Check for
Updates

Common Resource Descriptions for Interoperable Gateway

Joe Stubbs
TACC,
University of Texas, Austin
Texas, USA
jstubbs@tacc.utexas.edu

John-Paul Navarro
University of Chicago,
Argonne National Lab
Illinois, USA
navarro@anl.gov

Dimuthu Wannipurage
Cyberinfrastructure Integration
Research Center,
Indiana University
Indiana, USA
dwannipu@iu.edu

Maytal Dahan
TACC
University of Texas, Austin
Texas, USA
maytal@tacc.utexas.edu

Cyberinfrastructure

Suresh Marru
Cyberinfrastructure Integration
Research Center,
Indiana University
Indiana, USA
smarru@iu.edu

Eric Franz
The Ohio Supercomputer Center
Ohio, USA
efranz@osc.edu

Sudhakar Pamidighantam
Cyberinfrastructure Integration
Research Center,
Indiana University
Indiana, USA
pamidigs@iu.edu

Marlon Pierce
Cyberinfrastructure Integration
Research Center
Indiana University
Indiana, USA
marpierc@iu.edu

Daniel Mejia
Network for Computational
Nanotechnology,
Purdue University
Indiana, USA
dmejiapa@purdue.edu

Steve Black
TACC,
University of Texas, Austin
Texas, USA
scblack@tacc.utexas.edu

Claire Stirm
San Diego Supercomputer Center
University of California, San Diego
California, USA
cstirm@ucsd.edu

Michael Zentner
San Diego Supercomputer Center,
University of California, San Diego
California, USA
mzentner@ucsd.edu

ABSTRACT

Science gateway projects face challenges utilizing the vast and het-
erogeneous landscape of powerful cyberinfrastructure available
today, and interoperability across technologies remains poor. This
interoperability issue leads to myriad problems: inability to bring
multiple heterogeneous specialized resources together to solve prob-
lems where different resources are optimized for different facets
of the problem; inability to choose from multiple resources on-
the-fly as needed based on characteristics and available capacity;
and ultimately a less than optimal application of nationally-funded
resources toward advancing science. This paper presents version
1.0 of the Science Gateways Community Institute (SGCI) Resource
Description Specification — a schema providing a common lan-
guage for describing storage and computing resources utilized by
science gateway technologies — as well as an Inventory API and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °21, July 18-22, 2021, Boston, MA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8292-2/21/07...$15.00
https://doi.org/10.1145/3437359.3465576

software development kits for incorporating resource definitions
into gateway projects. We discuss multiple gateway integration
design options, with trade offs regarding robustness and availability.
We detail the adoption to date of the SGCI Resource Specification by
several prominent projects, including Apache Airavata, HUBzero®,
Open OnDemand, Tapis, and XSEDE. The XSEDE adoption is worth
highlighting explicitly as it has led to a new API within the XSEDE
Information Services architecture which provides SGCI resource
descriptions of all active XSEDE resources. Additionally, we show
how the use of the SGCI Resource Specification provides inter-
operability across resource providers and projects that adopt it.
Finally, as a proof of concept, we present a multi-step analysis that
runs Quantum ESPRESSO and visualizes the energy band struc-
tures of a Gallium Arsenide (GaAs) crystal across multiple resource
providers including the Halstead cluster at Purdue University and
the Stampede2 supercomputer at TACC.

CCS CONCEPTS

« Computer systems organization — Distributed architectures;
» Information systems — Computing platforms; Computing
methodologies — Distributed computing methodologies.

https://doi.org/10.1145/3437359.3465576
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3437359.3465576&domain=pdf&date_stamp=2021-07-17

PEARC ’21, July 18-22, 2021, Boston, MA, USA

KEYWORDS

Cyberinfrastructure, interoperability, resource description, science
gateways community institute

ACM Reference Format:

Joe Stubbs, Suresh Marru, Daniel Mejia, John-Paul Navarro, Eric Franz,
Steve Black, Dimuthu Wannipurage, Sudhakar Pamidighantam, Claire Stirm,
Maytal Dahan, Marlon Pierce, and Michael Zentner. 2021. Common Re-
source Descriptions for Interoperable Gateway Cyberinfrastructure. In Prac-
tice and Experience in Advanced Research Computing (PEARC °21), July
18-22, 2021, Boston, MA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3437359.3465576

1 INTRODUCTION

Science gateways [15] provide online interfaces to advanced stor-
age and computing cyberinfrastructure, allowing investigators to
more easily utilize these resources for their research. Given the
complexity and heterogeneity of cyberinfrastructure today, science
gateways are regarded as important tools by thousands of prac-
titioners. Nevertheless, gateway projects face difficult challenges
leveraging the various storage and computing resources available,
and interoperability across these technologies remains poor. This
interoperability problem manifests itself at two levels: on one level,
individual science gateways would ideally be able to interchange
and integrate multiple advanced systems together, and on another
level, researchers could ideally interoperate across multiple science
gateways. The lack of interoperability leads to inefficient use of
resources: specific components of an analysis initially built to use
one resource cannot be redirected to another resource better fit for
the task — for example, a resource with more applicable capabilities
or one that has more available cycles, etc. Similarly, a lack of inter-
operability often prevents researchers from conducting analyses
on new datasets stored in different resources.

The Science Gateways Community Institute (SGCI) [31] is spon-
soring a multi-institutional project to produce a Resource Descrip-
tion specification, together with an Inventory APl and client tooling,
to provide a common language for describing storage and com-
puting resources. Unlike past efforts to provide common resource
descriptions, the SGCI Resource Description specification explicitly
targets science gateway projects, focusing on their use cases and
the information needed to achieve them. The project adopted an
open and inclusive governance model, where all work is hosted in
public repositories on GitHub, and the team solicited feedback and
contributions from the community at conferences and regularly
scheduled meetings. This community driven approach has led to
promising results, as several prominent projects have made signifi-
cant contributions to the specification and have either completed
or made substantial strides towards adoption.

