®

Check for
updates

SSH-Backed API Performance
Case Study

Anagha Jamthe!®) Mike Packard', Joe Stubbs', Gilbert Curbelo 1112,
Roseline Shapi®, and Elias Chalhoub?

! Texas Advanced Computing Center, Austin, TX, USA
{ajamthe ,mpackard, jstubbs,echalhoub}@tacc.utexas.edu
2 California State University of Monterey Bay, Marina, CA, USA
gcurbelo@csumb.edu
3 Mississippi Valley State University, Itta Bena, MS, USA
rshapi@usapglobal.org

Abstract. We establish that SSH is a viable transport mechanism for
APT access to HPC resources. In this paper, we study the performance
and scalability properties of SSH using various SSH libraries (Python,
Java, Linux command line client). We consider SSH daemon configura-
tion changes that improve the API scalability significantly. We observe
that, for the memory and CPU resources available on the test machines,
our SSH-based API performs sufficiently well until a certain threshold
of requests per second (RPS). At 90 RPS, 99% of the requests finish
in less than two seconds. At 50 RPS, almost 90% of the requests finish
in one second, which shows that the API is responsive enough under
these loads. However, as the number of concurrent requests increases
past 100, we see a gradual increase in time to complete requests. We
perform load tests for the SSH API by sending bursts of concurrent con-
nections and continued sustained connections over time and observe an
acceptable responsiveness from the remote systems in both cases. With
this study we conclude that SSH performance is sufficient for API access
to computational HPC resources.

Keywords: Application Programming Interface (API) - High
Performance Computing (HPC) - High Throughput Computing
(HTC) - J2SSH Maverick - Paramiko - ssh2-python - Locust -
Jetstream

1 Introduction

HPC computing and storage resources are increasingly being accessed via web
interfaces and HTTP APIs as opposed to direct command-line interface. All
cloud providers, including: Amazon AWS [1], Google Cloud Platform [2], and
Microsoft Azure [3], provide such services. At the Texas Advanced Computing
Center (TACC), Tapis Cloud APIs [4,5] currently enable 14 different official

© Springer Nature Switzerland AG 2020
W. Gao et al. (Eds.): Bench 2019, LNCS 12093, pp. 295-305, 2020.
https://doi.org/10.1007/978-3-030-49556-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49556-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-49556-5_27

296 A. Jamthe et al.

projects (a total of nearly 20,000 total registered client applications) to man-
age data, run jobs on the HPC and HTC systems, and track provenance and
metadata for computational experiments. When jobs are run on HPC machines,
hundreds of files are needed to be transferred between storage and execution
systems for staging input data and archiving output data. The underlying APIs
that perform these asynchronous file transfers through SFTP are expected to
securely transfer files without significant delays. In order to understand and
potentially improve performance and scalability of the Tapis Files management
APIs, we study performance of SSH as a protocol.

SSH (also referred to as Secure Shell) is well-known as the most secure
method of authenticating and encrypting access to remote Linux systems via
command line. It is a secure alternative to insecure file transfers with FTP. In
this paper, we investigate whether SSH is also viable as a transport layer for
simultaneous API requests to similar systems. We discuss two methods used to
evaluate the API performance. First, we identify the bottlenecks with respect to
memory, CPU, and I/O when a burst of simultaneous SSH connection requests
are initiated by the clients. We study how tuning the SSH daemon configura-
tion parameters can improve successful concurrent connections to the remote
system. Secondly, we seek to understand the performance of our existing files
management APIs and ways to optimize it for remote access to HPC resources.

In this study, we also compare the performance of various available SSHv2
implementations in Python and Java, such as Paramiko [6] and ssh2-python [7],
J2SSH Maverick [8] and the Linux command line client. We then select the most
suitable implementation for our SSH API design. To evaluate the performance,
we calculate the total time to connect to the HPC system and execute different
commands (I/O and non-1/0 based), for example, “Is” command, which is pri-
marily used for listing files with the Tapis files management API. We perform
load test for our APIs by simulating realistic work loads using Locust [9], a load
testing tool. Locust can simulate a multi-user API access scenario with thou-
sands of active users, which is similar to existing Tapis files management API
usage.

