Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Sustainability in the Tapis Framework

Joe Stubbs
University of Texas
jstubbs @tacc.utexas.edu

Richard Cardone
University of Texas

rcardone @tacc.utexas.edu mpackard @tacc.utexas.edu

Smruti Padhy
University of Texas
spadhy @tacc.utexas.edu

Steve Terry
University of Texas
sterry 1 @tacc.utexas.edu

Mike Packard
University of Texas

Anagha Jamthe
University of Texas
ajamthe @tacc.utexas.edu

Julia Looney
University of Texas
jlooney @tacc.utexas.edu

Joseph Meiring
University of Texas
jmeiringd @tacc.utexas.edu

Steve Black
University of Texas
scblacke @tacc.utexas.edu

Maytal Dahan
University of Texas
maytal @tacc.utexas.edu

Abstract

As more research depends fundamentally on
software, sustainability becomes increasingly critical.
Nevertheless, despite valiant efforts from a growing
number of researchers and practitioners, a basic
understanding of best-practices for sustainable
software remains elusive. In this paper, we review the
specific practices and strategies that have helped to
sustain Tapis, a cyberinfastructure project that has
been in use for over a decade. The Tapis framework
is an open-source, software-as-a-service Application
Programming Interface (API) for collaborative,
automated, reproducible, computational research
which began as the Foundation API for the iPlant
Collaborative Project in 2008. Today Tapis is used
by tens of thousands of individuals across more than
a dozen active projects. This paper describes our
multi-faceted approach to sustaining an increasingly
complex ecosystem of software, documentation and
other digital assets, including both technical and
organizational strategies for minimizing the cost of
sustainment while maximizing available resources for
sustainment activities.

1. Introduction

Increasingly, research relies upon and produces
software. In a 2017 survey of members of the
US Postdoctoral Association, 95% of individuals who
responded used software in their research, and 63%
said they could not do their research without software
[1]. A study of all Nature papers published between

URI: https://hdl.handle.net/10125/71495
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

H{CSS

Gwen Jacobs
University of Hawaii
gwen@hawaii.edu

Sean Cleveland
University of Hawaii
seanbc @hawaii.edu

January 1 and March 31, 2016, found that 80% of the
papers mentioned software, with an average of 7 distinct
software packages per paper [2]. The international study
“Charting the Digital Transformation of Science”, from
2018, found that nearly 70% of research that resulted in
scientific publications produced data and code [3].

The sustainment of such software — the activity
of ensuring that the software continues to be available
and usable — is therefore essential to the vitality of
a significant portion of all research. But while the
criticality of this challenge has been recognized by
leading institutions and funding agencies, a consensus
on techniques and best practices for sustainable software
has yet to emerge.

The Tapis API framework is an open-source
software system enabling collaborative, automated,
reproducible computational research [4]. A hosted,
software-as-a-service platform, the main Tapis
installation running at the Texas Advanced Computing
Center at the University of Texas at Austin currently
supports tens of thousands of users across 14 active
projects. At the end of 2019, annual usage reached 30
million API requests. But Tapis’s usage and adoption
has grown substantially over a period of more than 10
years. Through a steady commitment to sustainable
software practices, the Tapis project has evolved from
its roots as the iPlant Collaborative’s Foundation API,
first launched in 2008 [5].

Clearly, sustaining software requires resources, and
therefore, efforts to make software more sustainable
can be organized into two broad categories: 1)
efforts that reduce the resources required to sustain
the software and 2) efforts that increase the resources
available to perform sustainment tasks. Like many

Page 7257

academic research and development projects, Tapis
has operated on significantly less direct funding
than its commercial counterparts. As a result, we
have adopted a multi-faceted sustainment approach
comprised of a number techniques and practices from
both categories 1) and 2). In this paper we present
our approach to sustaining the Tapis platform, including
concrete examples of both technical and organizational
strategies, with the hope of benefiting other projects
and contributing to the identification of best practices
in software sustainability.

We begin with a review of related efforts to study
sustainable software practices in Section 2. Then, in
Section 3, we provide details about the history and
background of the Tapis project necessary for the rest
of the paper. In Section 4 we describe strategies we
have used to reduce the cost of sustaining Tapis while
in Section 5, we discuss our approaches to growing the
Tapis community and increasing the resources available
for sustainment efforts. In section 6, we examine data
associated with the evolution of Tapis which we argue
suggests a temporal correlation between these practices
and the overall increased sustainability of Tapis. Finally,
in Section 8 we close by summarizing the primary
ideas presented for improving sustainability of research
software.

2. Related Work

A large and growing body of articles in the current
literature study the use of software in research and the
challenge of sustainability [6]. In this section, we review
some of the work done to date.