This paper announces and presents version 1.0 of the SGCI Re-
source Description specification, the Inventory API, and associated
tooling. The paper also offers initial evidence of the project’s viabil-
ity. We detail the process by which resource descriptions are pub-
lished to the inventory, and how adoption by the XSEDE project [29]
has led to the publication of a complete set of resource descriptions
of all currently active XSEDE systems. We describe the different
options science gateways and gateway frameworks have for incor-
porating SGCI resource descriptions into their projects, and we give

Stubbs, Marru, Mejia, et al.

=

Community
Contributions

validation
Aventory
' Curators

Figure 1: Overview of SGCI Resource Inventory with
planned integrations with Apache Airavata, HUBzero®,
Tapis frameworks and XSEDE.

XseEDE®

v
x =
v=

accounts of the adoptions in the Open OnDemand [9], Tapis [27],
and Apache Airavata [18] gateway frameworks. Finally, we describe
how utilizing SGCI resource descriptions and the associated tooling
leads to data exchange and interoperability across cyberinfrastruc-
ture, and we walk through a proof-of-concept Jupyter notebook
[14] that computes and visualizes the energy band structures of a
Gallium Arsenide (GaAs) crystal by executing a multi-step Quan-
tum ESPRESSO analysis across different geographically distributed
resources.
In summary, the primary contributions of this paper are:

e An overview of version 1.0 of the SGCI Resource Descrip-
tion specification and mechanisms leading to resource de-
scription publication, including a complete set of resource
definitions for all active XSEDE systems.

e An overview of the Inventory API and language SDKs as

well as the different design options available to science gate-

ways for integrating SGCI resource descriptions into their
projects. Details of the adoption to date in the Airavata, Open

OnDemand and Tapis systems are also included.

A description of how the adoption of the specification leads

to interoperability and a proof of concept demonstration of

a multi-step Quantum ESPRESSO analysis packaged as a

Jupyter notebook that runs across different geographically

distributed resources.

2 SGCI RESOURCE DESCRIPTION SCHEMA

2.1 Overview

The SGCI Resource Specification is implemented as a JSON Schema
document describing the required and optional attributes available
for describing resources. Each resource description is itself a JSON
document conforming to the SGCI schema. Using JSON Schema
and the associated ecosystem of tooling, one can automate tasks
related to JSON data, including validation and deserialization, in
all major programming languages. For example, all documentation
and examples are automatically updated on readthedocs using the
sphinx-jsonschema [11] as new changes are pulled to GitHub. In

https://doi.org/10.1145/3437359.3465576
https://doi.org/10.1145/3437359.3465576

Common Resource Descriptions for Interoperable Gateway Cyberinfrastructure

(SGCIResource)
schemaVersion! : string 1.N | 0.N
host! : string
name! : string [StorageResource] [ComputeResource]

1
| CommandPath || Partition P 1 NodeHardware I

Figure 2: Overview architecture of the SGCI Resource De-
scription specification schema

conjunction with the prominence of JSON data and APIs across
the modern web, this ecosystem made JSON Schema a compelling
choice for the SGCI Resource Descriptions project.

Fundamentally, a resource represents a logical collection of stor-
age and/or computing capabilities made available at a primary
network address and, optionally, one or more secondary addresses.
Examples of resources include nationally funded supercomputers
such as Bridges, Comet, or Stampede2, as well as campus clusters,
file servers large and small, and cloud computing resources such as
object stores and virtual machines. Resource descriptions include
attributes of a resource that apply to all or most users and exclude
attributes specific to individual users or groups, such as accounting
information (e.g., allocation numbers) or identity information. In
particular, the resource definition is publicly available and therefore
cannot include security sensitive information.

Every resource definition must include a host attribute whose
value provides the primary network address of the resource; for
example, the host attribute for the Stampede2 supercomputer has
the value “stampede2.tacc.utexas.edu”. An essential design in the
schema is that the host attribute must be unique across the inven-
tory: there can only be one resource definition with a given host
value. This uniqueness property guarantees that all clients utilizing
a particular resource have the same definition of the resource’s
properties and is a key ingredient in solving the interoperability
problem.

The schema organizes a resource’s capabilities into storageOb-
jects and computeObjects. Details on these objects are provided in
the subsequent sections.

2.2 Storage Resource Objects

A storage capability is described in a storageObject whose primary
attributes are a storageType, one or more connectionObjects, and
a fileSystem object. Version 1.0 of the schema supports describing
POSIX, S3 and iRODS storage capabilities, and the storageType
captures which category of storage is being described. Multiple
storageObjects can be included in a single resource definition to
allow for systems that provide multiple storage capabilities, such
as the Corral storage system at TACC, which has both POSIX and
S3-compatible APIs. The required connectionObject defines the
protocols used to connect to and authenticate with the resource
and additional information such as the port to use when connecting.
It is worth noting that the serviceHost can optionally be supplied

PEARC ’21, July 18-22, 2021, Boston, MA, USA

within the connectionObject to specify a different network address
than the primary host attribute to use for a particular capability.
This feature allows for use cases such as where data transfer capa-
bilities attached to computing resources are accessed via a separate
network address, as can be found on many HPC systems. Finally,
one or more fileSystem attributes optionally included to describe
paths for different storage areas, such as “scratch”, “work” and
“home” commonly found on HPC systems.

2.3 Compute Resource Objects

Compute definitions that define a batchSystemDefinition must spec-
ify the jobManager, such as SLURM, SGE or PBS and may specify
the scheduler host, commandPaths to various scheduler client bina-
ries, and hardwareProfiles which allows defining the different ways
jobs can request compute resources. Many HPC centers use sched-
uler partitions or queues, while other sites may employ constraints,
node features, or other scheduler submission arguments to partition
compute resource requests. By optionally supplying the submitArgs
array within the hardwareProfiles object the minimum required
submission arguments for that compute resource partition may be
specified. Features of the nodes provided by the hardwareProfile
are defined using the totalNodes property and nodeHardware ob-
ject with properties such as gpuCount, memorySize and cpuCount.
The computeQuotas object is optionally included to define the re-
strictions on jobs submitted using this hardwareProfile, such as
minMemoryPerJob and maxMemoryPerJob. Restrictions like these
enable addressing use cases like at OSC where when requesting
a large memory node the job must specify the memory request
between 363GB and 744GB.