The rest of this paper is organized as follows. In Sect. 2 we discuss the related
work and motivation behind this case study. In Sect.3 we provide background
details on the general API performance expectations, introduction to Tapis Files
Management API, and survey on available SSHv2 libraries. In Sect. 4, we describe
the SSH backed APIs case study design. We discuss the proposed design and
experimental setup such as the VM (Virtual Machine) configurations, compari-
son of different SSH libraries, SSH API framework, and load test setup. Finally,
we conclude this paper with our research findings and discuss the scope of extend-
ing this study.

2 Related Work

In the realm of high speed bulk data transfers and file management, solu-
tions such as GridFTP from Globus [10], glogin [11], BBCP [12], LFTP [13],

SSH-Backed API Performance Case Study 297

Cyberduck [14], scp [15], rsync [16] and Kerberos kFTP [18], exist. The choice
of data transfer tools highly depends on the frequency of transfers and transfer
time. For example, manual scp and rsync are more suitable for 1-time trans-
fers [17], whereas with tools like GridFTP and BBCP, faster data transfers are
achievable by doing multi-stream transfers [17]. Most of these transfer tools how-
ever have some limitations in terms of their cost and configuration complexity.
Our study, on the other hand, leverages SSH directly, to securely login to remote
host and leverages SFTP to transfer files, which involves minimal installation,
and is easy to maintain. To the best of our knowledge, none of the prior studies
evaluate the performance and scalability of SSH for multiple concurrent connec-
tions to the HPC resources, which makes this study one of a kind and important.
With this case study we intend to build our next generation File Management
APIs, which can provide high performance and scalability for accessing the HPC
resources.

3 Background

3.1 General API Performance Expectations

Domain scientists and researchers work with distributed HPC systems to run
their high performance computing jobs. They need to access data, which might
be distributed across several systems present at different geographical locations.
These users mostly use command-line utilities and APIs, and expect them to be
responsive enough to view the job output and transfer files without significant
delays. Interactive command line users are accustomed to system responsiveness
fluctuating due to load on a shared system. It is not uncommon to have hundreds
of individual users interactively logged in to a login node of a HPC system for
accessing their resources.

With API access, it can be less obvious that one is using a shared system,
so users may have an elevated expectation of responsiveness. In general, aver-
age responsive times for APIs vary substantially, but our anecdotal experience
suggests that average response times exceeding one or two seconds can lead to
a perception that the API is “slow”. Leading cloud providers, such as Amazon
and Google have described a similar phenomenon for web page load times, where
above one or two seconds, the user experience is significantly impacted [19].

API quality can be determined from a combination of critical factors such as
performance/responsiveness, availability /uptime and correctness. An API con-
tract explicitly covers all the related implementation details and what to expect
when the caller calls a function. However, the performance and correctness con-
tract are always implicit and success of any software that uses the API largely
depends on whether these expectations are met. Since remote calls over SSH
are combined with other usage on the system, responsiveness is also affected by
system load. SSH overhead usually represents a fractional amount of this delay.
Often, API users benefit from being behind some sort of asynchronous queuing
system (e.g. RabbitMQ [20]) that returns a response to the user before actually
finishing the command. This can mitigate the responsiveness issue for end users.

298 A. Jamthe et al.

3.2 Tapis Files Management APIs

Tapis [4] is an open source, NSF funded Application Programming Interface
for hybrid cloud computing, data management, and reproducible science. Tapis
leverages standards-compliant, open source technologies and community pro-
moted best practices to enable users to manage data, execute research software,
and share results with collaborators and colleagues. Tapis has been in production
as the middleware that currently supports a number of community science gate-
ways. It is a multi-tenant, cloud-native distributed system. All services within
the platform run as Docker containers, orchestrated as a set of microservices.
The Tapis files management APIs, which is one of the core services, allows man-
agement of data across multiple types of storage systems such as Linux, cloud
(a bucket on S3), and iRODS. It supports traditional file operations such as
directory listing, renaming, copying, deleting, and upload/download that are
traditional to most file services. It also supports importing files from arbitrary
locations, metadata assignment, and a full access control layer allowing to keep
the data private, shared, or made publicly available. To fulfill the above opera-
tions, the current Tapis Files management API uses the J2SSH Maverick library’s
SSHv2 implementation.

