

0
‖Mt,if‖

2
1+e−2ρtdt

=

∫ T

0

∥

∥

∥

∥

∥

∥

∞
∑

k=0

tk

k!

∑

(j1,...,jk)∈Si,k

[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f

∥

∥

∥

∥

∥

∥

2

1+e−2ρt

dt

≤

∫ T

0





∞
∑

k=0

tk

k!

∑

(j1,...,jk)∈Si,k

‖[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f‖1+e−2ρt





2

dt

≤

(

∞
∑

k=0

T k

k!
(∆ + 1)kkk

)

∫ T

0

∞
∑

k=0

tk

k!

∑

(j1,...,jk)∈Si,k

‖[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f‖
2
1+e−2ρt dt

≤ 2

∫ T

0

∞
∑

k=0

tk

k!

∑

(j1,...,jk)∈Si,k

‖[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f‖
2
1+e−2ρt dt (9)

where we used the triangle inequality, in the second-to-last step we applied the Cauchy-Schwarz
inequality and Lemma 3.4, and in the last step we used the assumption that T is small compared to
1/∆2.

Lemma 3.5. For any p ≥ 1, i ∈ [n], k ≥ 0 and for Si,k as defined in (8), we have
∑

(j1,...,jk)∈Si,k

‖[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · ·Pjk ]f‖
2
p ≤ 2(∆ + 1)k(k + 1)k+4(2qb)2k+2 max

j:dG(j,i)≤k
‖Ljf‖

2
p

Proof. For notational convenience, define j0 = i. The result is trivial if k = 0. Otherwise, we can
replace Li = Pi − I by Pi since the identity commutes with everything. Now observe that

[· · · [[[Pi, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]

= Pjk [· · · [[[Pi, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk−1
]− [· · · [[[Pi, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk−1

]Pjk

=
∑

α

(−1)r(α) (PjkPα − PαPjk)

where α ranges over a subset of permutations of (j0, . . . , jk−1) of size at most 2k that arise when
expanding out the iterated commutator, and r(α) ∈ {0, 1} encodes the corresponding sign of this
term. Let

Kj0,...,jk(x) = {y : y∼{j0,...,jk} = x∼{j0,...,jk}}

denote the set of spin configurations which disagree with x only within {i, j1, . . . , jk}. Using that
the dynamics only update sites j0, . . . , jk and using the triangle inequality we have that

|([PjkPα − PαPjk ]f)(x)| ≤ max
y,y′∈Ki,j1,...,jk

(x)
|f(y)− f(y′)|

≤ (k + 1) max
z,z′∈Ki,j1,...,jk

(x):dH(z,z′)=1
|f(z)− f(z′)|.

11



Hence taking the average over x, we find

∑

x

ν(x)|([PjkPα − PαPjk ]f)(x)|
p

≤ (k + 1)p
∑

x

ν(x) max
z,z′∈Kj0,...,jk

(x):dH(z,z′)=1
|f(z)− f(z′)|p

≤ 2p(k + 1)p
∑

x

ν(x) max
z∈Kj0,...,jk

(x),`∈{j0,...,jk}
|(L`f)(z)|

p

≤ 2p(k + 1)p
∑

x

ν(x) max
z∈Kj0,...,jk

(x)
(|(Lj0f)(z)|+ · · ·+ |(Ljkf)(z)|)

p

≤ 2p(k + 1)p(qb)k+1
∑

z

ν(z)(|(Lj0f)(z)|+ · · ·+ |(Ljkf)(z)|)
p

where in the second to last step we used Lemma 3.6, and we arrived at the last step by considering
the z which achieves the inner maximum, and used the fact that ν(x) ≤ bk+1ν(z) and that there
are at most qk+1 such x for each z. Hence by the Lp triangle inequality, p ≥ 1, and 1 ≤ b,

‖[PjkPα − PαPjk ]f‖p ≤ 2(k + 1)(qb)k+1
k
∑

r=0

‖Ljrf‖p ≤ 2(k + 1)2(qb)k+1max
r

‖Ljrf‖p.

