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ABSTRACT
The Tapis framework, an NSF-funded project, is an open-source,
scalable API platform that enables researchers to perform distributed
computational experiments securely and achieve faster scienti�c
results with increased reproducibility. Tapis Streams API focuses on
supporting scienti�c use cases that require working with real-time
sensor data. The Streams Service, built on the top of the CHORDS
time-series data service, allows storing, processing, annotating,
querying, and archiving time-series data. This paper focuses on
the new Tapis Streams API functionality that enables researchers
to design and execute real-time data-driven event work�ow for
their research. We describe the architecture and design choices to-
wards achieving this new capability with Streams API. Speci�cally,
we demonstrate the integration of Streams API with Kapacitor, a
native data processing engine for time-series database In�uxDB,
and Abaco, an NSF Funded project, web service, and distributed
computing platform providing function-as-a-Service (FaaS). The
Streams API, which includes a wrapper interface for the Kapacitor
alerting system, can de�ne and enable alerts. Finally, simulation
results from the water-quality use case depict that Streams API’s
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new capabilities can support real-time streaming data event-driven
work�ows.
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1 INTRODUCTION
The rise of inexpensive devices in the Internet of Things (IoT), in-
struments, and sensors to observe and measure everything in recent
years have led to a deluge of data and demand for support related
to storing, processing, and analyzing time-series data. Further, as
more Machine Learning and Arti�cial Intelligence systems are de-
veloped and come online, the need for continuous learning data and
datasets that are leveraged for training and used as input for driv-
ing event-triggered computation is increasing [22]. Many science
use cases based on monitoring require ongoing data processing
or special processing/modeling and noti�cation of anomalous or
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special events that can be identi�ed by processing and computing
the data as it arrives. However, many of the current computational
infrastructure and systems built around computation are designed
for one-o� or batch computation of longitudinal datasets. Systems
that have been designed for sensors are often aimed at industry,
and either are complex to deploy and maintain or, if hosted, are
expensive. This leaves a gap for hosted academic streaming data
solutions capable of supporting data event-driven computational
work�ows.

To help address this cyberinfrastructure need to support stream-
ing data for science, the Texas Advanced Computing Center (TACC)
and the University of Hawaii (UH) have developed an open source
uni�ed middleware API infrastructure platform, Tapis [7, 21], with
collaborative features to �ll gaps in the existing streaming time-
series data landscape. Tapis is accessible as a hosted platform as a
service (PaaS) or for on-site deployments where more local control
is necessary.

The middleware that supports streaming data and new multi-
stream and multi-variable data event-driven work�ows features is
known as the Tapis Streams API (Figure 1) and has been designed
to enable several core features:

• Data Ingestion - Support for time-series �oat and string data
from devices and instruments.

• Data Annotation - integrated extendable annotation for data
curation and discovery.

• Data Storage - hosted two-tiered storage for fast windowed
processing and long-term storage within In�uxDB and Mon-
goDB.

• Data Archival - support archival and data replication within
external CHORDS instances and �at �le formats.

• Data Retrieval (with temporal and spatial support) - search
APIs that enable spatial extent and temporal constraints for
advanced queries.

• Data-driven Event Work�ows - support for de�ning evalua-
tion functions on multiple incoming data streams and eval-
uating multiple measurement variables to trigger analysis
work�ows with tight integration into the Tapis Abaco [20]
(Function as a service) and computational Applications and
Jobs services (Figure 1).

• Collaboration Support - role-based access allowing multiple
users to share and manage both data and work�ows.

Previous work has focused on the �rst stage of handling the stream-
ing data life-cycle by supporting ingestion, storage, management/curation
and serving streaming data with the Tapis Streams API [18].

In this paper, we present features that pave the way to auto-
mated data event-driven work�ows that can leverage many of the
cutting edge analysis libraries like Apache Spark-Streaming [15] or
the many deep learning frameworks through Abaco or the Tapis
Applications and Jobs service. Further, we will discuss the back-
ground in Section 2, a real-time event-driven example work�ow in
Section 3, design and implementation of the new APIs in Section 4,
experimental evaluation in Section 5, and opportunities related to
the Tapis Streams API in Section 6.