2.4 Related Work

Computational resource discovery was a topic of widespread inter-
est during the Grid Computing era. The Open Grid Forum (OGF)
pioneered many standards including the Resource descriptions. The
Distributed Resource Management Application API (DRMAA) [30]
defined a generalized API to Distributed Resource Management
(DRM) systems in order to facilitate the development of portable
application programs and high-level libraries. The Job Submission
Description Language (JSDL) [5] was used to describe the require-
ments of computational jobs for submission to resources in Grid en-
vironments. The Grid Laboratory Uniform Environment (GLUE) [4]
is a conceptual information model for Grid entities described using
the natural language and UML Class Diagrams. Globus Resource
Specification Language (RSL) [8] described grid resources includ-
ing computational job information. The Simple API for Grid Ap-
plications (SAGA) [12] aimed to provide high-level interfaces for
common grid components (e.g., transfer and scheduling). RADICAL-
SAGA [20] is a current implementation of the SAGA specification,
including Python bindings, and is used by the RADICAL-Cybertools
suite of tools.

Perhaps the most similar approaches are the directory services
used to maintain state about distributed computing environments.
The Globus Monitoring and Discovery Service [6] builds upon the
LDAP protocol to address the distributed resource selection prob-
lem. It maintains not only static configuration information about
distributed grid resources but also low level information recorded by

PEARC ’21, July 18-22, 2021, Boston, MA, USA

participating components. It implements a decentralized structure
designed to enable it to scale to represent large grids and frequent
data updates.

The XSEDE Information services discussed in Section 5.1 inter-
nally uses the GLUE2 schema. Though, we will remain focused on
the goal to create interoperable CI components for which adoption
and maintainability are key factors. The initial stakeholders (the
co-authors of this paper) represent a diverse set of projects that are
committed to consume and maintain the proposed descriptions and
we fully intend to engage with the wider CI developer community.

3 PROJECT AND INVENTORY GOVERNANCE

Our goals with the SGCI resource description schema, resource
inventory and reference implementations are community efforts.
We encourage code and other community contributions, resulting
in more diverse communities coalescing around this valuable effort.
We describe our community governance, essentially the rules that
guide the interactions intending to encourage participation with a
discussion that lead to resolutions and decisions. [17] provides a
general discussion of various governance approaches.

3.1 Open Governance model

We will adopt the Open Governance [24] models that provide well-
defined mechanisms executed through open communications, al-
lowing individuals from diverse and even competing organizations
to interact in neutral forums. The Open Governance model enables
the contributors to collaborate to encourage growth and transform
passive users into active project members.

We will leverage the tooling available in the GitHub ecosystem
to implement the Open Governance approach. Technical Decisions
as much as possible will be made asynchronously on Pull Requests
and Issue discussions. We plan to periodically meet with an open
meeting invitation sent to all active contributors. Issue resolution
will be done by active stakeholder vote, although the weighting of
the votes may not be equal. We have not defined Veto mechanisms,
but these will be implicit in the voting process (that is, consensus
may be a prerequisite). We will follow the examples in large open
source foundations such as the Apache Software Foundation [7].
Most importantly, the project membership will not be limited to a
particular organization. All but a few decisions are made by voting
on publicly available, archived mailing lists; discussions of new
candidate git write access will be the main exception.

3.2 Contributions and Project Sustainability

We believe the Resource Schema and the associated implementa-
tions have to be actively maintained and continually enhanced with
changing computational landscape. The sustainability of this effort
will heavily depend on the communities who are invested in the
project’s success. This project was initially seeded by SGCI partners
from Apache Airavata, HUBzero®, and Tapis projects. As a first
principle, the schema and inventory reference implementations
must obviously fulfill a need for a community of users to build
a community. Open Ondemand and XSEDE Information Services
groups joining this effort validates the usefulness.

Stubbs, Marru, Mejia, et al.

4 THE INVENTORY API AND LANGUAGE
SDK

4.1 Overview

The SGCI Resource Descriptions project provides science gateways
and gateway frameworks with three possible design options for
integration. First, all resource definitions are publicly available from
the GitHub repository, and projects are free to download or clone
the repository to a local file system for direct use. This approach
is perhaps the most straightforward technique, but it introduces
the potential for local definitions to get out of sync with the def-
initions on GitHub. To avoid the sync issue, projects can opt to
use the GitHub API to pull resource definitions in real time. This
is a good choice for many projects, as the GitHub API has very
high availability, and using the API means always working with
the latest definition. However, usage of the GitHub API is subject
to rate limits, per the documentation [1]. For projects requiring up-
dated resource definitions with no rate limits, an official Inventory
APT has been developed (see 4.2 for details). Projects can choose
to deploy an instance of the Inventory API or use an existing in-
stance. Finally, software development kits (SDKs) in Python and
Java provide support for all three integration approaches.

Additionally, the Resource Description specification, Inventory
API and languages SDKs have been designed to accommodate
pulling a resource definition from multiple sources. We anticipate
that over time a number of large projects and organizations may
choose to deploy an instance of the Inventory API. While the ulti-
mate source of truth for a given resource definition lives in GitHub,
some instances of the Inventory API may have a more up-to-date
description for a short period of time. The Resource Description
schema includes an optional attribute for specifying a location (i.e.,
a URL) of an Inventory API containing the most up-to-date def-
inition for the resource. Projects can choose to retrieve resource
definitions from the most up-to-date source if needed. This is par-
ticularly useful for more dynamic information, such as available
software modules and outage periods. The language SDKs provide
a merge function for automatically combining multiple definitions
of a given resource.