Using that α ranges over a set of size at most 2k, we find by the Lp triangle inequality

‖[· · · [[[Pi, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f‖p ≤
∑

α

‖PjkPα − PαPjk ]‖p ≤ 2(k + 1)2(2qb)k+1 max
0≤r≤k

‖Ljrf‖p

and using Lemma 3.4 we have

∑

(j1,...,jk)∈Si,k

‖[· · · [[[Pi, Pj1 ], Pj2 ], Pj3 ], · · ·Pjk ]f‖
2
p ≤ 2(∆ + 1)k(k + 1)k+4(2qb)2k+2 max

j:dG(j,i)≤k
‖Ljf‖

2
p

as desired.

Lemma 3.6. Suppose ν is a distribution on Σn. For any function f : Σn → R, and y, z ∈ Σn

differing only at site i we have

1

2
|f(y)− f(z)| ≤ max{|(Lif)(y)|, |(Lif)(z)|}.

For any x ∈ Σn we have
|(Lif)(x)| ≤ max

y,z:x∼i=y∼i=z∼i

|f(y)− f(z)|.

Proof. Expanding the definition, we have

(Lif)(x) = (Pif)(x)− f(x) = E[f(X) | X∼i = x∼i]− f(x)

so the latter bound follows immediately, and the former bound follows from the triangle inequality
as

|f(y)− f(z)| ≤ |(Ljf)(y)|+ |(Ljf)(z)| ≤ 2max{|(Ljf)(y)|, |(Ljf)(z)|}.
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Using Lemma 3.5, if T ≤ c/q2b2∆2 for some absolute constant c > 0, we have for all t ≤ T that
for some constant c′ > 0,

∞
∑

k=0

tk

k!

∑

(j1,...,jk)∈Si,k

‖[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f‖
2
1+e−2ρt

≤ q2b2
n
∑

j=1

(c′/∆)dG(j,i)‖Ljf‖
2
1+e−2ρt (10)

and summing over i and using that the number of nodes at exactly distance k from node j is at
most ∆k, this gives

2
∑

i

∞
∑

k=0

tk

k!

∑

(j1,...,jk)∈Si,k

‖[· · · [[[Li, Pj1 ], Pj2 ], Pj3 ], · · · , Pjk ]f‖
2
1+e−2ρt ≤ c′q2b2

n
∑

j=1

‖Ljf‖
2
1+e−2ρt .

Hence, recalling (9), we have for T ≤ c/q2b2∆2 that

∑

i

∫ T

0
‖LiHtf‖

2
2dt ≤ c′q2b2

∫ T

0

n
∑

j=1

‖Ljf‖
2
1+e−2ρt dt

which, recalling (6), gives the desired bound

Var(f) ≤
c′q2b2

1− e−ρT

∫ T

0

n
∑

j=1

‖Ljf‖
2
1+e−2ρt dt.

3.2 Generalized Talagrand and KKL Inequalities

We now show how to deduce the Talagrand and KKL inequalities from Theorem 3.1. The proof of
these implications follows from the work of Cordero-Erausquin and Ledoux [12] and is reproduced
for convenience. The first result generalizes Talagrand’s inequality:

Theorem 3.7. For any n ≥ 1, ν satisfying Assumption 1, and any f : Σn → R, we have

Varν(f) ≤
Cq4b4∆2

ρ

∑

j

‖Ljf‖
2
2

1 + log(‖Ljf‖2/‖Ljf‖1)
(11)

for some absolute constant C > 0.

Proof. Making the change of variables p = 1 + e−2ρt, dp = −2ρe−2ρtdt and assuming T ≤ 1/2ρ we
have by Holder’s inequality

∫ T

0
‖Ljf‖

2
1+e−2ρtdt ≤

2

ρ

∫ 2

1
‖Ljf‖

2
pdp ≤

2

ρ
‖Ljf‖

2
2

∫ 2

1
d
2θ(p)
j dp

where 1/p = θ + (1− θ)/2 = (1 + θ)/2 and

dj := ‖Ljf‖1/‖Ljf‖2 ≤ 1.
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Note that
dθ

dp
= −2/p2

so making the change of variables s = 2θ(p), ds = (−4/p2)dp we have

∫ 2

1
d
2θ(p)
j dp ≤

∫ 2

0
dsj(p(s)

2/4)ds

≤

∫ 2

0
dsjds =

1− d2j
log(1/dj)

=
(1− d2j )(1 + 1/ log(1/dj))

1 + log(1/dj)
≤

2

1 + log(1/dj)
.

hence
∫ T

0
‖Ljf‖

2
1+e−2ρtdt ≤

4

ρ(1 + log(1/dj))
.