2 BACKGROUND
2.1 CHORDS
CHORDS [19] is a cloud-hosted real-time data service infrastructure
that provides a graphical interface for acquiring, storing, and analyz-
ing data streams via cloud services and the Internet. The CHORDS
portal is a Ruby on Rails [12] web application, which leverages
databases (In�uxDB and MySQL [17]) that accepts real-time data
from distributed instruments and serves the measurements to any-
one on the Internet. The basic data model supported by CHORDS
is Sites, which is a physical geographical location; an instrument
hosted at the site has one or more variables/sensors, which generate
real-time streaming data, also known as measurements. Metadata
about sites, instruments, and variables are stored in MySQL data-
base, whereas measurements posted to CHORDS are written to
In�uxDB using HTTP requests. Scientists and analysts can eas-
ily fetch the data in real-time from the CHORDS portal, delivered
directly to browsers, programs, and mobile apps.

2.2 Tapis V3 Streams API
Tapis V3 Streams API has been developed by researchers at UH and
TACC to support the integration of streaming data work�ows, stor-
age, retrieval and analysis of time and location-sensitive sensor data.
The API leverages Python Flask [5] web framework to conform to
other Tapis services. Streams API provides a production-quality
service that builds on top of the CHORDS project for real-time data
services. It extends the CHORDS primary data models, including
site, instrument, and variable, with additional metadata, including
adding spatial indexing and permissions. Streams API’s design con-
forms to the OpenAPI 3.0 speci�cation. A live-doc describing all
the REST endpoints is available for viewing [13]. Streams microser-
vice leverages other Tapis microservices such as Security Kernel,
Metadata, Tokens to provide a secure, scalable and reproducible
service. Every user request �rst goes through the Security Kernel
for authorization and authentication check to ensure that the user
has the necessary role to perform requested action on Streams re-
sources. Tokens service provides a signed service JWT, which lets
the Security Kernel and Metadata service to know that request is
coming from an authentic source, i.e., Streams service. Metadata
service provides a backend database for Streams API, which stores
all the metadata associated with the Streams resources.

2.3 Tapis V3 Streams Resources - Projects, Sites,
Instruments, Variables, Measurements

Resources in Streams API are created in hierarchical order, which
allows for better management and access control. Projects resources
are at the top level of the hierarchy, followed by sites, instruments,
variables, and measurements, respectively. A project is a logical
grouping of one or more site(s). A Site is a geographical location
with geospatial coordinates of latitude, longitude, and elevation,
which hosts one or more instruments. An instrument can have mul-
tiple embedded sensors, which generate real-time measurements
that can be stored in the time-series In�uxDB and retrieved for
analyses. At the time of project creation, project metadata such
as the principal investigator, project URL, funding resource, etc. is
stored in the back-end MongoDB collection. A list of authorized
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Figure 1: An example of the new multi-stream and multi-variable data event-driven streaming data work�ow features in the
Tapis Streams API illustrating data streaming from two instruments (A and B) and being evaluated by three conditions. Each
Channel de�nes a set of conditions to evaluate data as it is being ingested that results in two Alerts that trigger actions. These
actions could be third party API calls, Tapis Abaco Actors, or Tapis jobs.

users can be added to various project roles to have controlled ac-
cess to the project resources. User roles such as “admin”, “manager”,
and “user” are set up in the security kernel to decide if the user
can perform CRUD operations on the stream’s resources. Every
request to access the project resource or documents within (i.e.,
sites, instruments, variables) goes through a security kernel check,
and only the authorized user requests are allowed to be processed.
Streaming API components necessary for event-driven work�ow
are discussed in detail in Section 4.

2.4 In�uxDB
In�uxDB, an opensource time-series database, provides high through-
put data ingestion, compression, and real-time querying capabilities
[9]. Its ability to handle millions of data points per second makes it
extremely useful for storing and processing real-time sensor data.
Streams API leverages In�uxDB 1.x for storing and retrieving mea-
surement values generated by sensors embedded in the instruments.
Measurements stored have a creation timestamp. In�uxDB 1.x pro-
vides native support for Kapacitor [11], which is used for real-time
data processing, whereas the latest In�uxDB 2.x version has the
Kapacitor component integrated. With In�uxDB 1.x, Kapacitor sub-
scribes to In�uxDB and receives a copy of all data points, as they
are written [10].