2.1. Empirical Studies

A number of articles have taken an empirical
approach to studying the properties of sustainable
software used in research. For example, in a 2015 paper,
the authors conducted a survey of cyberinfrastructure
users in which respondents were asked to list projects
they identified as successfully sustained [7]. The paper
presents the results of in-depth interviews conducted
with the project leads of 12 cyberinfrastructure projects.
Some high-level themes common across the projects
emerged, such as “the use of open-source licenses”,
“strong, committed, visionary leadership”, and “domain
experts engaged with developers” are presented.

Another paper from 2017 presents the results of a
survey aimed at determining: 1) the extent to which
different software quality requirements contribute to a
perception of sustainability and 2) the dependencies
between four software sustainability dimensions (social,
technical, economic, and environmental) [8]. Software

qualities such as modifiability, functional correctness,
availability, interoperability, security, and freedom from
risk, were among those identified as the most crucial.
The paper also reported that the technical and economic
dimensions are most closely related, followed by
technical and environmental.

More recently, a study from 2019 conducted
interviews with Research Software Engineers (RSEs)
to determine if there is a common understanding of
the meaning of sustainable software [9]. A thematic
assessment of the data revealed two sustainability
dimensions — intrinsic and extrinsic sustainability —
instead of four, as well as a variety of views on how
to obtain each.

2.2. Evaluation Frameworks

Another set of efforts involves defining formal
metrics for measuring the sustainability of a software
package. Nearly 20 years ago, it was argued
that common quality measures at the time such as
mean time to repair (MTTR) were inadequate for
measuring software sustainability and the Weighted
Modification Request Days (WMRD) and associated
measures were proposed instead ([10]). A 2014 paper
proposed that software sustainability measures could
be defined analogous to measures previously defined
for software dependability, suggesting the following
primary measures for sustainability: extensibility,
interoperability, maintainability, portability, reusability,
scalability, and usability [11]. More recent papers build
and expand upon these efforts (see for example, [12] and
[13]).

Taken together, these articles and a number of others
like them (see for example, [14], [15] and [16]), suggest
a field very much in its infancy where the basic concepts
are note agreed upon and best practices are still very
much in flux. Indeed, it would seem “the concept of
software sustainability is complex and multifaceted with
any consensus towards a shared definition within the
field of software engineering yet to be achieved,” as
noted in a paper that likened software sustainability to
the Tower of Babel [17]. This also suggests that the
qualities required to make a software project sustainable
may vary substantially from project to project, as
remarked in [7].

2.3. Case Studies

The final subclass of prior works, and the one most
closely related to the present work, are in-depth studies
of specific software systems. We find these papers
particularly compelling for their potential to illuminate
techniques and strategies that have actually worked in

Page 7258

real software projects that have been sustained.

In [18], the authors present the common software
architecture leveraged by several systems at the NASA
Infrared Processing and Analysis Center (IPAC) at
Caltech, and they examine the ways in which the
architecture contributes to sustainability. Particular
emphasis is placed on meeting the challenge of a
rapidly growing collection of astronomical data. A key
aspect of the design is a component-based architecture
where more than 100 components, each performing one
generic function, provide modularity and extensibility.
A list of 15 best practices for software sustainability is
provided. Even though the IPAC software and Tapis
are very different systems from different times ([18]
was published in 2011), it is interesting to note the
commonalities between them.

Some previous work has considered the
software-as-a-service (SaaS) model; in [19], it is
argued that in general, the SaaS model has advantages
over other models for sustainability. A case study of
the Globus software suite also argued that subscriptions
generated by the SaaS model have put Globus on a path
to long-term sustainability. [20].

3. Tapis: Background and History

In this section we provide an overview of the Tapis
project.

3.1. High Level Description and Features

Tapis is an open source, hosted API platform
for distributed computation that enables researchers
to manage data and execute codes on a wide range
of remote systems, from high-speed storage and
high-performance computing systems to commodity
servers. Tapis’s network of microservices interact with a
vast array of physical resources on behalf of users: high
performance and high throughput computing clusters,
file servers and other storage systems, databases, bare
metal and virtual servers, etc. The goal of Tapis is to
provide a unified, simple to use API enabling teams to
accomplish computational and data intensive computing
in a secure, scalable, and reproducible way so that
domain experts can focus on their research instead of
the technology needed to accomplish it.

Chief among all capabilities in Tapis is the ability
to execute user-defined codes (“apps”) on remote
execution resources. In Tapis, each invocation of an
app is called a “job”, and Tapis is capable of scheduling
jobs on a variety of different computing resources, from
traditional supercomputers using batch schedulers, to
high-throughput compute clusters on cloud systems.
Tapis provides APIs for managing data on remote

storage servers including high-performance parallel file
systems, physical servers and VMs and object stores
such as AWS S3 [21], and . Underlying all of the
APIs is the Tapis Security Kernel, providing user role
and permission access controls along with secure secret
storage.