Combining with Theorem 3.1, we have for T = c/q2b2∆2 that for some absolute constant C > 0

Var(f) ≤
Cq4b4∆2

ρ

∑

j

‖Ljf‖
2
2

1 + log(‖Ljf‖2/‖Ljf‖1)

which proves the analogue of Talagrand’s inequality.

Now we generalize KKL:

Theorem 3.8. There exists αb,ρ,∆,q > 0 such that the following is true. For any n ≥ 1, ν satisfying
Assumption 1, and any f : Σn → {0, 1}, there exists a coordinate k ∈ [n] such that

Ik(f) ≥ αb,ρ,∆,qVar(f) log(n)/n.

Proof. By combining Lemma 3.9 with Theorem 3.7 we have that

Var(f) ≤ C
∑

j

Ij(f)

1− log(bq
√

Ij(f))
(12)

where C = Cb,ρ,∆,q > 0. Fix b, ρ,∆, q and suppose for contradiction that the conclusion of the
theorem is false. The conclusion of the theorem is trivially true if n = 1, so it must be that for any
α ∈ [0, 1] there exists n ≥ 2, ν satisfying Assumption 1, and f : Σn → {0, 1} so that

Ik(f) ≤ αVar(f) log(n)/n

for all k ∈ [n]. In particular Ik(f) ≤ α log(n)/n since Var(f) ≤ 1. Combining with (12) and dividing
through by Var(f), we have

1 ≤
Cα log(n)

1− log(bq
√

α log(n)/n))

=
Cα log n

1− log(bqα1/2) + (1/2)[log(n)− log log(n)]

=
Cα

1/ log(n)− log(bqα1/2)/ log(n) + (1/2)[1− [log log(n)]/ log(n)]
.
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which is a contradiction for any

α < min

{

1

b2q2
,
1

C
inf
n≥2

[1/ log(n) + (1/2)[1− [log log(n)]/ log(n)]]

}

.

Lemma 3.9. For f : Σn → {0, 1} and any ν satisfying Assumption 1, we have for any p ≥ 1

Ii(f) ≥ E|Lif |
p ≥

1

(qb)p
Ii(f)

Proof. Recall that

Ii(f) = Pr
X∼ν

[∃x′i ∈ Σ, f(X) 6= f(X1, . . . , Xi−1, x
′
i, Xi+1, . . . , Xn)].

Given x ∈ Σn, if f(x) = f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) for all x′i ∈ Σ then this means that

(Lif)(x) = 0. Since |Lif | ≤ 1, this implies that

|(Lif)(x)| ≤ 1(∃x′i ∈ Σ, f(x) 6= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)).)

On the other hand, if there exists some x′i such that f(x) 6= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) then

this implies that

|(Lif)(x)| = |f(x)− E[f(X) | X∼i = x∼i]| ≥ Pr(Xi = x′i | X∼i = x∼i) ≥ 1/qb

by (1). Therefore

1

qb
1(∃x′i ∈ Σ, f(x) 6= f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)) ≤ |(Lif)(x)|

Hence taking expectation over X we have for any p ≥ 1

Ii(f) ≥ E|Lif |
p ≥

1

(qb)p
Ii(f)

as claimed.

3.3 Application to coalitions

We now discuss the application of our result to the existence of coalitions for monotone voting rules.
In this section, we restrict to the case of Σ = {±1} and recall that a function f : {±1}n → R is
monotone if

f(x) ≤ f(y)

for any pair such that x ≤ y coordinatewise.
The following corollary shows in particular that a coalition of size ω(n/ log(n)) has influence

1− o(1) on a fair election. It follows by iteratively applying our generalization of the KKL theorem,
and generalizes Corollary 3.5 of [29] where the case of the uniform measure was considered.
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Corollary 3.10. For any n ≥ 1 and ν satisfying Assumption 1, the following is true. For any
ε > 0 and and monotone function f : {±1}n → {0, 1} satisfying Eν [f ] ≥ ε, there exists a set of
coordinates S ⊂ [n] such that

EX∼ν [f(X∼S , XS → 1)] ≥ 1− ε

and

|S| ≤
4(1 + b) log(1/2ε)

αb,ρ,∆
·

n

log(n)

where αb,ρ,∆ > 0 is the constant (independent of n) from Theorem 3.8.