2.5 Kapacitor
Kapacitor is a native real-time streaming data processing engine
for In�uxDB 1.x. It can process batch and real-time streaming
data from In�uxDB by de�ning a monitoring and processing task
to perform on the in-coming data via its programming language
TICKscript [14]. Kapacitor provides ways to write a TICKscript
template task, de�ne a task using the template, and set up alerts
and trigger actions. Since Streams API uses In�uxDB for storing
and retrieving time-series data, integration with Kapacitor becomes
a default choice towards achieving real-time data event-driven
work�ows.

2.6 Abaco
Abaco (Actor Based Containers) is an open-source distributed com-
puting platform, and web-based Application Programming (API)
hosted at TACC that enables clients/users to compute atomic, inde-
pendent workloads or functions on cloud infrastructure [20]. It uses
Linux container technology and actor model to provide Function-
as-a-Service. It was prototyped in 2015 and got NSF funding in 2017.
Since then, it has been used by several research projects. Approx-
imately 50,000 actors have been registered, and nearly 1 million
executions have been performed with a total runtime of 25 million
seconds. Abaco implements the Actor Model where functions (re-
ferred to as “actors”) execute in response to receiving messages.
The functions run with an authenticated context that allows them
to make requests to other Tapis APIs to perform actions such as
data transfer or job submission. Towards supporting event-driven
work�ows for real-time sensor data, the Streams API internals gen-
erates a message describing the alert event, including details such
as the measurements and thresholds exceeded, and it sends the
message to the actor registered. In this way, the actor can take
arbitrary actions in response to the event, including but not limited
to performing local analysis or submitting jobs to HPC clusters.

2.7 Kubernetes Deployment
The Tapis project includes o�cial tooling to ease deployment and
administration of all Tapis API services and components, allowing
institutions to run a subset of the services on-premise while uti-
lizing the primary deployment at TACC for other services. This
o�cial tooling targets the Kubernetes [16] container orchestration
system, which provides a number of high-level features, including
networking and service discovery, container scheduling and scaling,
persistent storage, monitoring, and self-healing. The Streams API
deployment consists of �ve primary components: the Python API,
the CHORDS server, the Kapacitor process, and two databases: In-
�uxDB for time-series measurements and MySQL which CHORDS
uses. Con�guration of the deployments utilizes Kubernetes con-
�gmaps and secrets objects. A single startup script within the of-
�cial deployment tools will create the necessary con�gmaps and
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secrets, persistent volume claims and deployments to start the en-
tire Streams API stack. For more details on the architecture, see
Section 4.4.

3 REAL-TIME EVENT-DRIVENWORKFLOW
EXAMPLE

Researchers at Marshall University currently leverage 3 NSF-funded
projects: Appalachian Freshwater Initiative (AFI) [2], Sensing and
Educating the Nexus to Sustain Ecosystems (SENSE) [3] and Extensi-
ble Geospatial Data Framework towards FAIR Science (GeoEDF) [4]
to address the water quality of streams in Appalachia. They propose
to bene�t from having real-time analysis connected to streaming
data through a service like TAPIS and its Streaming API integrated
into their Science Gateway. This use case involves the collection
and sharing of water quality data using the EPA’s WQP/WQX APIs
and a local staging service call WQBase for discrete data and an
instance of CHORDS for continuously-monitored (real-time) sen-
sor data, with the need for on-the-�y processing, potentially on
remote HPC resources. The goal of integrating Tapis Streams with
their water quality science gateway is to use the Streams Channels
and Alerts APIs to detect anomalies in the measured data, correct
for calibration errors, generate alerts when certain thresholds are
exceeded, compute rolling statistics,compare or combine with other
data sources, use machine learning and image processing to recog-
nize conditions favorable to harmful algae bloom (HAB) formation,
and to push summary data to WQBase for staging, pending further
vetting and analysis before publishing to WQP via WQX.

4 TAPIS V3 STREAMS REST API
Tapis V3 Streams have REST APIs for streaming resources: projects,
sites, instruments, variables, for storing, processing, and querying
time-series data [18]. The current work adds two new REST API
implementations for Templates and Channels. These APIs enable
researchers to de�ne and execute their scienti�c streaming data
work�ow. This section focuses on the implementation and archi-
tecture of these new capabilities and their role in supporting the
streaming data event-driven work�ow. In the subsequent subsec-
tions, we describe Tasks, Templates, and Channels APIs.