3.2. History and Major Versions

The first major API platform for computational
research developed at TACC was the “Foundation
API”. Built as part of the iPlant Collaborative
project and originally released in 2008, Foundation API
was leveraged by iPlant’s Discovery Environment, a
web-based graphical interface [5]. We retrospectively
refer to this version of the platform as “v1”. Agave was
the second major API version (v2), starting in 2014.
Agave added multi-tenancy to the Foundation API, as
well as some other major features such as OAuth2
support. In 2019, the National Science Foundation
funded work for a third major version of the platform
called “Tapis”. Tapis (v3) makes some fundamental
changes to architecture and other aspects of v2, such
as security, but it continues to support virtually all of
the end-user functions such as data management and job
execution. It also adds major new services such as the
Streams API for real-time sensor data and it incorporates
another TACC project, the Abaco platform, directly as
a first-class API, which provides functions-as-a-service
based on Docker containers and the Actor Model of
Concurrent Computation.

3.3. Usage

Tapis has experienced tremendous growth and
success since its initial incarnation as the “Foundation
API” for iPlant. In the ensuing twelve years, more
than 14 independently funded projects have leveraged
the Tapis platform across a wide variety of domains
of science and engineering, and many smaller projects
interact with Tapis without a formal engagement. In
addition to the two major version releases, scores of
minor releases have been made over this period in
response to community usage and feedback. Table 1
provides high-level usage numbers for the lifetime of
the platform since 2015.

4. Reducing the Sustainability Cost

In this section, we describe specific decisions we
have made and strategies we have used to reduce the cost
of sustaining Tapis. We divide these efforts into three
types: Architecture, Open Standards and Technologies,

Page 7259

Platform Services

Science APIs SUQEOI‘! Services
~_ Ty
Science API vl
microservices MySQL
Ston
Apache Host Store
Beanstalkd
Worker Queue
——
V—N Apache S K—, MongoDB
WS02 Identit s‘;’:‘:g’e _m Metadata
entity
: store
Serie
MySaL
Science
WS02 API API store
manager

Figure 1. Tapis V2 Architecture

The primary components of the Tapis v2 system,; rectangles represent independent processes and arrows indicate
communication between processes. Arrow sizes and colors are for readability and carry no other implied meaning.

Metric Value Description

Official Installations 3 Total official, independent installations of the platform.

Official Projects 14 Independently funded projects leveraging the platform.

Systems 8,700 Number of systems registered.

Apps 5,150 Number of unique application codes registered.

Clients 53,126 Number of unique OAuth client applications registered registered.
Jobs 285K Total number of batch jobs run.

Metadata items 442K Total number of metadata item stored across all projects.

Postits 400K Total number of API objects shared and retrieved with postits.
Data moved || 1.15B/3.5 PB Total number of files transferred and total number of bytes transferred.
(files/size)

Table 1. Summary of aggregate Tapis usage.

though it should be noted that this categorization is more
for organizational purposes — clearly, all three types are
inherently connected.
4.1. Architecture

The Tapis architecture has evolved substantially over
the past decade since the initial release of the Foundation
API, with sustainability being one of the primary
driving forces. Tapis uses a microservices architecture
where independent components, or services, run as
standalone programs. The evolution to microservices
came gradually with each major version of the platform.

In version one, all primary services ran in a single
Java Virtual Machine (JVM), including authentication
services. One source code base and build produced a
single Java artifact, which was deployed to a server or

virtual machine (VM). A single developer contributed
the vast majority of the code for version one.

For version two, the identity and authentication
services were split from the “core” services and a more
distributed architecture was used as shown in Figure
1. The core services, including the Systems, Files,
Apps, Jobs and Meta APIs, each used a different build
producing a different Java artifact, but dependencies
existed between the builds. For example, one could
not build the Files API artifact without first building
the Systems API artifact, the Jobs API build depended
on the builds of almost every other core API, etc.
The reason for these build dependencies had to do
with another architecture choice: even though the
services were independent, deployable applications,
communication between core services happened by way
of direct library calls in Java code. Thus, if the Jobs

Page 7260

service needed to invoke a Systems API function, it did
so via library calls, not a HTTP request.

Four primary services comprised the identity and
authentication services of version 2: an OAuth server,
an API gateway, a Profiles API, and a reverse proxy
and load balancer to handle TLS negotiation and
primary request routing. The identity and authentication
services leveraged a mix of monolithic and microservice
architecture, with the most of the primary Oauth2 and
API gateway functionality bundled as a single monolith
and the other functions split across three independent
applications. It’s worth noting that the authentication
services used different persistence (i.e., databases and
message queues) than the core services.

These changes allowed more developers to
contribute to the code bases of the version two
services. At least six individuals (Cardone, Dooley,
Kuritz, Padhy, Stubbs, Terry) made substantial code
contributions including initial authoring or major
refactoring/rewriting of one or more services. Several
others made smaller contributions in the form of bug
fixes or other improvements.