Proof. We construct a sequence of sets S0, S1, . . . iteratively. Let S0 = {}. For each t ≥ 0, define
ft(x) = f(x∼St , 1St), i.e. ft is the same as f except that it ignores the input xSt and replaces it by
all-ones. Either

Pr
X∼ν

[ft = 1] ≥ 1− ε

or we define a set St+1 in the following way. By Theorem 3.8, there exists some kt ∈ [n] such that

Ikt(ft) ≥ αVar(ft)
log(n)

n

where α = αb,ρ,∆ > 0 does not depend on n, and we let St+1 = St ∪ kt. Now defining ft+1(x) =
f(x∼St+1

, 1St+1
), we have by monotonicity that

Pr
ν
(ft+1 = 1) = Pr

ν
(ft = 1) + Pr

ν
(ft+1 > ft).

Furthermore,

Pr
ν
(ft+1 > ft) = EX∼ν [1(ft(X∼kt , 1) > ft(X))]

= EX∼ν [1(ft(X∼kt , 1) > ft(X)) · 1(Xkt = −1)]

= EX∼ν [1(ft(X∼kt , 1) > ft(X∼kt ,−1)) · 1(Xkt = −1)]

= EX∼ν [1(ft(X∼kt , 1) > ft(X∼kt ,−1)) · Pr(Xkt = −1 | X∼kt)]

≥
Ikt(ft)

1 + b

where in the last equality we applied the law of total expectation, and in the final step we used that

Pr
X∼ν

(Xkt = −1 | X∼kt) ≥
1

1 + b

by Assumption 1. Therefore, if pt = Pr(ft = 1) we have that

pt+1 ≥ pt +
α

1 + b
pt(1− pt)

log(n)

n
.

It follows that if pt < 1/2, pt+1 ≥ (1 + α log(n)
(1+b)n )pt ≥ exp

(

α log(n)
2(1+b)n

)

pt, so pt > 1/2 for any t >

2(1+b)n
α log(n) log(1/2ε). By a symmetrical argument, we have that pt ≥ 1− ε for t > 4(1+b)n

α log(n) log(1/2ε).
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4 Some examples

There is a vast literature establishing log-Sobolev inequalities for spin systems on the hypercube.
For concreteness, we give a few examples of settings where the log-Sobolev constant is known to be
bounded, and as a consequence our results can be applied.

Sparse Markov random field under `2-Dobrushin uniqueness condition. Suppose that ν
is a Markov random field on a graph of maximum degree ∆ with n vertices, and define the Dobrushin
matrix A ∈ R

n×n to have zero diagonal and off-diagonal entries

Aij = max
y∈Σn,z

dTV (Pr
ν
[Xi = · | X∼i = y∼i],Pr

ν
[Xi = · | X∼i,j = y∼i,j , Xj = z]).

Suppose also that ν satisfies the b-bounded marginal assumption from Assumption 1. Then if
‖A‖OP < 1, it was shown by Marton [38] that ν satisfies the log-Sobolev inequality with log-Sobolev
constant polynomial in b and q.

Special case: Ising under Dobrushin’s uniqueness threshold. As a special case of the
above, suppose that

ν(x) ∝ exp





∑

(i,j)∈E

Jijxixj +
∑

i

hixi





is a probability measure on the hypercube {±1}n parameterized by J, h where E is the edge set of a
sparse graph of maximum degree ∆. If

∑

j |Jij | < 1− δ for all i, and
∑

i |hi| < H, one can directly
show from the definition of the model that it is marginally bounded with b = exp(O(1 +H)) and
satisfies Dobrushin’s uniqueness condition (by applying Gershgorin’s disk theorem), hence our result
applies. Note that we do not need any assumption on the sign of the interactions Jij or external
field hi.

Additional references. There are many settings outside of Dobrushin’s uniqueness condition
where the log-Sobolev inequality is known. For example, the case of the lattice Ising model we
discussed earlier is not contained in this regime. See e.g. [53, 37, 8, 4, 17, 5] for a few relevant
references. In particular, by the result of Chen, Liu, and Vigoda [8], the log-Sobolev constant can be
bounded purely as a function of b,∆ and the “spectral independence” constant of the distribution ν
— so our assumption that the log-Sobolev constant is bounded can be replaced by the assumption of
spectral independence.
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