3.3 SSH Libraries

Th choice of SSH library during API design can have a significant impact on the
overall API performance, specifically for handling burst of concurrent requests.
For these reasons, we evaluate different SSH implementations in this study and
choose the most suitable library for SSH API development. Some of the available
SSHv2 implementations in Java and Python are listed below:

— J2SSH Maverick is a complete Java implementation of the SSH2 client. We
conduct performance benchmark studies using this library as it is an integral
part of existing Tapis files management service.

— Paramiko is a Python implementation of SSHv2 protocol. It has been widely
used in automation applications such as Ansible [23].

— ssh2-python is a new SSH library written in Python which is based on the
libssh2 C library. Based on prior research, ssh2-python shows improved per-
formance in session authentication and initialization. It is almost 17 times
faster than Paramiko in performing heavy SFTP reads [24].

4 SSH API Case Study

With the distributed nature of HPC computing, there is a pressing demand for
developing highly responsive file management APIs, with performance expecta-
tions that can efficiently support several concurrent users. The aim of this case
study is to investigate how to develop such APIs by answering research questions
below:

SSH-Backed API Performance Case Study 299

4.1 Research Questions

— RQ1: Is SSH a viable transport mechanism for API access to HPC resources?
— RQ2: Can we improve the performance and scalability of APIs to support
multiple concurrent users by studying SSH as a protocol?

4.2 Research Design

It is not uncommon to have several concurrent users accessing the HPC resources
with the Tapis files management APIs. Several web portals and CLI users access
the shared HPC resources concurrently and expect the APIs to be responsive. In
order to determine whether we can design a SSH backed API that meets the per-
formance and responsiveness expectations, we need to demonstrate the feasibility
of using SSH as a transport mechanism. In this study, we propose to evaluate
the performance of parallel SSH connections to remote systems using bursts
of simultaneous connections and continuous sustained connections over time.
Benchmarking the SSH API performance by simulating multi-user request loads
is a critical part of this case study. In order to demonstrate the improvements in
handling concurrent SSH requests at the server, we conduct tests by modifying
the default values of MaxStartUps and MaxSessions in the sshd_config file on
the server. We measure the number of successful SSH connections established
when a burst of concurrent requests are made by the clients during each test
run. This data best describes the number of concurrent user requests that can
be handled successfully at a given time for a given load. Similarly, by measuring
the performance metrics “time to connect” and “time to execute commands”,
for commands such as “Is” and “uptime”, on the remote system during a burst
of simultaneous connections and continuous sustained connections over time, we
can determine if SSH APIs are responsive. In the following sections, we describe
the experimental setup and proof of concept SSH API framework and summarize
our findings for the research questions above.

4.3 Experimental Setup

For the proposed experiments we set up three virtual machines and evaluate
SSH API performance under different loads.

VM Configurations. Tests are launched from a single client VMWare virtual
machine-referred to as SSHClient—with 2 CPU cores and 8 GB of memory run-
ning CentOS 7.6 Linux. Each test then connects to one of two different server
virtual machines; one of them is a VMWare virtual machine-referred to as Taco
here—which has 2 CPU cores and 2 GB of memory, running CentOS 7.6 Linux.
The other one is a Jetstream [21] Openstack virtual machine-referred to as
Jetstream here—which has 2 CPU cores and 4 GB memory, running CentOS 7.5
Linux operating system. We selected these VMs because they are relatively small
in size and represent what a developer might readily have access to. We used
VMWare because it is TACC’s standard VM deployment system, and Jetstream
because it has a different network, 10, and hardware configuration.

300 A. Jamthe et al.

Load Test Setup. In order to conduct load tests on our API, Locust, an open
source load testing tool, is used to “swarm” the API and simulate concurrent
multi-user requests. To set up Locust, we create a configuration file that defines
the task of a simulated user, and what information to POST to the API. Other
configurations includes setting wait times and sending information. Along with
this, Locust provides a graphical interface where we could launch and see differ-
ent request/response information such as minimum/maximum/average/median
response times to connect to the server and run the commands.