4.2 Inventory API Design

The inventory is designed with goals of having a centralized re-
source inventory, ability to add new resources, modify, and main-
tain existing information as changes are made to the underlying
resources (e.g., additional nodes added to a queue on a resource) and
the inventory itself must be highly available because this impacts
the availability of the science gateways using it and finally, the
physical cost of building and maintaining the inventory must be
kept to a minimum, as this is critical to its sustainability.

We build an intermediary data store to mitigate potential con-
cern of GitHub’s availability, performance and API rate limiting
(which limits the number of queries a project could make against
GitHub within a given time period). We introduce an inventory
cache. The inventory cache service pulls data from GitHub and per-
sists in a Mongo Database. The reference implementation provides
a GRAPHOQL [28] and REST API’s to allow fetching and searching
of resources descriptions from the inventory. GraphQL provides a

Common Resource Descriptions for Interoperable Gateway Cyberinfrastructure

more flexible, filtered and controlled search of the inventory data
with familiar REST-like operations.

4.3 Language SDKs

As part of the SGCI Resource Inventory effort, we have developed
a Python SDK — an installable Python library called SCGICatalog
[26], for working with resource descriptions. SGCICatalog is cur-
rently published on GitHub, but we are planning to publish it to
pypi and/or other public package repositories. SCGICatalog allows
Python programs to extract resource descriptions from different
locations: GitHub, given a Token or User/Password credentials;
XSEDE, accessing the XSEDE Information Services API; or Local,
using a local copy of the resources. SCGICatalog allows clients
to list all the resources available from that location, and get the
JSON description of a specific resource from the location. SCGICat-
alog validates the resource against the SCGI Inventory schema and
warns users of inconsistencies of the resource.

SCGICatalog also allows clients to search for specific information
from the resource definition. Search is implemented using JMES
[13] Path syntax, so complex and multiple queries can be performed
on the same search, and clients can merge different descriptions of
the same resource loaded from different locations.

Similarly, we have developed a convenient Java client [25] to
fetch JSON resource descriptions from within Java programs. As
adoption and use of the SGCI resource inventory increases, we
anticipate existing clients will be enriched and new clients will
emerge.

5 PUBLISHING RESOURCE DESCRIPTIONS
INTO THE INVENTORY

5.1 XSEDE API

The XSEDE program federates 20 compute, storage, and cloud re-
sources allocated on a merit basis to 2,500 projects and 11,000 users,
plus another 20 un-allocated resources [33]. XSEDE has several
information systems that manage resource information of interest
to science gateways. XSEDE operators manually enter information
in the Resource Description Repository (RDR) and enter resource
outages into the XSEDE Central Database (XCDB). They automat-
ically publish batch scheduler information every few minutes by
running an Information Publishing Framework (IPF) service on
each resource. Both manually entered and automatically collected
information is continuously aggregated into XSEDE’s Central In-
formation Services [16] [32] where it is cross-referenced and stored
in an information warehouse. XSEDE’s User Portal, Research Soft-
ware Portal, and other services access resource information using
public Central Information Services RESTful APIs to provide users
and software with authoritative up-to-date resource information to
enable resource discovery and access [21].

XSEDE’s collaboration with SGCI’s Resource Description project
started by comparing the proposed schema to XSEDE’s existing re-
source information. The comparison identified schema information
XSEDE already has, information XSEDE is missing, and informa-
tion XSEDE already has that wasn’t in the schema that might be of
interest to science gateways.

XSEDE already has basic descriptive information about resources
in pre-production, production, or post-production phases available

PEARC ’21, July 18-22, 2021, Boston, MA, USA

to science gateways; information about the GridFTP and OpenSSH
connections available for science gateways to login, manage jobs,
and transfer data to or from resources; and about the batch sched-
uler (job manager) and node hardware partitions available through
the scheduler.

Information that XSEDE already had and has proposed as ad-
ditions to the SGCI schema include information on the current
operational status of resources with associated start and end dates,
current and future outages, and available software modules. These
are being explored as possible additions to the schema because they
are of interest to science gateways, though they introduce a more
dynamic aspect of resource descriptions.

Through this collaboration XSEDE learned that science gate-
ways are interested in file-system information and in the paths to
important tools and commands which it currently does not collect.
XSEDE will need to work with resource operators to manually or
automatically collect this information.

Leveraging XSEDE’s Central Information Services which ag-
gregates manually entered and automatically collected resource
information from multiple information systems, XSEDE developed
an initial SGCI Schema version 1.0 compatible API that returns
active allocated XSEDE resource information plus the proposed
resource status and outages information additions [34].

5.2 Publishing Existing Descriptions From
Frameworks

5.3 TAPIS

Tapis is an open source, domain-agnostic API framework funded
by the National Science Foundation for distributed, reproducible
computational research, hosted at the Texas Advanced Computing
Center at the University of Texas at Austin, the Hawaii Datascience
Institute at the University of Hawaii and other partnering insti-
tutions [27] . Using Tapis, researchers can work with storage and
computing systems across the United States and internationally to
manage data and metadata and execute software using a common
API. Thousands of users across dozens of projects use Tapis for
their research.

The Tapis team developed a script for automatically converting a
Tapis system to an SGCI resource. One interesting challenge is that
while every Tapis system includes a host attribute having the same
meaning as in SGCI resources, the host attribute is not required to
be unique in Tapis systems. This lack of uniqueness enables users
to “customize” the system definition Tapis uses for them for a given
host in various ways - for example, the rootDir attribute on a Tapis
system is a path that acts like chroot so that Tapis prepends it to any
absolute path against that system. The conversion script merged
some attributes from different system definitions for the same host
while discarding others.