Version two of the platform supported multiple
tenants, or logically isolated views of the API objects
(e.g., systems, apps, jobs, etc.) for different
projects. This architectural choice greatly expanded
the platform’s usability and has been essential to the
growth over the last five to seven years. It also impacted
the deployment architecture substantially. First, the
core team deployed and managed a version of the
authentication services for each tenant. Additionally,
several tenants also ran isolated versions of the core
services. In total, including the persistence layer of
databases and message queues, version 2 ran across over
50 VM.

The most recent Tapis v3 platform implements a
true microservice architecture as shown in Figure 2
where each service: 1) has an independent code base,
hosted in its own repository, 2) an independent build
and deployment system, and 3) uses network calls over
HTTP for communication with other services. As a
result, in just nine months of development, we have
already seen major development contributions to core
components from 11 individuals across two institutions
(Black, Cardone, Cleveland, Garcia, Jamthe, Looney,
Meiring, Packard, Padhy, Stubbs, Terry).

4.2. Open Standards

Adoption of open standards contribute substantially
to reducing sustainability efforts for Tapis. Open
standards allow for the use of community-developed
libraries, tools and frameworks, enabling core

developers to focus on problems more unique to
Tapis. In our experience, adoption of open standards
involves more subtlety than may appear on the surface,
with competing standards and different versions
offering trade-offs between features and sustainability
costs.

One class of open standards that have been adopted
by Tapis are standards that have been in existence
for over a decade; these include HTTP, JSON [22],
and SSH [23] as well as the Representational State
Transfer (REST) architectural style. On the surface,
these choices may seem obvious, but each involved
balancing more modern standards with sustainability.
For example, HTTP 1.1 [24] was chosen over HTTP 2
[25], while REST and JSON were chosen over gRPC
[26] and Protocol Buffers [27]. Even with SSH, which
Tapis uses to connect to remote storage and computing
resources, other options were considered, including
a custom protocol over TCP. In all of these cases,
sustainability drove the decision. Due to the maturity of
these standards, high quality libraries and frameworks
exist in virtually all modern programming languages
for working with them. Moreover, developers tend to
be more familiar with them, and thus, the barrier to
contributing is lower.

By contrast, newer standards come with unknowns;
e.g., what technologies should be used to persist
long-lived HTTP 2 connections across components,
and what client-side tooling is available for users?
Typically, these unknowns translate into adoptions of
more experimental architectures and technologies which
in turn tend to be more costly to sustain.

Other standards adopted by Tapis could be seen
as more risky. For example, the OAuth2 [28]
specification arrived in October, 2012, less than two
years before the version two platform initially went
to production with its OAuth2 server. = Adoption
of the OpenAPI v3 [29] standard as a specification
language, which first appeared in July of 2017, for
defining the Tapis version three API contracts, provides
another example. In these cases, core developers
performed assessments, including background research
and prototype development, to determine if adoption of
the standard would lead to a net project benefit.

4.3. Technology

Much like architecture and open standards,
technology selection plays a crucial role in the
long-term cost of sustaining a software project.
However, for an NSF-funded project like Tapis which
must be innovative in addition to providing utility,
technology selection, including the incorporation of

Page 7261

Kurbernetes Cluster

User Tenant Tenants Jobs
Reguests Router <+ Postgres MongoDB
Security Streams ~— ~—
P ——
Tokens Systems Cnl'ﬂl ;)SF:?LS InfluxDB
-~/ —
Meta | Files |
tq i.S CHORDS Kapacitor
p Apps |Au1hsntlcatnr|
Tapis v3 Microservices Backend databastis and supporting
services

Figure 2. Tapis V3 Architecture
The primary components of the Tapis v3 system,; rectangles represent independent processes and arrows indicate
communication between processes. Arrow sizes and colors are for readability and carry no other implied meaning.

experimental and cutting-edge technologies, tends to
form part of the foundation of the project’s intellectual
merit claims. Still, a number of technologies have
reached a maturity level that the risk associated with
adoption seems low compared to the net benefit.

A number of technologies adopted by Tapis clearly
lowered the cost of sustainability. These include the
primary programming languages (Python and Java),
third-party libraries (e.g., Flask, Tomcat), databases
and message queues (Postgres [30], MongoDB [31],
RabbitMQ [32]), and a variety of open-source
components (e.g., reverse proxies such as Apache
HTTPd [33]). Sustainability considerations impacted
these decisions: for example, the team chose not to write
new services with the Golang programming language
even though there was a perceived benefit. Separately, a
significant effort was made to rewrite a service to replace
its use of the Redis [34] database in order to reduce the
number of database technologies in use.

Whenever possible, Tapis makes use of free
services to minimize overall sustainment cost. Source
code repositories are hosted for free on github [35],
which also provides issue tracking and a space
for documentation such as change logs for released
versions, local development instructions, etc. We
use github pages for hosting fully static applications,
including our interactive Live Docs [36] application
based on our OpenAPI definition files and a full-featured
remote file browser application for demonstrating the
utility of the Systems and Files APIs.