4.1 Task and Template
A task is a work to be performed on a streaming dataset. A tem-
plate is a re-usable de�nition that represents a task. A typical task’s
structure encompasses monitoring the incoming streaming data or
measurements, aggregating values, raising alerts when the measure-
ment values satisfy speci�ed boolean conditions, and sending the
critical data that triggered the alert to perform speci�ed actions. We
alternatively refer to a template as a template task, which is used to
de�ne a channel. The notion of task and template in Streams service
corresponds to the task and template in Kapacitor. The Streams API
wraps Kapacitor’s templates API to provide support for templates
in the Streams service. We will de�ne Channel in Section 4.2.

4.1.1 Templates REST API. Table 1 shows the Templates REST
API to create, update, list, and delete templates. A Streams API
user can create template by making a HTTP POST request to the

Table 1: Streams Templates REST API

Method REST API Description
GET /v3/streams/templates Lists templates
POST /v3/streams/templates Creates a Template
GET /v3/streams/templates/{id} Get details of the speci�ed Template
PUT /v3/streams/templates/{id} Update the speci�ed Template de�nition
DEL /v3/streams/templates/{id} Delete the speci�ed Template

/v3/streams/templates endpoint, including a JSON formatted re-
quest body containing the template information. The request re-
quires three �elds - template_id, type, and script, where template_id
is a unique identi�er for the template to be created, type represents
data type and is set to stream for streaming data, and script is a
TICKScript describing the structure of the task. We refer to this
script as template henceforth as it is the actual template task.

Figure 2: A TICKScript template for two variables

4.1.2 Template Design. A template is a TICKScript de�ning a task
with variables that are set during the Channel de�nition. Figure 2
shows an example of a template representing a template task that
monitors two Streams resource variables values and raises an alert
if a speci�c boolean condition is satis�ed. A template in the Streams
service has three critical sections:

• Declaration of TICKScript variables. These declarations
are required for the criteria to �lter incoming streaming
data and for the boolean conditions speci�ed in the Chan-
nel de�nitions. Line numbers 1-5 in Figure 2 show the set
of TICKScript variables de�ned for the template, which get
assigned values from the Channel de�nition during chan-
nel/task creation.

• Setting up TICKScript variables to �lter data streams:
Variables var1 and var2 de�ned on lines 7-15 in the exam-
ple template shown in Figure 2, represent Streams resource
variables (sensors) measurement values. crit1 and crit2 rep-
resent the boolean conditions to �lter the data points from
the measurement tables. Note that there could be several
Streams resource variables for an instrument. In the above
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template script, we monitor only two variables and corre-
spondingly �lter the data points from the measurement table.
As leveraged in the Streams service, the CHORDS data model
uses the schema (timestamp, inst, site, test, value, var) for
storing measurements in the In�uxDB. The timestamp �eld
represents the date-time of measurement creation in an UTC
standard time, site is the associated CHORDS site id, inst
denotes CHORDS instrument id, var represents CHORDS
variable(sensor) id, and the value contains the actual mea-
surement value generated by the variable. Two variables in
the example represent two data points in the measurement
table, i.e., two rows of the measurement table. To monitor
two variables simultaneously and check the criteria, we need
to join/aggregate them as a single stream based on their
timestamp. Once�ar1 and�ar2 are set with the �ltered data
points streams by applying crit1 and crit2, respectively, these
data are joined/ paired based on timestamps within a toler-
ance interval as shown in line numbers 17-22. In the example,
the tolerance interval is 1 ms. The joining of data streams
indicates that these data arrive within the time interval 1 ms
and are close enough to be considered as a single stream and
based on which alerts can be de�ned.

• AlertsDe�nition: An alert is de�ned after joining the streams
of data points for more than one variable. An alert de�nition
requires a boolean condition, an alert level, an alert message,
an option to send details of the data point raising an alert,
and a destination end-point where the alerts are posted. In
the example template line numbers 23-31, crit3 is a boolean
condition on var1 and var2, and ‘api-alert’ in the destina-
tion end-point where the alert is posted. For each tenant,
separate end-points are con�gured in the con�guration �le
kapacitor.conf.