54 Open OnDemand

Open OnDemand is an NSF-funded open source general purpose
web HPC portal that enables users to manage files, submit jobs, and
use many different graphical applications. OnDemand has been
downloaded by more than 200 HPC facilities around the world.
SGCI resource descriptions will be used for OnDemand’s cluster
configuration. To encourage publishing to the inventory catalog, a

PEARC ’21, July 18-22, 2021, Boston, MA, USA

script for publishing and a web IDE for editing these resource de-
scriptions may be developed and provided through the OnDemand
interface.

5.5 Airavata

Apache Airavata [18] is an open-source science gateway framework
that powers the multi-tenanted Science Gateways Platform as a
service (SciGaP) [22]. As of this writing, SciGaP platform operates
45 Science Gateways executing over 200 scientific applications
on over 70 supercomputing resources across the world. Apache
Airavata internally curates resource descriptions of these resources
in an application catalog registry accessible with a Thrift based
APL A java library [2] was written to extract compute and storage
resource descriptions from Airavata registry and translate to SGCI
resource schema. These resulting JSON documents were manually
committed to the SGCI resource inventory. We plan to enhance
this description extraction and publishing to inventory process by
adding checks to verify existence of a given resource within the
inventory and merge the information. From our early experience,
the translation of the Airavata internal format and the SGCI scheme
was straight forward and no information field mismatches were
identified.

5.6 Manual Curation of Missing Details and
Resources

As discussed in the Introduction, our contributions in this paper
highlight both the Schema as well as curated resource descrip-
tions in the SGCI inventory. Above we described how gateway
frameworks and XSEDE bootstrap resources descriptions. However
we realize and expect the inventory will never be comprehensive
enough to cover all publicly describable computational resources.
As we gather experience in how the missing descriptions will be
handled, we will share our findings in the future publications.

As discussed in the governance section, our current plan is to
engage the community at large and encourage publications through
Github pull requests. As discussed more in the Future Work sec-
tion, we will consider providing utilities which can be installed on
resources to query scheduler and publish to the inventory. This
will be a software distribution and administrators have to install
the utility to install on a given resource. Alternatively, an admin-
istrator can manually populate the JSON document and submit a
pull request.

6 USING RESOURCE DESCRIPTIONS IN
SCIENCE GATEWAYS AND FRAMEWORKS

In Section 5 we discussed how gateway frameworks and XSEDE
can contribute resource descriptions and publish into a common
SGCI resource inventory. In this section we discuss how gateway
frameworks can consume the descriptions from the inventory.

6.1 Open OnDemand

OnDemand’s interactive app plugins define user inputs and the
job template required for starting interactive apps such as RStudio.
Each plugin may contain duplicate information about a cluster’s
node properties, partitions, and other details required to properly

Stubbs, Marru, Mejia, et al.

submit the batch jobs. This duplication imposes a maintenance bur-
den when maintaining an OnDemand instance and makes it more
difficult for other sites to copy OSC’s OnDemand plugins for their
use. The SGCI schema provides similar configuration options that
OnDemand’s "cluster config" provides while also supporting the
detailed hardware configuration in the form of hardwareProfiles.
By adopting the SGCI schema for OnDemand’s new cluster config,
sites running OnDemand will be able to shift most of the hardware
configuration out of the numerous plugins into a centralized lo-
cation, simplifying the plugin code and making the plugins more
portable.

OnDemand will support both JSON and YAML cluster configs
that validate against the schema. The YAML version will make
schema adoption easier for sites not interested in the inventory
catalog but wanting to enjoy the benefits the schema confers. YAML
allows inline comments and is the format of other OnDemand
configuration.

Many sites are running OnDemand where the OnDemand oper-
ator is not a sysadmin. The use of the SCGI inventory may reduce
the maintenance burden for these sites. System admins at these
sites can publish resource definitions for their clusters to the SGCI
inventory. Then the OnDemand operators at those sites can pull the
resource definitions into OnDemand. As new clusters come online
and old clusters are taken offline, OnDemand may automatically
update the new or updated resource definitions.

6.2 Tapis

The Tapis Framework uses systems as one of its fundamental ab-
stractions, and several other higher-level features including files
(and associated data management), apps, and jobs rely on them. The
Tapis system abstraction closely resembles an SGCI resource. One
difference between SGCI resources and Tapis systems is that SGCI
resources can have multiple storage capabilities, such as POSIX
and S3-compliant storage endpoints, while Tapis assumes each sys-
tem provides one type of storage. The Tapis team developed an
endpoint within the Systems API for importing an SGCI resource
description as one or more systems: the import will produce one
system for each storageResource defined in the resource definition.
An additional development effort currently underway will add the
ability to import information contained within a computeResource
object as one or more capabilities of the systems being created.
Beyond their use as a source of system definitions, Tapis plans
to enable datasets to be described in terms of an SGCI resource,
where by a dataset we simply mean a file or folder on some storage
resource. Tapis already recognizes a special syntax comprised of
the system ID and path for referencing datasets on Tapis systems.
This syntax appears in many places throughout the Tapis API, such
as sources for data transfers or inputs to jobs. An analogous syntax
comprised of the SGCI host and path will be used to reference a file
or folder on an SGCI resource. Because the host attribute uniquely
defines an SGCI resource, Tapis only must find a system definition
with a matching host attribute that the user has access to. It is
worth noting that Tapis systems can be created on behalf of large
groups of people, even an entire project (or “tenant”). Therefore,
it will be possible for the typical Tapis user to work exclusively
with SGCI hosts in API requests involving data, meaning those data

Common Resource Descriptions for Interoperable Gateway Cyberinfrastructure

could have been generated outside of Tapis, for example, through
another gateway or gateway framework technology.