Selecting SSH Library Implementation. As discussed, the choice of SSH
library implementation for the API design affects API performance. We run
benchmark tests to evaluate the API performance using two SSHv2 implemen-
tations: J2SSH and ssh2-python. We measure the total time to connect and
run commands on both the VMs—“Taco” and “Jetstream”—from “SSHClient”.
On a successful connection, either “uptime” or “Is” (directory listing containing
10,000 files) is run and total response time is measured. The total time mea-
sured for 10, 100, and 500 concurrent requests provides a baseline for selecting
SSH library implementation. From multiple test runs, almost seven times faster
response times are seen with ssh2-python library on both Taco and Jetstream,
executing the “uptime” command as compared to J2SSH implementation. Sim-
ilarly, a ten to twelve times faster response is seen on both VMs, executing “ls”
command on a successful connection with ssh2-python. Based on these evalua-
tions, ssh2-python seems to be an appropriate choice for our prototype SSH API
design.

4.4 SSH API Framework

We developed an SSH API using Python’s Flask library. This study serves as a
proof of concept to evaluate if SSH can be used as a viable transport mechanism
for file management APIs to access HPC resources. With this API, users can
securely connect to remote HPC resources and execute commands on the server.
To make use of the API, a user first makes a one-time API call to save their sever
connection credentials, including credential name, host name, user name, and an
encrypted private key. These data get stored in a MySQL database for later use.
Once credentials have been saved, the user can use the other API endpoints
to execute different commands on the server. Table 1 describes the various SSH
API endpoints and methods allowed. We note that the API in its current form
is unathenticated; as a part of future development, we are working on adding
authentication via JSON Web Tokens (JWT) [25]. The API would use a JWT
included in the request to verify that the API call is coming from an authorized
user.

This API provides an abstraction for accessing the remote HPC resources
without having to use the command line interface. Most importantly, the SSH
API is vital in testing the reliability of the SSH daemon server’s ability to handle
multiple requests at once. Using the load testing tool Locust [9], we simulate
realistic multi-user requests.

SSH-Backed API Performance Case Study 301

Table 1. SSH API endpoints

Name GET | POST | Endpoint Description

Home Page | X - sshapi/v2/ App Welcome Page
Credentials | X X sshapi/v2 Manage Credentials
Commands | - X sshapi/v2/[cred_name] | Run command via credential
Load test |- X sshapi/v2/load Load test

4.5 Findings

In this section we present our findings for RQ1 and RQ2 and discuss how answer-
ing these questions helps us in developing a prototype for SSH-backed files man-
agement APIs, using ssh2-python library.

RQ1: With Locust, which is a distributed load testing tool, we test how many
concurrent users, the SSH API is capable of handling. We simulate a multi-
user API access scenario, where burst of SSH connection requests are made to
each of the remote servers: “Taco” and “Jetstream” with the SSH API. The
user behavior and task sets are defined in the locustfile.py. Locust spawns one
instance of the Locust class for each simulated user. The user task calls the
commands API enpoint, which connects to the remote host with the credential
name defined in the POST request. Once a successful connection is established
the command specified in the same POST request is executed. The min and max
wait attribute values defined in the locustfile.py determine how much time the
user will wait between each API call. In our test setup we have defined a single
user task of calling the SSH API. Figure 1 shows the load test results obtained.
The X axis shows the percentile of successful connections, whereas the Y axis
shows the response time measured in milliseconds.

We observe that, for the memory and CPU resources available on the test
machines, our SSH-based API performs sufficiently well until a certain threshold
of requests per second (RPS). In fact, we expect that available server memory,
not SSH, is the first limiting factor up to a certain threshold of requests per
second (RPS). At 90 RPS, 99% of the requests finish in less than two seconds.
At 50 RPS, almost 90% of the requests finish in one second, which shows that the
API is responsive enough under these loads. For the most part, as the number
of requests per second increased from 10 to 90, we saw a gradual increase in
response time. The 60 RPS trial was the outlier, where performance was in fact
worse than in the 90 RPS trial. Understanding this outlier will be part of a
future study. Considering the existing loads that our current file management
system API handles, we believe that being able to handle 90 RPS in less than
two seconds is more than acceptable.