Another key aspects of the Template is the representation of a
boolean conditional expression for the variables. We leveraged the
Kapacitor’s TICKScript lambda expression representation and allow
the standard set of mathematical relational and logical operators
in the boolean expression. For example, following are a few valid
boolean conditional expressions for crit1, crit2 and crit3 in the
example template involving two variables:

crit1: (�var� == �8�) AND (�inst� == �11�)

crit2: (�var� == �9�) AND (�inst� == �11�)

crit3: (var1.value > val1) OR (var2.value <= val2)

crit1 �lters data points of variable/sensor (say, thatmeasures temper-
ature) with id 8 belonging to instrument with id 11. Similary, crit2
�lters data points of variable/sensor (say, that measures pH value)
with id 9 belonging to instrument with id 11. crit3 is the boolean
condition to raise alert which denotes the condition - Tempera-
ture greater than val1 OR pH less than equal to val2. The example
template can be extended easily for monitoring more variables
task/channel. This involves including more crit# variables, joining
them and creating a complex lambda expression. For example, to
monitor four variables of an instrument in the variable declaration,
we would add two more lambda variables crit4, crit5 in the exam-
ple template. The variables crit1, crit2, crit3, crit4 would represent
criteria to �lter points for corresponding to four variables’ values

Table 2: Streams Channels API

Method REST API Description
GET /v3/channels Lists Channels
POST /v3/channels Creates a Channel
GET /v3/channels/{id} Get details of the speci�ed Channel
PUT /v3/channels/{id} Update the speci�ed Channel de�nition
POST /v3/channels/{id} Activate/Deactivate the speci�ed Channel
GET /v3/channels/{id}/alerts Lists alerts for a given channel
DEL /v3/channels/{id} Delete the speci�ed Channel

and crit5 would represents the �nal lambda expression to raise an
alert. The lambda expression could be de�ned as follows:
crit5: (var1.value > val1) AND ((var2.value <= val2)

OR (var3.value > val3)) AND (var4.value > val4)

Note that in the script �eld, the actual TICkScript shown in
Figure 2 needs to be reformatted to a single line as it is sent in
a JSON request body to the Streams API and the Streams service
sends it to Kapacitor HTTP template API.We provide these template
scripts to users so they can easily write their template tasks.

4.2 Channels
A Channel is an abstraction for pre-processing real-time streaming
data to trigger alerts based on a function of the variables and initiate
analysis on the data. A channel resource uses a template task and
measurement variables from a one or more data streams to de�ne
a task with boolean conditions/criteria on the variables’ values and
a set of actions. A template task can be reused to generate multiple
channels with di�erent boolean conditions.

4.2.1 REST API. Table 2 shows Channels REST API to create, up-
date, delete and list channels. Stream resources - projects, sites,
instruments, variables, templates - need to be created prior to Chan-
nel creation. A Streams service user can create a channel by sending
an HTTP POST request to /v3/streams/channels in a JSON format-
ted request body. The request body comprises of following required
�elds:

• channel_id: a unique channel identi�er
• channel_name: a channel name
• template_id: A pre-created template’s identi�er which is
required to create a channel

• triggers_with_actions.inst_ids: a set of instruments ids’ for
which the channel is created

• triggers_with_actions.condition: Boolean conditions on vari-
ables’ values or measurements for monitoring the variables
and raising the alert when conditions are met. The measure-
ments can come from di�erent instruments associated with
di�erent projects.

• triggers_with_actions.action.actor_id: Abaco’s actor_id. The
actor that performs the analysis will be executed whenever
an alarm is triggered.

4.2.2 Channel Design. A channel is an extension to the notion
of a task in the Kapacitor. It de�nes a set of boolean conditions
and actions to be initiated when the conditions are met. A boolean
condition is de�ned as a logical expression comprising di�erent vari-
ables or functions of variables with thresholds. Once this boolean
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expression is evaluated to true, the following set of actions are
performed:

• “Alerts” as events are generated, and noti�cations are sent to
the data processing end-point via HTTP POST with details
of the data raising the alerts.

• Pre-processing of the incoming alert data.
• Initiating processing of measurements using a Tapis Abaco
function, thereby enabling a real-time streaming data event-
driven work�ow. Such work�ows can be used for processing
streaming data in real-time, anomaly detection analysis, and
time-series machine learning applications.

An important step in channel creation involves parsing the boolean
conditional expression and converting it to lambda expression as
required in the pre-created template. It also checks if the actor
speci�ed in the de�nition is a valid actor. We will now discuss some
key aspects of Channel design.