6.3 Airavata

The Apache Airavata [18] science gateway framework API to de-
scribe computational resources is based on Apache Thrift, which
gives Airavata a strongly typed, programming language indepen-
dent way of defining its interfaces. From the API definitions, Aira-
vata generates client packages in multiple languages including Java,
Python, PHP and C++. Client gateways access Airavata through the
API Server through a secure channel (SSL sockets or HTTPS). Aira-
vata allows administrators to define and describe computational
resources and application descriptions in its App Catalog compo-
nent. Airavata and its eco system of components will integrate
with the SGCI resource inventory through an intermediate bridge
service. The service will translate SGCI schema into Airavata in-
ternal compute and storage resource descriptions. The service will
subscribe to changes to SGCI schema and will run integration tests,
once passed the SGCI inventory descriptions will be synchronized
with Airavata application catalog descriptions. Airavata integration
with the schema to build downstream components to configure user
compute and storage preferences is available from [3].

7 INTEROPERABILITY AND
PROOF-OF-CONCEPT JUPYTER NOTEBOOK

7.1 Overview and Interoperability

This section presents a demonstration that utilizes SGCI resource
descriptions to conduct a multi-step analysis across three machines
at three different institutions. The workflow, packaged as a Jupyter
app, runs Quantum ESPRESSO to compute and visualize the band
structure of a Gallium Arsenide (GaAs) crystal. In addition to being
a realistic analysis, distributing such a workflow across systems
is useful because each step requires substantial compute which
may only be available at a certain site at any given time. Each step
may require a large set of input files that may reside on only one
machine.

Notably, the demo obtains all information about the resources it
needs to execute the workflow from the SGCI resource descriptions
with one exception: information about the multi-factor authentica-
tion system on each is “hard-coded” into the app. (Adding support
for multi-factor authentication metadata is planned future work).
Additionally, the demo app suggests another area currently planned
for future work — defining a common language for describing ap-
plications. The demo uses an ad hoc definition of applications to
describe Quantum ESPRESSO. Still, the SGCI project plans to ulti-
mately provide a formal specification for applications (see Future
Work).

7.2 Scientific Background

Band structure is one of the most essential concepts in solid state
physics, as it defines a schematic way of visualizing the electronic
configuration of a system. Visualizing the bands helps in under-
standing the characteristics of different materials and their differ-
ences. Usually, to calculate band-structures for a material, users

PEARC ’21, July 18-22, 2021, Boston, MA, USA

1§0) ESPRESSO

o electronic state = band
calculatio calculati
TAcL

[PURDUE

kpoints
energies

Figure 3: Diagram of the three-step workflow to generate
band structures

/
'@mii‘

Figure 4: Overview of geographically distributed resources
used by the Jupyter notebook

have to follow a simple three-step workflow to generate these bands.
A high-level overview of the steps involved follows.

The electronic state calculation step consists of obtaining a poten-
tial energy surface, and requires solving the electronic Schrodinger
equation over a range of nuclear coordinates on a Self-Consistent
Field calculation (SCF) process. The electronic Schrédinger equa-
tion solved numerically can calculate approximated wavefunctions.
The SCF method is an iterative method that involves selecting an ap-
proximate Hamiltonian, calculating a more accurate set of orbitals,
and iterating until results converge. The SCF method requires a
set of pseudopotentials for each atom type in the system, and the
particular k-points of interest.

The bands calculation step requires a non-SCF calculation with
the desired k-points grid and the number of bands to be calculated.
The calculation requires a preset potential, usually as output of the
result of an electronic state calculation.

Finally, the k-points and energies step requires post process-
ing the results. All output data from previous calculations are dis-
tributed across multiple files and output logs. The visualization of
the bands requires the path for each band to be reconstructed based
on energies and k-points.

7.3 Demo Application

We present a Jupyter App [19], a Jupyter notebook that can be
executed in AppMode or running on a Voila server[23], that dis-
tributes the band structure visualization workflow on three different
HPC providers: Halstead/RCAC at Purdue University, Stampede2
at TACC, and nanoHUB/HUBzero®hosted at SDSC. The notebook
takes advantage of the Python SDK (SCGICatalog) and the SGCI

PEARC ’21, July 18-22, 2021, Boston, MA, USA

Resource Inventory to get access to different resource descriptions
and defines templates based on JMESPath queries to extract relevant
information of each resource. Additionally, the notebook defines
the notion of an “application” to be executed, in this case Quantum
ESPRESSO, as the path to the executable file, a list of modules re-
quired, and a set of inputs, and these data are referenced by the
templates.

After extracting the information from the definitions, the note-
book creates connections using dual factor authentication (2FA)
to each server; however, each server implements different dual
authentication methods — Stampede2 uses a time-based one-time
authentication, while Halstead uses a push-based authentication.
As the notebook has to handle these connections independently, a
resource’s dual authentication implementation should be part of
the schema for password based connections. When connections
are successfully established, the notebook guides users to submit
the electronic state calculation to Stampede2, moves the results
to Halstead, submits the bands calculation on Halstead, copies the
results back to nanoHUB, extracts the relevant information from
files, and visualizes the band structure of Gallium Arsenide (GaAs)
as an interactive widget using Plotly [10].

nanoHUB and HUBzero®are looking to integrate SCGICatalog
as part of the tools included in the core services to interact with
external providers. Submit jobs to community clusters using the
Tapis API or submit jobs to other HPC providers registered on
Airavata.

8 FUTURE WORK

The SGCI Resource Description project plans to expand the present
work with several future efforts. First, while version 1.0 already
includes the language to describe several prominent resource types,
including storage and computing resources commonly found in
major academic datacenters, support for more modern and less
traditional computing resources, including some cloud computing
capabilities, is somewhat lacking. As community usage of these
types of resources increases and experience with them grows, the
project expects that the motivation and knowledge needed to ex-
pand the schema will result in community contributions to add and
support them.

The project will engage in several efforts to grow the catalog
of resource descriptions currently available. XSEDE can expand
the resource descriptions it publishes by encouraging the 20 unal-
located XSEDE federated resources that aren’t required to use its
tools to do so and thus enhance access by science gateways. These
XSEDE tools could also be made available to resource operators
not federated with XSEDE. XSEDE is also exploring whether to
contribute to the community a RESTful API that caches all SGCI
resource descriptions from GitHub in XSEDE’s Central Information
Services. Two potential benefits would be that the RESTful API
could provide query capabilities. The cache is more well suited for
handling frequently changing resource descriptive information that
GitHub.