Tapis invests significantly in continuous integration,
including an on-premise deployment of the open-source

Jenkins server, automated build and deployment scripts
written in Ansible [37], and a suite of integration
tests for each API. While not without cost, continuous
integration allows for faster development while enabling
more individuals to contribute without risking quality
of service, which is critical to long-term usability and
sustainability.

High-quality documentation is essential for
growing the user base of a project (see Section 5).
Once again, Tapis uses a number of free services
and open-source software to minimize the cost of
maintaining documentation. We use the Sphinx [38§]
documentation engine which generates high-quality
documentation products in multiple formats, including
HTTP and pdf, from restructured-text (RST) source
code. RST is well-documented and easy to write for
developers as well as support staff. We host the RST
source code for each documentation site on github
and the Sphinx-generated documentation products are
hosted (again for free) on readthedocs.org. In fact,
commits to the master branch on the github repository
automatically trigger a build of the documentation
on readthdocs.org for most of our projects, meaning
that the cost of maintaining our documentation sites is
near zero beyond the cost to write the RST. Dozens of
individuals from several institutions have contributed to
our various documentation projects for Tapis.

The impact of other technology selections on Tapis
sustainment are less clear. For example, Tapis adopted
Docker containers for packaging and distributing its
components in late 2014 when the technology was still
young. In the ensuing five years, container technology

Page 7262

in general, and Docker in particular, experienced
substantial adoption and features, performance and
stability improved dramatically. It could be argued that
had Tapis delayed its adoption of container technology,
the costs of sustaining the platform would have been
reduced. On the other hand, the Tapis core team
developed expertise in containers which led to other
advantages. Similar lines of reasoning apply to the
adoption of Kubernetes in Tapis version three. In the
end, the benefits of adopting cutting-edge technologies
must be balanced against the risks and potential
sustainability costs. This balancing act involves a mix
of careful analysis and old-fashioned luck, and no two
projects are likely to make the same sets of choices.

4.4. Technical Debt

A critical aspect of software sustainability involves
the proper management of technical debt — additional
effort that will be required in the future resulting from
choices made to simplify an implementation in the
present. In research software, often times a project
must try to build a new feature or use a new technology
without knowing how well it will work, how many
people will use it, etc. Thus, some technical debt, taken
on at the right time, can be useful. However, technical
debt makes it harder to add new features in the future,
and too much technical debt can be insurmountable.

Beginning in late 2016, as usage started to increase,
we began to see reliability and scalability issues with
our Jobs service. We decided to pay down a significant
technical debt by re-implementing the Jobs service with
a new architecture. Though not a complete rewrite,
major structural changes were made and the project took
over two years to complete. Along the way, substantial
updates to the Files API and other services were also
made, including updating the Java runtime environment
and many third-party libraries. The effort came at the
expense of new features, but the improvements resulted
in an immensely more serviceable and maintainable
platform. Explosive growth followed, and in the end,
the decision appears to have been the right one.

S. Increasing Sustainability Resources

Sustainment of Tapis would not be possible without
the enormous contributions of our collaborators and
the greater community. In many ways, the efforts to
grow the Tapis community impact sustainability of the
platform as much as any of the technical or architecture
decisions described in the previous section.

5.1. Groups Building with Tapis

The Tapis project has invested in aligning itself
closely with several other groups of scientists and
developers at the Texas Advanced Computing Center.
These groups include the Life Sciences Computing
group, the Web and Mobile Applications group, the
Data Intensive Computing group, and the Advanced
Computing Systems group. These individuals bring use
cases and requirements that shape and prioritize the next
features and improvements to Tapis. They attend regular
requirements sessions, participate in early/beta testing
sessions, and even serve as Co-PIs or senior personnel
on Tapis grants. In turn, Tapis core team members serve
in advisory roles on projects led by these other groups.

The contributions from these groups make Tapis
a substantially more compelling platform, and the
projects they lead bring the majority of users to
Tapis. For example, many users interact with Tapis
through one of a number of science gateways developed
by the Web and Mobile Applications group. The
Life Sciences Computing Group has developed a
large number of Tapis applications for bioinformatics,
including a number of containerized applications, and
has contributed substantially to Tapis developer tooling,
including the command-line interface (CLI) [39], the
Python Software Development Kit (SDK) [40], and
much of the documentation. The Data Intensive
Computing Group has collaborated on a number of
projects involving large datasets, including helping
to build and administer highly scalable databases
and develop machine learning applications. The
Advanced Computing Systems group advised Tapis core
developers on architecture and access patterns for high
performance computing and storage resources.