Figure 2 shows the average response times in seconds for both VMs, Taco
and Jetstream, using the ssh2-python implementation. For each trial, total time
to connect and run one of the commands, “uptime” or “ls”, for directory size

302 A. Jamthe et al.

of 10,000 files, is computed. Performing a directory listing is one the most com-
mon use cases of the Tapis files management API and is therefore necessary to
benchmark its performance. For these tests, we have created a nested directory
structure, which includes 10,000 files to simulate the files listing call with heavy
load. The average response time is computed for a set of 10 trials for each 10,
100 and 500 RPS. Similar average response times are observed on both Taco and
Jetstream, when “uptime’ and “ls” commands are executed at 10 RPS. At 100
and 500 RPS, a gradual increase in the average response time is seen for both
the VMs, running either of the commands. However, the average response time
does not vary much, when compared on both systems for 100RPS or less. We
propose to study the variability of measurements (as defined, for example, in
[26]), which can further explain the overall API stability as a part of our future
study. With this study, we can conclude that SSH is viable transport mechanism
for APT access to HPC resources and can be integral part of our next generation
Files management API design.

Load Test Results with Locust

7,000 2221 10 RPS
=22 50 RPS
6,000 1= 60 RPS
------ 90 RPS

5,000

4,000

3,000

Response Times in ms

2,000

1,000

0
50% 66% 75% 80% 90% 95% 98% 99% 100%

Percentile of Successful Connections

Fig. 1. Load test results for SSH API

RQ2: In order to answer our second research question, we study whether mod-
ifications to SSH daemon configuration at the server improves the scalability of
the API, thereby allowing larger numbers of simultaneous connections. We made
the following settings changes in the sshd_config file at both the servers:

SSH-Backed API Performance Case Study 303

Average response times on different VMs

Average resonse times (s)

L =

Uptime Taco Uptime Jetstream Is Taco Is Jstream

Commands run on VMs Taco and Jetstream

110 B100 O500

Fig. 2. SSH average response times with SSH2-Python

— MaxStartups: Specifies the maximum number of concurrent unauthenti-
cated connections to the SSH daemon. Default is 10:30:100, we used
3000:30:3000, where:

e 3000 is the number of unauthenticated connections before we start
dropping
e 30 is the percentage chance of dropping once we reach 3000 (increases
linearly for more than 3000)
e 3000 is the maximum number of connections at which we start dropping
everything
and

— MaxSessions: Specifies the maximum number of open shell, login, or subsys-
tem (e.g. SFTP) sessions permitted per network connection. Default is 10;
we used 3000.

With these settings, we were able to successfully connect to the server with even
higher concurrent request rates. Therefore, by making these changes we were
able to improve the overall scalability of the SSH APIs.

5 Conclusions

In this case study, we proposed to design a SSH-backed API towards answer-
ing two research questions: can SSH be used as a viable transport mechanism
for API access to HPC resources, and can SSH performance and scalability
be improved tweaking the SSH daemon parameters at the server. We tested
SSH load performance in two ways: using bursts of simultaneous connections,
and continuous sustained connections over time. In both cases, we observed an
acceptable responsiveness from different Linux systems. This demonstrates that,
in addition to its other advantages, SSH performance is sufficient for API access
to HPC resources. With this study, we conclude that ssh2-python can potentially
be used for our next generation Files Management API implementation.

304 A. Jamthe et al.

6 Future Work

In the near future, we plan to expand the number of destination hosts to test
against more diverse system configurations. We also plan to evaluate the possi-
bility of modifying client behavior so that the server does not require sshd_config
modifications. This could be done by pooling connections or taking advantage
of other optimizations. We also plan to study the variability of measurements
which will determine the overall performance of the SSH API for various HPC
systems.

Acknowledgments. This work was made possible by grant funding from National
Science Foundation award numbers ACI-1547611 and OAC-1931439. We thank the
staff of TACC and Jetstream for providing resources and support.

References

Amazon AWS. https://aws.amazon.com

Google Cloud. https://cloud.google.com

Microsoft Azure. https://azure.microsoft.com/en-us/

Tapis Cloud APIL. https://tacc-cloud.readthedocs.io/projects/agave/en/latest/

Stubbs, J., et al.: Tapis: an API platform for distributed computational research.