Beyond new resource types, the project recognizes the inevitable
need to support additional information on resources. Some infor-
mation, such as metadata about the multi-factor authentication
systems present on a resource, are already known to the project. In

Stubbs, Marru, Mejia, et al.

contrast, others are unknown and will come by way of community
usage. Dynamic information in particular, such as the available
software modules or real-time outage information, presents both
an opportunity and a challenge. A fundamental issue that future
work will address pertains to the life cycle of resource definitions
and the frequency and mechanisms by which the definitions are
updated. Currently, all changes to project artifacts, including re-
source definitions, are made via public pull requests (PRs) to the
GitHub repository. The team welcomes PRs from the community
to improve any aspect of the project, including updates to resource
definitions, documentation, or code improvements to the Inventory
API or language SDks. The project will be reviewing all PRs to
the GitHub repository during regularly scheduled meetings on a
monthly interval, and these meetings are open to community par-
ticipation. The meeting schedule with connection information will
be posted to the Resource Description project page within the SGCI
website. Over time, as the project’s adoption hopefully increases,
we will learn the community’s needs and adopt additional policies
and mechanisms for updating resource description information as
needed.

Descriptions of resources form a foundation upon which the
project plans to develop an application description schema and
associated tooling. The idea is to enable users to invoke applica-
tions across cyberinfrastructure resources and science gateways
seamlessly, we require a common language for describing the ap-
plications. However, applications, in turn, have requirements on
the resources where they run (for instance, a dependency on a
hardware type, a software module or a container runtime). Thus,
an application description language depends on having a common
language to describe the resources where they will run.

Ultimately, the goal of the project is to improve interoperability
across science gateways and the cyberinfrastructure they leverage.
As new use cases emerge through increased community adoption,
the project will evolve to better meet that end.

9 CONCLUSION

This paper presents version 1.0 of the SGCI Resource Description
project, a common language and set of tools for describing the
attributes needed by science gateways to make use of a storage or
computing resource. In collaboration with the XSEDE project, the
SGCI Resource Inventory contains detailed, up-to-date information
about all active XSEDE systems. The paper describes additional
integrations and collaborations with the Airavata, OnDemand and
Tapis projects, and it provides multiple design options to science
gateways wanting to use SGCI Resource descriptions. Finally, the
paper tackles the interoperability problem. Includes a description
of a proof-of-concept Jupyter notebook that leverages the Inven-
tory API and Python SDK to run a multi-step Quantum ESPRESSO
analysis across resources at different institutions.

ACKNOWLEDGMENTS

Authors JS, SM, DM, SB, DW, SP, CS, MD, MP and MZ are sup-
ported by NSF Award #1547611. Author EF supported by NSF Award
#1835725.

Common Resource Descriptions for Interoperable Gateway Cyberinfrastructure

REFERENCES

[1] 2021. GitHub Rate Limiting. https://docs.github.com/en/rest/overview/resources-

[2

[3

[10
(1

[12

[13

[14

[16

==

]

]

]
]

in-the-rest-api#rate-limiting Last access: 2021-03-08.

Apache Airavata. 2020. Data Publish. Retrieved March 9, 2021 from https:
//github.com/SciGaP/scigap-resource-inventory

Apache Airavata. 2020. Resource Descriptions. Retrieved March 9, 2021
from https://github.com/apache/airavata/tree/storage-resource-profile/modules/
resource-profile

Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang,
Balazs Konya, Maarten Litmaath, Paul Millar, and JP Navarro. 2009. GLUE
Specification v. 2.0. In Open Grid Forum Recommendation Documents. Open Grid
Forum.

Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen
McGough, Darren Pulsipher, and Andreas Savva. 2005. Job Submission De-
scription Language (JSDL) Specification, Version 1.0. In Open Grid Forum, GFD,
Vol. 56.

Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. 2001. Grid
Information Services for Distributed Resource Sharing. In Proceedings of 10th IEEE
International Symposium on High Performance Distributed Computing (HPDC).
181-194.

Roy T Fielding. 1999. Shared leadership in the Apache project. Commun. ACM
42,4 (1999), 42-43.

Ian Foster and Carl Kesselman. 1998. The Globus project: A status report. In
Proceedings of Seventh Heterogeneous Computing Workshop (HCW’98). 4-18.
Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, Eric Franz, Trey
Dockendorf, and Brian L. McMichael. 2018. Open OnDemand: A web-based
client portal for HPC centers. Journal of Open Source Software 3, 25 (2018), 622.
https://doi.org/10.21105/j0ss.00622

Plotly Technologies Inc. 2015. Collaborative data science. Montreal, QC. Retrieved
March 9, 2021 from https://plot.ly

Inoor. 2020. sphinx-jsonschema. Retrieved March 9, 2021 from https://github.
com/Inoor/sphinx-jsonschema

Shantenu Jha, Hartmut Kaiser, Andre Merzky, and Ole Weidner. 2007. Grid
Interoperability at the Application Level using SAGA. In Third IEEE International
Conference on e-Science and Grid Computing (e-Science 2007). 584-591.
JMESPath. 2020. Specification. Retrieved March 9, 2021 from https://jmespath.
org/specification.html

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows. Vol. 2016.

Katherine A Lawrence, Michael Zentner, Nancy Wilkins-Diehr, Julie A Wernert,
Marlon Pierce, Suresh Marru, and Scott Michael. 2015. Science gateways today
and tomorrow: positive perspectives of nearly 5000 members of the research
community. Concurrency and Computation: Practice and Experience 27, 16 (2015),
4252-4268.