5.2. Partner Institutions Deploying Tapis

As the architecture of version two of the platform
became significantly more complex and distributed,
the project invested a substantial effort in automating
the deployment and management of Tapis software
components. Docker container images for packaging
and distribution combined with Ansible scripts for
server configuration and management were leveraged.
While the project itself benefited directly from these
efforts, an equally important outcome was that the
University of Hawaii Manoa and Centers for Disease
Control and Prevention deployed standalone Tapis
instances using the deployment tools.

The deployments at each additional institution
resulted in substantial improvements to Tapis that
have reduced the long-term sustainment cost. First,

Page 7263

both groups have made direct code contributions to
the core services as well as the deployment tooling.
Perhaps more importantly, their involvement in Tapis
has shaped our approach to a number of changes to the
platform. Knowing that non-Tapis experts would need
to be able to deploy and operate the platform required
the project team to develop mature practices with
respect to documentation and distribution of releases,
error messages and logging with better diagnostic
information, and to prioritize repeatable maintenance
procedures.

5.3. Students

For the past several years, core members of the
Tapis project have supervised undergraduate students as
part of software internships and research experiences
for undergraduates. Former Tapis students have written
documentation and have contributed code to the primary
services. They have also conducted performance studies
and other research that has resulted in publications.

In addition to these tangible contributions, students
provide excellent benchmarks for determining how easy
it is to contribute to a project. They often lack
any significant experience with common engineering
tools such as build systems and interactive development
environments (IDEs). Every day counts when a student
has less than three months over the course of the
summer, working part-time, to make a significant

contribution. A variety of Tapis processes and
documentation — from developer on-boarding and
quality quick-start guides, to reviewing PRs — have

been streamlined and improved as a result of working
with students. These outcomes directly impact
long-term sustainability of the project.

5.4. Support and Outreach by Core Team

The core team performs a number of important
activities that help grow the Tapis community. Tapis
team members regularly present workshops and tutorials
on the Tapis API at conferences such as Practice &
Experience in Advanced Research Computing (PEARC)
and Gateways, and at TACC events such as the annual
User Meeting, TACCster, and the TACC Summer
Institute series. The Tapis team has also been invited
to present at various institutions such as the Hawaii
Data Science Institute at the University of Hawaii
and the Centers for Disease Control and Prevention.
Additionally, individuals present webinars on platforms
such as the Natural Hazards Engineering Research
Infrastructure (NHERI) and the Science Gateways
Community Institute (SGCI) Webinar series.

Finally, the Tapis user support system is crucial to

community engagement and growth. Dedicated support
staff monitor the project’s Slack channels and triage user
support tickets. Additionally, staff monitor a “failed
jobs” report that runs hourly. The vast majority of jobs
fail due to user error, but the report can help identify
users who are struggling to get an application to run
correctly. Support staff can then reach out to the users
— on our Slack channel [41], for example, if they are
members — and offer assistance. For more involved
issues, such as questions about solutions architecture
or bugs, support staff bring the issues to Tapis core
engineers.

6. Analysis

In this section, we present data describing the
evolution of Tapis with respect to: (i) total usage and
cost and (ii) total resources for sustainability, and we
compare these data to the dates of adoption of practices
described in previous sections, that, in our opinion,
were the most important for improving sustainability.
While obviously not a formal, controlled experiment,
we believe these data suggest a correlation between
adoption of these practices and an overall improvement
in the sustainability level of Tapis. For the sake of an
equitable comparison and because historical data from
before 2014 were not as abundantly available, we focus
primarily on the years 2014 to present.

Aggregate Platform Usage and Data Integrity Issues Over
Time

1250 ==== Tokens(in
thousnads)

. . = == Jobs (in
1000 / \ thousands})

Apps (in 10s)
¢ ‘\ === = Data Integrity
. . Issues
500 / N

750

V2 Jobs Rewrite

L ’ = Integration and
250 7/ e \ Monitoring Tests

______ Oauth2 Adoption

Year

Figure 3. Aggregate Platform Usage and Data

Integrity Issues over Time
The figure above shows aggregate Tapis usage has

increased across multiple dimensions, but data integrity
issues have been decreasing significantly since 2019.

In figure 3, we present the total aggregate OAuth2
tokens (in thousands), aggregate jobs (in thousands)
and aggregate apps created in the platform as well
as the total annual data integrity issues that required
manual intervention over time. While platform usage
consistently increased across all dimensions, data
integrity issues decreased starting in 2019. Though

Page 7264

many factors clearly contributed to this result, we
generally attribute it to the increased use of integration
and monitoring tests and our decisions to pay down
technical debt — in particular, the effort to re-implement
the Jobs service in a new architecture.

Total Contributors to Code and Documentation Repositories by

Year

25 = === Code Repositories
== == Docs Repositories

20 e Started Using
- Github

15 e @ Stared Using
- - JenkinsiCI

Started Using RiD
’ m Deploymentat UH

7 Deployment at

2014 2016 2018 2020

Figure 4. Contributors to Tapis Repositories over

Time
The figure above charts the total number of individuals
whose first commit to a Tapis repository was in a given
year.