• Boolean conditional expression representation in the
Channel de�nition: For templates, we leveraged Kapacitor
Templates API to de�ne a template. The lambda expression in
the template used an in�x notation. In the channel de�nition,
however, we used a combination of in�x-pre�x notation to
represent the expression. The reason for the notation is the
ease of parsing the expression, particularly, key’s value, that
is, instrument_id.variable_id and readability. The format of
conditional expression is as follows:

<condn>:= {�key�: <inst_id.var_id>,

�operator�:<rel_op>,

�val�: threshold_value}

<condn_expr>:=[�<logical_op>�,

<condn_expr>|<condn>,

(optional: <condn_expr>) ]

rel_op := < | <= | > | >= | == | !=

logical_op := AND | OR | NOT

An example of a <condn expr>:
[�AND�, {�key�:�inst_id1.temp�,

�operator�:�>�, �val�: 100},

[�OR�, {�key�:�inst_id2.humid�,

�operator�:�<�, �val�: 40},

{�key�:�inst_id2.turb�,�operator�:�>�,

�val�: 10}

]

]

• Boolean expression parser: A boolean expression parser
and converter parses the <condn_expr>, obtains the variable
values, and converts it to lambda expression in�x notation
expression for substituting it to the template. We used a
recursive program structure for the parser implementation.

• Channel Creation: Kapacitor task API is used to create a
task corresponding to a channel de�nition. For the Kapac-
itor task de�nition, it is required to pass JSON formatted
TICKScript variables values to be substituted in the template
task besides template_id. Streams API converts the channel
de�nition into the Kapacitor task de�nition using the above

parser. When a channel is created, the status is set to “AC-
TIVE”, indicating that the channel is now monitoring the
in-coming real-time data.

• Authorization: Streams Service has three role levels for
controlling channel access as described above.When a user
creates a channel, a channel admin role is created in the
Security Kernel and the user is granted that role. Admin or
managers can grant other roles such as “manager” or “user”
based on the channel usage. It is important to note that the
user making a create channel request should have atleast a
“user” role on the project to which inst_id in the HTTP POST
JSON request body belongs.

4.3 Alerts
Alerts are the triggered events when a set of boolean conditions
are met. For incoming measurement values for di�erent variables
or sensors, the channel raises an alert when the values cross cer-
tain thresholds. These alerts conditions are de�ned in the Channel
de�nition and gets substituted in the template. Since Kapacitor
performs the boolean conditional expression check, it sends the
raised alert information via HTTP POST to the Streams data pro-
cessing end-point, i.e., /alerts end-point. This end-point, as stated
earlier, is de�ned in the Kapacitor.conf �le and used in the template
task. Based on the alerts received, Streams pre-process the alerts,
and initiates the action as speci�ed in the channel de�nition. Lists
of alerts for a channel can be obtained by making an HTTP GET
request to /v3/channels/id/alerts end-point.

4.4 Integrated Architecture
This subsection presents the Tapis V3 Streams API architecture
integrated with Kapacitor, Tapis Abaco, and Tapis Meta V3 services
to achieve event-driven work�ow. Figure 3 shows the integrated
architecture and the information �ow for alerts generation and
initiation of an execution of a pre-registered actor in the Abaco sys-
tems. A high-level architecture of Streams API integrated with other
components of Tapis V3 and CHORDS is provided in [18]. Before
creating a channel and template, the stream’s resources (Projects,
Sites, Instruments, Variables, and Measurement) need to be de�ned.
To create a template, the user sends an HTTP POST request to
the Streams /templates end-point with template_id and template
task script. After template creation, the user sends an HTTP POST
request to Streams /channels end-points with channel_id, chan-
nel_name, template_id (template created in the previous step), and
a set of boolean conditions and set of actions. The template and
channel information are stored in the Meta V3 service.

Measurements are posted to Streams /measurements end-point.
Streams, in turn, writes the measurements to In�uxDB by sending
an HTTP POST request to In�uxDB /write end-point. The values
are also copied to the Kapacitor through In�uxDB’s Subscription
API as they are being written to the database. The Kapacitor task
corresponding to the channel, checks the boolean condition. If it is
true, then raises an alert and sends the alert to Streams /alerts end-
point. The Streams API pre-processes the alert and sends the alert’s
details in the execution request message to a pre-registered actor
in the Abaco service. The Abaco system sends back an executionId.
On receiving the executionId, the Streams API creates an alert and
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sends it to the Tapis V3 Meta service to save the data and sends
alert information to the user with the executionId, which the user
can use to track of the execution.