Lee Liming, John-Paul Navarro, Eric Blau, Jason Brechin, Charlie Catlett, Maytal
Dahan, Diana Diehl, Rion Dooley, Michael Dwyer, Kate Ericson, et al. 2009. Tera-
Grid’s integrated information service. In Proceedings of the 5th Grid Computing
Environments Workshop. 1-10.

(17

[18

[19

[21

[22

I
&

[28

[29]

[30

(31

[32

[33

[34

PEARC °21, July 18-22, 2021, Boston, MA, USA

M Lynne Markus. 2007. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? Journal of Management &
Governance 11, 2 (2007), 151-163.

Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,
Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, et al. 2011. Apache airavata: a framework for dis-
tributed applications and computational workflows. In Proceedings of the 2011
ACM workshop on Gateway computing environments. 21-28.

Daniel Mejia. 2021. SGCI Resource Schema Demo Jupyter App. Retrieved March
9, 2021 from https://github.com/denphi/sgci-demo

Andre Merzky, Ole Weidner, and Shantenu Jha. 2015. SAGA: A Standardized
Access Layer to Heterogeneous Distributed Computing Infrastructure. SoftwareX
1(2015), 3-8.

John-Paul Navarro and Amy Hovious. 2019. Breaking Resource Discovery Barri-
ers. In Proceedings of the Practice and Experience in Advanced Research Computing
on Rise of the Machines (learning). 1-2.

Marlon Pierce, Suresh Marru, Eroma Abeysinghe, Sudhakar Pamidighantam,
Marcus Christie, and Dimuthu Wannipurage. 2018. Supporting science gateways
using apache airavata and scigap services. In Proceedings of the Practice and
Experience on Advanced Research Computing. 1-4.

QuantStack. 2020. And voila! Retrieved March 9, 2021 from https://blog.jupyter.
org/and-voil%C3%A0-f6a2c08a4a93

Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &
Policy 12, 3 (1999), 23-49.

SGCI. 2020. Resource Clients. Retrieved March 9, 2021 from https://github.com/

SGCl/sgci-resource-clients
SGCL 2020. Science Gateways Community Institute Catalog. Retrieved Feb 17,

2020 from https://catalog.sciencegateways.org/

J Stubbs, R Cardone, M Packard, A Jamthe, S Padhy, S Terry, J Looney,] Meiring,
S Black, M Dahan, S Cleveland, and G Jacobs. 2021. Tapis: An API Platform for
Reproducible, Distributed Computational Research. In Proceedings of the 2021
Future of Information and Communication Conference (FICC). Springer.

Ruben Taelman, Miel Vander Sande, and Ruben Verborgh. 2018. GraphQL-LD:
linked data querying with GraphQL. In ISWC2018, the 17th International Semantic
Web Conference. 1-4.

John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
et al. 2014. XSEDE: accelerating scientific discovery. Computing in science &
engineering 16, 5 (2014), 62-74.

Peter Troger, Roger Brobst, Daniel Gruber, Mariusz Mamonski, and Daniel Tem-
pleton. 2012. Distributed Resource Management Application API Version 2
(DRMAA). Technical report, Open Grid Forum.

Nancy Wilkins-Diehr, Michael Zentner, Marlon Pierce, Maytal Dahan, Katherine
Lawrence, Linda Hayden, and Nayiri Mullinix. 2018. The science gateways
community institute at two years. In Proceedings of the Practice and Experience
on Advanced Research Computing. 1-8.

XSEDE. 2021. Info Services. Retrieved March 9, 2021 from https://info.xsede.org/
info

XSEDE. 2021. Service Providers. Retrieved March 9, 2021 from https://www.
xsede.org/ecosystem/service-providers

XSEDE. 2021. XSEDE SGCI v1 APL. Retrieved March 9, 2021 from https://info.
xsede.org/wh1l/warehouse-views/v1/resources-sgci/v0.1.0/?format=json

https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://github.com/SciGaP/scigap-resource-inventory
https://github.com/SciGaP/scigap-resource-inventory
https://github.com/apache/airavata/tree/storage-resource-profile/modules/resource-profile
https://github.com/apache/airavata/tree/storage-resource-profile/modules/resource-profile
https://doi.org/10.21105/joss.00622
https://plot.ly
https://github.com/lnoor/sphinx-jsonschema
https://github.com/lnoor/sphinx-jsonschema
https://jmespath.org/specification.html
https://jmespath.org/specification.html
https://github.com/denphi/sgci-demo
https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93
https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93
https://github.com/SGCI/sgci-resource-clients
https://github.com/SGCI/sgci-resource-clients
https://catalog.sciencegateways.org/
https://info.xsede.org/info
https://info.xsede.org/info
https://www.xsede.org/ecosystem/service-providers
https://www.xsede.org/ecosystem/service-providers
https://info.xsede.org/wh1/warehouse-views/v1/resources-sgci/v0.1.0/?format=json
https://info.xsede.org/wh1/warehouse-views/v1/resources-sgci/v0.1.0/?format=json

	Abstract
	1 Introduction
	2 SGCI Resource Description Schema
	2.1 Overview
	2.2 Storage Resource Objects
	2.3 Compute Resource Objects
	2.4 Related Work

	3 Project and Inventory Governance
	3.1 Open Governance model
	3.2 Contributions and Project Sustainability

	4 The Inventory API and Language SDK
	4.1 Overview
	4.2 Inventory API Design
	4.3 Language SDKs

	5 Publishing Resource Descriptions Into the Inventory
	5.1 XSEDE API
	5.2 Publishing Existing Descriptions From Frameworks
	5.3 TAPIS
	5.4 Open OnDemand
	5.5 Airavata
	5.6 Manual Curation of Missing Details and Resources

	6 Using Resource Descriptions in Science Gateways and Frameworks
	6.1 Open OnDemand
	6.2 Tapis
	6.3 Airavata

	7 Interoperability and Proof-of-concept Jupyter Notebook
	7.1 Overview and Interoperability
	7.2 Scientific Background
	7.3 Demo Application

	8 Future Work
	9 Conclusion
	Acknowledgments
	References