In figure 4, we show the total number of individuals
who have contributed to the Tapis source code and
documentation repositories over time. In general, the
numbers of contributors has grown substantially over
time, but clearly we begin to see significant gains in
2018. For documentation contributions, a major factor
(if not the major factor) was moving away from a
custom documentation site written in PHP to using
Sphix and ReadTheDocs. Exactly one individual ever
contributed to the custom PHP documentation site;
however, by July of 2020 we have had nearly 20
contributors to our Sphix/ReadTheDocs documentation
repositories. For code contributions, we feel our use of
devops automation with Jenkins to provide continuous
integration was a major factor. In both cases, additional
deployments at UH and CDC were also important.

7. Future Work

In Tapis V3, we expect to improve deployment,
monitoring and debugging by leveraging components
in the Kubernetes ecosystem, such as Jaeger and
ELK/EFK, that make it easier to adopt and operate
a microservice based system. In addition, the new
architecture allows associate sites to implement a
subset of Tapis V3 locally for security or performance
reasons. These associate sites still rely on a primary
site to manage much of the infrastructure, thus making
expansion to new sites more attractive.

8. Conclusion

Looking back on twelve years of Tapis evolution,
we see that open source and free-license software
and services form a strong foundation for low cost,
sustainable systems. Most of the third party software
we use, as well as Tapis itself, conforms to open
standards that enable components to be swapped in
and out with little disruption. We’ve exercised this
flexibility numerous times, for example, by switching
code repositories, SQL databases, REST frameworks,
documentation generators and logging subsystems.

We continue to reduce sustainability costs by
embracing devops, paying down technical debt, and
placing bets on strategic technologies. As a small
research group responsible for both the development
and operation of Tapis, we try to optimize the whole
software lifecycle, including design, coding, build,
deployment and monitoring. Our build and deployment
processes are approaching continuous integration with
the use of Jenkins, Kubernetes and automated test suites.
We can deploy a new Tapis V3 installation with a single
command. We discussed how the V2 Jobs service
was not able to keep up with demand. By rewriting
it we achieved a level of reliability that significantly
increases developer productivity going forward. Finally,
as early adopters of container technology and now of
Kubernetes, we reap the benefits of industry trends and
take advantage of a huge inventory of new, innovative
software.

On the other side of the ledger, we increase
sustainability resources by fostering communication and
by developing partnerships. When we introduced a
dedicated support person we not only provided users
with a single point of contact, but we drastically reduced
the number of interruptions developers experienced.
Dedicated support means that slack channels and
email inquiries are constantly monitored, and that
documentation and tutorials are kept up to date. We hold
frequent live tutorials and hands-on training sessions,
often in a conference settings where we also present
our latest results and interact with our peers. These
interactions have led to partnerships, both formal and
informal, across institutional boundaries. Our partners
have contributed significantly to our code base and to
the diversity of application domains to which Tapis is
applied.

9. Acknowledgement

This material is based upon work supported by
the National Science Foundation Office of Advanced
CyberInfrastructure [grant numbers 1931439 and

Page 7265

1931575].

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

U. Nangia and D. K. Katz, “Track 1 paper: Surveying
the U.S. National Postdoctoral Association regarding
software use and training in research,” Zenodo, June
2017. doi: 10.6084/m9. figshare.5328442.

U. Nangia and D. S. Katz, “Understanding software in
research: Initial results from examining Nature and a
call for collaboration,” in 2017 IEEE 13th International
Conference on e-Science (e-Science), pp. 486487, 2017.

M. Bello and F. Galindo-Rueda, “Charting the digital
transformation of science: Findings from the 2018
OECD International Survey of Scientific Authors
(ISSA2),” OECD Science, Technology and Industry
Working Papers, no. 2020/03, 2020. doi: 10.1787/
1b06c47c—en.

J. Stubbs, R. Cardone, M. Packard, A. Jamthe, S. Padhy,
S. Terry, J. Looney, J. Meiring, S. Black, M. Dahan,
S. Cleveland, and G. Jacobs, “Tapis: An api platform for
reproducible, distributed computational research,” 2020.
submitted.

R. Dooley et al., “Software-as-a-Service: The iPlant
Foundation API,” IEEE, 5th IEEE Workshop on
Many-Task Computing on Grids and Supercomputers
(MTAGS), 2012.

C. Calero, M. F. Bertoa, and M. . Moraga, “A systematic
literature review for software sustainability measures,”
in 2013 2nd International Workshop on Green and
Sustainable Software (GREENS), pp. 46-53, 2013.

C. Stewart, W. Barnett, E. Wernert, J. Wernert,
V. Welch, and R. Knepper, “Sustained software for
cyberinfrastructure,” pp. 63-72, 06 2015. doi: 10.
1145/2753524.2753533.