Figure 3: Tapis v3 Streams API’s architecture to support
event-driven work�ow

5 EXPERIMENTAL SETUP AND EVALUATION
This section describes the experimental setup and focuses on the
experiments and results to verify and evaluate the new Streams
API capability to support the event-driven work�ow. It is critical
for any real-time monitoring system that if any of its parameters
being monitored crosses a prede�ned threshold, an alert should be
generated instantaneously.

5.1 Simulation Setup
We simulated water quality event-driven work�ow to verify the
correctness and performance of Streams API. The measurements
posted to Streams API during simulations were based on our anal-
ysis of real-time datasets from two sites: Robert C Byrd Locks
and Greenup Locks from the Ohio River (Greenup Pool) Monitor-
ing project. These sites host two instruments (YSI EXO2 Sondes)
mounted on the Locks, each with multi-sensor probes monitoring
Temperature, Speci�c Conductance, pH, Turbidity, Dissolved Oxy-
gen, chlorophyll, BGA-Phycocyanin, and Photosynthetic Active
Radiation (PAR) to study the quality of water. We identi�ed the
measurement range for each variable by processing the datasets
with measurements captured and transmitted by the attached data
loggers (NexSens 3100-iSIC) every 15 minutes for a period of 30
days as shown in table 3. This approach enabled us to simulate
realistic water quality work�ow measurements.

To run the simulations, we created an Ohio River Monitoring
project with two sites: Robert C Byrd Locks and Greenup Locks,
with instruments: Robert C Byrd Sonde and Greenup Sonde, re-
spectively for each site and variables per instrument for measuring
Temperature, Speci�c Conductance, pH, Turbidity, Dissolved Oxy-
gen, Chlorophyll, BGA-Phycocyanin, and Photosynthetic Active
Radiation (PAR) leveraging the Streams API python SDK (tapipy [6])
calls. Each of these variables signi�cantly impacts the water qual-
ity and the associated habitat dwelling inside it. For example, the

Table 3: Measurement ranges for Water Quality variables

Variable Instrument 1 Instrument 2
Battery (V) 8.9 - 15 12.6 - 12.9
Temperature (C) 1.7 - 7.06 2.42 - 7.47
Sp Cond (�S/cm) 195 - 319 247 - 357
PH 7.4 - 8.02 7.29 - 7.93
Turbidity (ntu) 6.9 - 761 11.52 - 264.21
Odo sat. (%) 92 - 112 93.72 - 100.61
Odo (mg/L) 11.28 - 13.6 11.42 - 13.49
Chlorophyll (�g/L) 1.27 - 6.28 1.11 - 6.55
Chlorophyll (RFU) 0.3 - 1.5 0.3 - 2.6
BGA-Phycocyanin (�g/L) 0.43 - 2.55 0.29 - 0.86
BGA-Phycocyanin (RFU) 0.4 - 2.6 0.3 - 0.8
Depth (m) 0.727 - 6.265 0.263 - 2.34
Wiper Pos. (V) 1.18 - 1.21 1.18- 1.23
Cable Power. (V) 8.9 - 14 12.1- 13.7
PAR (�mol/s/m2) 7.4 - 1472 7.4 - 1468

water temperature determines the rate of chemical and biological
processes. The pH tells us how acidic the water. Dissolved Oxygen
a�ects the survival of plants and animals living in it. Fish and other
aquatic animals can perish if they are exposed to water with low
Dissolved Oxygen levels (less than 5 milligrams per liter) for an ex-
tended time [1]. Similarly, Turbidity is the cloudiness or murkiness
in the water. Turbid water is not always harmful, but the sediments
and particles in water can be harmful, which needs to be monitored
[1].