Futur. Gener. Comput. Syst. (2020)

Forcier, J: Paramiko: A Python Implementation of SSHv2 (2019). http://www.

paramiko.org/

Pkittenis, ssh2-python (2019). https://github.com/ParallelSSH /ssh2-python

Pernavas, R.: J2SSH API. http://freshmeat.net/projects/sshtools-j2ssh

Locust. https://locust.io

Allcock, W., Bester, J., et al.: Secure, efficient data transport and replica manage-

ment for high-performance data- intensive computing. In: Proceedings of the IEEE

Mass Storage Conference, pp. 13—28, April 2001

11. Rosmanith, H., Kranzlmuller, D.: glogin - a multifunctional, interactive tunnel into
the grid. In: Fifth IEEE/ACM International Workshop on Grid Computing (GRID
2004), pp. 266-272 (2004)

12. BBCP. https://github.com/slaclab/bbcp

13. LFTP. https://lftp.yar.ru

14. Cyberduck. https://cyberduck.io

15. SCP. https://linux.die.net/man/1/scp

16. Rsync. https://linux.die.net/man/1/rsync

17. Data transfer basics and best practises. https://princetonuniversity.github.
io/PUbootcamp /sessions/data-transfer-basics/PUBootCamp_20181031_
DataTransfer.pdf

18. Kohl, J., Neuman, C.: The kerberos network authentication service (V5). Request
for Comments (Proposed Standard) RFC 1510, Internet Engineering Task Force,
(Web site: www.ietf.org)

19. Einav Y., Amazon Found Every 100ms of Latency Cost them 1% in sales https://
www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-
in-sales/

20. RabbitMQ. https://www.rabbitmgq.com

CU W=

B8

e e » 3

—_

https://aws.amazon.com
https://cloud.google.com
https://azure.microsoft.com/en-us/
https://tacc-cloud.readthedocs.io/projects/agave/en/latest/
http://www.paramiko.org/
http://www.paramiko.org/
https://github.com/ParallelSSH/ssh2-python
http://freshmeat.net/projects/sshtools-j2ssh
https://locust.io
https://github.com/slaclab/bbcp
https://lftp.yar.ru
https://cyberduck.io
https://linux.die.net/man/1/scp
https://linux.die.net/man/1/rsync
https://princetonuniversity.github.io/PUbootcamp/sessions/data-transfer-basics/PUBootCamp_20181031_DataTransfer.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/data-transfer-basics/PUBootCamp_20181031_DataTransfer.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/data-transfer-basics/PUBootCamp_20181031_DataTransfer.pdf
www.ietf.org
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.rabbitmq.com

21.

22.

23.
24.

25.
26.

SSH-Backed API Performance Case Study 305

Stewart, C.A., et al.: Jetstream: a self-provisioned, scalable science and engineer-
ing cloud environment. In: Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure, 2792774, pp. 1-8. ACM,
St. Louis (2015). https://doi.org/10.1145/2792745.2792774

Towns, J., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5),
62-74 (2014). https://doi.org/10.1109/MCSE.2014.80

Ansible. https://github.com/ansible

SSH2 Python Comparison with Paramiko. https://parallel-ssh.org/post/ssh2-
python/

Json Web Tokens. https://jwt.io

Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design Design, Measurement, Simulation and Modeling. Wiley, New
York (1991)

https://doi.org/10.1145/2792745.2792774
https://doi.org/10.1109/MCSE.2014.80
https://github.com/ansible
https://parallel-ssh.org/post/ssh2-python/
https://parallel-ssh.org/post/ssh2-python/
https://jwt.io

	SSH-Backed API Performance Case Study
	1 Introduction
	2 Related Work
	3 Background
	3.1 General API Performance Expectations
	3.2 Tapis Files Management APIs
	3.3 SSH Libraries

	4 SSH API Case Study
	4.1 Research Questions
	4.2 Research Design
	4.3 Experimental Setup
	4.4 SSH API Framework
	4.5 Findings

	5 Conclusions
	6 Future Work
	References