N. Condori-Fernndez and P. Lago, “Characterizing
the contribution of quality requirements to software
sustainability,” Journal of Systems and Software,
vol. 137,122017. doi: 10.1016/7.3ss.2017.12.
005.

M. Rosado de Souza, R. Haines, M. Vigo, and
C. Jay, “What makes research software sustainable?
an interview study with research software engineers,”
in 2019 IEEE/ACM 12th International Workshop
on Cooperative and Human Aspects of Software
Engineering (CHASE), pp. 135-138, 2019.

R. C. Seacord, J. Elm, W. Goethert, G. A. Lewis,
D. Plakosh, J. Robert, L. Wrage, and M. Lindvall,
“Measuring software sustainability,” in International
Conference on Software Maintenance, 2003. ICSM 2003.
Proceedings., pp. 450-459, 2003.

C. Venters, L. Lau, M. Griffiths, V. Holmes, R. Ward,
C. Jay, C. Dibsdale, and J. Xu, “The blind men and the
elephant: Towards an empirical evaluation framework
for software sustainability,” Journal of Open Research
Software, vol. 2, 07 2014. doi: 10.5334/jors.ao.

S. Oyedeji, M. Adisa, B. Penzenstadler, and A. Wolff,
“Validation study of a framework for sustainable
software system design and development,” 06 2019.

N. Condori-Fernndez, P. Lago, M. Luaces, and
A. P. Saavedra, “An action research for improving
the sustainability assessment framework instruments,”
Sustainability, vol. 12, p. 1682, 02 2020. doi: 10.
3390/sul2041682.

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]
(22]
(23]
(24]
[25]
[26]
(27]
(28]
(29]

(30]
(31]
(32]
(33]
[34]
[35]
(36]
[37]
(38]
(39]
[40]
(41]

N. Condori-Fernandez and P. Lago, “Characterizing
the contribution of quality requirements to software
sustainability,” Journal of Systems and Software,
vol. 137, pp. 289-305, 2018.

R. H. A. Aldabjan and C. Jay, “How should we measure
the relationship between code quality and software
sustainability?,” in WSSSPE4, 2016.

I. Groher and R. Weinreich, “An interview study
on sustainability concerns in software development
projects,” in SEAA, 2017. doi: 10.1109/SEAA.
2017.70,.

C. Venters, C. Jay, L. Lau, M. Griffiths, V. Holmes,
R. Ward, J. Austin, C. Dibsdale, and J. Xu, “Software
sustainability: The modern Tower of Babel,” CEUR
Workshop Proceedings, vol. 1216, pp. 7-12, 01 2014.

G. Berriman, J. Good, E. Deelman, and A. Alexov, “Ten
years of software sustainability at the infrared processing
and analysis center,” Philosophical transactions. Series
A, Mathematical, physical, and engineering sciences,
vol. 369, pp. 3384-97, 08 2011. doi: 10.1098/rsta.
2011.0136.

V. V. Foster I and T. S., “Software as a service as a
path to software sustainability,” 06 2013. Available from
http://dx.doi.org/10.6084/m9.figshare.791604.

B. Allen, R. Ananthakrishnan, K. Chard, I. Foster,
R. Madduri, J. Pruyne, S. Rosen, and S. Tuecke,
“Globus: A case study in software as a service for
scientists,” in Proceedings of the Sth Workshop on
Scientific Cloud Computing, ScienceCloud 17, (New
York, NY, USA), p. 2532, Association for Computing
Machinery, 2017. doi: 10.1145/3086567.
3086570.

“AWS S3.” Last access: 2020-07-14.
“Javascript object notation.” Last access: 2020-07-14.
“Secured shell protocol.” Last access: 2020-07-14.
“HTTP 1.1,” 2020. Last access: 2020-07-13.

“HTTP 2,” 2020. Last access: 2020-07-13.

“gRPC.” Last access: 2020-07-13.

“Protocol Buffers.” Last access: 2020-07-13.

“OAuth 2.” Last access: 2020-07-14.
2019.

“Openapi specification 3.0,” Last access:

2020-07-13.

“Postgres.” Last access: 2020-07-14.
“MongoDB.” Last access: 2020-07-14.
“RabbitMQ.” Last access: 2020-07-14.

“Apache Httpd.” Last access: 2020-07-14.
“Redis.” Last access: 2020-07-14.

“Tapis project,” 2019. Last access: 2020-07-14.
“Tapis Live Docs,” 2020. Last access: 2020-07-14.
“Ansible,” 2020. Last access: 2020-07-14.
“Sphnix,” 2020. Last access: 2020-07-14.

“Tapis CLL” 2020. Last access: 2020-07-14.
“Tapis Python SDK,” 2020. Last access: 2020-07-14.

“TACC CLOUD SLACK,” 2020.
2020-07-14.

Last access:

Page 7266