For simulation purposes, we chose to monitor these four vari-
ables (Temperature, pH, Dissolved Oxygen, and Turbidity) individ-
ually and in combination, satisfying certain logical conditions, by
creating active Channels on each of the instruments with Streams
API. We used di�erent templates involving one, two, and three
variables for creating di�erent channels. Most of the measurements
posted to the variables fall in the range speci�ed in Table 3, and few
measurements are deliberately posted in a way that they exceed
prede�ned thresholds to generate alerts. We preregistered an Abaco
actor, which receives messages from Streams API. The messages
received contain one or more measurements that have exceeded
the prede�ned threshold and raised the alert. In case of an alert
event, on receiving message from Streams API, the Abaco actor
launches the associated container and takes necessary action as
programmed in the container image, which could be triggering an-
other job de�ned in the work�ow to run on HPC clusters. Our tests
measure the correctness of Streams API supporting event-driven
work�ow by measuring the number of alerts generated per channel.
We calculate the number of alerts generated and match them with
the expected numbers to calculate the error rate. The rate at which
measurements are posted determines whether Streams services can
handle multiple data-points simultaneously and still performwithin
the expected time and correctness. Although the real experiment
posts measurements 15 minutes apart, in our simulations we tried
to stress the system, to handle data coming at the rate of less than
a second. We will discuss the results from our simulation in the
following section.
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Table 4: Streams Channels Alerts Design Evaluation

Create
Measure-
ment

Num. of Conditions Inst.1: alerts
gener-
ated/expected

Inst.2: alerts
gener-
ated/expected

0.1s One 13/13 13/13
0.5s One 12/12 11/11
1s One 10/10 12/12
0.1s Two 3/3 5/5
0.5s Two 2/2 5/5
1s Two 6/6 1/1
0.1s Three 6/6 3/3
0.5s Three 4/4 3/3
1s Three 3/3 3/3

5.2 Simulation Results
We refer to the instruments, Ohio River Robert C Byrd Locks and
Ohio River Greenup Locks as Instrument1 and Instrument2. Mea-
surements are posted to each instrument at the rate of 0.1s, 0.5s
and 1s. These instruments are separately monitored with di�erent
channels. We categorized the test runs as follows:

5.2.1 Alert generation while monitoring one variable . We created
two channels using one-variable template for monitoring both the
instruments. Pre-condition set up in both channels was to raise an
alert if the temperature value exceeds 9 degrees Celsius. A total of
1400 measurements, 100 values for each variable per instrument,
at the rate of 14 values per 0.1s, 0.5s and 1s were posted with the
Streams measurements-write API call. At the end of every run,
we calculated the number of alerts generated versus the expected
number of alerts as shown in Table 4.

5.2.2 Alert generation while monitoring two variables. We created
a template with two variables for this run and used it to create
two channels listening on both instruments. Two variables chosen
for evaluation in this case were temperature and pH. An alert was
raised when the temperature exceeds 9 degrees Celsius, and the pH
value is less than 5. An AND condition de�ned in the channel makes
sure to raise alert only when both the conditions on the variables
evaluate true. Measurements posted in this run were before 1400,
100 values for each variable, with the same sampling rate. Alerts
generated versus expected were calculated, and test results for
Channel condition, Temp. > 9 AND pH < 5 are recorded in table 4.

5.2.3 Alert generation while monitoring three variables. We created
a template with three variables for this run and used it to create two
channels listening to their respective instrument. Three variables
chosen for evaluation, in this case, were temperature, pH and tur-
bidity. An alert was generated when the condition: Temp. > 9 AND
pH < 5 OR Turb. > 500, was satis�ed. The number of measurements
posted and sampling rate remained the same as in previous cases.
The number of alerts generated versus expected was recorded in
the test results in Table 4.

6 CONCLUSION AND FUTUREWORK
In this paper we demonstrated that the Streams API’s newly devel-
oped capabilities (Channels and Templates) successfully support
event-driven scienti�c work�ow use cases. We also discussed the

Streams service’s integration with an alerts automation tool, Ka-
pacitor, and the distributed computing platform, Tapis Abaco. Such
integration helps with real-time data monitoring and allows to take
necessary actions in case of an event, thereby enabling event-driven
work�ow. Simulation results obtained from the water quality event-
driven work�ow veri�es the correctness of the new Streams API
capabilities. Since the Streams API leverages the CHORDS data
model and uses the same In�uxDB’s schema, this work shows the
CHORDS data service can quickly adopt the alerts’ design to enable
event-driven work�ow.

The Streams API will be available in production supporting real-
time event-driven work�ows for some of the early adopters: water
quality use case stated in Section 3 and automated statewide rainfall
mapping for Hawaii [8].
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